
ACTIVE-CAD
Real-Time Interactive CAE Tools

Logic Simulator

User’s Guide

Seventh Edition

Revision 2

Automated Logic Design Company, Inc.
3525 Old Conejo Rd. #111
Newbury Park, CA 91320

Phone (805) 499-6867
Fax (805) 498-7945

TM

Seventh Edition

Revision 2, January 15, 1996

COPYRIGHT

Copyright © 1985-1996 by ALDEC. All rights reserved. No part of this publi-
cation may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form
or by any means, electronic, mechanical, magnetic, optical, chemical, man-
ual or otherwise, without the prior written permission of ALDEC, Newbury
Park, CA 91320.

DISCLAIMER

ALDEC makes no representations or warranties with respect to the con-
tents hereof and specifically disclaims any implied warranties of merchant-
ability or fitness for any particular purpose. Further, ALDEC reserves the
right to revise this publication and to make changes from time to time in
the content hereof without obligation of ALDEC to notify any person of
such revision or changes.

TRADEMARKS

ACTIVE-CAD, Active Schematic, SUSIE and SUSIE-CAD are trademarks of
ALDEC, Inc.

ACCESS, ACTEL, ALTERA, AMD, MACH, MAX, NEC, EPSON, LASER JET,
HP, FUTURENET, OMATION, RACAL-REDAC, TANGO, CAPFAST, CAD-
NETIX, CASE TECHNOLOGY, APPLICATION BRAVO, XNF, LCA, XILINX,
ORCAD, P-CAD, IBM PC/XT/AT, PS/2, EDIF, P-DIF, VIEWLOGIC, VIEWSIM,
WINTEK, MENTOR, POST SCRIPT, CORELDRAW are trademarks or regis-
tered trademarks of their respective holders.

This edition applies to Release 2.0 of the software and higher. It is a refer-
ence guide for the ACTIVE-CAD and ACTIVE-FPGA products

ALDEC
Automated Logic Design Company, Inc.
3525 Old Conejo Rd., Suite 111
Newbury Park, CA 91320
Phone (805) 499-6867
BBS (805) 498-4086
Fax (805) 498-7945
Email: support@aldec.com

Preface

The ACTIVE-CAD simulator is a real-time interactive design analysis
tool. It can work both with an on-line schematic capture and with any
number of off-line schematic editors. Since the design resides in a set of
directly accessible data tables, you can interact with your design as if it
were a real hardware breadboard.

To take full advantage of the ACTIVE-CAD power, you must remember
how it differs from other popular simulators:

r you can start simulation the moment you load a netlist or draw a single
gate; no compilation of the design or test vectors is needed

r all devices are electrically active the moment they are connected to
active signal lines

r you can replace parts while the simulation is in progress and instantly
view the improved design performance

r you can apply stimulus signal(s) or test vector(s) to any design section
or device pin without any compilation

r all feature selections are instantly active, without compilations
r the simulator can directly control external hardware and respond to

signals generated by the external hardware
r ACTIVE-CAD works like a real hardware breadboard

Manual Organization
The manual is comprised of five (5) logical parts:

r an introduction to real-time interactive simulation
r general description of ACTIVE-CAD menus
r simulation process
r simulation supporting tools
r appendices

An introduction to real-time interactive simulation

Since the real-time interactive simulators represent a new technology,
Simulation Basics (Chapter 1) will allow you to become familiar with the
real-time design analysis. Some of you may try your own designs after
reading this chapter. However, we urge you to read the additional chap-
ters to further explore the breadth of the ACTIVE-CAD simulator.

General description of ACTIVE-CAD menus

A general description of ACTIVE-CAD menus is provided in Using The
ACTIVE-CAD Simulator (Chapter 2). Since this chapter gives you an
overview of all available features, you should become familiar with it to
get the most out of the software package. This is also the best product ref-
erence guide, right after the Index.

An outline of the simulation process

A detailed description of the simulation process starts with the section
Loading A Design and ends with Printing Simulation Results in Chapter 2.

Simulation supporting tools

The simulation support tools are described in chapters External Test Vec-
tor Editor, Mobic Model Builder and Simulator Macro Operations. The VHDL
Shorthand software product has its own manual. All these chapters de-
scribe some advanced test vector development products and modeling
tools. Learning these tools may be optional.

Appendices

This is a collection of ACTIVE-CAD-related specifications which lists li-
braries, some application notes and specifications. If you ever need to
write your own interfaces to ACTIVE-CAD netlists and test vectors, con-
sult Appendices for all the necessary information.

Application notes on specific design issues

Some of the design issues have been covered in several sections of the
manual but with different examples. Most design-specific customer in-
quiries have found their way into the section Quick Application Notes
Chapter 1). Additional application books are also available on key tech-
nologies.

Your comments are invaluable and we invite you to share your experi-
ences with us. We will include them in additional sections and manuals.
We are happy to answer all your questions to make your time with AC-
TIVE-CAD most productive.

x Preface

Chapter 1

Simulation Basics

Introduction
There are many digital simulators. However, none of them will give you
the hardware breadboard feeling like the real-time interactive ACTIVE-
CAD simulator. Everything you do with ACTIVE-CAD will always be di-
rectly related to your hardware experience.

There are four (4) basic steps in design simulation:

r creating an electronic breadboard
r selecting test points for monitoring
r creating and applying design stimulus signals
r analyzing the simulation results

ACTIVE-CAD creates an electronic breadboard of your design directly
from its netlist. However, unlike the hardware breadboard, your elec-
tronic breadboard is created within seconds and is perfect in every re-
spect: no bad solder joints, miswirings, wrong polarities, bad chips,
ground noise, signal line crosstalk, to name a few possible problems.

The electronic breadboard is tested with signals which are called test vec-
tors. Each test vector lists logical states of all stimulus signals at a se-
lected time interval. If you are testing a 2-input gate, you may only need
four test vectors (00, 01, 10, 11). However, if you are testing an 8-bit bi-
nary counter, then you may need up to 256 test vectors (clocks) to test its
operation.

Hardware breadboards allow you to apply signal generator probes to
any pin on a live board. Similarly, ACTIVE-CAD test vectors can be cre-

ated and applied to any test point on the schematic while the simulation
is in progress. Because of that, the ACTIVE-CAD electronic breadboard
operates like a real hardware breadboard, and you can manually toggle
any signal line in real time. This analogy between ACTIVE-CAD and real
hardware is so strong that you need only a few hours to learn this simula-
tion tool.

ACTIVE-CAD comes with a test vector editor that allows you to create
signals for stimulating the design circuits with any desired action. You
can apply these stimulus signals or test vectors at any test point in your
design. The test vector editor can produce 1,000 independent signal
waveforms (channels), each capable of a 100 GigaHertz clock speed. The
ACTIVE-CAD signal generator is thus superior to any hardware signal
generator, at a fraction of the cost.

Since ACTIVE-CAD can display 1,000 signal channels, each operating at
a 100 GigaHertz clock speed, and since it automatically displays all cir-
cuit timing errors, it is more powerful than any logic analyzer.

The ACTIVE-CAD design environment is shown in Figure 1-1. Since the
ACTIVE-CAD simulator behaves like a real hardware breadboard,
ACTIVE-CAD-based designs can operate in a closed loop with the actual
hardware located outside the computer.

Waveform Viewer
(Logic Analyzer)

Test Vector Editor
(Stimuli Signal Generator)

Schematic Design

Electronic Breadboard

Figure 1-1. SUSIE Simulator Environment.

1-2 [<basic]

Creating An Electronic Breadboard
Creating a working hardware breadboard requires someone to wire sock-
ets and insert components. The same is true for the electronic bread-
board. Since ACTIVE-CAD is an incremental design environment, it
wires the electronic breadboard and inserts devices (simulation models)
into sockets as you draw them. Loading an external netlist automat-
ically creates the entire electronic breadboard, including loading of the
appropriate device models.

Missing Models

If you are using some components for which ACTIVE-CAD does not
have a model, such as the Pentium microprocessor, then the socket will
remain empty. Also, if you have not purchased some libraries (not en-
coded into the keylock), their component sockets will remain empty de-
spite that they have been drawn in the ACTIVE-CAD schematic editor
and the model libraries are listed in the library manager.

The empty sockets in electronic breadboards behave exactly like empty
sockets in hardware breadboards they don’t load any input signals and
they float all output signal lines. Since ACTIVE-CAD is a real-time inter-
active simulator, you can assign to the outputs of such devices your own
test vectors that emulate their behavior and simulate the entire design de-
spite the absence of these device models. You will find more information
on handling missing models in the Test Vectors and Handling Missing
Models , included in Loading A Design (Section of Chapter 2).

Entering Design Test Points From Schematic

Since ACTIVE-CAD schematic imitates real hardware breadboard, you
can select tests points for on-line background simulator directly from the
schematic. To select the test point selection mode, click on the Simula-

tion toolbox icon in the schematic editor and then click on the de-
sired test points. Each click will produce test points at pins and nodes or
signal names. The selected test points will also be fed into the simulator
once it is activated.

Loading External Design Netlists

To create an electronic breadboard of a design you need to load its
netlist. Because ACTIVE-CAD is a universal design verification tool, it
accepts netlists from other schematic editors. Over twenty of the most
popular schematic netlist formats are available, including some formats
which are hardly in use today. This means that you should be able to
simulate a design no matter how old it may be.

Introduction [<basic] 1-3

Upon loading a netlist into the ACTIVE-CAD simulator, it will display
the screen shown in Figure 1-2. Familiarize yourself with the terminol-
ogy in this figure because it will be very useful in the following chapters.
To select test points in design represented by imported netlist, use the
procedure described in reference to Figure 1—7.

To load a design netlist, select the
Load Netlist option from the File
menu shown in Figure 1-3. In re-
sponse, ACTIVE-CAD displays the
Load Netlist window in Figure 1-4.
Select the desired netlist format
from the From Format field. Some
of the available netlist formats are
shown in Figure 1-5.

Simulator main menu

Signal or pin name

logical state at the current cursor
position

Stimulator name

I/O type

Figure 1-2. SUSIE Simulator main window.

Figure 1-3. File Menu Options.

1-4 [<basic] Creating An Electronic Breadboard

>

ACTIVE-CAD automatically lists in
the Input Netlist field (Figure 1-4)
all netlists in the selected netlist for-
mat. This simplifies your search be-
cause only the desired netlist files
are listed.

Example 1:

Select from the From Format field shown in Figure 1-5 the SUSIE Binary
[*.ALB] format. Click on the TEST_A project in the Directories window
and then on the OK button. In response ACTIVE-CAD should list the
TEST_A.alb netlist which is supplied with the software as an example of
the flat netlist format. Click on the TEST_A.alb netlist and then on the OK
button. ACTIVE-CAD loads the selected netlist and displays messages
about the loading progress. Don’t be surprised if after the netlist has
been loaded there are no changes on the simulation screen; to avoid

Select the
desired
netlist format

Figure 1-4. Load Netlist window.

Figure 1-5. Simulator Netlist
Formats.

Introduction [<basic] 1-5

screen clutter only the data you have explicitly requested will be dis-
played on the simulator screen.

For better understanding of the TEST_A netlist operation, refer to Figure
1-6, which shows the schematic design from which this netlist was gener-
ated. ACTIVE-CAD can provide pin connectivity information and can
even recreate an entire schematic from a netlist. However, for quick refer-
ence use the readily available schematic in Figure 1-6.

The Directories window in the Load Netlist window (Figure 1-4) allows
you to search for the netlist files on any drive and throughout the entire
network if ACTIVE-CAD has been installed on one. Since these are typi-
cal Windows operations, no details on the file search is provided here.

The name of the currently loaded netlist appears in the title bar of the
logic simulator. For example, Figures 1-2 and 1-3 show that the XBL
netlist has been loaded into the simulator. An additional verification that
the right netlist has been loaded can be performed by clicking on the Sig-
nal Selection button in the Waveform Viewer toolbar. In
response, the Component Selection window shown in Figure 1-7 will
list signal names and components of the loaded design. A quick review
of that list will confirm if you have loaded the desired design.

Figure 1-6. TEST_A Schematic Design.

1-6 [<basic] Creating An Electronic Breadboard

NOTE: If you are using a schematic editor that is integrated with ACTIVE-
CAD through the Windows DDE interface protocol, then you do not need
to load any netlist because all schematic changes are automatically im-
plemented in the simulator data base. The most popular schematic edi-
tors that use the DDE protocol to communicate with SUSIE are
SUSIE-CAD, ACTIVE-CAD, DIGILAB and Virtual Hardware Editor.

Selecting Design Test Points
To stimulate a hardware breadboard, you need to set up a hardware sig-
nal generator and apply its signals to selected test points on the bread-
board. A similar process is employed with an electronic breadboard.
However, its stimulus signals can be generated and applied with much
greater ease.

To select design test points to which you want to apply external signals,
select the Add Signals option from the Signals menu. If you have loaded
the TEST_A netlist that comes with the ACTIVE-CAD simulator, then in
response ACTIVE-CAD will display the window shown in Figure 1-7.
The Signals Selection field displays all the design signals, such as input
and output terminals, node names and buses. To select any of these sig-
nals for display, double-click on it with the left mouse button. This will
instantly copy the selected signal into the Waveform Viewer window
(Signal field in Figure 1-2).

Example 2:

With the TEST_A netlist loaded, double-click on the IN1 input signal
listed in the Signal Selection field of the Component Selection window
(Figure 1-7). Note that the signal has been automatically copied to the
Signal field of the Waveform Viewer window (Figure 1-2).

Figure 1-7. Design Component Display.

Introduction [<basic] 1-7

If you have a large number of adjacent signals to be transferred to the
ACTIVE-CAD display, double-clicking may be tedious. Instead, you can
first select the desired signals and then transfer them all at the same time.
To select the signals, hold down the [Ctrl] key and click on each desired
signal name. When all signals have been selected, click on the Move but-
ton in the Component Selection window (Figure 1-7). Note that all the
selected signals have been transferred into the ACTIVE-CAD logic simu-
lator window in the order in which they have been selected.

Example 3:

Click on the OUT1 signal. Next, depress the [Ctrl] key and click in se-
quence on the CLK and A signals in the Signal Selection field of the
Component Selection window in Figure 1-7. Following this, click on the
Move button. Note that the signals have been transferred to the Signal
field of the ACTIVE-CAD display in the order in which they have been
selected.

You can also select any device pin as a test point and apply stimulus sig-
nal to it. To select a device pin, double-click on a selected device listed in
the Component Selection window in Figure 1-7. In response, ACTIVE-
CAD displays a Pins for: window that lists all the pins for the selected
device (Figure 1-8). Double-click on the selected pins to move them in
the desired order. Marking signals and then activating the Move button
copies signals in the order in which they were listed in the window and
not in the order which they were selected.

Since ACTIVE-CAD is a real-time interactive simulator, you can add and
delete any test points while the simulation is in progress. There is no
limit on what you can select to the display screen and stimulate with sig-
nals developed in the simulator or loaded as a test vector file.

Example 4:

With TEST_A netlist loaded, double-click on the U1-7400 in Figure 1-7. In
response, ACTIVE-CAD displays Figure 1-8 which lists all the U1 device
pins in the Pins For: U1-7400 field. Double-click on the A1-1 pin and see
it moved to the ACTIVE-CAD screen.

1-8 [<basic] Selecting Design Test Points

Continue to copy signals to the waveform viewer until the waveform
viewer shows the signals listed in Figure 1-9. Save this setup of test
points by selecting the Save Test Vectors option in the File menu. For
consistency with this Guide, save it as the TEST_A file.

Selecting Test Points In Hierarchical Designs
If your ACTIVE-CAD has the hierarchical simulation option, you will be
able to load hierarchical design netlists. The ACTIVE-CAD software
comes with the TEST_H hierarchical netlist, which is based on the hierar-
chical schematics shown in Figures 1-10, 1-11 and 1-12. Loading hierar-
chical netlists is identical to loading a flat netlist, described in Example 1.

After loading the TEST_H1 hierarchical design netlist, select the Add Sig-
nals option from the Signals menu. In response, ACTIVE-CAD will dis-
play the window shown in Figure 1-13.

Figure 1-8. Display of U1 pins.

I/O type of
the signal

signal name

pin name
and number

Figure 1-9. Selected design test points.

Introduction [<basic] 1-9

Figure 1-10. Schematic Macro H1.

Figure 1-11. Schematic Macro H2.

1-10 [<basic]Selecting Test Points In Hierarchical Designs

The Signals Selection field displays all the design signals at the selected
hierarchical level. Since the starting point after loading a hierarchical
netlist is the top level design, Figure 1-13 lists all signals at that level. To
select any of these signals for the display, double-click on it with the left
mouse button. This will instantly transfer the selected signal into the Sig-
nal field of the window shown in Figure 1-2. You can also hold down the
CTRL key, click on each desired signal, and then transfer them all to the
ACTIVE-CAD screen by activating the Move button.

To select signals from a selected hierarchical level, click on the selected
hierarchical level in the Scan Hierarchy window shown in Figure 1-13.
The Signals Selection window displays all signals and the Component
Selection window lists all macros and devices at that hierarchical level.

Figure 1-12. Top Level Schematic.

Figure 1-13. Hierarchical Design Structure Display.

Introduction [<basic] 1-11

You can select any signals and device pins for the screen display as de-
scribed in reference to the flat design netlists.

Creating Design stimulus Signals
One of the main advantages of simulation over hardware breadboarding
is that you don’t have to do any logic analyzer setups. All data is auto-
matically captured and analyzed by the simulator. This not only im-
proves design quality but also saves you a lot of time. However,
development of efficient test signals still remains a major challenge.

The incremental simulation process is very similar to hardware debug-
ging, where each input signal line is fed signals from a separate signal
generator channel. However, once all the hardware pieces have been in-
dividually debugged and integrated, they are tested with a set of signals
that have a strictly predefined time relationships. These signal sets are
called test vectors.

Since the design analysis needs change as the design evolves from a sim-
ple circuit to a fully operational system, the design testing methods must
change as well. It is thus important to remember about the changing
needs and to use the optimum analysis methods for each stage of design
development:

r use primarily signal waveforms for incremental circuit development
r continuously optimize the signal waveforms as the design grows
r save the signal waveforms as ASCII or binary test vector files
r use test vector files exclusively for the final system verification

Since many designers have strong hardware breadboarding background,
ACTIVE-CAD comes with a signal generator that mimics the operation
of hardware signal generators. This simplifies the transition from hard-
ware circuit debugging to incremental software design testing.

Since the final design testing has different objectives from those of incre-
mental design analysis, Simulator Macro Operations (Chapter 5) will ad-
dress test vector generation for batch mode design verification.

Signals that you use to stimulate the circuit are the basis for effective de-
sign testing. For this reason, you should become thoroughly familiar
with effective signal waveform and test vector generation. Out of all the
chapters in this manual, the one on test vectors is by far the most impor-
tant and even if you are an experienced designer, you should still famil-
iarize yourself with the enclosed figures, warnings and notes.

1-12 [<basic] Creating Design stimulus Signals

Signal Waveforms and Test Vectors
One of the key issues in design analysis is the use of signal waveforms
and test vectors in different design stages. Figure 1-14 shows the differ-
ence between these terms in graphical form.

r Signal waveforms are the horizontal waveforms that start at time t0
and continue to the time tn. For example, the signal waveform IN1 is
a string of signal logical values at times t0, t1, ... tn (0,1,0,1,0,1...)

r Test vectors are the logical states of all signal lines at the given time
instance. They can be viewed as vertical slices across all signal lines.
For example the test vector TV0 has 001 logical value because IN1=0,
IN2=0 and A=1 at the time t0 (TV0=00H). Similarly, TV1=10H,
TV2=01H, etc.

NOTE: The test vectors are counted from the top-most or IN1 signal line
in Figure 1-14 (the left-most character in TV0) to the A signal at the bot-
tom (right-most characters in TV0). Also, the input signals have 0 for Low
and 1 for High. Output signals have L for Low and H for High. Since A is
an output signal, the TV0 test vector assigns to it H instead of 1. Simi-
larly TV1 assigns to it L instead of 0.

A signal waveform gives you a good view of the selected signal behavior
over time. The test vectors on the other hand give you the exact relation-
ship between signals at any selected time instance. When we deal with
such signals as clocks and override signals, we prefer to use signal wave-
forms. Also, when testing a design in real time, one would usually gener-
ate and apply a set of signal waveforms rather than a set of test vectors.

Some designers prefer to stimulate their designs with signal waveforms.
Others prefer to use test vectors. The truth is that you need both methods
because the design needs change as you move from the incremental de-
bugging mode to the final design verification. If the signal waveforms
have been continuously upgraded and optimized during the incremental
design analysis, then test vectors will readily be available for the final de-
sign verification.

Introduction [<basic] 1-13

ACTIVE-CAD comes with:

r a signal waveform editor
r an off-line (external) test vector editor
r a test vector macro editor

Ready-Made Signal Waveforms
Designing signal waveforms is often very cumbersome and time consum-
ing, particularly for new and complex designs. To make your work eas-
ier, ACTIVE-CAD comes with over fifty (50) ready-made signal
waveforms that can fulfill over 80% of your interactive design testing
needs.

To differentiate between signal
waveforms and test vectors, we will
call the signal waveforms stimula-
tors. To allow for a broad range of
operations on the stimulators, a spe-
cial Stimulator sub-menu (Figure 1-
15) is provided within the Logic
Simulator main menu:

r The Add Stimulators option displays a window (Figure 1-16) with
ready-made stimulators. If you assign them to signal names on the
ACTIVE-CAD screen, they will directly control these signal lines.

TV0 (t0)

TV1 (t1) Test Vectors

TV2 (t2) TVn

SW1 SW2

Signal Waveforms

TV3 (t3)

Figure 1-14. Difference between waveform & test vector.

Figure 1-15. Stimulator
menu.

1-14 [<basic] Ready-Made Signal Waveforms

r The Chip Controlled Mode gives direct control over the selected sig-
nal line to the chip output without deleting the stimulator which has
been previously controlling that signal line

r The Override Mode allows the stimulators to override the assigned
output pin signals

r Disconnect eliminates any effect of the assigned stimulator

r Connect restores the effect of the assigned stimulator

r Delete completely deletes the selected stimulator from the screen

r Delete all deletes all stimulators from the screen

How Use Ready-Made Stimulators
The ACTIVE-CAD stimulators are shown in Figure 1-16. They have pre-
assigned names which you can assign to signal names displayed on the
screen. To assign a stimulator to the selected signal line:

1. Click on Add Stimulators in the Stimulators menu.

2. Click on the selected signal name, e.g. IN1 shown in Figure 1-14.

3. After the selected signal name turns blue, click on the desired stimula-
tor shown in Figure 1-16.

4. The selected stimulator name appears in the Stimulator column, next
to the signal line.

You can also assign stimulators as follows:

1. Click on a stimulator in Figure 1-16

2. Holding the left mouse button down , drag the cursor to the desired
signal name, e.g. IN2 in Figure 1-14.

3. Release the mouse button. The selected stimulator is instantly assigned.

The buttons in the Stimulator Selection window of Figure 1-16 are ar-
ranged into six (6) groups:

r Keyboard keys (A-Z) which can be used for direct interactive tog-
gling of signal lines while the simulation is in progress.

r A Software-emulated 16 bit counter with TRUE (B0-B15) and IN-
VERTED (NB0-NB15) outputs. These outputs provide clock signals
with a 50% duty cycle. The clock of the counter is adjustable.

r Formula stimulators. Formulas allow you to generate custom-made
signal waveforms from nested expressions that involve signal values

Introduction [<basic] 1-15

and their duration. These formulas can be assigned to selected Form
buttons (F0-F15) which can then be assigned to control signal lines.

r Asynchronous clock stimulators defined with the Clock Editor.

r Control buttons which allow you to control the signal overriding ca-
pability.

r Formula and Clock Editor which allows you to define the formula
stimulators and asynchronous clocks.

Keyboard Keys
When assigned as stimulators, keyboard keys operate as SPDT switches
that switch the signal line between Vcc and GND. Figure 1-17 shows key-
board key [A] assigned to the gate U3A B input and keyboard key [F] as-
signed to the reset input of the flip-flop U1A. Both keyboard keys
directly control these inputs, irrespective of other signals that may be pro-
vided via connections to other sections of the design. Note that the [F]
key cuts off the signal line connected to the other circuits. It is equivalent
in hardware to cutting a wire between the flip-flops reset input and the
other circuits on the board.

Asynchronous clocks
can be defined for
special clock signals

CS - Custom Signal;
indicates a manually
drawn test vector

Software-emulated
binary counter

Formula stimulators
defined in the Formula
Editor

Control buttons

Keyboard keys allow
you to toggle signal
logical states directly
from the keyboard

TRUE outputs

INVERTED outputs

Formula Editor and
Clock Editor

Figure 1-16. Stimulator Window.

1-16 [<basic] Keyboard Keys

Keyboard keys are primarily used for direct toggling of selected signal
lines while the simulation is in progress. For example, the circuit in Fig-
ure 1-18 is under direct control of the keyboard keys A, B, C, D, E and F.

Overriding device input pins
The device input pins are overridden by the assigned keyboard keys at
all times. For example, referring to Figure 1-18, the [A] and [B] keys con-
trol the reset lines of U1A and U2B flip-flops, respectively. The [D] key
controls the D-input of the first flip-flop.

Even if there is a circuit-generated signal fed into a device input, the key-
board key will always override such a signal. A good example of such a
case is the [E] keyboard key which overrides the U1A-Q signal at the
U2B-D input (Figure 1-18).

F

Keyboard key stimulator can be
represented as a switch that toggles
between High and Low logical states.

Key assigned to an
input pin cuts off
any other input
signals

A

Figure 1-17. Keyboard key stimulators.

Introduction [<basic] 1-17

Overriding device output pins
The keyboard keys override device outputs automatically by forcing the
Override mode (OV button in Figure 1-16 or Override Mode in Figure 1-
15). All signals operating in the Override mode are red. To allow chip
outputs to take control of its outputs, select the Chip Control mode (CC
button in Figure 1-16). For example, the keyboard key [F] automatically
overrides the U1A-Q output signal until the Chip control mode (CC but-
ton) is activated.

You can assign the same keyboard key, e.g. [D] key, to as many signal
lines as needed. Using the options in the Stimulator menu shown in Fig-
ure 1-15, you can enable (Connect option) and disable (Disconnect op-
tion) the assigned keyboard keys.

Overriding net signal names
If a keyboard key is assigned to a netlist name (e.g. [C] in Figure 1-18), it
controls all the signals in the node if it is set to the overriding mode. Oth-
erwise, any active output pin in the node will control that node.

Binary Counter
ACTIVE-CAD comes with an in-software implemented 16-bit binary
counter. It is shown in Figure 1-19. The counter automatically provides
16 TRUE (B0-B15) and 16 INVERTED(NB0-NB15) stimulators that can be
assigned to any signal line in your design. These clocks have a 50% duty

A B

C

D F E

Figure 1-18. Direct Circuit Control with Keyboard Keys.

1-18 [<basic] Overriding device output pins

cycle. The binary counter is driven by the CLK signal, which is set by se-
lecting the Clock Settings option from the Options menu. Note that you
must enter one-half of the desired clock period. For example, if you want
a 100 MHz clock speed (10 nanosecond period), you must enter 5
nanoseconds, or 1/2 of the clock period.

You can rescale the binary counter input clock from 1000 Hertz to 100 Gi-
gaHertz. Each counter stage divides the clock in half. For example, if you
have set the input clock at 100 MHz, the B0 output =100MHz, B1=50
MHz, B2=25 MHz, etc.

Each stage of the 16-bit binary counter drives its own LED lamp as
shown in Figure 1-19. The B0-B15 signal lines are the TRUE binary
counter outputs and the associated lamps are green. The inverted
counter outputs (N0-N15) have red lamps.

You can assign the same binary counter output signal, e.g. B1, to as many
signal lines as needed. The binary counter lamps are shown at the top of
the simulator screen shown in Figure 1-2. They allow you to view the cur-
rent state of this signal generator.

Formula Stimulators
The Formula Editor allows you to develop signal waveforms quickly and
efficiently. Because these waveforms, also called formula stimulators,
may be of any shape or duration, you can use them for non-repetitive
functions and bursts of pulses of any duration. You can also use the for-
mulas for designing clocks with special duty cycles and various logical
states.

CTR4 CTR3 CTR2 CTR1

CLK

B0

N0
N15

B15

Figure 1-19. In-Software 16-bit Binary Counter.

Introduction [<basic] 1-19

The formula stimulators give you the freedom to define and redefine sig-
nal waveforms while the simulation is in progress. This extremely simple
yet very powerful method of designing the most complex design stimu-
lus is being widely used by FPGA and board-level designers.

The process of defining a formula is comprised of writing:

r parentheses (used in nested expressions)
r logical signal state symbols (H,L,Z,X)
r duration of the signal states (e.g. 12.31 nanoseconds)
r the number of repetitions of the signals in parentheses
r brackets ([]) for defining buses

Example 5:

(H2L3)3

There is no limit neither on the depth of signal nesting nor on signal du-
ration.

To activate the Formula Editor, click on the Formula button shown in
Figure 1-16. In response, ACTIVE-CAD displays the window shown in
Figure 1-20.

2. Edit the selected Formula
stimulator in this line

3. When finished editing,
press this button to save the
formula.

4. The new formula will be
added to this list for your
viewing

1. double click on
the desired
formula name

Figure 1-20. Formula Editor Window.

1-20 [<basic] Formula Stimulators

First, select the formula name from the Select Stimulator window by
double-clicking on the selected name, e.g. F0. ACTIVE-CAD displays the
selected name in the Selected Stimulator field.

Next, enter the signal formula in the Formula: window, e.g.
((L20H15.01)5X32L24)52. Remember that you must have the same
number of left and right parentheses. Otherwise ACTIVE-CAD will warn
you about an error.

After the signal formula entry is completed, press the Assign Formula
button shown in Figure 1-20. Note that the formula has been transferred
into the Defined Assignments field. This formula can be instantly as-
signed to any signal line on the ACTIVE-CAD screen. Click on Close to
exit the window.

To assign a formula to a selected signal waveform, click on the signal
name shown in Figure 1-14. The selected signal name turns blue. Invoke
the Stimulator Selection window shown in Figure 1-16 and click on the
Formula- associated lamp in the Formula field. You can also first click on
the formula lamp in Stimulator Selection window and drag the lamp
over to the selected signal name on the Logic Simulator screen.

There is a total of 16 formulas (F0...F15) provided with each ACTIVE-
CAD simulator. However, you can request a special option which pro-
vides up to 256 signal formulas. When properly used, the signal
formulas can generate test vectors faster than the most powerful test vec-
tor editors.

Graphical Waveform Editor
Since ACTIVE-CAD is a real-time interactive simulator, you can perform
an on-line what-if analysis. Such analysis is very useful because you can
override any input and output with one of the fifteen (15) logical states
and emulate the desired signals at these test points. For example, you can
emulate proposed FPGA changes by forcing the selected inputs and out-
puts to the desired or mentally computed logical states. By monitoring
their effects at internal (chip) and external (system) levels, you know be-
forehand what the proposed design changes will do.

One of the best ways to force the desired logical states is the graphical
editor. It allows you to tweak each signal with great precision and force
the device pins to one of the fifteen (15) logical states. Resimulation and
comparison of the new data with the previous ones may encourage or
discredit the proposed design changes. In either case, you are much

Introduction [<basic] 1-21

closer to the problem solution, and for this reason the dynamic what-if
analysis is the most outstanding feature of the real-time simulators.

To invoke the graphical test vector
editor, select the Edit option from
the Waveform menu shown in Fig-
ure 1-21. In response, ACTIVE-CAD
displays a set of 15 buttons with the
different logical states (Figure 1-22).
Note that the mouse cursor also
changes (Figure 1-23).

List of logical states

The fifteen (15) buttons in Figure 1-22 represent the following signals:

r Low is a strong Low logical level
r High is a strong High logical level
r Unkn_X is a strong Unknown logical level
r High_Z is a weak 3-state state that can be overridden by weak signals
r Cnf_X indicates the presence of two strong signals of different logical

values in the same node, e.g. High and Low logical levels
r Res_L is a weak Low logical level
r Res_H is a weak High logical level
r Res_X is a weak Unknown logical level
r Ref_V is a special logic level signal, such as used with ECL devices
r High_V is a special high voltage level such as used in line drivers
r SV_L is a strong power supply signal which overrides other signal
r SV_H is a strong power supply signal which overrides other signals

Figure 1-21. Waveform Menu.

Figure 1-22. Logical States for Waveform Editing.

Figure 1-23. Editing
Cursor.

1-22 [<basic] Graphical Waveform Editor

r SV_X indicates a conflict between two power signals in the same node
r Ua_L indicates a Low signal of undetermined strength
r Ua_H indicates a High signal of unknown strength

Follow these steps to edit signal waveforms:

1. Invoke the waveform editor (Figure 1-22).

2. Place the cursor at the desired signal waveform location and click the
mouse button.

3. The associated signal name turns green and a blue vertical cursor ap-
pears at the selected waveform location.

4. Click on the desired logical state button shown in Figure 1-22.

5. Note that the signal waveform has changed to the new state; this
change has taken place between the last signal transition and the cur-
rent blue cursor location.

6. To exit the editor, click on the Cancel Edit Mode button in Figure 1-22.

Note that as you edit signal waveforms, the modified segments change
to green. Also, a CS (Custom Signal) symbol has been forced into the
Stimulator column to indicate that the displayed waveforms are being
forced on the device pins. If the CS symbol appears at the device output,
you need to select the Override mode by clicking on the OV button
shown in Figure 1-16. Otherwise, the device will control its own output
signal, despite the presence of the CS symbol.

If you need more precise waveform editing than the current time scale al-
lows, place the cursor over the scale and press the mouse button. Note
that a blue stripe is drawn as you drag the cursor over the area that you
want to expand. When you release the mouse button, the waveform ex-
pands over the entire timing screen and the blue line disappears.

Applying Signal Waveforms
Read carefully the following rules on application of external stimulus to
the circuit designs. There are only four (4) rules that govern the signal
distribution in a node:

r A signal applied to the device input pin exists only at that input pin
and does not spread through the node to any other pin. For example,
if you apply a signal at U1A-2 (Figure 1-24), it will only control that
particular input and will not have any effect on U1B-4.

Introduction [<basic] 1-23

r If you apply a signal at the device output pin, it must be asserted
with the Overdrive Mode (OV button in Figure 1-16); Otherwise it
has no effect on the pins and signal lines in the node. For example,
feeding a signal into pin U1A-3 has no effect on any pin in the node
unless you set this signal into Override Mode (see Keyboard Keys-
Overriding device output pins, in this Chapter)

r If you apply a signal to a node and the node does not have any de-
vice output pins (e.g. signal CLK in Figure 1-24), then it will control
all pins in the entire node. However, if you apply a signal to a node
(e.g. VFRAME signal name in Figure 1-24) which has any active de-
vice output, e.g. U3A-5, then it will be overridden by that output.
Use node names primarily to connect wires between pages and to
monitor what is going on in the node. However, apply stimulus sig-
nal to a node name only if there are no output pins in the node.

r If you apply a signal to an input terminal, e.g. START, it will control
the entire node because there is no device output pin in the node. If
the device output pin is tri-stated, there is no conflict with the signal
applied at the terminal. However, if the device output is a totem-
pole or active 3-state, it will be in conflict with the terminal applied
signal because the terminal is treated as a totem-pole signal source.

Signal Waveforms Summary
r Use the keyboard keys to isolate design sections or to disconnect

feedbacks and closely control problem areas. The precision of the
keyboard key toggling is limited by the length of the Short step, and
you can make it as small as 10 ps.

r Use the binary counter outputs in place of clocks as inputs to multi-
plexers, decoders and sections that operate on symmetrical signal
waveforms

Figure 1-24. Applying Stimulators to Circuits.

1-24 [<basic] Signal Waveforms Summary

r Use formula signal waveforms for semi-random or asymmetrical sig-
nals, pulse bursts, etc.

r Swap signal waveforms as needed by selecting the appropriate but-
tons in the Stimulator window.

r Start with keyboard keys and progress to the more advanced and
complex signal waveforms as the design becomes free of basic prob-
lems.

r All signal waveforms can be saved as test vectors. Save these test vec-
tors, even if you are not sure of their future need. Each test vector
should have ample comments of why it was used and what has been
tested with it. These comments can be written directly into each sig-
nal waveform.

r Create an extensive library of test vectors by design sections and de-
sign functions; the quality of these libraries will help you to deal
quickly with new problems and they will differentiate you from
your less experienced peers.

r To conserve disk space, save all test vectors in binary format.
ACTIVE-CAD can always convert these files to ASCII format when
needed.

Most important, before you dive into the more intricate simulation is-
sues, practice all four forms of signal waveform editing for at least 30
minutes.

ACTIVE-CAD comes with some advanced test vector editors (External
Test Vector Editor and Test Vector Macro Editor) which you should practice
after you have become experienced with the signal waveform editors.

Introduction [<basic] 1-25

Analyzing Simulation Results
ACTIVE-CAD automatically checks every pin of every device during
each clock cycle for timing violations and bus conflicts. It is like having a
logic analyzer with thousands of active signal channels. This logic ana-
lyzer is also quite intelligent because it knows what’s right and whet’s
wrong and even if you have not selected some signal lines to the display,
ACTIVE-CAD will anyhow check them and report any problems.

To make the design analysis most effective, you should familiarize your-
self with all the available options, ACTIVE-CAD comes with over forty
(40) utilities that speed the design analysis and make your work easier.
These utilities are located within the toolbox shown in Figure 1-25 and
the Patching, Options and Utilities menus.

Design analysis is quick and effective if you follow these simple rules:

r Do your design analysis incrementally; never wait for the complete
design because its size and complexity may overwhelm you.

r First, verify the functional design behavior.

r Next, using the unit delay or glitch simulator, check for race condi-
tions.

r Set a plan for the worst-case design analysis; write it down and use it
as a framework for timing analysis.

r Make sure that you have accounted for the temperature, supply volt-
age and loading effects.

r Save all design and test vector files; use ample comments in your test
vectors.

r Most important - do not think of your design as schematic sheets;
Rather look at it through the test vector files. You should spend at
least as much time on design analysis as on creating the schematics
and/or VHDL design itself.

Functional simulation mode
Each design verification starts with functional behavior analysis. By de-
fault, ACTIVE-CAD comes up in functional mode. However, if for some
reason the central button of the toolbox shown in Figure in Figure 1-25
does not show the FN (functional) mode, click on it till it displays this
symbol.

1-26 Functional simulation mode

The power of the functional analysis mode lies not in its accuracy but in
the simplicity of visualization because it directly shows the cause and ef-
fect relationship. For example all outputs of the gates are lined up with
their inputs (Figure 1-26) and all flip-flop outputs are lined up with their
rising or falling clock edges (Figure 1-27). Such signal waveforms are
easy to analyze, and they allow you to quickly verify the functional be-
havior of your design.

Even if the circuit you are designing seems simple enough to skip the
functional simulation mode, do not take the risk. You would be sur-
prised how many details may escape your attention even in the simplest
designs. Once you have confirmed the functional design, you will be able
to proceed to the other design phases with greater confidence.

Figure 1-25. Simulation toolbox.

A

AND

NAND

A

A
B

Y1

Y1

Y2
Y2

B

B

A B Y1 Y2
0 0 0 1
1 0 0 1
0 1 0 1
1 1 1 0

Figure 1-26. Functional Gate Simulation.

D

CLK

Q
DD

1
0
x Q

Qn
1
0
Qn-1

CLK

CLK
LH
LH
HL

Figure 1-27. Functional Flip-Flop Simulation.

Analyzing Simulation Results 1-27

Figure 1-28 shows typical waveforms for the circuit shown in Figure 1-6.
Note how the OUT1 signal, which is produced by the U2A flip-flop, is
aligned with the input clock CLK. A similar alignment is present be-
tween the U3 counter output Q0 and its input CLK signal.

Expanding the scale: If the alignment between signals is obscured by the
display scale resolution, place the cursor over the scale, press the mouse
button, drag it over the area that you want to expand and then release.
As you drag the mouse cursor, a blue stripe appears marking the area se-
lected for the scale expansion. Upon the release of the mouse button the
marked area will be expanded to cover the entire screen.

Another way to expand and contract the display scale is to click on the
scale adjustment buttons shown in Figure 1-29. Clicking on the LSR or
Lower Scale Resolution button lowers the scale resolution, e.g. from 2
ns/DIV to 5 ns/DIV. Clicking on the ESR or Expanding Scale Resolu-
tion button will increase the scale resolution, e.g. from 5 ns/DIV to 1
ns/DIV.

NOTE: If the functional simulation produces outputs with no cause,
switch to the GLITCH simulation mode for viewing race conditions.

Figure 1-28. Functional Circuit Simulation.

Zoom In (ESR)
waveforms button

Zoom Out
(LSR)
waveforms
button

Ruler display
enable

Figure 1-29. Simulation scale adjustment buttons.

1-28 Functional simulation mode

Most functional simulators simulate combinatorial and sequential de-
vices with zero propagation delays and as a result they cannot warn you
about any race conditions. Other functional simulators like SUSIE 4 and
SUSIE 5 calculated the functional circuit behavior based on unit
propagation delays but displayed the output data as if the circuits had
zero propagation delays. This method had several advantages because it
allowed you to capture race conditions in the functional mode. However,
the output test vector files were not compatible with data from other
simulators.

To generate test vector outputs that are compatible with other simula-
tors, the current release of ACTIVE-CAD assigns zero propagation delay
to combinatorial logic (gates, multiplexers, decoders, etc.) and unit propa-
gation delay to sequential logical devices such as flip-flops, registers and
counters. If these sequential logical devices have feedbacks through com-
binatorial logic, they may show output transitions that are unexplainable
by a pure functional analysis. This is a rare case, but should it happen,
switch the simulator to the GLITCH mode, which will display in detail
the effects of the unit propagation delays.

Glitch Simulation Mode
When a functional simulator produces output signal waveforms for no
apparent reason, you need to painstakingly analyze all circuit race condi-
tions or use the slower and more complex timing simulator to find the
reason for the unusual circuit behavior.

Since glitch simulators display all details that are hidden in the func-
tional mode, they are excellent analysis tools of unknown circuit behav-
ior. By assigning and displaying unit propagation delays for all
components in all signal paths, these simulators automatically display
signal spikes that cause the unusual circuit behavior.

To select the GLITCH mode, click on the MODE button shown in Figure
1-25 till it displays the GL letters. Simulate the design with the same test
vectors that you have used for the functional simulation. The proper use
of the glitch mode is as follows:

r Simulate your design in the functional mode

r If you find unexplained circuit behavior, switch the simulator to the
GLITCH mode

r Load the test vectors that you have used for the functional simulation

r Simulate again and check for race conditions

Analyzing Simulation Results 1-29

You don’t need to use the GLITCH mode if the outputs generated by the
functional simulator look OKay. The GLITCH mode should be used only
for quick and localized spike display. For example, if you simulate a
functional circuit with 1,000 to 10,000 test vectors, you would use the
GLITCH mode only with 5 to 20 test vectors, just enough to gain a good
understanding of how some unexpected outputs are generated due to
spikes on the selected signal lines.

For best results, rescale the signal waveforms to achieve a display similar
to the one you had in the functional mode. Next, compare the sequential
device outputs with the corresponding waveforms generated by the func-
tional simulation. If the outputs have new states which have not been
seen in the functional mode, the design has a race condition. However, if
no new logical states have been detected on the sequential device out-
puts, there is no circuit race condition. At times you may see some spikes
on signal lines that are the result of propagation delays. However, if they
don’t trigger any sequential circuits they are harmless and can be ig-
nored, unless cross-talk and other effects must be considered.

Example 6:

Load the TEST_C netlist file, which is in the ALDEC format. The sche-
matic from which this netlist was generated is shown shown in Figure in
Figure 1-30. Next, load the signals and stimulators shown in Figure 1-31.

Toggle the INIT input signal line to Low by toggling the [I] keyboard key
and clicking on the STEP button. This resets the flip-flop U3A shown in
Figure 1-30. Next, set the INIT signal High, set the simulator to the FN
functional mode and click on the LONG step button six times. Note that

Figure 1-30. Assignment of Stimulators to Input Pins.

1-30 Glitch Simulation Mode

the output signal U3A.Q1-5 is being set high without a rising clock edge
at the U3A.CLK1-3 input.

To investigate why the U3A.Q1-5 output changes without a clock edge,
lets switch to the GL GLITCH mode by clicking on the MODE button
shown in Figure 1-25. Next, click the LONG step button eight times and
watch what happens on the U3A.CLK1-3 signal line when the U3A.Q1-5
is changing to logical High. As shown shown in Figure in Figure 1-31,
there is a small spike on the clock line. This signal spike is the result of
the CLK signal line propagating though two different propagation chan-
nels (U1A-U1C and U1B) at the input to the U2A gate. By putting addi-
tional probes on these channels, you can view them in greater detail.

Timing Simulation Mode
To have any confidence in a design, it must be simulated in the timing
mode. To select the TIMING mode, click on the MODE button shown in
Figure 1-25 till it displays the TM letters. Generally, you should first
simulate the design with the same test vectors that you have used for the
functional simulation. This will give you an instant confirmation that the
previously simulated design will also pass the timing criteria.

To make sure that no design error goes undetected, ACTIVE-CAD
checks every device model during each clock cycle. The models are
tested both for timing violations and for bus conflicts. ACTIVE-CAD
checks for the following timing violations:

r Setup and hold times

r Clock High and clock Low restrictions

r Pulse width of reset, preset, etc.

r Clock edge to reset pulse

Figure 1-31. Display of Glitches on the Clock Pin.

Analyzing Simulation Results 1-31

r Reset pulse to preset pulse

All ACTIVE-CAD libraries have been written in VHDL Shorthand,
which is an easy-to-use VHDL subset. The models have timing informa-
tion but if you set the simulator to the functional, glitch or unit delay
modes, then the models will not be analyzed for timing performance.

Example 7:

To become more familiar with the timing simulation process and avail-
able options, load the TEST_A netlist, which has been generated from the
schematic shown in Figure in Figure 1-6. Select the signal names listed
shown in Figure in Figure 1-32 and assign to them the stimulators listed
in the same figure.

To better understand the timing simulation mode, follow these steps as
part of Example 7:

1. Select the functional (FN) simulation mode.

2. Set the [l] and [r] keyboard-driven stimulators to the Low logical level
and perform a single simulation step by clicking on the STEP button.

3. Toggle the [l] and [r] stimulators to the High logical state so that the
flip-flop and counter can operate properly.

4. Click on the LONG simulation step button within the toolbox. Note
that the functional simulation proceeds without any problems.

5. Click on the MODE button in the toolbox and switch the simulator to
the TM (timing) simulation mode.

6. Click on the STEP button. Note that ACTIVE-CAD displays several
timing violations warnings.

7. Click several times on the OK button within the error message win-
dow to familiarize yourself with the error messages. Click on the
Cancel button to end the error message display.

Figure 1-32. Timing Mode Circuit Analysis.

1-32 Timing Simulation Mode

8. As you can see from the error messages, the U2 flip-flop has some tim-
ing problems. Fortunately, ACTIVE-CAD is a real-time interactive
simulator and you can instantly replace parts with faster ones and
eliminate any timing problem that may exist:

9. Click on the Patching menu and select Change Technology. In re-
sponse, ACTIVE-CAD displays Figure 1-33.

10. Double-click on U2-74LS74A in the Chip Selection field.

11. A new Technology Selection window appears (Figure 1-34) and lists
all replacement parts for the 74LS74A. Select a faster part, e.g. 74F74.

12. Click on the STEP button and notice that all timing violations related
to the U2(74LS74A) device have now disappeared.

ACTIVE-CAD has many additional features that will aid you in design
analysis. Most of these features are located in the Options, Patching and
Utilities menus and in the toolbox. You can learn about them by reading
the appropriate chapters in this Guide.

Figure 1-33. Change Technology Window.

Figure 1-34. Device Replacement Window.

Analyzing Simulation Results 1-33

Unit Delay Simulation Mode
Unit delay simulation mode is a simulation mode with all propagation
delays set to current simulation resolution. Its functionality is similar to
the Glitch mode, but timings with more proportional time scale are pro-
duced.

Quick Application Notes

Deleting empty rows between signals
To delete empty rows, click in turn on:

r Signal menu
r Delete option
r Empty Rows

All empty rows are instantly deleted. The Delete menu is shown shown
in Figure in Figure 1-35.

How to work effectively with buses
In most cases, ACTIVE-CAD does not automatically create buses from
the netlist information. Unless the netlist has been generated by ACTIVE-
CAD schematic editor, you need to create these buses in the simulator
editor. This editor gives you the freedom to define and redefine all buses
as the simulation progresses.

Creating a bus

To create a bus, follow this procedure:

Figure 1-35. Signal Delete Menu.

1-34 Unit Delay Simulation Mode

r Arrange all signal names in ascending or descending order, e.g.
DATA0, DATA1, DATA2, etc. No other signal names can be present
between these signal names.

r Click at the top-most bus signal name.

r Press the [Shift] key and click on the last member of the bus. Note
that all signals between the first and last selected signal line turned
blue.

r Click on the BUS option within the Signal Menu. When the window
shown in Figure 1-35 appears, click on Create.

r In response, the simulator activates the BUS button. When this but-
ton is activated, all signals are converted into a single bus line.

r Toggle the BUS button and notice that first signal in the bus group
is marked with an asterisk (*), indicating the name of the new bus.
The other bus signals are marked with the plus (+) sign.

BUS display control

You can show a bus as a single bus line or as a composition of its discrete
signal lines. To switch between these two modes of the bus display, click
on the BUS button.

Selecting BUS display format

Buses can be displayed in binary, octal, decimal and hexadecimal for-
mats. You can define and redefine the display format at any time during
simulation. To select the appropriate bus format follow this procedure:

r Click on the selected bus

r Select from Figure 1-36 the appropriate bus format

Figure 1-36. Bus Menu.

Quick Application Notes 1-35

Note that ACTIVE-CAD instantly converts the existing buses to the de-
sired format.

Naming and renaming BUSES

The bus name is automatically assigned by ACTIVE-CAD when you cre-
ate a bus. It is derived from the first signal name in the bus. However,
you can change the bus name using the following procedure:

r Click on the selected bus name

r Select the BUS Name option from the window shown in Figure 1-36

r When the BUS Name window appears (Figure 1-37), enter the new
bus name and click on the OK button

Tracing design connectivity
The ACTIVE-CAD simulator allows you to trace the signal connectivity
throughout all hierarchical levels. This is particularly useful if you don’t
have the latest schematics, or the designs are so big that it is difficult to
work with the schematic sheets.

To trace device pin or signal name connectivity, follow these steps:

1. Click on the selected device pin or signal name, e.g. the RST signal
shown in Figure in Figure 1-32.

2. When the selected item turns blue, click on the Connections option in
the Signal menu.

3. Figure 1-38 displays the connections for the selected item.

4. Double-clicking on any of the pins listed shown in Figure in Figure 1-
38 (node listing) will display all the pins of the selected device. Dou-
ble-clicking on any of the device pins will display a new signal node
associated with the selected pin.

Figure 1-37. Bus Name Window.

1-36 Tracing design connectivity

This operation allows you to trace the signal distribution and verify the
schematic-netlist compatibility.

You may access the window shown in Figure 1-38 by clicking on the sig-
nal selection button in the Waveform Viewer toolbar , selecting a signal
from Figure 1-8 and then clicking the RIGHT mouse button. ACTIVE-
CAD will display the window shown in Figure 1-39. If you now click on
the View Connections option, ACTIVE-CAD will display a window
similar to Figure 1-38. The search for pin and signal line connections is
identical as described above in reference to Figure 1-38.

Searching for signal names, components and device pins
You can find signal names, devices and device pins in the ACTIVE-CAD
simulator listings by clicking the RIGHT mouse button in any of the
fields shown in Figure in Figure 1-8. In response, ACTIVE-CAD will dis-
play Figure 1-39. If you clicked in the Pins For field, clicking on the
Search for... option will display Figure 1-40. If you clicked in the Signal
Selection field, clicking on this option will display Figure 1-41. To
search for pin and signal name locations do the following:

Figure 1-38. Signal Connectivity Table.

Figure 1-39. Viewing Connectivity.

Quick Application Notes 1-37

r Enter the signal or pin name shown in Figure 1-40 or 1-41

r Click on the Select button

ACTIVE-CAD instantly highlights the selected component or signal
name in the listing. If you are using one of the schematic editors that
have direct coupling with ACTIVE-CAD through DDE, DLL or OLE pro-
tocols, then the selected test points will also be marked on the schematic.

Locating simulator data on schematic sheets

You can trace the location of devices, pins, signal names and macros on
the schematic sheets directly from the ACTIVE-CAD simulator. Also any
data selected in the schematic editor is displayed in the ACTIVE-CAD
simulator. This cross-probing requires that the schematics have tight cou-
pling with the ACTIVE-CAD simulator. SUSIE-CAD, ACTIVE-CAD,
DIGILAB, and similar schematics have such interfaces.

Cross-probing between simulator and schematic designs greatly im-
proves design comprehension and speeds its analysis. Ask the schematic
editor vendors about their direct links with ACTIVE-CAD simulator.

Locating components on schematics

To locate any component on a schematic sheet, click on its designation in
the Chip Selection window of Figure 1-8. Next, click the RIGHT mouse
button over the Chip Selection window to display a local menu. Select
from that local menu the Find ... in SC option. It instantly switches the
display to the appropriate schematic sheet and shows the selected com-
ponent location with a red box around the component

Figure 1-40. The Search for Pin Window.

Figure 1-41. Search for Signal Window.

1-38 Searching for signal names, components and device pins

Locating device pins on schematics

To locate any component on a schematic sheet, click on its designation in
the Pins For window of Figure 1-8. Next, click the RIGHT mouse button
over the Pins For window to display a local menu (Figure 1-39). Select
from that local menu the Find ... in SC option. It instantly switches the
display to the appropriate schematic sheet and shows the selected com-
ponent pin location with a red blob.

Locating signals on schematics

To locate any signal on a schematic sheet, click on its designation in the
Signals Selection window of Figure 1-8. Next, click the RIGHT mouse
button over the Signals Selection window to display a local menu,
which is similar to Figure 1-39. Select from that local menu the Find ... in
SC option. It instantly switches the display to the appropriate schematic
sheet and shows the selected signal by turning it red.

Applying signal waveforms at any screen location
Most simulators require you to apply test vectors at the time t0 or at the
beginning of the simulation. However, since ACTIVE-CAD is a real-time
interactive simulator, you can apply your signals at any time and at any
screen location during the simulation. The process of using formula-
based signal waveforms is comprised of two steps:

r Creating or editing formula-based signal waveforms

r Assigning signal waveforms to the selected screen locations

Creating formula-based signal waveforms

To access the formula editor, select in sequence the Waveform menu and
then its Formula option. In response, ACTIVE-CAD displays shown in
Figure 1-42 the Formula options submenu.

NOTE: the Formula Editor described in reference to Figure 1-20 gener-
ates signals that start at time t0. The waveform formula described here
applies the formulas to the signal waveforms at the desired time tn.

If you select the Edit option, ACTIVE-CAD displays Figure 1-43 which al-
lows you to enter a signal waveform formula. This editor works similarly
to the one described in Formula Stimulators, except:

r It does not assign any names to the generated signal waveforms so
they cannot be automatically assigned to any signal names. Instead,
they have to be manually inserted into the on-screen waveforms.

Quick Application Notes 1-39

Since these waveforms can be fed at any screen location, they are the ba-
sic tool for dynamic what-if analysis, in which segments of waveforms
are modified and resimulated to test design modification concepts.

The editor shown in Figure 1-43 allows quick and efficient development
of signal waveforms of any shape and duration. They can be used for
non-repetitive functions and bursts of pulses of any duration with vari-
ous logical states.

The formula stimulators give you total freedom to define and redefine
signal waveforms while the simulation is in progress. The process of de-
fining a formula is comprised of:

r parentheses (used in nested expressions)

r logical state symbols: H,L,Z,X

r hexadecimal bus values; e.g. [1FA5], [3C8], etc.

Figure 1-42. Formula Menu.

Figure 1-43. Formula Signal Editor.

1-40 Applying signal waveforms at any screen location

r durations of the signal states (e.g. 12.31 nanoseconds)

r number of repetitions of the signals listed in parentheses

Example 8:

Type into the Enter New Formula (Bus or Signal) field shown in Figure
1-43:

(H2L3)4 ; High for 2 ns, Low for 3 ns, repeat 4 times

Next, click on the Add button. The formula is automatically added to the
Available Formulas window and will be available for editing signal
waveforms. The above formula will result in the following waveform:

This segment can be added at any screen location and as many times as
needed.

NOTE: There is no limit on the nesting of signals and on their duration.

Example 9:

Enter into the Enter Formula (Bus or Signal) field:

([3FC5]25.2[053A]33.4)25

This formula will generate a 16-bit bus signal. The first segment of the
bus has a hexadecimal value of 3FC5 and lasts for 25.2 nanoseconds. The
second segment has a hexadecimal value of 053A and lasts for 33.4
nanoseconds. Both bus segments will be repeated 25 times.

There is no limit on the nesting depth of bus statements nor or duration
of bus signal segments. You must, however, always include the [] brack-
ets and list the duration of each bus segment. All bus segments in the for-
mula must have the same number of hexadecimal characters (the same
number of bus lines). For example, you cannot mix 12- and 16-bit buses,
e.g. formula ([3FC5]25.2[53A]33.4)2 is incorrect because the bus widths in
the [] parenthesis are different.

You can create and save tens of formulas for use with ACTIVE-CAD. If
they overfill the Available Formulas window shown in Figure 1-43, the
window will change and you will be able to scroll its contents with the
arrow buttons.

Quick Application Notes 1-41

Applying formula-based signal waveforms

To apply a formula-based signal waveform:

First, click at the screen location where you want to apply the selected
signal waveform. A blue cursor will appear at that location and the asso-
ciated green cursor will highlight the selected signal name.

Next, select either the Replace or Insert option from the window shown
in Figure 1-42. The Replace option will allow you to override the existing
signal waveforms with the new ones. The Insert option inserts the
applied signal waveform at the selected screen location and shifts the ex-
isting waveforms to the right.

Click on the selected signal formula in the Available Formulas window
shown in Figures 1-42 and then click on the OK button. The selected sig-
nal waveform will be instantly placed at the selected screen location.

The formulas created in Figure 1-20 and those created in Figure 1-43 are
different. The formula editor in Figure 1-20 assigns concrete names to
each formula, forming independent signal waveform entities. These for-
mulas can be assigned by clicking directly on the signal names.

Since the formulas from Figure 1-20 always calculate the logical states
from the time t0 or beginning of simulation, independent of when they
are used in the simulation process, they always produce the same logical
states at some future time tn.

The formulas in Figure 1-43 have no names, and can thus be fed only at
concrete screen locations. Also, they cannot be edited thereafter because
they are automatically integrated with the existing signal waveforms, or
as one would say, they disappear in the crowd of other waveforms.

Simulation precision
All timing simulators operate with a certain precision. This precision or
resolution is fixed for most simulators and is typically either 100 picosec-
onds or 1 nanosecond. The simulation time is generally limited to 100
milliseconds at 100 picoseconds resolution and one second at one
nanosecond resolution. One hundred milliseconds in the life of an ECL
device is a long time. The ECL device may process an immense amount
of data. However, an industrial controller may complete in that time
only a few operations. So if you are working with devices that operate
with microsecond speeds, not much can be simulated with simulators
that have such high resolution.

1-42 Simulation precision

To accommodate a broad range of electronic devices and circuits with
vastly different timing characteristics, ACTIVE-CAD has a variable simu-
lation precision ranging from 10 picoseconds to 1 millisecond. This
means that you can simulate from 40 milliseconds to over one hour of de-
vice operation time. This broad time range allows you to simulate both
the high speed gallium arsenide circuits and slow industrial controllers.

To set a new simulation precision, select in sequence:

1. Options menu (Figure 1-45)

2. Simulation Precision option

3. The desired simulation precision from the Select Precision of Simula-
tion window shown in Figure in Figure 1-44.

Upon rescaling the simulation precision, ACTIVE-CAD moves the cursor
to the time t0 so you cannot mix (in the same simulation run) timing
waveforms with different resolutions.

Simulation time estimate
Sometimes simulation may take longer than expected. If you want to be
warned beforehand about the long simulations, select the Options menu
(Figure 1-45), and then click on the End of Step Estimation option.

Each time the simulation step takes longer than 10 seconds, ACTIVE-
CAD will display a window with the time needed to complete the cur-
rent simulation run. This window, shown shown in Figure in Figure

Figure 1-44. Selecting Simulation Precision.

Quick Application Notes 1-43

1-46, counts down the simulation time so that you know how much
longer the simulation will take.

Automatic backup of simulation results
To protect yourself from loosing valuable simulation data, use the auto-
matic data backup option by selecting the Timing Automatic Backup op-
tion from the Options menu shown in Figure in Figure 1-45. In response,
ACTIVE-CAD displays the screen shown in Figure 1-47 which allows
you to enter the time intervals at which an automatic backup should take
place.

If you are working in an interactive mode, set that backup to between 5
and 10 minutes. If you are working in a batch mode or with long test vec-
tors, set the backup to half hour intervals.

Figure 1-45. Options Menu.

Figure 1-46. Time to Complete Simulation Window.

1-44 Automatic backup of simulation results

Global design reset
The Global Reset option in the Options menu allows you to reset all de-
vices to their initial state without returning to the time t0. This means
that you can reset the design at any time tn and continue simulation,
starting with the test vectors that existed at the time tn.

Design Error Handling

Error reporting

You can dynamically select which design errors should be reported or
stored, eliminating errors that obscure your current analysis. To set up
the error reporting procedure, select the Error Reporting... option from
Figure 1-45. In response, ACTIVE-CAD displays the table shown in Fig-
ure 1-48. Toggle the Xs in the boxes to indicate which errors you want re-
ported. You must set the Work Mode to ON. Otherwise, all error reports
will be disabled. However, the red error markings on the signal wave-
forms will continue to appear irrespective of these settings.

Figure 1-47. Timing Backup Option.

Quick Application Notes 1-45

Error Classes:

r Timing Violation; reports any timing violations related to setup and
hold times, clock widths, pulse widths, relationships between clock
and reset or preset, etc. You can only select or deselect all of the er-
rors. You cannot select only some types of timing violations.

r BUS conflict; reports all violations involving conflicting logical
states in signal nodes

r Model Dependent; each model has embedded error messages. If cer-
tain conditions for proper model operation are not met, e.g. setup
time, the appropriate model-embedded message will be displayed.

r File R/W; monitors and reports hard disk Read/Write errors

r Design Netlist; lists errors detected during netlist import

Error handling

r Display; displays a detailed error message window. The red error
markings on the signal waveforms are always present, independent
of whether you have selected this feature.

r Register; saves the selected errors into a Message Box for future refer-
ence

r Report; enters the selected errors into the simulation error report
which is enabled from the Error Viewer option of the Utilities menu

Correcting design timing errors

A design can have timing errors related to device input signal violations
(e.g. setup and hold times) and ones related to layout delays. You could
in some cases substitute a faster part to correct both device timing viola-

Figure 1-48. Error Reporting Window.

1-46 Design Error Handling

tions and layout delay problems. However, as a general rule for high per-
formance circuit designs, you need to analyze these errors separately and
then make the decision on how the problem should be handled.

If you have found a timing violation that is related to one of the devices,
you can resolve the problem by analyzing:

r Propagation paths on the failing device inputs

r Layout delays

r Device timing characteristics

Since ACTIVE-CAD timing violation reports indicate how severe the
problem is, you may at the very outset determine if the problem is cur-
able by the device (technology) replacement, an architectural design
change or layout modifications.

Checking for the worst-case test condition

There is no reason to correct a design that has not been tested over the
full range of loading, temperature, voltage, device propagation and other
circuit constraints. You need to analyze the data paths and set them to
the worst case conditions. For example, if you are testing U5A for the
worst-case setup time condition (Figure 1-49), you should set the U1A
and U2A devices to their maximum propagation delays and the U3A
and U4A devices to their minimum propagation delays. Similarly, if you
are testing U5A to the worst-case hold time conditions, you should set
U1A and U2A to the minimum propagation delays and U3A and U4A to
the maximum propagation delays.

If you use gates located on the same silicon device for both D and CLK
channels, their minimum and maximum timing parameters will be iden-
tical. These gates will equally effect both signal channels and their actual
value will have no effect on the setup and hold times. Since U1A and
U3A are 7400 type gates and since 7400 has four such gates in a single
package, you should use the U1 gates for both D and CLK signal chan-
nels to minimize the effect of device timing parameters.

Quick Application Notes 1-47

Example 10:

This is an analysis of the worst-case U5A setup time. If you have used for
U1A and U3B the same device package (e.g. U1A and U1B), you do not
need to analyze the propagation delay effects of these gates. Any propa-
gation delay value will produce the same effect on both the CLK and D
input signal paths, thus compensating for each other. To set U2A
(74LS10) to the maximum propagation delays, select the Editing Timing
Specification... from the Patching menu. When Figure 1-50 appears, dou-
ble-click on the U2 device. In response, ACTIVE-CAD displays the U2
gate timing parameters in Figure 1-51. Click on the Max button and note
that the delay values in the Set column, which are used by the ACTIVE-
CAD simulator, are set to the maximum propagation delays. Click on the
OK button to exit this window.

Figure 1-49. TEST_D - Worst-Case Timing Analysis.

Figure 1-50. Selecting a Device for Editing.

1-48 Design Error Handling

Since the worst-case setup time requires setting U4 to minimum propaga-
tion delay values, double-click on the U4 device in Figure 1-50, and then
click on the Min button shown in Figure in Figure 1-51. Return back to
the ACTIVE-CAD simulator and simulate the design. If the design
shown in Figure in Figure 1-49 does not show any hold time violations,
no hold time violations will appear either.

Each setup of propagation delays which has caused the design failure
should be saved for future reference. You need to accumulate and map
the design problems before you take any action.

Analyzing ASICs for setup and hold times

If you are analyzing an ASIC design, you do not have to set up each cell
to its minimum or maximum value because the cells behave just like the
gates U1A and U3A shown in Figure 1-49. They track each others propa-
gation delays automatically and their minimum or maximum propaga-
tion values will have the same overall effect on the circuit behavior. The
only test you need to perform is to set the entire design to the minimum
and maximum propagation delay values. To set up the entire design or
any design macro to the specific propagation delays, follow up the below
procedure for global propagation delay setups.

Global design propagation delays setups

You can set the entire design or any of its sections to the selected propa-
gation delay. This is very useful when working with ASICs because with
a click of the mouse button, the entire design is rescaled to the desired
propagation.

To change design delays in a global manner, double-click on the ROOT
or macro in the Scan Hierarchy field of the window shown in Figure 1-
50. In response, ACTIVE-CAD displays Figure 1-52 which allows you to
set the propagation delay of the selected design section to:

Figure 1-51. Timing Parameters for 74LS10.

Quick Application Notes 1-49

r Minimum
r Maximum
r Average
r % of the maximum value

The % of Max value is used to rescale the propagation delays due to tem-
perature and voltage. The loading effects are calculated by ACTIVE-
CAD or they are provided by the ASIC manufacturers through the
post-layout netlists of the devices.

If you select the Level option shown in Figure 1-52, only cells and de-
vices at that hierarchical level will be affected. The macros at that level
will not be affected and they will retain their original settings. Selecting
the Branch option will effect all the components, including the macros at
the selected level.

Device related timing violations

If you want to check if a faster part would cure the problem, select
Change Technology from the Patching menu. In response, ACTIVE-
CAD displays Figure 1-53. Double-click on the selected device in the
Chip Selection field. When the window in Figure 1-54 appears, select the
appropriate part and click on the OK button. The part is instantly re-
placed in the simulator executable tables and fed back to the schematic
editor if it is directly connected through DDE, DLL or OLE protocols.

If you continue simulation, you will notice that the new device has taken
control of the timing display and shows a different timing performance.

Figure 1-52. Scan Hierarchy for Global

1-50 Design Error Handling

Analyzing line delays

Line delays have a considerable effect on high speed designs. To analyze
their effect, select the Change Line Delays option from the Patching
menu. In response, ACTIVE-CAD displays the Scan Hierarchy window.
Double-click on the selected hierarchy level for line (layout) delays. If
there are any delays, ACTIVE-CAD will display a table with delay val-
ues. You can edit these values and emulate new layouts.

For example, analyzing the actual layout and proposed changes, you can
estimate the new propagation delay. To verify any possible side effects of
these changes, you can enter the expected new line delay values in the
line delays table and simulate the changes. Only if ACTIVE-CAD con-
firms the proper design operation should you implement the proposed
changes.

Figure 1-53. Selecting part for replacement.

Figure 1-54. Replacing a part.

Quick Application Notes 1-51

Simulating Very Large Designs
ACTIVE-CAD does not care how big your design is. It can load and
simulate practically any design size if your computer has enough RAM.
For example, some users have reported that they have simulated designs
in excess of 300,000 gates using just 32 Mbytes of RAM. However, for effi-
cient simulation, you need at least 8 Mbytes of RAM for the basic soft-
ware (Windows, ACTIVE-CAD simulator, libraries of models and
symbols, etc.), plus 1 Mbyte of RAM for each 6,000 to 10,000 gates in
your design. The exact amount of required RAM depends upon the de-
sign topology.

All commercial simulators simulate the entire netlist, which causes large
designs to simulate very slowly. If the design is big enough, it may slow
the simulation process to a point where it becomes impractical to use it
effectively.

The simulation speed is the main constraint on the simulated design size.
To speed the simulation process, hardware accelerators were touted in
the late 80s. However, while they had some application in ASIC designs,
they completely failed at the system level where some device models
were missing or were not available in the format required by the hard-
ware accelerators.

A new method of dealing with large designs is selective simulation and
incremental design process (read An Introduction To Simulation And Vir-
tual Hardware, issued by ALDEC, Inc.). The selective simulation process
allows you to simulate only the desired design sections, down to the low-
est hierarchical and component level. You can select and deselect any de-
sign section while the simulation is in progress and by decreasing the
size of the simulated section,you can increase the simulation speed. Since
the simulation speed is proportional to the size of the simulated circuit,
you can effectively simulate the selected design sections independently
of how large the overall design is.

The patented selective simulation process is available with SUSIE 6.0 and
ACTIVE-CAD products only.

Selective design simulation option
Load the netlist TEST_H (provided with your software), and click on the
Selective Simulation option in the Options menu. In response, ACTIVE-
CAD displays the window shown in Figure 1-55. The Scan Hierarchy
window shows the hierarchical design structure, and the Chip Selection
window lists devices and macros at the selected hierarchical level.

1-52 Simulating Very Large Designs

Clicking at any hierarchical level in the Scan Hierarchy window displays
in the Chip Selection window all the macros and devices at that hierar-
chical level. By clicking on these devices and macros you can enable and
disable them from the simulation. Disabling a device sets its output pins
to the high-impedance logical state. You can override these pins with the
desired signal waveforms to emulate the operation of the disabled de-
sign sections.

All enabled chips and macros are dark. All disabled ones are white. The
selections are instantly affecting the simulation process.

Example 11:

Load the Test_H netlist and copy to the simulators Signal field the input
and output pins of gate U1A, located at the top hierarchical level. Assign
to these input pins the stimulators shown in Figure 1-56. Simulate one
LONG step. Next, select the Selective Simulation from the Options
menu and when the window in Figure 1-55 appears, click on the U1 de-
vice in the Chip Selection field to disable it. When the device body
shown in Figure in Figure 1-55 turns white, indicating a disabled device,
close the window and simulate another LONG step. Note that the U1.Y1-
3 output is now floating. After both LONG steps your display should
look like the one shown in Figure 1-57.

Figure 1-55. Selective Simulation window.

Quick Application Notes 1-53

As an additional exercise, you can select the U1A gate from the lowest hi-
erarchical level in the TEST_H netlist (gate U1A within the H1 macro
which is located within the H6 macro), and then simulate this gate by:

r enabling and disabling the U1A gate directly
r enabling and disabling the macro H1 that includes the U1A gate
r enabling and disabling the macro H6 that includes the above men-

tioned macro H1

Note that when you enable and disable the macros H1 and H2, you get
the same effect as when you directly enable and disable the U1A gate.

The selective simulation option allows you to select and simulate any
combination of macros and devices from any hierarchical level.

Resetting A Design
Resetting or presetting a design to a desired logical state is the most com-
plex operation in the simulation process because it involves special fea-
tures in both the simulator and IC models.

Figure 1-56. Simulation of gate U1A.

deactivated U1 device output

Figure 1-57. Activated and Deactivated Gate Simulation

1-54 Resetting A Design

The design resetting process is shown in Figure 1-58. It is comprised of:

r (A) - Executing the Power-on instructions in all models and simulat-
ing the design

r (B) - Asserting the Power-on Settings on device outputs

r (C) - Executing the Preset operation, if specified in the Power-on Set-
tings

Netlist
Loaded

Power On
button

Set the internal Power On
signal to ACTIVE.

Execute Power On
in all models

Simulate the netlist

Set all outputs to High or Low
if Power On settings are specified

Execute Selective Preset
if specified in Power On settings

Is the circuit
stable?

7474.HDL
...
Power On:
Q <== Unkn_X;
...

7400.HDL
...
Power On:
Q <== High;
...

No

Yes

A

B

C

Figure 1-58. Power On Process Flowchart.

Quick Application Notes 1-55

Power-On model instructions
Activating the Power-on button in the simulation toolbox forces all mod-
els to execute their internal power-on instructions. Some models like
combinatorial gates, decoders, etc., do not have Power On or Global Re-
set instructions. Typically, all devices are set to the X-Unknown signal
state, except for Altera parts which are set to logical zero. After the IC
models are preset to their power-on states, ACTIVE-CAD simulates the
design till a stable state is achieved. If there are more than 10,000 oscilla-
tions, ACTIVE-CAD declares an unstable design condition and displays
an error message.

Power-on Settings
After the design has achieved its steady-state, ACTIVE-CAD executes
the Power-on Settings. These settings are factory-provided as default
Power-on parameters. You can change them to fit your requirements,
however, the new parameters will affect only the current simulation.
Each time you start ACTIVE-CAD, the power-on parameters will auto-
matically revert to the default factory settings.

You may change or view the power on setting in the Power_On Setting
window (Figure 1-59) which is displayed by clicking on the Power On
Settings option within the Options menu.

The default power-on settings are as follows:

r models are set to the unknown (X) state

r newly generated outputs override the old ones

Figure 1-59. Power On Settings Window.

1-56 Power-On model instructions

r old comments and measurements are deleted

r Execute Preset is not activated

By selecting the appropriate options shown in Figure in Figure 1-59 you
can change the above settings. You must, however, remember that the
logical levels applied by the power-on settings to the device pins remain
on these pins till they are overridden by the first signal transitions gener-
ated for these pins by the simulator. This may at times produce visually
wrong logical levels at gate outputs that did not have any post-power-on
signal transitions.

Preset
If the Execute Preset option in the Power_On Setting window (Figure 1-
59) has been selected, then it will be executed immediately after the
power-on settings have been completed. However, you must select the
preset conditions (see Presetting a design to the desired state section in this
Chapter) or load the preset file before clicking on the Power-on button.

If no preset conditions have been set in ACTIVE-CAD, then no preset
conditions will be executed during the power-on procedure.

NOTE: Since the Power-on , Power-on Settings and Preset may set an
output to conflicting states, you need to carefully review each effect to
achieve the desired power on operation. To simplify the design analysis
use the Power-on Settings and Preset very sparingly.

Global Reset
ACTIVE-CAD allows you to have two resets for each IC model, one for
power-on and one for setting a special logical level on the device out-
put(s). For example, the Power-on Reset may set output pins to the un-
known (X) state and the Global Reset may set these outputs to a Low
logical level.

The Global Reset is executed by selecting the Global Reset option within
the Options menu. All models in which this reset instruction is imple-
mented within the source code will respond to this operation. Models
without Global Reset instructions will ignore this command.

NOTE: Most of the ACTIVE-CAD models, except for some FPGA librar-
ies (Actel, Xilinx) do not currently have the Global Reset implemented.

Quick Application Notes 1-57

Setting simulation reference points (Milestones)
To save RAM memory, simulators save simulation data only for those
test points that are displayed on the screen. The logical states of all other
test points which are not listed in the simulator Waveform Viewer are
stored in the RAM memory only for the duration of the current simula-
tion cycle and are overridden with the next cycles data. To compensate
for this complete loss of data, ACTIVE-CAD has a milestones option
which allows you to return to a selected simulation cycle and set the en-
tire design to the exact design conditions that existed at that time. This
option has several major advantages over batch-mode simulators:

r Rather than being forced to start the simulation from time t0, you
can restart the simulation from any past simulation cycle

r ACTIVE-CAD allows you to add new test points to the screen, start-
ing from any past simulation cycle

r You can change the design at any past simulation cycle, which is
marked by a Milestone, and view the improvements

r ACTIVE-CAD lets you change test vectors at any past simulation cy-
cle to force new system behavior

r You can resimulate the design from a cycle just prior to an error

The milestones option saves you time because you are no longer forced
to resimulate the design from the time t0. Instead, you can use any
marked simulation cycle (Milestone) as the starting point.

There are three mechanisms for creating the milestones:

r automatic (periodical)
r manual
r breakpoint-driven

Automatic Milestones

To put some milestones along the simulation highway, click on the Mile-
stones option within the Options menu. In response, ACTIVE-CAD dis-
plays the Milestones window shown in Figure 1-60 which allows you to
select the number of milestones to be placed on the screen and the time
interval between them. Enter the separation between milestones into the
Period window. If you do not specify the time unit, it will be in nanosec-
onds by default.

Since the automatic milestones can fill the entire hard disk in less than an
hour, ACTIVE-CAD has a built in self protection mechanism which asks

1-58 Setting simulation reference points (Milestones)

you how many milestones should be saved. If you specify eight (8), then
a maximum of eight milestones will be saved and the 9th milestone will
overwrite the first one. This provides for a shifting window of milestones
that tracks the simulation process and allows you to return to any se-
lected milestone within that area.

After you have selected the number of milestones to be saved and their
time interval, you need to activate the milestones by setting the On
option (Figure 1-60). Otherwise, the milestones option will be inactive.

Manual Milestones

For greater convenience, ACTIVE-CAD allows you to manually set any
simulation cycle (design condition) as a milestone. If you click on the
Save button shown in Figure 1-60, ACTIVE-CAD will save the current
simulation status as the reference point and will always be able to return
to it during the simulation process. ACTIVE-CAD allows you to have an
unlimited number of such manual milestones.

To return the simulator to any of its past simulation cycles, as repre-
sented by the milestones, select the Milestones window shown in Figure
in Figure 1-60, click on the desired milestone in the Active Milestones
field and then activate the Load button. Confirm your selection by click-
ing on the Close button. ACTIVE-CAD instantly sets the entire design
and test vectors to the appropriate logical states and then positions the
cursor at the desired (milestone) screen location.

Figure 1-60. Milestones Selection Window.

Quick Application Notes 1-59

Figure 1-61 shows a waveform diagram of the device pin U1.A1-1 with
two additional simulation reruns (for the same pin), both starting at the
M2 milestone. These reruns show different waveform patterns to the
right of the M2 milestone line, which may be caused by applying new
test vectors or performing design changes. This simulation flexibility
from any past cycle is a unique feature of the real-time simulators such
as ACTIVE-CAD, and allows direct tweaking of design behavior in real
time.

Breakpoint-driven Milestones

You can set a milestone on a breakpoint condition. Such milestones are
described in the Breakpoints chapter.

Milestones allow you to quickly verify various design concepts in an in-
cremental fashion, without lengthy setups and compilations. Effective
use of milestones is the cornerstone of real-time interactive simulation
and to help your productivity, ALDEC has included this feature even in
the lowest cost software versions.

Runninglong simulations
If you need to run a long design simulation, e.g. for five hours, you
should click on the Simulation Stop option within the Options menu. In
response, ACTIVE-CAD will display the Start Long Simulation window
(Figure 1-62). Enter into the Simulation Running Time field for how
long, in hours, minutes and seconds, you will run the simulation. You
can enter this data directly or you can place the cursor in the appropriate
field and use the up-down arrows to set the desired simulation time val-
ues.

To activate the long simulations timer, select the Sim. Till End option
and then click on the Start button. It is recommended that the Stop But-

resimulating from milestone

Figure 1-61. Multiple Simulations from a Selected Cycle

1-60 Runninglong simulations

ton be activated as well, so that you can interrupt simulation when
needed. The only time you would probably want to disable the Stop But-
ton is when you are leaving the office and do not want anybody to inter-
fere with the simulation process.

Overcoming the 4,000 test vectors limit
The test vector is a vertical time slice of the waveform screen display
with some signal transitions. Each test vector must have at least one sig-
nal transition. However, typical test vectors will have multiple simultane-
ous signal transitions, also called events. SUSIE-CAD products are
limited to a maximum of 4,000 test vectors. You can, however, simulate
any number of test vectors if you follow this simple procedure:

r If you have reached the 2,000 test vector limit, save the existing simu-
lation results using the Save Test Vectors option in the File menu

r Click on the Waveform Delete button to delete all wave-
forms from the screen

r Reload the test vectors; if you are using the binary counter, keyboard
keys or formulas for test vector generation, you do not need to do
any setups

r Since deleting signal waveforms leaves the design in logical states
generated by the last simulation cycle, you can continue simulation
by activating the Step and Long (Step) buttons

NOTE: When simulating design in test vector segments, do not activate
the Power-on button, because it will delete the last simulation cycle data.

Figure 1-62. Long Simulation Setup Window.

Quick Application Notes 1-61

How to simulate large memory devices
To fully simulate large memory chips, you would need to use very ex-
pensive workstations, with a lot of RAM memory. Fortunately, most of
the designs can be verified by simulating only the first few or the last few
Kbytes of RAM code. And this can be done on any PC.

To specify how much memory should be simulated, select the Memory
Range option from the Options menu. When ACTIVE-CAD displays the
setup window shown in Figure 1-63, enter into the Lower Mem Address
and Upper Mem Address the desired address space (number of bytes).
You can select any value from the pull down list or type any specific ad-
dress range.

The default address space is 1024 bytes, both for the lower and upper
RAM limit. If you want to simulate other memory ranges, you need to en-
ter the new values before starting the simulation process.

NOTE: The memory range that you set in the Memory Range option is
applied to all memory devices in the entire design, including the internal
microcontroller ROM and RAM.

How to search for selected signal conditions
At times you may need to find a certain set of signal conditions in the de-
sign. ACTIVE-CAD comes with the Tag option which facilitates such a
search both forwards and backwards. The Tag can be set at any time dur-
ing simulation and it will instantly display the Tag conditions in the past
and new test vectors (signal waveforms).

Figure 1-63. Selecting Memory Range for Simulation.

1-62 How to simulate large memory devices

To select the Tag option, click on the View option in the Utilities menu.
When the View menu appears, click on the Tag option. In response,
ACTIVE-CAD displays a new column, shown shown in Figure 1-64. This
column is used for entering the Tag signal conditions. ACTIVE-CAD
searches for the logical AND of all listed signal conditions.

Creating Tag conditions

To enter the signal conditions you are looking for, select the Set Tag Con-
dition option from the Options menu. In response, ACTIVE-CAD dis-
plays a table of all available signal logical states (Figure 1-65). Click on
the signal name in the Signal field of Figure 1-64 and when it turns blue,
click on the desired logical state in the table of Figure 1-65. Note that
ACTIVE-CAD has entered the selected signal state in the Tag column. Se-
lect some additional signal conditions you want to include in the Tag
search operation.

At least one of the Tag signals must be in a transition(e.g. LOW to
HIGH) ACTIVE-CAD will search for the AND condition of all Tag signal
states.

Tag column

Figure 1-64. Tag Column Location

Quick Application Notes 1-63

The Tag option allows you to search for any signal transitions. To set up
a signal transition, select the signal name in the Signal field. When it
turns blue, click on the first signal logical level in the table of Figure 1-65.
Next, click on the second signal logical state, the one that is taking place
after the the signal transition. In response, the Tag field shown in Figure
in Figure 1-63 will display a signal transition on the selected signal line
and the signal name will be deselected (turned off blue).

To set a Tag on a bus, first select the bus and then enter the desired bus
state in the red Bus State window shown in Figure in Figure 1-65. Next,
click on the blue BUS button.

To delete any signal condition within the Tag, click on the associated sig-
nal name and after it turns blue, click on the Del button shown in Figure
in Figure 1-65.

Searching for tags

ACTIVE-CAD allows you to search for the Tag conditions both in the left
and right directions. To select the Tag search mode, click on the Search
button shown in Figure 1-25 till it displays the Tag mode (Figure 1-66).
Next, click on the left and right pointing arrows to the left and right of
the Tag button. Note that the blue vertical cursor moves to the next Tag
condition in the selected direction.

Figure 1-65. Logical States Table for Tag

1-64 How to search for selected signal conditions

Stopping long simulations
Since ACTIVE-CAD releases the mouse cursor when the simulation is in
progress, you can click on the STOP button in the simulators main tool-
box and terminate the simulation. When the simulation stops the design
retains the last logical states that have been generated by the simulation
process.

The STOP button terminates the simulation process independently of
how it was started, either with the Step buttons or the Start Long Simu-
lation option (in the Options menu).

NOTE: The Stop button can be activated at any time unless it is disabled
in the Start Long Simulation window, activated by the Simulation Stop
option in the Options menu.

Manipulating switches
ACTIVE-CAD allows you to manipulate switches and move jumpers
while the simulation is in progress. Since the new switch position takes
instant effect, ACTIVE-CAD operates like a real hardware breadboard.

To operate a switch, draw a schematic with a switch and select the
Switch Settings option from the Patching menu. ACTIVE-CAD displays
the Switch Settings window which shows the design hierarchy in the
Scan Hierarchy window and lists all switches and jumpers at the se-
lected hierarchical level in the Chip Selection window.

To manipulate a switch located at a selected hierarchical level, select that
hierarchical level from the Scan Hierarchy window and then double-
click on the desired switch in the Chip Selection window. ACTIVE-CAD
instantly displays an additional window with the current switch posi-
tion. Each click of the mouse cursor over the switch outline will toggle,
rotate or move its mechanical wiper position.

The new switch position has an instant effect on the design behavior. Af-
ter setting the switch to the desired position, close the setup window by
clicking on the Close button.

Figure 1-66. Simulator's Search buttons.

Quick Application Notes 1-65

Simulating line (layout) delays
ACTIVE-CAD can simulate line or layout delays. Normally, these delays
are calculated by the layout tools and fed into ACTIVE-CAD via a netlist.

You can view the line delays in ACTIVE-CAD only when the netlist in-
cludes such routing delays. The line delays are assigned to device I/O
pins and can be viewed and edited in real time by selecting the Change
Line Delays option from the Patching menu. ACTIVE-CAD responds
with Figure 1-67 which lists the design hierarchy. Double-clicking on any
chip, cell or macro in the hierarchical diagram of Figure 1-67 displays all
layout propagation delays associated with the selected item (Figure 1-
68). Note that the TpL and TpH for the same pin may have different
layout delay values.

Figure 1-67. Modifying Line Delays.

1-66 Simulating line (layout) delays

Clicking on Min, Max or Avg. transfers the values displayed in these col-
umns to the Set column which represents the simulated values. You can
directly edit the delay values in the Set column.

By entering a value into the % Max you can rescale the propagation de-
lay in reference to the maximum parameters, as listed in the Max column.

NOTE: You must click on the OK button shown in Figure in Figure 1-68
to enforce any line delay modifications.

Emulating layout changes
Before you do any layout changes, you should verify what effect they
will have on other cells and devices. If you have a general idea of how
the layout changes will effect layout delays, then enter the expected de-
lay values directly into the Set column.

If the design is failing because of timing problems, you can emulate the
proposed layout modifications to see if they would cure the problems. If
you have a good grasp of the physical limitations within your design,
you can emulate various layouts by entering them directly into the Set
column. Since editing the timing table is much quicker than modifying
the actual chip or board layout, you save a lot of time by verifying the
proposed layout changes with the real-time emulation process.

Presetting a design to the desired state
ACTIVE-CAD allows you to set the design to any logical state, including
forced signal transitions. You must, however, remember that these set-

Figure 1-68. Layout Propagation Delays Table.

Quick Application Notes 1-67

tings are forced directly on the output signal lines and they will be over-
ridden with the devices actual output value after the first (simulation)
transition within the device.

Manual design preset

To preset signal lines to the desired signal logical states, click on the Se-
lective Preset option within the Utilities menu. ACTIVE-CAD responds
with the window shown in Figure 1-69, which initially does not display
any signal names. To select signals for the preset operation, click on the
Add button, and select the desired pins and signal names from the new
ACTIVE-CAD window.

After the device pins and signal names have been selected, click on the
Edit button. A table with signal logical states (Figure 1-70) is displayed.
Click now on the selected signal line shown in Figure in Figure 1-69 and
then on the desired logical state shown in Figure in Figure 1-70. Note
that the selected signal line has been assigned the new logical state in the
preset column of Figure 1-69. You may also drag the selected logical state
from the table in Figure 1-70 and drop it over the desired signal name in
Figure 1-69.

To assign the same signal level to multiple signals, hold down the [Ctrl]
key while selecting additional signal lines. Next, click on the desired logi-
cal signal state in the table of Figure 1-70. All selected signal lines will be
assigned the same selected logical state.

To force a signal transition on a pin, e.g. from High-to-Low, first select
the pre-transition preset state (e.g. High) and then select the post-transi-

Preset
Column

Signal Field

Figure 1-69. Preset Conditions Table.

1-68 Presetting a design to the desired state

tion state (e.g. Low). In response, ACTIVE-CAD will display in the preset
column of Figure 1-69 the selected signal transition, e.g. High-to-Low.

Automatic preset from a file
You can preset the entire design to selected signal conditions with a click
of the mouse (ACTIVE-CAD only). That preset can be performed at any
time during the simulation. To use the file preset option, you need to pre-
pare in advance some preset files, as described in reference to Figure 1-
69, and save these preset files by clicking on the Save button shown in
Figure in Figure 1-69. Next:

r load the selected preset file by clicking on the Load button
r click on the Execute button to activate the presets
r click on the short Step or Long step button to simulate the preset con-

ditions

Passive components in digital designs
Resistors always lower the signal strength. For example, test point A in
Figure 1-71 has a strong signal. However, at test point B (other end of the
resistor), the signal is weak. Thus, several totem-pole outputs can be con-
nected together via resistors into a single node. Also, a totem-pole output
can be connected through a resistor to the Vcc supply voltage without
creating a conflict.

Figure 1-70. Selecting states for selective preset.

Quick Application Notes 1-69

The passive components are simulated as follows:

r resistor converts a strong signal into a weak one
r capacitor is at first a short circuit which opens after time Tc1
r inductor is at first an open circuit which closes after time Tc2

The time constants Tc1 and Tc2 can be set from the Edit Timing Specifi-
cation window which is available from the Patching menu. Setting these
time constants is identical to changing the propagation delay of typical
digital devices.

NOTE: You cannot connect in series any passive components. For ex-
ample, a serial connection of resistor and capacitor needs to be replaced
with a capacitor alone. The capacitors time constant should be set within
the Edit Timing Specification window.

Using multiple clocks in the design
Signal waveforms have a limited duration, as defined by their formula.
Clocks on the other hand are repetitious signals that have no time limita-
tion, except for the simulator test vector limitations. You can use the bi-
nary counter outputs as clock signals. However, if you need more
complex clocks, define them using the following procedure:

A B

Figure 1-71. Passive Components Simulation.

1-70 Using multiple clocks in the design

Creating Clocks

r Select the Stimulator menu. Then select the Add Stimulators option.

r When the Stimulator Selection menu (keyboard) appears, select the
Formula button

r In response, the Set Stimulator window appears

r Select the Clocks option from the Mode field

r Double-click on one of the selected clocks (C1-C4) in the Select
Clock field

r Enter the clock formula into the Formula field

r Click on the Assign Formula button

r Select another clock from the Select Clock field and repeat the above
two steps

Note that as you enter the clock formula, it is displayed in the Defined
Assignments field in Figure 1-20. When you finish editing clock
formulas, click on the Close button.

Applying Clocks
To apply multiple clocks to your design, follow this procedure:

1. Click on the selected signal in the Signal field of the Waveform Viewer
window to mark the signal blue.

2. Select the Stimulator menu. Then select the Add Stimulators option.

3. When the Stimulator Selection window appears, click on the clock
button (C1-C4), whose formula you want to apply. These buttons are
located to the right of the keyboard display, and they are in black
when defined. When gray, the clock buttons have not been assigned
a formula.

You can assign the same clock formula to any number of signals. Up to
four different signals, defined by formulas, can be assigned to the design.
In addition, you can use any number of clock signals based on the binary
counter outputs(B0-BF and N0-NF).

Simulating a Netlist
ACTIVE-CAD can work with schematic editors in real-time interactive
mode (DDE) mode and off-line (netlist) mode. To select the operational

Simulating a Netlist 1-71

mode, select the Project Manager from the File menu. When the Project
Manger window appears (Figure 1-72), select the Netlist option. In re-
sponse ACTIVE-CAD displays the Project Netlist Configuration win-
dow shown in Figure 1-73.

Incremental netlist mode
If you click on the Schematic Netlist option shown in Figure in Figure 1-
73, ACTIVE-CAD will communicate with the associated schematic editor
via Windows DDE protocols. Only the initial design state is loaded via
the schematic netlist. All additional schematic changes will be fed
through the DDE functions. This allows an incremental netlist updating
and enables the design to be modified while the simulation is in pro-
gress. To complete the netlist selection, click on the OK button.

Figure 1-72. Project Manager window.

Figure 1-73. Netlist Configuration window.

1-72 Incremental netlist mode

Off-line netlist mode
If you click on theExternal Netlist option shown in Figure 1-73, ACTIVE-
CAD highlights the Select Netlist button and the External Netlist For-
mat field. To select the desired netlist format, click on the External
Netlist Format field, select the desired netlist format and then click on
the Select Netlist button. The simulator displays netlist selection win-
dow. Select the desired external netlist and to complete the netlist selec-
tion, click on the OK button in the Project Netlist Configuration
window.

Flat netlist simulation
Flat netlists have all their components and connectivity explicitly listed.
If you click on the Design Contents button, ACTIVE-CAD will
explicitly list all the components in the Chip Selection field (Figure 1-
74). If that field lists any hierarchical macros, designated by Hxx, then
the loaded netlist is a hierarchical one. The flat netlist displays only the
Root symbol in the Scan Hierarchy level. To better understand the differ-
ence between flat and hierarchical netlist displays, compare the Scan Hi-
erarchy fields shown in Figures 1-74 and 1-75. If a hierarchical design is
flattened before it is loaded into ACTIVE-CAD, it will be listed as a flat
netlist, similar to the one shown in Figure 1-74 (there is only Root in the
Scan Hierarchy flied).

Hierarchical netlist simulation
If the Chip Selection field shown in Figure in Figure 1-75 lists hierarchi-
cal macros H1, H2, H3, etc., mixed with some concrete devices that are
used at the design root level, then the design netlist is in the hierarchical
format. The Scan Hierarchy window displays a hierarchical design struc-

Figure 1-74. A Listing of Flat Netlist Components.

Simulating a Netlist 1-73

ture and the Signals Selection field lists all signals that exist at the high-
lighted hierarchy level.

If you review the ACTIVE-CAD internal netlist under a text editor, you
will notice that it only contains the top level components and macros. All
hierarchical drawings are listed as library components and their wiring
and components are included within the hierarchical library models. For
this reason, a hierarchical netlist may at first look as though it is missing
a lot of components.

How To Save Selected Signal Names
Unlike batch-mode simulators, ACTIVE-CAD gives you instant access to
any design section. You can create sets of signal files for testing selected
design sections, and then test these design sections by loading the se-
lected signal files to the screen.

To create a file made of selected signal names:

r Load the design netlist
r Select the Add Signals option within the Signals menu
r Select the desired signals from the new window
r Save these signals as a file (using Save Test Vectors or Save ASCII

Test Vectors from the File menu).

NOTE: It is important to remember that you can save the signal names
alone, without any associated waveforms.

Figure 1-75. Listing of Hierarchical Netlist Components

1-74 How To Save Selected Signal Names

Moving test vectors from one design to another

You can move any test vector files from one design to another even if the
signal names do not match at all. This is very useful if you test certain de-
sign functions like counting, decoding, shifting, etc. To transfer test vec-
tor files from one design to another, follow this simple procedure:

r Save the desired test vector file as an ASCII file
(use the Save ASCII Test Vectors option in the File menu)

r Using a DOS or other editor, manually edit the saved ASCII file to
contain the new signal names

r Save this file, preferably under a new name

r Load the new design netlist

r Use the Load ASCII Test Vectors option in the File menu to load the
edited file

Switching between schematic and external netlist
ACTIVE-CAD allows you to dynamically disconnect any links to an on-
line schematic and simulate an external netlist. To switch from an on-line
schematic editor to an external netlist, select the Netlist option from the
Project Manager window, which is selectable from the File menu. When
the Project Netlist window shown in Figure 1-73 appears, click on the Ex-
ternal Netlist option and select the appropriate netlist format and file
(see Loading Netlists).

To switch from an external netlist to the on-line schematic editor, click on
the Schematic Netlist option (Figure 1-73) and the OK button. ACTIVE-
CAD will load the currently active schematic design into the simulator
and all your subsequent design changes will be fed incrementally.

Tracking Errors Through a Design Netlist
ACTIVE-CAD allows you to track design errors directly from the netlist
signal state display. When an error occurs, you can put a number of test
points around the suspect devices and along the signal paths and trace
the origin of the design problem. A quicker way to track a design prob-
lem is by tracing the signal lines and their states through the netlist. Ex-
ample 12 shows a typical signal tracing process though the design netlist.

Simulating a Netlist 1-75

Example 12:

Load the TEST_A2 binary test vector file (Figure 1-76), which is associ-
ated with the TEST_A schematic. Simulate one Long step; note that the
OUT1 signal line shows the X_Unknown logical state.

To trace the origin of this X_Unknown state, click on the OUT1 signal
name shown in Figure in Figure 1-76 and then select Connections from
the Signal menu. ACTIVE-CAD responds with Figure 1-77, which shows
that the OUT1 is driven by the U2(74LS74A).Q1 output pin.

To analyze in detail the U2(74LS74A).Q1 output pin logical state status,
click on the States button shown in Figure 1-77, which forces ACTIVE-
CAD to display the signal logical states. In response, ACTIVE-CAD
displays Figure 1-78 which lists:

r Node - the resulting signal in the signal node

r Conv - how the model will interpret the input signal (inputs only)

r Model - what the model will output (outputs only)

Figure 1-76. TEST_A2 Test Vectors after the long step.

Figure 1-77. OUT1 Signal Connections Listing.

1-76 Tracking Errors Through a Design Netlist

r Stim - shows manually applied pin/node override signal

To understand how the X_Unknown state has been generated at the
U2(74LS74A).Q1 pin, lets analyze its inputs (you need to know how the
74LS74A operates). First, double- click on the U2.Q1 output. When
ACTIVE-CAD displays the list of all device input pins, double-click on
the U2(74LS74A).CLK1 signal line. In response, ACTIVE-CAD displays
the window in Figure 1-79 which confirms that the U2.CLK1 signal line
has no stimulus signal and remains in the High_Z state. Clicking on the
signal lines U2.PRE1 and U2.CLR1, produces a similar result.

Conclusion: The U2 device is in the unknown state because all input sig-
nals are in the High_Z state and U2 has not been reset after power-on.

Should there be a problem with the U2(74LS74A).D1 input signal, you
could double-click on this pin. This would list the logical states of all sig-
nals in the U2.D1 node (Figure 1-80).

Figure 1-78. OUT1 Logical States Table.

Figure 1-79. CLK Node Logical States Table.

Simulating a Netlist 1-77

Typically, you need only look at the output pins in the node because they
control the signals in each node. Thus, double-clicking on the
U1(7400).Y1 output would produce a listing of the gate inputs. The proc-
ess of signal tracing may continue, as described in reference to the U2.D1
input.

The Connections option has been expressly developed for the ALDEC
technical support staff so they can quickly and effectively trace any de-
sign problem that they may receive from around the world. Once you be-
come familiar with this process, you you will be able to trace your design
problems with an insight that no other simulation tool can provide.

How To Simulate FPGA Designs At The System Level
To accommodate various budgetary restrictions, ACTIVE-CAD products
come in two basic configurations:

r chip-level design tools, and
r system-level design tools

Chip-level design tools

These low-cost tools allow you to simulate a single device at a time. Each
project is a separate FPGA or ASCII design which you can enter and trou-
bleshoot at pre-layout (functional) and post-layout (timing) design cycles.

All ACTIVE-CAD products allow you to perform functional system-level
analysis, based on the pre-layout design files. The process of functional
system level simulation is comprised of the following steps:

r save each FPGA and ASIC as an independent macro
r create a top-level design with these macros included
r load this top-level design netlist into the logic simulator

Figure 1-80. Logical States Table for U2.D1 Pin.

1-78 How To Simulate FPGA Designs At The System Level

The chip-level ACTIVE-CAD allows only one post-layout netlist to be
loaded but does not care if you load several pre-layout netlists as part of
the same design file.

System-level design tools

The system-level design tools allow you to simulate multiple FPGA and
ASIC chips at the board level. Since these ACTIVE-CAD products also
simulate the post-layout designs, they produce very reliable design data.

To use the board-level simulation capabilities most effectively, create a
schematic design with ASIC and FPGA packaging information. Next,
connect or wire these packages together. Following this, assign to these
packages concrete FPGA or ASIC netlists. If you are using the ACTIVE-
CAD (DDE-related) schematic, select the Assign Netlist option from the
Hierarchy menu. And when the netlist window appears, select the de-
sired netlist and assign it by clicking on the selected package on the sche-
matic.

Simulating a Netlist 1-79

Chapter 2

ACTIVE-CAD Logic Simulator

Using The ACTIVE-CAD simulator

Simulator Window
The ACTIVE-CAD simulator window contains the title bar, menu bar
and control bar, all located at the top of the screen. Since ACTIVE-CAD
can handle multiple windows, items such as signal waveforms, compo-
nents, timing parameters1, etc. are all displayed in separate windows.
The simulator main toolbox allows you to switch between the functional,
glitch and timing simulation modes. It also has provisions for running
simulation steps, searching for tags, breakpoints and other options.

All key elements of the simulator window are shown in Figure 2-1.

1 NOTE: The timing simulation mode is not included in SUSIE-CAD/HIER.

#A. Main toolbox - provides quick access to the most important simula-
tor operations. The toolbox can be moved to any screen location and can
be displayed using the View/Main Toolbox option in the Utilities menu.

#B. Step window - used to set up the simulation steps. It can be moved
around the screen. To display this window select the Simulation Step op-
tion in the Utilities menu.

#1. Title Bar - used to display the projects name. It is also used to move
the simulator window around the CRT screen. To move the simulator
window, click on the title bar and drag the window to the desired screen
location. When the simulator window has been placed at the desired
screen location, release the mouse button. If you double click on the title
bar, it will toggle between regular and full screen window size.

#2. System menu button - invokes a typical Windows menu, with op-
tions like Close, Maximize, Minimize, Move, etc.

#3. Minimize button - allows you to reduce the entire window (mini-
mize) to a small icon that will be placed at the bottom of the screen. To re-
store the window to its full size, you need to double-click on the
minimized window icon.

2 11 1 12 5 6 13 14 A 3 4

B
15

9
17

10
7 8 16

Figure 2-1. Simulator Main Window.

2-2 Simulator Window

#4. Maximize button - used to display the window over the entire screen.
To restore the window to its previous size, toggle the upper right button
of the maximized window.

#5. Menu bar - includes eight menus which can be accessed by clicking
on the menu name or by pressing the Alt key and the underlined charac-
ter in the menu name.

#6. Schematic editor button - switches the screen to the ACTIVE-CAD
schematic editor program. If the schematic editor has already been
started, ACTIVE-CAD will display its window. Otherwise the schematic
editor will be started.

#7, #8. Short and Long Step simulation buttons - used to perform short
and long simulation steps with a single click of the mouse button.

#9, #10. Short and Long Step Setup - used to set up the Short and Long
Step duration. You can either click on the field and enter a new value, or
click on the arrow to access a list of predefined simulation steps. This
setup window pops up when you select the Simulation Step option
from the Utilities window.

#11. Simulation time - displays the length of the current simulation cycle
in nanoseconds, counting from the beginning of simulation. The maxi-
mum simulation time depends on the simulation resolution. For 10ps
resolution the maximum time is 42ms. For other resolutions the simula-
tor may simulate minutes and hours of hardware operational time.

#12. Binary counter - the status of the 16 bit binary counter is displayed
in the form of red and yellow LED lights. Red means that the bit is at a
logical high or 1, and yellow means a logical low or 0.

#13. Simulation mode setup - allows you to select between TM - timing
mode with a 10 picoseconds resolution, GL - glitch mode with Short step
unit propagation delays, UN - unit delay mode with propagation unit
equal to simulation precision and FN - functional mode with zero propa-
gation delays. The TM option is not available in SUSIE-CAD/HIER.

#14. Search button - allows you to select an item or condition to search
for in a timing diagram. You can choose from such items as Breakpoints,
Errors, Events, Milestones and Tags.

#15. Search Forward and Backward buttons - allow you to search timing
areas for items you have selected with the Search button (#14).

Using The ACTIVE-CAD simulator 2-3

#16. Stop Simulation button - stops simulation at the current simulation
cycle. It is enabled and disabled within the window resulting from click-
ing on the Simulation Stop option within the Options menu.

#17. Power On button - initializes the entire design. The Power On opera-
tion is performed automatically at the beginning of simulation and after
each interactive connectivity change.

Waveforms Window
A typical waveform window is shown in Figure 2-2. Using the Utilities
menu, you can open multiple waveform windows, also called Waveform
Viewers. The signals displayed in all windows will be the same; How-
ever, you can view different parts of the waveform diagram and use dif-
ferent timing scales. If you minimize these windows, the icons will be
placed at the bottom of the main window.

NOTE: The setups and controls located within each Waveform Viewer
window effect only that window.

The Waveform Viewer window has the following main areas:

Signal entry - comprised of fields #13 and #14; field #13 displays the I/O
function of the listed signals and IC pins, and field #14 displays the sig-
nals and IC pin names (to be observed or stimulated with a test vector)

Test vector entry - includes field #17 for entering ready-made test vec-
tors and field #10 for direct test vector editing. The current logical state of
all signals under the blue vertical cursor is displayed in field #18.

Waveform window setups - includes the Scale display (#16) of the wave-
form window, waveform cursor position (#11) and a tool bar for manag-
ing the signals and test vectors (#1 through #8).

ACTIVE-CAD has two vertical cursors displayed in the signal wave-
form area. The red cursor is the simulation cursor. It is visible at all times
and indicates the last simulation cycle. The blue cursor is the editing cur-
sor and is visible only if you click at any screen location for editing or
viewing the local simulation data. The logical states under the blue cur-
sor are explicitly listed in column #18.

Zoom In and Zoom Out - these buttons (#15) are used to quickly expand
and contract the waveform scale. Each mouse click on one of these but-
tons changes the scale to the next predefined value.

2-4 Waveforms Window

The waveform window tool bar has the following function buttons:

#1. Ruler On/Off - enables or disables the waveform window ruler. If
you don’t need to see the waveforms referenced to the time scale, disable
the ruler to allow more room for signals.

#2. Waveform Delete - deletes all waveforms without resetting simula-
tion with Power On

#3. Display Comments On/Off - allows you to toggle the comment dis-
play on and off. The comments are used to document important situ-
ations on the waveform diagram and can be both displayed at the
specified screen locations and printed with the waveform diagram.

#4. Measurements On/Off - enables you to display precise timing meas-
urements between signal transitions, regardless of the scale.

#5. Bus On/Off - clicking on this button is meaningful only if you have
defined some buses, either in Signal entry (#14) or on the schematic.
Buses are comprised of several signals or pins and can be displayed in
hex, binary, decimal and octal mode. When the bus display is set to the
OFF mode, each bus signal line is individually displayed.

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18

Figure 2-2. The Timing Window.

Using The ACTIVE-CAD simulator 2-5

#6. Select Probes - invokes the Component Selection for Waveform
Viewer window which allows you to select signals and IC pins for dis-
play in the Waveform Viewer window.

#7. Stimulus - invokes the Stimulator Selection window that is used to
define and assign stimulators or test vectors to the selected signals. This
window includes such signal waveform generators as binary counter,
keyboard keys, asynchronous clocks and waveform formulas.

#8. Logical States - invokes the Stimulator State Selection window that
allows you to select and assign any logical state to a signal name or de-
vice pin. The new logical states can be assigned to input pins and signals
at any time during simulation.

#9. Time Scale Display and Expansion (Ruler) - It has a dual purpose:

r It displays the screen resolution. The scale can be used as a general
reference for the simulation results (waveforms).

r If you click on the scale and drag the mouse cursor, a blue stripe fol-
lows the mouse movement. If you release the mouse button, the area
under the blue stripe expands to the full screen display. It is used for
observing alignment of signal transitions and time measurements.

#10. Signal Waveform Display - displays the test vectors that stimulate
the design and real time responses from the design.

#11 Blue cursor location - displays the current location of the blue cursor
which is used for direct waveform editing, time measurements, com-
ments insertion, etc. It is automatically hidden under the red cursor, im-
mediately after the first simulation event.

#12. Red cursor location - shows the last simulation cycle.

#13. I/O Attribute field - shows the I/O type of the signal (i=input,
o=output, b=bi-directional).

#14. Signal field - displays the names of the signals and device pins
which have been selected for display.

#15. Scale Adjustment field - clicking on the left-hand field increments
the display scale of the signal waveforms, e.g. from 1 ns to 2 ns per divi-
sion. Clicking on the right-hand field reduces the display scale of the sig-
nal waveforms, e.g. from 5 ns to 2 ns per division.

#16. Scale Display - shows the scale of the signal waveform display.

2-6 Waveforms Window

#17. Stimulator field - allows to enter the names of the pre-defined stimu-
lators. The assigned stimulators will control the associated signal lines.

#18. Current Logical State - displays the logical states of signal
waveforms at the current blue cursor location.

ACTIVE-CAD Main Menus
The ACTIVE-CAD operation is controlled from a set of menus, which
load design, select test points, feed design stimulus and set the design
analysis environment. A brief description of each menu follows below.
For higher productivity, make yourself familiar with the features avail-
able in each menu.

Since most of the Windows operations are self-explanatory, key attention
will be paid to ACTIVE-CAD specific features, options and operations.
Some ACTIVE-CAD features may be invoked from several applications.
To minimize cross-referencing, these features will be described in detail
in several chapters.

FILE Menu

The File menu allows you to load, save and print selected design files:

r Load Test Vectors loads binary files with design stimulus

r Load ASCII Test Vectors loads ASCII files with design stimulus

r Save Test Vectors saves signal waveforms in binary files

r Save ASCII Test Vectors saves signal waveforms in ASCII files

r Load Memory Chip loads memory chip with hex data

r Save Memory Chip saves the contents of a memory chip

r Load Memory Block loads memory block wit h ex data

r Save Memory Block saves the contents of a memory block

r Load Fuse Map loads a fuse map into a selected PLD device

r Load Simulation reloads a previously simulated design

r Save Simulation saves the simulation results for future use

r Page Setup typical Page Setup operation

r Print Setup typical Print Setup operation

r Print typical Print operation

r Print Error Report prints a design error report

Using The ACTIVE-CAD simulator 2-7

r Project Manager selects the project and its resources

r Project Libraries selects device libraries for simulation

r Load Netlist loads a design (netlist)

r Test PLD allows a quick, single PLD simulation

SIGNAL Menu

The Signal menu allows you to select signals to which you will apply
stimulus signals or which you will analyze in detail:

r Add Signals has extensive sub-menus for selecting
signals and pins

r Hierarchy allows you to select signals/pins from any
hierarchical level

r Connections allows you to track signal paths and their
logical values

r Move to allows you to rearrange signals on the screen

r Bus selects, creates and enables buses for display

r Delete deletes signals and buses from display

r Select selects and deselects signals for further
processing

r Insert Empty Line inserts an empty line at the current cursor
location

r Search searches for the selected signal/pin name in
the display screen

r Find... in SC locates selected signal/pin names on
the DDE-connected schematic sheet

r Signal Set allows you to define an ASCII set of test vectors

STIMULATOR Menu

The Stimulator menu allows you to select, create and apply design
stimulus signals, which are also called test vectors:

r Add Stimulators allows you to create and apply stimulus signals
Mode from a special window

r Chip Controlled gives control of signal lines to device pins

r Override Mode allows the stimulus signal to override a device
output pin

2-8 ACTIVE-CAD Main Menus

r Disconnect disables the activity of a stimulus signal

r Connect enables the stimulus signal activity

r Delete deletes the selected stimulus signal

r Delete All deletes all assigned stimulus signals

Waveform Menu

The Waveform menu allows you to edit existing stimulus signals, add
comments and perform waveform timing measurements:

r Edit enables you to graphically edit signal waveforms

r Comments allows you to enter comments with each
signal waveform

r Markers allows you to set reference points on
signal waveforms

r Measurements facilitates time measurements between
signal transitions

r Formula allows you to express signal waveforms as sets
of nested data, e.g.. (((H20nsL30.5ns)25...

OPTIONS Menu

The Options menu provides direct access to the ACTIVE-CAD options
that simplify and speed design analysis:

r Selective Simulation instantly selects the desired design
sections for simulation

r Power On Settings sets the logical states of device pins
during power-on

r Clock Settings sets the clock speed of the binary
counter-driven stimulus signals

r Simulation Precision sets the ACTIVE-CAD simulation precision
(from 10 ps to 1 ms)

r Simulation Stop selects simulation time and enables
the STOP button

r End of Step Estimation enables the display of time till end
of simulation

r Timing Automatic Backup automatically saves simulation data,
as set in the menu

r Milestones sets milestones along the waveforms
for automatic return to past cycles

Using The ACTIVE-CAD simulator 2-9

r Global Reset triggers the global reset function in IC
models

r Transport Delay propagates short pulses without filtering

r Error Reporting controls which errors are reported,
displayed and saved

r Memory Range sets the simulation areas of the memory
models

r Set Tag Condition sets signal conditions that ACTIVE-CAD will
search for

r Delete Tag Condition deletes the Tag condition

r Save Settings Now saves the current Windows settings

r Save Settings On Exit saves the Windows settings upon exiting
from the program

r Default Settings loads factory-set ACTIVE-CAD features
and options

PATCHING Menu

The Patching menu allows dynamic modification of the design timing
parameters, including replacement of parts, changing propagation de-
lays of ICs and layout, etc.:

r Change Technology allows you to instantly replace parts with
faster or slower ones

r Switch Settings allows you to rotate switches, move
jumpers, etc.

r Change Line Delays allows you to make manual changes in
layout delays

r Edit Timing Specification allows you to manually edit device timing
parameters

r Change Generic values permits you to change the operational
temperature of models

UTILITIES Menu

This menu is a collection of ACTIVE-CAD supporting utilities like the
VHDL Development System, the batch simulation macro editor, the fault
simulator, the memory configurator. It also lets you control several dis-
play options. The following is description f the menu contents:

2-10 ACTIVE-CAD Main Menus

r View lets you control display of ruler, status line,
Tags, main toolbox, etc.

r Macro allows you to edit and run macros that
control batch mode simulation

r Waveform Viewer displays additional signal waveform
windows

r Selective Preset allows you to set design preset conditions

r VHDL Debugger allows you to run the simulation at the
source code level

r Internal State Editor lets you view model internal states

r Memory Configurator lets you set the memory chip configuration

r Memory Editor permits you to edit memory contents

r Error Viewer displays error reports on screen or printer

r Hierarchical Viewer displays the design hierarchy

r Fault Simulator activates the toolbox for fault simulation
control

r Simulation Step allows you to set the short and long
simulation step durations

r Breakpoints detects the desired signal states and their
combinations, and allows you to perform
selective simulator operations depending
upon these signal states

WINDOW Menu

This is a typical Windows menu, as described in the Windows manual.

HELP Menu

Operation of this option is similar to other Windows programs. Starting
with REV. 2.0 it will provide additional information about the available
options at each cursor location.

Using The ACTIVE-CAD simulator 2-11

Loading a Design

Board-Level Netlist

Working with the on-line schematic editor

When you start the simulator, the schematic design information is auto-
matically passed to the simulator in the form of a netlist file. The
ACTIVE-CAD netlist is a binary file that contains all component and con-
nectivity information. The netlist file has an *.ALB file name extension
and is stored with other project files. Managing netlist files is simplified
by the Project Manager which controls the netlist file location and keeps
the netlist file up-to-date. . If the netlist file is older than the schematic, a
new netlist is automatically created and loaded into the simulator.

The netlist is loaded only when you start or open the simulator window.
Thereafter all schematic changes are incrementally updated in the simula-
tor so that you always simulate the design that is displayed in the sche-
matic window.

Working with off-line schematic editor

To simulate designs edited in OrCAD, P-CAD, PADS, Tango, Protel and
other editors, you need to work with the ACTIVE-CAD simulator alone.
To start the simulator alone, you must:

r enter into the Project Manager the name of the project that will be
created when you load the external netlist

r select in the Project Library the model libraries that will be needed
for the netlist design.

Figure 2-3. Loading netlist in the specified format.

2-12 Board-Level Netlist

If you are using an external schematic editor, you have to use its soft-
ware subroutine and generate a netlist, which is an ASCII representation
of the schematic design. Some schematic capture packages have facilities
for generating multiple netlist formats such as EDIF, FutureNetTM, etc.
In addition, some schematic capture packages can generate both flat and
hierarchical netlist formats.

To load an external netlist to the simulator, use the Load Netlist option
in the File menu.

When the window shown in Figure 2-4 appears, select the appropriate netlist for-
mat in theFrom Format field and then select the file name of the desired
netlist from the list of files with that format. When you press theOK button,
ACTIVE-CAD will convert and load the selected netlist to the simulator.

Hierarchical Netlist
ACTIVE-CAD simulates both flat and hierarchical netlist formats. When
simulating hierarchical netlists, the signal, IC and IC pin names are the
same as listed at the selected hierarchy level and they do not have any
prefixes related to the upper design levels. They form totally inde-
pendent netlists, which may list identical part numbers, e.g.. U1, A5, etc.

A hierarchical netlist lists only its top-level (root) connectivity. The hierar-
chical macros have their own separate netlist files. A hierarchical project
netlist is thus comprised of all these netlist files.

Combining Design Netlists
ACTIVE-CAD can simulate a design that is comprised of different netlist
formats. For example, a board-level design can be in the FutureNet
netlist format, while an FPGA design may be in the Xilinx XNF netlist for-
mat. Use the ACTIVE-CAD schematic editor to import these netlists:

r Import the system-level netlist using the Import Netlist option in the
ACTIVE-CAD Hierarchy menu, within the schematic capture window

r Select Assign Netlist from the Hierarchy menu and click on the empty
symbol to receive the imported netlist. Follow the prompts for loading
the netlist.

Loading a Design 2-13

Loading a Netlist
The simulator can be automatically invoked from any program with a
command line. The command line allows you to specify the project to be
loaded, or the netlist file to be converted and loaded.

Command line syntax:
SIMUL <-n | -p> <ID> <NAME> <PATH>

You can load designs either in the -n(netlist) or -p(project) format. Select
one of these options for loading a netlist.

-p parameter loads the specified project and its netlist. This option can be
used when the netlist has been previously imported and an ACTIVE-
CAD project is ready for simulation (no changes on the schematic).

Example: SIMUL -p TEST1

This Example loads the project TEST1 netlist in the ACTIVE-CAD format.

-n option is only used when you load a netlist in one of the supported ex-
ternal formats, like OrCAD, PADS, P-CAD, etc.

The ID parameter that follows is the format number from the list below:

Netlist ID
SUSIE 5.0 0
Application Bravo 1
Cadnetix 2
CapFast 3
Case Technology 4
Design Computation 5
FutureNet 6
Omation 7
OrCAD 8
P-CAD 9
P-CAD Hierarchy 10
PDIF 11
Racal-Redac 12
Tango 13
Visionix 14
Viewlogic 15
Wintek 16
SUSIE 6.0 17
XNF 18
EDIF 2.0 19
SUSIE binary 20
Lattice SIM 21

2-14 Loading a Netlist

Massteck ASCII 22
PADS 23
INTUSOFT 24
SPICE 25

The netlist name is the next parameter to be entered (<NAME>).

You must also provide the directory in which this netlist resides
(<PATH>).

To enter a command option, click on the simulator icon in the Program
Manager group and select the Properties option in the File menu of the
Windows Program Manager. In the Command line, add the desired pa-
rameters to the existing line and click on the OK button.

Example:
SIMUL -n 6 test6.net C:\NET

This will automatically convert and load the test6.net netlist in the Fu-
tureNet format (ID #6), located in the C:\NET directory.

Missing Models
Before loading a netlist, you have to select Project Libraries from the File
menu and then select the required libraries.

While loading a netlist, the simulator automatically loads the integrated
circuit (IC) models referenced in that netlist. If there is no model for a de-
vice, ACTIVE-CAD creates an empty model so that the simulation can
proceed.

Loading a Design 2-15

The empty model is created based upon the schematic netlist and con-
sists of device pins that are connected to other devices. For example, if
the netlist has a device with 14 pins, but only pins 1, 2 and 7 are con-
nected, then the simulator will create a model that has only pins 1, 2 and
7.

The outputs from the missing models are floated (high impedance state)
during simulation and they do not interfere with other signals in the
nodes. You can feed into the missing model outputs some test vectors
that emulate the operation of the part itself. The simulation will proceed
as though these test vectors had been generated by the empty model it-
self. The ACTIVE-CADsimulator will generate a precise system level re-
sponse to these signals.

After loading a netlist, the simulator reports all missing models in the window
shown in Figure 2-4. TheComponent Selectionwindow shows empty models
as white chip icons, which have pin numbers but no names.

Loading a PLD Fuse Map
When fitted with the PLD libraries, ACTIVE-CAD simulates PALs and
PLDs using the standard JEDEC fuse maps. Each PLD model represents
a complete but unprogrammed structure that is dynamically re-configur-
able by the loaded JEDEC file.

Typically, PLD device behavior can be monitored only at the external
pins. However, some of the more complex PLDs like MACH devices
have predefined internal test points (signals or buses) that you can load
and watch on the screen.

Figure 2-4. Missing Models Message.

2-16 Loading a PLD Fuse Map

After loading a netlist, load the JEDEC file into each PLD you want to
simulate. The process of loading JEDEC fuse maps is as follows:

r select theLoad Fuse Map option in the File menu

r when the simulator displays a list of all available PLDs (Figure 2-5)
at the current hierarchy level, select the desired PLD

r then load the appropriate JEDEC file from the window shown in Fig-
ure 2-6, which appears when you select the PLD device.

ACTIVE-CAD does not support editing of the fuse maps, but you can re-
load a different JEDEC file at any time.

To load a JEDEC file for the first time to the current project you may
need to use the Browse option (Figure 2-6). This will allow you to find
your JEDEC file on the appropriate disk, and add it to the project re-
sources. You can also use the Resources option within the Project Man-
ager window to prepare the list of project resources in advance.

Figure 2-5. Selecting a PLD to load JEDEC file.

Figure 2-6. Load JEDEC File Window.

Loading a Design 2-17

Loading JEDEC fuse maps into hierarchical designs
To load a JEDEC fuse map into a PLD that resides within a schematic de-
vice (hierarchical schematic), select the Load Fuse Map option from the
simulator File menu. ACTIVE-CAD will display the window in Figure 2-
5, which shows the design hierarchy. Click on the desired schematic
macro in the Scan Hierarchy window and when the PLD devices are
listed to the right, in the Chip selection window, double-click on the de-
sired PLD device. ACTIVE-CAD instantly displays Figure 2-6 which lists
all available JEDEC fuse maps. Select the desired fuse map and click on
the Load button. The PLD is ready to simulate. You can also activate the
Browse option and load JEDEC files from other system directories.

Test PLD option
If you are designing a PLD, you can simulate it directly with ACTIVE-
CAD without creating a schematic. To simulate multiple PLDs, you need
to create a schematic with the appropriate connections between devices
and then load all PLDs with their JEDECs.

The Test PLD option in the File menu can also retrieve the pin names
used in your design and load any test vectors that were saved in the
JEDEC file. This allows you to compare the functional simulation from
your PLD development system with the ACTIVE-CAD timing simula-
tion. To perform this comparison, first load the test vectors from a JEDEC
file into ACTIVE-CAD (you will see the original waveforms generated
by the PLD development system). Next, start the simulation by pressing
the Short step button, and visually compare the new waveforms that
have been generated by ACTIVE-CAD with the ones loaded from the
JEDEC file. This is especially useful when simulating a PLD in the timing

Figure 2-7. The Test PLD Window.

2-18 Loading JEDEC fuse maps into hierarchical designs

mode, because you will be able to instantly see how the propagation de-
lays have changed the design behavior.

Selecting a PLD Device

To load a PLD design, select the Test PLD option in the File menu.
When the Test PLD window (Figure 2-7) appears, select the PLD type
you want to load. You can enter the full PLD name or any part of the
name to search for. Use asterisks, e.g.. *22v10*, PAL16R8*, to select a part
number without any prefixes or suffixes. If you use asterisks (*) in the
PLD name, ACTIVE-CAD will search the libraries for all PLDs with the
matching name. If you type the exact name, ACTIVE-CAD searches only
for that name. Once you use this option, ACTIVE-CAD remembers the
last PLD that you used and will display its name so that you can load it
again without searching.

NOTE: You must add the PLD library to your project (see Project Librar-
ies), because only the libraries selected for the current project are
searched for the selected PLDs.

Loading JEDEC file into a PLD

The Test PLD window also allows you to select the JEDEC files to be
loaded into the selected PLDs. If there are some previously used JEDEC
files in the current project resources, they will be displayed in the JEDEC
file window. If you want to load additional JEDEC files, use the Browse
button, which allows you to select a JEDEC file from any disk location
and add it to the project resources.

Before you load a PLD, you should decide if you want to load both pin
names and test vectors from the JEDEC file. The Load Pin Names option
in the Test PLD window allows you to load the original pin names that
have been used as the external PLD pins. This information can be re-
trieved from the JEDEC file or from the PLC file.

You need to consult your PLD Development Tools documentation for de-
tails on whether the pin names have been saved in the JEDEC file or in
the PLC file. For example, the PALASM software generates the pin name
information in the *.PLC file, and the MACHXL software puts it directly
into the JEDEC file.

Loading PLD Test Vectors

The Load Test Vectors option in the Test PLD window allows you to re-
trieve the test vector information from the JEDEC files. The JEDEC file
format provides test vector information that is typically used for testing
PLDs in production. These test vectors are created by the PLD Develop-

Loading a Design 2-19

ment System when you run the functional simulation, based on the logi-
cal equations from the design file. When you load this information into
ACTIVE-CAD, the test vectors will be displayed in the Waveform
Viewer. ACTIVE-CAD loads both input and output test vectors, as
shown in Figure 2-8.

Since the JEDEC test vectors do not have any timing information, you
need to specify the Test Clock Rate shown in Figure 2-7 to perform tim-
ing simulation. This option requires that you enter the one-half clock pe-
riod in nanoseconds. For example, if you specify that Test Clock Rate =
5ns (period =10ns), the PLD will be tested with the 100MHz clock. This
setting is important if you are using timing simulation, since a fast clock
speed can cause a timing violation in the PLD. Always run the timing
simulation to make sure that your design will work with the desired
clock speed.

Loading Memory Contents
If you have a memory device in your design, you can load it with a hex
file. The Load Memory Chip option in the File menu invokes the Select
Memory Chip window (Figure 2-9) which allows you to select a memory
device. After the memory device has been selected, ACTIVE-CAD dis-
plays a listing of available hex files (Figure 2-10).

Figure 2-8. Test Vectors Loaded from a JEDEC file.

2-20 Loading Memory Contents

Click on the selected hex file and on the LOAD button. After loading the
hex file into the memory device, the simulation will output the loaded
data when a READ cycle is simulated. You can save the current memory
contents into a hex file using the Save Memory Chip option.

NOTE: If you want to load an external hex file, you need to add it to the
project resources with the help of the Resources option in the Project
Manager window. You can also add it using the Browse button in the
Load Memory Chip window. All hex files that you save within ACTIVE-
CAD are automatically added to the Project Resources.

Loading hex files into hierarchical designs
To load a hex file into memory or a microprocessor select the Load Mem-
ory Chip option from the simulator File menu. ACTIVE-CAD will dis-
play the window shown in Figure 2-9 , which displays the design
hierarchy. Click on a schematic macro that has some memory devices,
and ACTIVE-CAD will list (in the Chip selection window) all the mem-
ory devices located within that schematic macro. Double-click on the de-
sired memory device and ACTIVE-CAD will instantly display the
window shown in Figure 2-10 which lists all available hex files. Select the
desired hex file and click on the Load button. You can also activate the
Browse option and load a hex file from other system directories.

Figure 2-9. List of Memory Components.

Loading a Design 2-21

NOTE: When you click on any de-
vice that has internal memory, e.g..
8051; It will be displayed as a mem-
ory chip in Figure 2-9 so you will be
able to load the desired hex file
from Figure 2-10.

Memory Range
Memory devices are simulated in ACTIVE-CAD like real hardware. This
means that the data can actually be written, stored and read from the
memory device by simulating appropriate cycles. You can also view and
edit memory contents using the Memory Editor option within the Utili-
ties menu.

The memory contents are stored in your computer’s RAM, so if you
simulate 1MB memory devices, it can take 1MB of your computers mem-
ory to store the entire memory contents. In most cases storing the entire
memory contents is not necessary, because even partial code simulation
may be sufficient for hardware interface verification.

ACTIVE-CAD allows you to simulate the hex code located at the lowest
and the highest memory device addresses. To specify the amount of
memory to be simulated (stored by the simulator) click on the Memory
Range option in the Options menu, invoking the SIM Configuration

Figure 2-10. Load HEX File
Window.

Figure 2-11. Define memory contents range.

2-22 Memory Range

window shown in Figure 2-63. Select the amount of memory in the lower
and upper memory addresses to be stored and simulated. The Lower
memory stores the requested number of bytes, starting from address 0.
The Upper memory stores the requested number of bytes in the simu-
lated memory device, starting from the highest address.

NOTE: The memory range setup applies to all memory devices in the en-
tire design.

Selecting Signals for Display

Selecting Probes on the Schematic
If you are using the ACTIVE-CAD schematic editor connected on-line to
the simulator, you can select the simulator signals directly on the sche-
matic. To do so, activate the Probe mode button in the schematic editor
and then select the test points that you want to observe or stimulate, such
as node names, I/O terminals or device pins. The selected test points will
be instantly displayed in the simulators Signal field. If you click on an IC
in the schematic editor, a window with the IC pin list will pop up on the
screen. Select the desired pins, using the left mouse button, and confirm
the selection with the Add and OK buttons. The selected pins will be cop-
ied to the simulators Signal field and the corresponding schematic test
points will be marked with probe symbols.

NOTE: To delete probes, click on their schematic square symbols again.

Selecting Signals in the Simulator
To select signal names and IC pins to display in a waveform window,
click on the Select Probe button (#6 in Figure 2-2), or select the
Add Signals option from the Signal menu. The Component Selection
window will appear (Figure 2-12), which will list all parts and signals.

Selecting Signals for Display 2-23

To make your work easier, ACTIVE-CAD offers four (4) ways to add the
signals and pins to the simulators display.

Individual pin/signal name transfer:

r direct dragging; just click on the selected signal or pin name in Fig-
ure 2-12 and holding the mouse button down drag it to the Wave-
form Viewers Signal field and then release it.

r double-click on the selected pin or signal name in Figure 2-12. It is in-
stantly moved into the Waveform Viewer window.

Group signal transfer:

r Click on the first signal/pin name and then click on the remaining
ones holding the {Ctrl} key down. When all selected signals/pin
names are highlighted, click on the Move button. If the signals to be
selected are adjacent to each other, click on the first one and then
holding down the {Shft} key click on the last signal/pin name. When
all selected signal/pin names become highlighted, click on the Move
button.

r Position the cursor over the Signal Selection or Pins For field (Fig-
ure 2-12) and click the right mouse button. When ACTIVE-CAD dis-
plays local menu (Figure 2-13), click on the Select All option. Next,
holding down the {Ctrl} key, click on the signals that you want to de-
select from the group of signals/pins. After the selection has been
completed, click on the Move button.

NOTE: If you select a signal line in the Signal field (highlighted blue) be-
fore transferring any signals, then all subsequently transferred signals
and pins will be placed in the Signal field above that location.

Figure 2-12. Selecting Pins And Signals.

2-24 Selecting Signals in the Simulator

The Menu in Figure 2-13 has the following options options:

r Move - moves previously selected signals

r Move All - moves all listed signals

r Insert Empty Line - inserts an empty line above the selected (blue)
signal line in the Signal field; empty signal lines cannot be inserted
within a group of bus signals

r Select All - selects all listed signals; If the majority of signals need to
be transferred, select all of them. Then holding down the Ctrl key
and clicking the mouse button, deselect the undesired signal lines.

r Deselect All - deselects all selected signal lines

r Search for - allows you to search for a selected signal name in the de-
sign netlist

r Bus Mode On/Off - switches the bus display between a single line
and discrete lines

r Find in SC - shows the desired signal name on the DDE-linked sche-
matic design

r View Connections - shows the signal connections and logical values

If you click the right mouse button in the Pins For field, Figure 2-13 ap-
pears to facilitate the transfer of device pins into the Signal field.

The Signals Selection field displays individual signals and buses. If a
bus signal is provided within the loaded netlist, it is displayed as a single
bus line. However, after its transfer into the Signal field:

r all bus signals are listed in discrete form

Figure 2-13. Local Signal Selection menu.

Selecting Signals for Display 2-25

r the first discrete signal name in the bus is marked with * and under
this name the bus will be displayed and stored

r the following bus members include the + sign indicating a bus mem-
bership

r to convert the discrete bus lines into a single bus line, click on the
BUS button (#5 in Figure 2-2)

When the selection of signals has been completed, click the Close button
to close the Component Selection window in Figure 2-12.

Selecting Device Pins
To select device pins, double-click on the desired component in the Chip
Selection field (Figure 2-12). ACTIVE-CAD will display a list of pins of
the selected device or macro. This list is shown in the right-hand window
of Figure 2-12. The selection of device/macro pin names to display is
similar to the selection of signal names (double-clicking, dragging, Move
button, the right mouse button menus).

The Pins For field may display both the external and internal device
pins. If the external pins are transferred into the Signals field, they can
be overridden by the designer with local test vectors. However, the de-
vice internal test points can only be used for display of signal waveforms
and cannot be overridden.

Chip Selection Field

The Chip Selection field in Figure 2-12 lists all the components at the se-
lected hierarchical level. The gray devices and macros are active elec-
tronically. The white ones are either disabled by the selective simulation
option or they have no model and will not be simulated.

NOTE: When simulating a design, check that all devices and macros in
the field are gray. If any of them is white, it is a warning that an incom-
plete simulation is taking place because the white devices have no mod-
els and produce High_Z outputs.

Simulating hierarchical designs
ACTIVE-CAD can simulate hierarchical designs, which are easier to man-
age than flat designs. To access various hierarchical levels, select the
Component Selection for Waveform Viewer window by clicking on the
Select Probes button. Note that the right-hand column dis-
plays the design hierarchy structure (see Figure 2-14). When you click on
the desired hierarchy level, the simulator will display the components

2-26 Selecting Device Pins

and signals present at that level. Following this, you can select the de-
sired signals and pins to display.

A design may have the same signal and device names at various hierar-
chical levels. In order to distinguish them by hierarchical level, highlight
the signal and select the Hierarchy option from the Signal menu. This
displays the hierarchical level of the selected signal.

If you double-click on the desired component, ACTIVE-CAD displays all
its I/O pins. To display the desired component pins on the simulator
screen, select them either with the mouse button (double-click) or by us-
ing the Move button. This copies the selected pin(s) to the simulator dis-
play screen. The Signals Selection field displays only the node names. It
does not display any hierarchical terminals, except for the root level.

This procedures for selecting test points can be applied regardless of de-
vice hierarchical location.

NOTE: Since terminals of hierarchical schematic sheets are duplicated
as symbol pins at the next hierarchical level, you must selected them at
that level for display. You will not find them in the Signal Selection field.

Defining Buses
You can define any set of signals as a bus and simulate it accordingly. To
create a bus, follow these steps:

1. Using methods described earlier, copy the member signals from the
Component Selection for Waveform Viewer window to the Signals
section of the waveform Viewer. You may copy the signals in the or-

Figure 2-14. Selecting probes in selected hierarchy.

Selecting Signals for Display 2-27

der in which you want them to appear in the bus, or you may sort
them in the next step.

2. You must make sure that the member signals are listed together and
are sorted in the order in which you want them to appear in the bus.
The signal listed first from the top will be the least significant bit,
and will represent bit 0 of the hex bus. You may move signals in the
list by dragging them to their new locations (see the next section).

3. Select (highlight) the bus members. Click on the first member and then
click on the last member of the bus while holding down the Shft key.
You can also click on each bus member while holding down the Ctrl
key .

4. Select the Create option from the Signal/Bus menu. The selected sig-
nals are instantly converted into a bus. Use the Bus button (#5 in Fig-
ure 2-2) to toggle the bus display between discrete lines and
condensed (hexadecimal, octal, etc.) display.

Clicking on a new signal name, while the Ctrl key is depressed, selects
the new signal but does not deselect the previously selected ones.

The bus operations menu is shown in Figure 2-15:

r Create - converts selected signal lines into a new bus; the first signal
name in the bus automatically determines the name of the bus

r Destroy - converts the selected bus into a set of unrelated discrete
lines

r Bus Direction - reverses the order of the bus lines, e.g.. swaps the sig-
nals order from DATA0-DATA15 into DATA15 - DATA0

r Bus Name - allows you to assign a special name to the selected bus

r Display Binary - converts the bus display into a binary format

r Display octal - displays the bus in octal format

r Display decimal - displays the bus in decimal format

r Display hexadecimal - displays the bus in hexadecimal format

2-28 Defining Buses

To toggle between discrete signals and the hex bus representation, click
on the bus button in the Waveform Viewer window tool bar (#5
in Figure 2-2). To permanently deselect a bus, click on a bus and select
the Destroy bus option from the Bus submenu shown in Figure 2-15. The
entire bus will instantly be converted back to discrete signal lines.

NOTE: All signal lines drawn as buses in the ACTIVE-CAD Schematic
Editor or loaded as buses within the design netlist will automatically be
displayed in the hex format.

Moving Signals
From time to time, you may need to rearrange signals on the screen. To
rearrange the order of signals, click on the desired signal with the left
mouse button and when a waveform (_-_-_) icon appears, drag it to a
new location where the signal should be inserted. The simulator in-
stantly moves the signal name and the associated waveform to the new
location and the signal previously residing at this location is pushed
down by one location.

NOTE: If you drag a signal outside the Signal window, it will be deleted
from the waveform window.

Figure 2-15. Defining a bus.

Selecting Signals for Display 2-29

View Connections
The Connections feature, selectable from the Signal menu, allows you to
review the pin connections and output signal logical states that are gener-
ated by IC models. This feature is particularly important when you are
trouble-shooting IC models at the system level or when you are tracing
netlists generated by external schematic editors.

Selection Process

To view the connections, follow these steps:

r Select signals for display in the simulator window
r Click on the desired signal to turn it blue
r Select the Connections option from the Signal menu in Figure 2-15.

ACTIVE-CAD will display the Connections window shown in Figure 2-
39, which lists all node connections for the selected pin/signal line. The
Connections window also displays logical signal states of all pins and
signals after you click on the States button located at the bottom of the
window. You can view only one node at a time. If you have selected
more than one signal line, ACTIVE-CAD will display only the node con-
nections for the top-most selected (blue) signal line.

Operations

The left-hand field of Figure 2-12 displays all device pins in the selected
node. If you double-click on a pin, all other pins of that device will also
be displayed. Double-clicking on any of these pins will select its connec-

Figure 2-16. View Connections Window.

2-30 View Connections

tivity node for display. You can continue this process, until you trace the
signal through all the devices in its path. Practice the signal tracing on a
flat schematic to understand the signal path tracing procedure. Follow-
ing this, you should practice signal tracing in hierarchical designs.

Clicking on the Hierarchy button in Figure 2-16 will activate the hierar-
chy display, which shows the hierarchical location of the selected pin or
signal node. The States button allows you to toggle between the ex-
panded and abbreviated Connected signals and pins display fields. The
expanded field allows you to view the logical states of all the selected
pins in the node.

The expanded right-hand field in Figure 2-39 has four fields: Node,
Conv(ersion), Model and Stim(ulator). The Node field shows the result-
ing signal state by combining all signals produced in the node. For exam-
ple, if the node is a bus, then it shows the highest strength signal that
prevails. If there is a signal conflict in the selected node, this field will
show Unknown or X signal state.

The Conv(ersion) field shows how the model converts its input signal.
For example, if you apply on the input to the TTL gate a supply voltage
logical state (SU_V), ACTIVE-CAD will convert it internally to a logical
HIGH state and this value will be shown in the Conv(ersion) field.

The Model field shows the state on the models output. For example, if
there are a few output pins (sources) in a node, this field will show the ac-
tual signal state as produced by the model itself, independent of the re-
sulting Node signal state.

The Stim(ulator) field shows the logical state of an external stimulator ap-
plied to the selected pin. After Power-On, all external stimulators are set
to the LOW logical state. You need to simulate a single step to restore the
Stimulator signals to their actual logical states. If no Stimulator signal is
applied at the given pin, the field shows blanks. Remember that the
stimulators override the devices outputs only under certain circum-
stances (e.g.. if the node is in the stimulator override mode, or if you ap-
ply a stimulator to a gate with a weak output signal).

Test Vectors
A test vector is the state of all displayed signals at a particular time in-
stance. It is a vertical slice of the signal waveforms at any given time.
Test vectors are used as input signals that stimulate the design and pro-
duce simulation results. A test vector file for manufacturing test applica-

Test Vectors 2-31

tions may also include some output signals that are used for comparison
with the hardware-produced signals.

Test vectors can be entered into ACTIVE-CAD in the following ways:

r Permanently assigned
r Keyboard key controlled
r Binary counter driven
r Formula stimulator
r Asynchronous clock editor
r Graphical waveform editor
r Advanced Test Vector Editor (Active CAD)
r Test Vector Macro Editor (ACTIVE-CAD)
r External test vector files

Test vectors can be combined from many sources and exported or saved
to disk (binary or ASCII). You can also output test vectors to printers and
plotters in graphical form.

ACTIVE-CAD Test Vector Generator Panel
There are two basic approaches to stimulating designs:

r Using signal waveforms; each signal waveform is specified from
time t0 till end of simulation

r Using test vectors; they describe ALL signals at discrete time in-
stances when at least one of the signals changes its logical state

Signal waveforms have been very popular with hardware designers who
have been accustomed to setting up signal generator channels that con-
trol each input signal line. To accommodate the complexity of ASIC de-
signs and test equipment and the limitations of batch simulators, the
concept of test vectors has been developed.

Today, most designs are expressed in test vector files. If you simulate a
design with a set of signal waveforms and then save it as an ASCII test
vector file (Save ASCII Test Vectors in the File menu), you can use these
test vector files with ASIC and board testers.

Developing signal waveforms is generally easier than developing test
vector files, particularly for incremental design analysis. Figure 2-17
shows a test vector generator panel that pops up when you click on the
Stimulus button or when you choose the Add Stimulators option from
the Stimulator menu.

2-32 ACTIVE-CAD Test Vector Generator Panel

ACTIVE-CAD provides for five (5) modes of signal waveform generation:

r Keyboard - any key (A-Z) can be assigned to any signal line and tog-
gled while the simulation is in progress. There are altogether 26 keys
which can be used for direct hardware control.

r Bc - these 16 green lamps represent 16-bit binary counter outputs
which can be used as basic design stimulus or clocks. Their advan-
tage is great simplicity of use. They are limited to a 50% duty cycle.

r NBc - these are inverted Bc counter outputs

r Form(ula) - it you allows to define any signal waveform through
nested expressions. It is a simple and effective way to develop the
most complex design stimulus signals.

r Clocks - this is a derivative of the Formula option which assures re-
peated execution of the basic signal waveform formula

You can assign a stimulus signal to signals or pins in the following ways:

r Click on the stimulus signal and drag it over the selected signal
r Click on the selected signal and when it turns blue, click on the

stimulus signal in Figure 2-17.

In addition to the five signal generation fields there are several control
buttons which facilitate speedy implementation and disconnection of the
applied signal waveforms:

r Delete - deletes the stimulator assigned to a signal name

r EN - enables the previously disabled signal stimulator

r DS - disables the assigned stimulator without deleting it

r CC - disables the override signal function

r OV - when assigned to an output pin, it overrides the chips output

r Mode:CC - enables chip outputs to control their nodes

r CS - forces an existing signal waveform to act as an input signal

To assign the control button, use the following procedure:

r Assign stimulus signals to signals and pins
r Click on a selected signal or a pin to turn it blue
r Click on the selected button.

The button activity will effect the color of the stimulus signal:

r EN button - turns the stimulus signal bright

Test Vectors 2-33

r DS button - turns a bright stimulus signal into a gray one
r CC button - turns red stimulus signal into a gray one
r OV button - turns black stimulus signal into a red one
r Mode:CC - disables all override signal stimulus
r CS button - freezes the existing test vector and overrides simulation

results on device input pins

Binary Counter
The ACTIVE-CAD simulator has a built-in 16-bit, software-driven binary
counter, which can be used as a source for test vector generation. Its bits,
designated B0-BF, are displayed at the top part of the simulator window
as a set of 16 LED lamps. You can change the clock of this binary counter
by selecting the Clock Settings option within the Options menu, and fol-
lowing the window prompts.

You can toggle the initial state of each bit of the binary counter by plac-
ing the cursor over the desired bit in the counter display (Figure 2-17)
and pressing the mouse button. In response, the color of the selected
LED will change to the opposite logical state.

Keyboard Key Controlled Signals
Since ACTIVE-CAD is a real-time logic simulator, you can assign any
keyboard key a through z to a selected test point and toggle it while the
simulation is in progress. To assign a keyboard key to a selected test

Figure 2-17. Stimulus window.

2-34 Binary Counter

point, select a signal in the Signal field and invoke the Stimulus window
(Figure 2-17) by pressing the Stimulus button . or clicking on the
Add Signals option in the Signals menu. Next, click on one of the key-
board keys shown in Figure 2-17, to assign it to the selected test point. In
response, the selected character will be displayed next to the signal name
in the Stimulus column (#17 in Figure 2-2).

NOTE: Since ACTIVE-CAD does not know which logical state should be
assigned to the selected signal line, it assigns by default the high imped-
ance state. To assign High or Low logical state, you must toggle the as-
signed keyboard key till the desired logical level appears.

NOTE: The keyboard keys can toggle only between logical 1" and 0".

Assigning permanent logical levels
The keyboard keys can only provide High and Low logical states. If you
must feed any other logical state or if you want to permanently assign
any logical state, follow this procedure:

r Assign a keyboard key to a selected signal line

r Select the signal line again (turns blue)

r Bring up the Test Vector State Selection window (Figure 2-18).
Next, click on the selected logical state button in Figure 2-18. The se-
lected logical state is assigned to the signal line and displayed next to
the assigned keyboard key

r The selected logical state will be permanently assigned to the se-
lected signal line and the associated keyboard key will no longer tog-
gle the signal line. To remove this assignment, delete the previously
assigned keyboard key.

Graphical Waveform Editing
Since ACTIVE-CAD is a real-time simulator, test vectors can be created
directly while the simulation is in progress. You can force any signal
waveform on the device output and emulate the desired operation. To ac-
count for any possible device output state, the ACTIVE-CAD test vector
editor allows you to choose any one of the fifteen (15) different signal
states.

To create a custom signal waveform that will be used as a design stimu-
lus or an input test vector, perform the following operations:

Test Vectors 2-35

1. Click on the Edit option within the Waveform menu. This displays the
Test Vector State Selection window with 15 logical state buttons
(Figure 2-18).

2. Move the editing cursor to the desired signal row and column (time) in
the waveform window and click with the left mouse button. A blue
vertical cursor appears in the waveform window (#10 in Figure 2-2)
as a time reference. Note that the edited signal name is now high-
lighted in green.

3. Click on the desired logical state in the Test Vector State Selection
window. This will create a waveform with the desired state between
the selected time location and the closest previous signal transition
on the selected signal. If there was no prior signal transition, the
waveform will start from the time 0ns.

4. Following this procedure, you can create any number of signal
changes by selecting the change location with the blue vertical cursor
and then selecting the appropriate signal logical states from the Test
Vector State Selection window (Figure 2-18).

5. To exit the editing mode, click on the Cancel Edit Mode button.

NOTE: The Cs (Custom Signal) marker is automatically inserted for
each edited signal waveform. This marker directs ACTIVE-CAD to treat
the graphical waveform as an input signal. If the Cs marker is assigned
to an output signal, it must be set to the override mode (red OV button)
to override the device-generated output signal.

Figure 2-18. State selection window.

2-36 Graphical Waveform Editing

Since the signals produced by the Waveform Editor may change the exist-
ing waveforms, they are drawn in green for better differentiation.

Formula Waveform Editor
Invoked by selecting the Formula/Edit option from the Waveform menu,
the Formula Editor (Figure 2-19) is a tool for quick test vector develop-
ment. Using the items listed in Table 2-1, define the signal waveform by
entering the formula into the editor shown in Figure 2-19.

Examples:

H40L10 High for 40 ns then Low for 10 ns
(H40L10)20 Same as above but repeated 20 times
H4usL1us High for 4 us (microseconds) then Low for 1 us
((H10L10)20x30)10 High for 10 ns then Low for 10 ns, repeated 20

times, after that Unknown (X) for 30 ns. Repeat the
entire signal waveform segment 10 times the

([2]40[A0]55)10 02hex for 40ns, then A0hex for 55ns.
Repeat 10 times

Table 2-1. Symbols Used in Formula Editor.

Symbol Description

H, L high and low logic levels (1 and 0)

X unknown (high or low)

Z high impedance

0..9 numbers used for defining duration and
repetitions

() parentheses for selecting sub-expressions

ps, ns, us, ms time unit definition for duration arguments,
default is ns (nanoseconds)

[] brackets for defining hex bus value

NOTE: Waveforms generated by the Formula Waveform Editor cannot
be distinguished from any other waveforms. Once placed on the screen,
you can modify these waveforms using the waveform editor.

Test Vectors 2-37

After you have edited the wave-
form equation or formula, click on
the Add button and close the win-
dow. Next, place the cursor in the
waveform area, and press the left
mouse button to bring the blue verti-
cal cursor to the screen location
where you want to insert the wave-
form formula. The background of
the selected signal name will
change to green. Use the Formula/
Insert option from the Waveform
menu to insert the edited waveform
at the desired location.

If you select the Formula Replace option, a new waveform will replace
the existing signal waveform.

NOTE: The Waveform formula calculates the signal logical states start-
ing from the point of its insertion.

Formula-based Stimulators

You can assign a formula to a signal using the Stimulator Selection win-
dow in Figure 2-17 . The square lights in the Form: field represent 16 for-
mula-based stimulators that can be defined by the user.

Figure 2-19. Waveform Editor

Figure 2-20. Defining Formula Stimulator.

2-38 Formula-based Stimulators

To define a formula stimulator, click on the Formula button in Stimula-
tor Selection window. The dialog box in Figure 2-20 appears.

Double click on one of the formula stimulators in the list on the left. The
formula name will be displayed as the Selected stimulator in the right-
hand side window (e.g.. F4). Type in the test vector formula using Table
2-1 and press the Assign formula button. The new formula is then dis-
played in the Defined Assignments field shown in Figure 2-20.

The assigned formula will always be calculated from the simulation ori-
gin (time 0ns) and will be displayed on the screen as a signal waveform
when you simulate. You do not need to redefine a test vector formula for
resimulation.

NOTE: If you start the simulation at the time tn, ACTIVE-CAD will calcu-
late the signal from its formula, starting at time t0 and display the signal
starting at time tn.

To change an existing named waveform formula, first select it from the
formula list, edit it and then click on the Assign Formula button.

Assigning Formula Stimulators
To assign a formula stimulator to a signal, click on one of the formula
square buttons (light 0-F), drag it over the desired signal and then re-
lease the button. The Fx marker should be displayed next to the signal in
the Stimulator column. Another way to assign the formula stimulator is
to first click on the signal or signals so that they are highlighted, and then
click on one of the formula buttons. The selected formula F0-FF will be in-
stantly assigned to the selected signal (s).

Asynchronous Clocks
ACTIVE-CAD allows you to have up to four (4) asynchronous clocks
which behave like four independent crystal clocks. These clocks can have
a resolution of 10 picoseconds each and are completely independent of
each other. Moreover, these clocks can be complex waveforms, including
pulse bursts, etc.

The CLOCK waveform is a test vector that is automatically repeated as
the simulation progresses. To create a clock test vector, select the Clocks
option in the Mode field of Figure 2-20. (see Formula-based Stimulators sec-
tion on how to open this window). Then select one of the clocks from the
Select stimulator section. Next, enter the clock formula according to the

Test Vectors 2-39

same rules as any other signal formula, and press the Assign formula
button.

To assign an asynchronous clock, to a signal line, click on a signal name
and invoke the Stimulus window by pressing the button. Then
click on one of the Clock buttons (C1..C4) displayed in the Stimulus win-
dow. As a confirmation, ACTIVE-CAD displays the selected clock sym-
bol next to the signal name. The Clock buttons (C1...C4) are bright when
they have some formulas assigned to them. Otherwise, they remain gray
or inactive.

NOTE: You can use any formula signal as a clock. ACTIVE-CAD pro-
vides the clock signals in explicit form to underscore the periodical na-
ture of these signals.

ASCII Test Vector Files
You can load ASCII test vectors while you simulate. These ASCII test vec-
tors can be generated during simulation, created using ACTIVE-CAD
editor or generated by other test vector editing software that produces
ACTIVE-CAD compatible formats.

To load an ASCII test vector file, select the Load ASCII Test Vectors op-
tion from the File menu. ACTIVE-CAD will display a list of available AS-
CII files and gives you three loading options:

r New File; overrides the currently present test vectors
r Additional; loads additional signal waveforms from time 0

Figure 2-21. Loading ASCII test vectors.

2-40 ASCII Test Vector Files

r Append; loads additional signals to the right of the current blue
cursor location

Click on the selected loading option and test vector file. Clicking on the
Load button loads the ASCII test vector file. For details on the ASCII test
vector file format refer to Appendix A.

Stimulator Override
External signal waveforms applied to a design are subject to the follow-
ing rules:

r When applied to a device input pin, the signal waveform always con-
trols it unconditionally. But it does not effect any other device pin in
the same signal node.

r When applied to a device output pin in a non-override mode, it con-
trols the entire node only if the output pin produces a weak signal. If
the device output pin produces a strong signal, the external signal
waveform has no effect on the signals in the node.

r When the external signal is set to the override mode, it overrides any
device output pin, independent of its strength. The signal override
process carries down to the lowest hierarchical level.

To set a signal waveform to the override mode, select it in the Signal
field and then click on the OV button in Figure 2-17. To disable or delete
the overriding signal, select the signal in the Signal field and then click
on the DS (disable) or Delete button, respectively, in Figure 2-17.

Each signal node is by default defined as Chip Controlled. This means
that if any of the outputs in the node is active (has a state other than high
impedance), then the stimulator is overridden by that output unless the
stimulator is in the Override mode. To switch back to the Chip Control-
led mode, click on the desired signal line and then on the CC (Chip Con-
trolled) button in in Figure 2-17.

Waveform Display

Selecting Waveform Scale
ACTIVE-CAD displays signal waveforms in a user-selectable scale. The
current scale setting is displayed right above the signal names and can be
different for each Waveform Viewer window that you open.

Waveform Display 2-41

You can change the waveform scale by activating the Zoom-In and
Zoom-Out buttons, located above the signal names (#15 in Figure 2-2).
To change the scale, click on the zoom-in or zoom-out scale buttons
which select the next higher or lower predefined display scale, respec-
tively.

If you want to view a selected area of the waveform, click on the wave-
form ruler at the beginning of the desired waveform area and drag the
cursor while holding the mouse button down. A blue line appears over
the ruler and follows the cursor. Drag the cursor to the end of the wave-
form area to be expanded, and release the mouse button. The time seg-
ment defined by the blue stripe is expanded to fill the entire Waveform
Viewer window.

By changing the scale, you can instantly zoom in on critical waveform ar-
eas and observe the precise time delays between signal transitions.

Scale Resolution
ACTIVE-CAD is an event-driven simulator. Thus, its accuracy is inde-
pendent of the selected waveform display scale. The simulator stores the
signal events with a 10 picosecond resolution. So no matter what scale
you select for display, simulation results will always have the same accu-
racy. You can prove it by making measurements between the same two
signals at different scale resolutions; These measurements will always be
identical, independent of the display scale.

The simulation precision is set by default to 10 picoseconds. However, it
can be changed to any value between 10 picoseconds and 1 milisecond
by using the Simulation Precision option in the Options menu. Since the
ACTIVE-CAD measurement cursor snaps to the signal transitions, the
simulation precision determines the snapping accuracy of this cursor.

Running A Simulation

Short and Long Steps
The ACTIVE-CAD logic simulator allows you to simulate designs in
short and long steps. To simulate a short step, click on the Short Step but-
ton, located at the bottom of the simulator toolbox (#7 in Figure 2-1).
Similarly, to simulate a long step, click on the Long Step button (#8 in
Figure 2-1).

2-42 Scale Resolution

The simulation time of the Short and Long steps is specified in the Step
window (Figure 2-1) that can be invoked by selecting the Simulation
Step option in the Utilities menu. To change these settings, click on the
arrows in the Short Step and Long Step fields and select the desired step
value from the list, or directly edit the step value by clicking on the cur-
rent value and entering a new value. You can use decimal numbers, deci-
mal point and time units, e.g.. 16.34 ms. The default time unit is a
nanosecond.

Initialization of the design
Simulation is designed to verify accurately the behavior of logical cir-
cuits, so that you can be sure that they will operate properly after they
are manufactured. There are, however, some limitations on the exact
emulation of the actual hardware operation. For example, most of se-
quential devices have undetermined logical states on the outputs when
they are powered up (a CMOS flip-flop has either high or low logical
state when you turn the power on). The simulators can emulate this be-
havior by selecting at random a high or low state at the beginning of the
simulation. This approach, however, is very inconvenient, because each
simulation run would result in different data, and you could never be
sure that all combinations of the initial device conditions have been
tested.

For that reason, a new logical state was introduced into the simulator. It
is called the Unknown state and it means that either a High or a Low out-
put signal is present. However, the simulator does not know which logic
state is actually asserted. Using this unknown signal state, the simulator
will determine if your design is sensitive to random initial states or if the
design will reset itself after a few clock cycles to a known initial state.
The Unknown state is also generated when the setup or hold times are in-
sufficient for proper device setup and when the preset, reset, load, clock
and other signals do not meet their timing specifications or have incor-
rect time relationships.

Since proper handling of unknown signal conditions is of paramount im-
portance for reliable circuit design, you need to review the comments
listed below.

If your design generates unknown output signals, you need to trace the
source of the unknown states, which can be:

r unknown signals at the input of sequential models
r timing violations; (when you simulate the design in the timing mode)
r bus conflicts

Running A Simulation 2-43

r non-initialized sequential devices
r feedback loops that include sequential components

After Power-on, the initial state of the flip-flop in Figure 2-22 is un-
known, and so is its D data input. Because of the feedback loop from the
nQ output to the D input the flip-flop will always remain in the Un-
known state.

To resolve this problem, you can apply a clear (CLR) signal to set its Q
outputs to the low logical state. The resulting high logical level on the nQ
output will force high on the flip-flop input, and the circuit will start
simulating correctly.

If your design has some sequential circuits like flip-flops, registers, count-
ers, etc., but does not have a set or reset line, you can use either the
Power On Settings (Options menu) or Selective Preset (Utilities menu)
options:

r The Power On Setting allows you to specify the initial state of all
sequential devices in the design.

r Selective Preset allows you to force device inputs and outputs to a
specified logical state.

Selective preset
ACTIVE-CAD allows you to preset any signal or device pin to any logi-
cal state. Design preset is a two step operation. First, you need to define
the preset conditions and then execute (force) these setup conditions.
You can edit (define) the preset settings for the entire design and store
them in a text file on the disk, and then load this initial conditions file to
force the desired design status in various simulation tests.

The preset conditions can be executed at any time during the simulation.
The preset option can be used to resolve initialization problems or to test

Figure 2-22. Unresolved initialization circuit.

2-44 Selective preset

some design situation that is difficult to generate or takes a very long
simulation time to create. For example, if you simulate a 64 bit counter,
and you want to simulate the end-of-count sequence, you would nor-
mally have to simulate 18,446,744,073,000,000,000 cycles. Instead, you
can preset the counter to FFFFFFF0h and simulate only a few cycles to
get the same result.

Note: Since the preset signal conditions are forced by the simulator and
do not change the IC model internal conditions, the preset signals can
sometimes be overridden by the signals generated by the IC model out-
puts.

Selecting Preset Conditions

To define the preset condition for selected signals and device pins, in-
voke the Selective Preset option from the Utilities menu. First, select the
Add button in the Selective Preset window. Next, copy signals and pins
for preset conditions from the Component Selection for Selective Preset
window into the Selective Preset window and close the component selec-
tion window.

To define the preset logical states on the selected signals and pins, click
on the Edit button. ACTIVE-CAD will display the Set Selective Preset
window (Figure 2-24) which shows all logical states available for preset.
Select a signal(s) in the Selective Preset window, so it is highlighted
blue, and then click on the desired logical state in the Set Selective Pre-
set window. This logical state will now appear next to the signal name
(in the Selective Preset window in Figure 2-23).

Figure 2-23. Selective Preset Window.

Running A Simulation 2-45

Using the Save and Load buttons in the Selective Preset window (Figure
2-23) you can save and load the preset condition into a text file. There can
be multiple preset files available for the same design which you can load
into the design when needed.

Forcing Preset Conditions

The Execute button executes the conditions specified in the Selective Pre-
set window. You can execute or load the new preset conditions as many
times as needed during the simulation.

If you have buses defined on the schematic, you will be able to preset the
entire bus state using the hex values. To display buses in the Selective
Preset window in the hex mode, press the Bus button.

NOTE: Load preset file operation loads signals into the Selective Preset
window. You must click on the Execute button to force these presets.

Power On
You can reset the entire design by activating the Power On button,
which is located in the simulation toolbox (#17 in Figure 2-1).

The power-on sequence is as follows:

r First, all IC models are internally reset to their power-on states. Typi-
cally all sequential circuits are reset to the X_Unknown logical state.

Figure 2-24. Selective Preset Window.

2-46 Power On

r Next, the outputs are set to the logical state specified in the Models
field of Figure 2-58

r Following this, the selective preset is being executed, if the Execute
Preset box has been checked in Figure 2-58

r Some IC models have a Global Reset command included in their
source code. If the Global Reset box is checked in Figure 2-58, then
these models will be set to their global reset states.

r Some IC models have hardware controlled resets, such as the GSR
signal line in the XILINX devices. These reset commands will be exe-
cuted last, and the model will remain in that condition when the
power-on process is completed.

Power On is automatically executed at the beginning of a simulation and
every time you click on the POWER button. However, it is completed af-
ter the first simulation step. So if you perform Global Reset right after
Power On, but before the simulation step, it will not be executed.

Clicking on the Power On button moves the simulation cursor to the be-
ginning of the waveform display (0ns), but does not delete the signal
waveforms. To delete these waveforms, you need to select the Signal
menu and click on the All Waveforms option within the Delete sub-
menu or click on the Delete Waveforms button .

The Models field in Figure 2-25 has check boxes for controlling the mod-
els outputs:

r Low_State sets all model outputs to the Low logical state
r High_State sets all model outputs to the High logical state
r Unknown sets all model outputs to the Unkn_X logical state; This is

the most popular setup for design analysis.

Figure 2-25. Defining Power On Settings.

Running A Simulation 2-47

r Random sets all model outputs to a random logical state

The Output Signals field in Figure 2-25 controls overwriting of the old
simulation results and has the following check boxes:

r Delete deletes the output signal waveforms after the first simulation
step

r Overwrite displays the old simulation results after the Power On;
New simulation data overwrites the old one.

r Compare keeps the previous simulation data for reference; The new
simulation waveforms change color in the areas which differ from
the previous simulation results.

The Power_On Setting widow in Figure 2-25 has additional miscellane-
ous simulation and display check boxes:

r Keep Measurement will keep measurements from the previous simu-
lation run, even if they are no longer valid

r Keep Comments will keep the comments from the previous simulation
r Execute Preset will preset device pins displayed in the Selective Preset

window
r Global Reset will activate models with the global reset feature
r Models Stabilization forces termination if 10,000 events have been

detected during Power On

The Power_On Setting window allows you to control the simulation
starting conditions and simulation reruns.

Simulation Modes
As the design analysis progresses, your needs may change. From a sim-
ple functional simulation, you may switch to unit propagation delay or
timing analysis. The ACTIVE-CAD toolbox in Figure 2-1 has a simula-
tion Mode button (#13) that is used for the simulation mode selection.
Clicking on this button displays a new simulation symbol and switches
the simulator from one simulation mode to another.

r FM is a functional mode with 0 propagation delays
r TM is a high resolution timing mode
r GL is a functional simulator with an adjustable unit delay
r UN is a factory-set unit delay functional simulator

NOTE: Since ACTIVE-CAD is a real-time interactive simulator, the
change to a new simulation mode takes instant effect.

2-48 Power On

Functional Simulation
Functional simulation is simulation with zero propagation delays. It
means that outputs are changing instantaneously in response to new de-
vice input conditions.

To select functional simulation, select the FN option from the simulation
toolbox, (#13 in Figure 2-1). The simulation mode button is in the center
of this toolbox. The functional mode takes effect instantly, without any
need for compilation. All newly generated waveforms will display func-
tional behavior of all devices.

When the functional mode is selected, all device output signals change at
the same time as the associated input signals, meaning that designs with
feedback signals can cause oscillations. Though the simulator stops proc-
essing these designs after exceeding a predefined number of oscillations
(10,000 events), nevertheless the designs can be successfully simulated in
the Timing (TM), Unit Delay (UN) and Glitch (GL) modes.

Unit Delay Simulation
To select the Unit Delay mode, click on the Mode button in the simula-
tion (#13 in Figure 2-1) toolbox until it displays UN. The Unit Delay
(UN) simulation mode is based on unit propagation delays, which means
that all components have the same delays from input to output. The
value of this standard delay is factory-set to be equal to the simulators
current resolution.

The Unit Delay mode is used for functional verification of designs that
have oscillating feedbacks, and cannot be simulated in the functional
mode. No timing errors are reported in the UN mode. However, any
glitches will be reported and displayed in the waveform window, provid-
ing that the associated signals were selected to the display.

The ACTIVE-CAD default resolution is 10 picoseconds. To simulate with
this resolution a 50 nanoseconds Short step, ACTIVE-CAD would have
to simulate 5,000 cycles, which may take quite long to execute, particu-
larly for large designs.

NOTE: To speed the simulation, set the simulator resolution to 1 ns
when simulating in the Unit Delay mode.

Simulation Modes 2-49

Glitch Simulation
To select the Glitch mode, click on the Mode button in the simulation
(#13 in Figure 2-1) toolbox until it displays GL. The Glitch (GL) simula-
tion mode is based on unit propagation delays, which means that all com-
ponents have the same delays from input to output. The value of this
standard delay can be set anywhere from 10ps to 4ms. The default value
is equivalent to the Short step setup, which is available from the Simula-
tion Step option in the Utilities menu. The Long step setup has no effect
on the simulation which proceeds at the Short step increments.

The Glitch mode is used for functional verification of designs that have
oscillating feedbacks, and cannot be simulated in the functional mode.
No timing errors are reported in the Glitch mode. However, any glitches
will be reported and displayed in the waveform window, providing that
the associated signals were selected to the display.

NOTE: To account for unit propagation delays through ICs, the timings
do not represent the actual timing scale but rather the sequence of
events. This may result in an asymmetrical display of clocks!

Timing Simulation
To enter the timing simulation mode, select the TM mode from the main
toolbox (#13 in Figure 2-1). ACTIVE-CAD is factory set to simulates all
cells and IC devices with a 10 picosecond accuracy. The timing simulator
mode works only in a forward direction. When the timing mode is se-
lected ACTIVE-CAD includes propagation delays for all device models
and reports all timing errors, such as insufficient Setup or Hold times,
that may occur during simulation. These timing violations are also re-
ported for all off-screen signals and device pins because ACTIVE-CAD
checks every pin of every device during each clock cycle. To search for er-
rors, use the Error Search button (#14 in Figure 2-1) and the associated er-
ror search arrows (#15 in Figure 2-1)

The timing simulation mode is used as the last stage in design analysis.
Generally, it should be run with the same test vectors that have been
used for functional or glitch simulation. This will produce results that are
easier to understand and will simplify tracing of design errors.

The timing mode automatically simulates device internal propagation de-
lays and ASIC or board layouts, if it is provided within the post-layout
netlists. The timing propagation delay values can be changed to MIN.,
MAX, AVG. and as a % of the MAX. value. This allows you to test criti-
cal paths and emulate the effect of voltage, temperature and loading fac-
tors.

2-50 Glitch Simulation

To change the propagation delay values, click on the Edit Timing Speci-
fication option within the Patching menu. Then double-click on the de-
vice whose propagation delay values you want to change.

Summarizing timing simulation:

r The timing option must be installed to simulate designs in the timing
mode (standard on SUSIE-CAD/PRO and ACTIVE-CAD)

r The timing resolution is recallable from 10 picoseconds to 1 milisec-
ond (use the Simulation Precision option in the Options menu)

r All models produce timing information if the timing option is avail-
able

r Layout delays are simulated if provided via the post-layout netlist

r Propagation delays can be rescaled for each device and hierarchical
macro (use the Patching/Edit Timing Specification option)

r Each device pin is checked during each clock cycle for timing viola-
tions and bus conflicts

r All errors are explicitly listed and saved in an error report file

r The Error button (#14 in Figure 2-1) and the associated search arrows
(#15) allow for instant error location

Selective Simulation
Since ACTIVE-CAD is a real-time simulator, you can deselect and select
any design section for simulation while the simulation is in progress.
This speeds the simulation of large designs because only the selected de-
sign sections have an effect on the simulation time.

The Selective Simulation option is available from the Options menu
(ACTIVE-CAD only). When selected, it automatically displays the design
hierarchy in the Scan Hierarchy field and IC devices in the Chip Selec-
tion field. All selected or enabled design macros and ICs are colored
dark for model available. All disabled design macros and ICs are colored
white for empty symbol and are not simulated.

You can enable/disable any design macro or IC by placing the cursor in
the Scan hierarchy window and clicking the left mouse button. ACTIVE-
CAD will display, in the Chip Selection window (Figure 2-55), all ICs
and macros at that selected hierarchical level. You can toggle each indi-
vidual IC device and macro with the left mouse button and enable or dis-
able simulation of the item.

Simulation Modes 2-51

By placing the cursor in the Chip Selection window and pressing the
right button, you can display the selective simulation options, such as
Disable All Chips, Enable All Chips, Disable Entire Project, etc.

The Disable Entire Project option allows you to quickly select only a few
devices from a project that may involve thousands of devices (first dis-
able all devices and then select the few that are needed).

Disabled devices and macros behave during simulation like empty sock-
ets. All their pins (inputs and outputs) become inactive and change to the
high impedance state. You can then manually assign test vectors to the
output pins of the empty devices to emulate their behavior.

Selective simulation is patented technology designed to speed the simula-
tion process of very large designs. If the simulation of your design is too
slow for you to interactively monitor its progress, you can, with the help
of the Selective Simulation option, enable and simulate only small sec-
tions of the design. You can start selective simulation by selecting the de-
sign front-end. Its outputs can be recorded, and used as inputs for
another section. Next, you can disable the first section, which no longer
has to be simulated, and use the saved test vectors as inputs to the sec-
ond design section. This way you can debug the entire design section-by-
section, and simulate each section at high simulation speed,
independent of the overall design size.

Figure 2-26. Selective Simulation.

2-52 Selective Simulation

Long Simulations
The Simulation Stop option in the Options menu allows you to run a
long simulation for a specified amount of time when the Start button is
activated. Figure 2-27 shows a window for setting the simulation time
and enabling the Stop button (#16 in Figure 2-1).

When the Sim. Till End option is selected, simulation will run until the
end of the specified Simulation Running Time. Always select the Stop
button active so that you can stop the simulation when required. The
only time you may wish to disable the Stop button is when you are leav-
ing the office and do not want anybody to interfere with your simulation.

Analyzing Simulation Results
Table 2-2 lists all available signal logical states, their descriptions and
symbols displayed on a waveform diagram.

Analyzing waveform displays
ACTIVE-CAD has many features that ease waveform diagram analysis:

r You can zoom in and zoom out on a selected waveform section using
the buttons located at the top left corner of the waveform window
(#15 in Figure 2-2). These buttons set the waveform scale or ruler to a
predefined setting.

There is a dynamic zoom feature which is active when the ruler or wave-
form scale is displayed at the top of the waveform window. Position the

Figure 2-27. Simulation Stop Setting.

Analyzing Simulation Results 2-53

cursor over the ruler, click at the beginning of the area of interest and
drag the blue line to the end of the desired waveform area. When you re-
lease the mouse button, the selected area is enlarged to a full size win-
dow. To scale back the signal waveforms, click on the Scale Adjusting
field (#15 in Figure 2-2)

Table 2-2. ACTIVE-CAD Logical States

State Name Symbol Description

Low Strong Logical Low state, e.g.. output of a TTL gate.

High Strong Logical High state, e.g.. output of a TTL gate.

High Impedance Tri-Stated output or unconnected input.

Unknown Strong Undefined High or Low state, e.g.. initial state
of a TTL flip-flop.

Resistive Low Weak Logical Low state, e.g.. Open Emitter output in
Low state.

Resistive High Weak Logical High State, e.g.. Open Collector output
in High state.

Resistive Unknown Undefined Resistive Low or Resistive High state.

Output Conflict Indicates that there is a bus conflict in the node (High
and Low at the same time)

High Voltage This logical state indicates that there is a high voltage
at the pin. E.g. +12V, -5V, etc. etc.

Reference Voltage The Reference voltage used in ECL technology

Unknown Activity Low Low or Resistive Low or High Impedance. This state
is generated by tri-state ICs when the tri-state control
pin is undefined.

Unknown Activity High High, Resistive High or High Impedance. Similar to
the above.

SV High Power Voltage High (e.g.. VCC)

SV Low Power Voltage Low (e.g.. GND)

SV X Power Voltage Unknown

To quickly find red marked timing errors, select the Error option in the
Search button in the main toolbox (#14 in Figure 2-1). Each activation of

2-54 Analyzing waveform displays

the or Search buttons will move the cursor to the nearest
timing error location.

r You can define and instantly locate selected signal combinations
called TAGs (see the TAG Conditions section of this manual). The lo-
cation of these TAGs can be quickly searched by using the TAG op-
tion in the Search button, located in the main toolbox. Each
activation of the or Search buttons moves the timing
cursor to the next TAG position.

r To scroll a waveform diagram, use the scroll bars located at the bot-
tom of each waveform window. You can click on the scroll bar ar-
rows to scroll one division at a time in the desired direction. Use the
Scale Adjusting field (#15 in Figure -2) to set the division in nanosec-
onds. You can also click on the scroll bar body to scroll the wave-
forms one page (one window size) in the desired direction. To
quickly move to any screen area, you can drag the scroll bar button
to the desired waveform location, e.g.. by dragging the bottom scroll
bar button all the way to the left you can instantly display the begin-
ning of the waveform diagram.

Symbols and Colors

The ACTIVE-CAD signal color code is as follows:

r input signals are displayed in black
r all active outputs are in blue.
r signals in logical level conflicts, e.g.. High connected to Low, are in red
r signals overriding others during editing are marked in green.

Measuring time intervals
ACTIVE-CAD allows you to precisely measure any timing relationship
between displayed signal waveforms. To enter the waveform measure-
ment mode, select the Measurements/Measure On option from the
Waveform menu. Notice that the cursors shape has changed to indicate
the waveform measurements mode.

To measure the delay between two events, position the cursor on the first
event and click the mouse button. Place the cursor over the second event
and click the mouse button again. Green reference marks will appear to
denote the events involved in the measurements. ACTIVE-CAD will
force an empty signal line to make a room for the measurement data,
which will be displayed in red. If the displacement between events is too
small, the measurement will not be displayed and you will need to res-

Analyzing Simulation Results 2-55

cale the display using the Scale Adjusting field (#15 in Figure 2-2) till the
measurement data is displayed.

The cursor in the measurements mode has a Snap to the Edge feature,
which allows you to measure time delays with better precision than that
from using the waveform scale setup. For example, if the scale is 10 ns
and the measured transitions are at 1023.5 ns and 1027.3 ns, then because
the cursor snaps to both transitions, a correct delay of 3.8ns between both
signals will be measured and displayed, despite the 10 ns display scale.

To exit the measurement mode, invoke the waveform menu again, and
select the Measurements/Measure Off option (Figure 2-28).

To toggle the measurement display ON/OFF, click on the Measure-
ments button in the Waveform Viewer toolbar.

TAG conditions
Analyzing simulation results can be time consuming, especially with
long simulations. Finding the desired signal combination or sequence by
manually scrolling the waveform diagram can be tedious and cumber-
some, particularly since you may need to watch for more signals than
can be displayed directly in the waveform viewer. To help with this prob-
lem, ACTIVE-CAD comes with the TAG feature, which allows you to de-
fine any set of signal conditions and then automatically search for these
conditions (TAGs) throughout the entire display.

Figure 2-28. Measuring time intervals.

2-56 TAG conditions

First, display the TAG column in the Waveform Viewer by selecting the
TAG option in the Utilities/View menu. Next, select the Set TAG Condi-
tion option in the Options menu, which displays the Set TAG Condi-
tion window (Figure 2-29). Following this, select (highlight) a signal in
the Waveform Viewer that you want to assign a TAG condition to, and
click on the desired logical state in the Set TAG Condition window. Re-
peat the same procedure for all the signals that you want to include in
the TAG.

If you define multiple signals in the TAG condition, ACTIVE-CAD will
be looking for the AND combination of these conditions. For example, if
you select the Low state for one signal and Unknown for another,
ACTIVE-CAD will search for all situations in which the first signal is
High and the other one is in the Unknown state at the same time. An ex-
ample of the Waveform Viewer is shown in Figure 2-30.

You can also include signal transitions in the TAGs. Instead of looking
for a certain signal logical state, you can instead look for its transition

Figure 2-29. Set TAG Condition Window.

Figure 2-30. Example of the TAG settings.

Analyzing Simulation Results 2-57

from one state to another. To define a transition in the TAG condition,
first click on the button in Figure 2-29 that represents the logical state be-
fore the transition and then on the button representing the state after the
transition. This will display the transition next to the signal name in the
Waveform Viewer. For example, if you first click on the High state and
then on Low, you will define a transition from High to Low. You can de-
fine TAG conditions that include both stable signal states and transitions.
If you have defined a transition for a selected signal and want to change
it to a stable signal, click on the same logical state twice.

Searching for a TAG
You can use the main simulation toolbox to search for the TAGs defined
in the Waveform Viewer. Using the Search Mode button (#14 in Figure -
2-1), select the TAG search mode (This button combines several modes
and you may have to click on this button several times before the TAG
mode is displayed). Next, click on the location from where you want to
start your search. The blue vertical cursor will move to that location.
Then use the Search Right and Search Left) buttons in
the main simulation toolbox to find TAG condition in the Waveform
Viewer. Each click of the Search Left or search Right buttons will move
the blue vertical cursor to the next Tag condition.

If the Tag includes only signal levels and does not include any events
(signal transitions) then the search operation will stop at the first occur-
rence of the Tag signal levels in the searched direction. Such Tag is called
dual-Tag because it produces two blue vertical cursors for the same sig-
nal conditions, one for searching from the left direction and another one
for searching from the right direction.

Inserting Comments
You can insert comments between waveforms. These comments may
prove invaluable when you try to analyze the design at some later date.

To enter a comment, click the cursor at the desired location within the
waveform diagram and select the Comments/Add option from the Wave-
form menu. In the Add New Comment window (Figure 2-31) enter the
text to be displayed at the selected location and press the Add button.
The text will automatically be placed at the selected screen location.

If you want to edit an existing comment, follow the same procedure.
First, move the cursor over an existing comment and press the left mouse
button. Then invoke the Comment/Edit option from the Waveform

2-58 Searching for a TAG

menu. When the current comment is displayed in the comment editor
window, edit it and click on the Add button.

To delete a comment, click on it in the Waveform Viewer and then select
the Comment option from the Waveform menu. To delete all comments
in the Waveform Viewer, click on the Delete All option. To delete all
comments in the selected line, click on the Delete All in Line option.

Memory Editor
The Memory Editor option allows you to view and edit the contents of
memory devices. You can monitor the data as it is written into a memory
location during simulation and modify it when needed.

Select the Memory Editor option, located in the Utilities menu. The Se-
lect Block/Chip for Memory Editor window will appear and list all
memory devices at the current hierarchical level. Select the desired mem-
ory device. The Memory Editor window will display its contents and ad-
dresses in the formats you choose from the Display Options window,
which is invoked by clicking on the Display button in the Memory Edi-
tor window (Figure 2-32).

Figure 2-31. Placing comments in the timing diagram.

Analyzing Simulation Results 2-59

Save/Load Simulation Results

Simulation Files
Simulation files represent work in progress. They contain the design
status that existed in the ACTIVE-CAD simulator after the last simula-
tion step. This simulation status is stored in a set of design tables that
contain information about device connections, waveform diagrams,
states of sequential logical devices, JEDEC fuse maps, hex files, position
of switches and jumpers, simulation settings, etc.

Simulation files represent a concrete schematic design implementation. If
that schematic undergoes any changes, a new design file has to be gener-
ated for the schematic.

Simulation data is created on-the-fly during loading of a schematic
netlist. This design data is continuously updated with new test vectors,
hex data, JEDEC fuse maps, etc., as they are being loaded into the simula-
tor. You can save this design information at any time using the Save
Simulation option.

You can load and save design files by selecting the Load Simulation and
Save Simulation options, located in the File menu. Upon selection of the
load or save design options, ACTIVE-CAD will display a list of design
files that have already been saved within the current project (Figure 2-
33). If you want to save a design, move the cursor to the Simulation
Name box and enter the desired design name. To load a design, select a

Figure 2-32. Memory Editor window.

2-60 Simulation Files

design file name from the list displayed in the design window (Figure 2-
33). ACTIVE-CAD will always look for design files with the *.DES file
name extension, stored in the directory specified in the ACTIVE-CAD
configuration. These files will be displayed only if they belong to the cur-
rent project.

NOTE: Loading a simulation file from another project is not recom-
mended because it can be based on a different schematic or netlist. How-
ever, if you wish to do so, you can use the Project Resources option in
the Project Manager menu and add any desired simulation file to the
project.

Test Vector Files
Test vector files are stored in a binary format. They include all signal
names listed in the waveform windows and the associated test vectors
(waveforms). ACTIVE-CAD also saves the location of the waveform cur-
sor, waveform scale, position of the waveform on the screen, etc. The in-
formation contained in a test vector file is complete and sufficient to
restore and display waveforms that have been generated by a previous
simulation session.

If no design or netlist has been loaded, then the test vector file can only
be used for viewing the previously generated simulation results.

If a design or netlist file has been loaded prior to loading a test vector
file, then the test vector file is automatically associated with the design

Figure 2-33. Load Simulation Window.

Save/Load Simulation Results 2-61

signals, and can be used not only for viewing the previous simulation
but also for new simulations of the design.

Loading and saving test vector files is performed from the Load Test
Vectors and Save Test Vectors options in the File menu.

ASCII Test Vector Files
To allow easy data exchange with other CAE tools, ACTIVE-CAD both
generates and accepts ASCII files. The ACTIVE-CAD ASCII format is
similar to other ASCII formats that are popular in the industry. The speci-
fication of the ACTIVE-CAD ASCII format is provided in Appendix B.

To load and save ASCII test vector files use the Load ASCII Test Vectors
and Save ASCII Test Vectors options in the File menu.

Error Reports

Timing Violations
ACTIVE-CAD automatically checks every device/cell pin during each
clock cycle for timing violations. All violations are registered, together
with the type of violation, time of occurrence and the size of the timing
violation. For example, ACTIVE-CAD can detect a Too Short Setup Time
error and show how much time was missing for proper device operation.
This data is subsequently available for various design error reports.

NOTE: Timing Errors are reported by VHDL models, each of which can
detect a number of errors specific to the device.

The Error Reporting option, in the Options menu, is used to save and
display timing violations. All detected errors are automatically saved,
and can be displayed by double-clicking on the the icon called ACTIVE-
CAD Messages.

Bus Conflicts
ACTIVE-CAD automatically checks every device/cell pin during each
clock cycle for bus conflicts. All such violations are recorded, together
with the time of occurrence and conflicting pins and voltage levels. This
data is subsequently available for various design error reports.

2-62 ASCII Test Vector Files

The Error Reporting option, in the Options menu, is used to save and
display bus conflicts. To display a list of ACTIVE-CAD messages, double-
click on the ACTIVE-CAD Messages icon. For more information on er-
rors, see Design Error Handling in Chapter 1.

Creating Reports
ACTIVE-CAD provides extensive
design error reporting that speeds
design analysis and error location.
To create a post-simulation error re-
port, select the Error Viewer option
from the Utilities menu. Following
this, select the time range for error
reporting from the dialog box
shown in Figure 2-34, and click on
the OK button.

This will invoke a Report window with a chronological list of errors as
shown in Figure 2-35. Using the options in Figure 2-34, this report can
also be saved to a file or printed.

Figure 2-34. Dialog box for
creating error reports.

Figure 2-35. Error Report window.

Error Reports 2-63

Design Patching

Editing Propagation Delays
ACTIVE-CAD libraries contain timing specifications for all their IC parts.
Maximum, minimum and average values of specific timing parameters
are accessible through the Library Manager and are based on manufac-
turers data books. These parameters can be edited at any time during
simulation. However, only in the timing mode are these values used by
the simulator.

NOTE: Editing propagation delays has no effect in SUSIE-CAD/HIER,
because it only has functional and glitch simulation modes. However, if
equipped with the TIM option, it will respond to the propagation delays.

Initially, all ICs are loaded with their average (typical) values. However,
using the propagation editor you can change these values. To access the
propagation editor, select the Edit Timing Specification option in the
Patching menu. A listing of all parts and macros at the current hierarchy
level will be displayed. By selecting a desired hierarchical level and IC,
you can display its timing specification table (Figure 2-36). You can edit
this table to suit your design requirements. For example, you can set the
propagations to Min, Max, Avg. or any % of the Max. In addition, you
can edit each parameter individually in the Set column.

You can create your own parts by editing in the Library Manager the
Min., Avg. and Max. timing parameters of devices supplied by ALDEC.

Figure 2-36. Editing propagation delays.

2-64 Editing Propagation Delays

Please refer to the Library Manager (Chapter 8 in Schematic Editor Users
Guide) for details on modifying simulation libraries.

Editing Device Timing Parameters
In addition to changing individual parameters, the ACTIVE-CAD simula-
tor allows you to change propagation delays of devices, selected design
sections, hierarchical design levels and even entire designs to:

* Maximum values
* Minimum values
* Average (typical) values
* N % of maximum (even below minimum or above maximum values).

To change the propagation delay parameters of any device, select the fol-
lowing items in sequence:

r Patching menu

r Edit Timing Specification option

r Double-click on the selected hierarchical level to display its parts

r Double-click on the selected chip. When a menu appears, select
either Min, Avg., Max or enter the % of Max into the Edit Timing
Specification window.

r You can edit timing parameters in the Set column of Figure 2-36.

The above options allow you to set and test your design with the worst-
case timing conditions. You can set propagation delays to any values and
instantly resimulate the entire design to verify the effect of these changes.

Editing Line Delays
Line delays are the delays between pins of the netlist components and
represent routing delays in ASICs, FPGAs and PCB layouts. ACTIVE-
CAD simulates line delays and IC propagation delays separately. If a de-
sign netlist includes line delays, you can view and edit these delays
using the Change Line Delays option in the Patching menu.

Design Patching 2-65

The Scan Hierarchy window that appears on the screen allows you to se-
lect any desired hierarchy level. Double click on the desired hierarchical
level and the Line Delay Table (Figure 2-67) will show all line delays at
the selected hierarchical level. You can edit any delay value in the Set col-
umn by double clicking on it, entering the desired value, and then press-
ing the Enter key.

By changing line delays, you can emulate different layouts and their ef-
fect on simulation results.

To view the effect of line delays, select to the display screen a device output pin
that drives the selected node and an input pin that receives this signal. After
some simulations you will observe that timing transitions on the input pin are de-
layed in reference to its source (output pin).

NOTE: If you select to the screen the signal names of the nodes that
have line delays, the displayed waveforms will represent the timing of the
output pins that drive the selected nodes.

Change Technology
ACTIVE-CAD allows you to instantly change an IC technology. To re-
place a part with another one, select the Change Technology option in
the Patching menu. When a Change Technology window appears, select
an appropriate design hierarchy in the Scan Hierarchy window. Then
double click on the selected IC in the Chip Selection window. When a ta-
ble of suggested IC replacements appears, select the desired IC device
name, and press the OK button.

Figure 2-37. Line delays setting.

2-66 Change Technology

The only restriction is that the replaced part has to be of the same type
(logic behavior) and has to be in the same library as the original part
(TTL, PLD, CMOS, etc.). For example, you may replace a 74LS74 with a
74F74 but not with a 74LS00 or 22V10. If the new part exists in the same
library as the original part, a new timing specification will be loaded to
the simulator and displayed on the screen.

Changing Generic Values
All IC models are set to their typical timing parameters by default. In ad-
dition to the Edit Timing Specification option that allows you to change
selected timing values for simulation, you can also set global design con-
ditions by using the Change Generic Values option in the Patching
menu. This option allows you to select any IC device and set its operat-
ing temperature in the window shown in Figure 2-38. If you change the
temperature setting, ACTIVE-CAD will automatically calculate a new
timing parameter for the chip. This option works only with selected IC
models that have a built-in temperature specification.

Toggling Switches
If you use switches or jumpers in your design, ACTIVE-CAD allows you
to change the position (toggle) of these elements, so that you can test
your design with different settings. When you select the Switch Settings
option in the Patching menu, the Switch Settings window will list all
switches and jumpers at the selected design hierarchical level. Select the

Figure 2-38. Changing Generic Values of IC
devices.

Design Patching 2-67

desired switch and press the OK button. This will display a window
with the graphical representation of the selected switch.

Using the Toggle button, you can set the desired switch position and tog-
gle the jumpers. Double clicking on the desired switch position forces its
setting.

If you have multiple switches in the design, and need to toggle them fre-
quently, you can open and then minimize the switch windows for all
switches that you plan to use. When you click on the minimized switch
window, it will display the Toggle option, which when selected, toggles
the switch and displays the new switch setting. If you use switches in a
hierarchical design, you can also use the Hierarchy Scan option to verify
on which level the switch is located. The list of supported switches and
jumpers can be found in the Appendix C.

Passive Components
ACTIVE-CAD does not directly simulate analog circuits. You can, how-
ever, create a Spice netlist and simulate analog circuits with Intusofts Is-
SPICE software product.

The only analog components that are recognized by the digital simulator
are resistors, resistor packs and inductors. Each inductor is simulated as
a short connection of two nets. A resistor may be simulated as a Pull-Up,
Pull-Down or short connection, depending on how it is connected. The
Pull-Down function will be used when one of the resistor pins is con-
nected to the GND (or other ground signal). The Pull-Up function is used
when one of the resistor pins is connected to VCC or any other power sig-
nal. The Pull-Up and Pull-Down functions will also work with the OE
(Open-Emitter) and OC (Open-Collector) outputs. The Pull-Up and Pull-
Down resistors can be used on both input and output pins. The list of

Figure 2-39. Setting Rotary Switch Position.

2-68 Passive Components

passive components recognized by ACTIVE-CAD can be found in Ap-
pendix C.

NOTE: The wired OE and OC outputs will be simulated properly as wired
OR and wired AND gates, respectively. The logical states generated with
the Pull-Up or Pull-Down resistors are called Resistive, which means that
several outputs can be connected together without causing any conflicts.

Milestones
A milestones is used to store the complete design status that exists at a se-
lected simulation cycle. Thus, it can be used for later resimulation of the
design with new design or test vector changes. A milestones saves the
timing at the current simulation cycle and all internal states (registers,
memories, flags, etc.) of all IC models.

The milestone data is saved on a disk as a temporary file and is always
deleted when you load a new design or exit the ACTIVE-CAD simulator.
When you load a milestone, the simulator restores the design to its state
at the time of the milestone, preserved by the milestone save operation.

Using milestones is very convenient when you want to resimulate the de-
sign from a certain cycle with modified test vectors, new timing delays
or other design changes.

You can save as a milestone every significant simulation point and use it
later on for instant resimulation. Also, you can automatically save mile-
stones during simulation, and if a design problem is detected, you can al-
ways restart the simulation from a point just before the problem
occurred.

Milestones allow extensive design analysis. You can resimulate a modi-
fied design from a selected milestone and request ACTIVE-CAD to auto-
matically display the effect of the latest design or test vector changes on
the selected signal(s).

Milestones 2-69

Saving Milestones
Manual milestones

You can manually save any selected design condition as a milestone by
pressing the Save button shown in Figure 2-40. The saved milestone will
appear on the Waveform Viewer as a red dot on the ruler (time scale dis-
play at the top of the screen).

Automatic milestones

In addition, you can select the Automatic Milestones options, in which
you can save milestones at set time intervals. You specify both the
number of milestones in the set (up to 32) and the time interval between
each. Since each milestone uses hard disk space, keep the number of mile-
stones in the set to a minimum. Once the set is full, any new milestone
will overwrite existing ones, starting with the earliest milestone in the
set.

To turn on automatic milestones, use the On option located in the Auto-
matic Milestones field. Similarly, select the Off option to stop saving the
automatic milestones.

Breakpoint-driven milestones

ACTIVE-CAD can automatically save a milestone upon detecting the
desired signal conditions. To activate the breakpoint-driven milestones,
follow this procedure:

Figure 2-40. Saving Milestones.

2-70 Saving Milestones

r Select the Breakpoint option from the Utilities menu.
r Select the Edit option from the Breakpoint menu; The Breakpoint

Conditions window appears.
r Click on a Condition field 0-F (vertical columns); The selected Condi-

tion turns red.
r Click on a signal in the Signals field
r Click on the States button in the Breakpoint Conditions window
r Assign a logical level to the signal by clicking on the corresponding

button in the Breakpoint States window; To assign a signal transition,
assign two logical states to the same signal. The signal transition is
displayed in the Breakpoint Conditions window.

r After the signal Condition have been set, click on the Edit button
r A Breakpoint Edit window will appear, listing all conditions; Double-

click after the Then command.
r A new window listing breakpoint editor instructions appears. Click in

that window on the Mark Breakpoint instruction, enter the breakpoint
name into the Argument field and click on the Set button.

r Select additional breakpoint instructions if needed and click on the
Close button to exit the window.

r Click on the OK button in the Breakpoint Edit and then in the Break-
point Conditions windows. ACTIVE-CAD automatically sets the
breakpoint to the On condition and will save a milestone each time a
breakpoint is found.

Since the milestones could fill up the hard disk very quickly, select the
Milestones option from the Options menu and enter in the Breakpoint
Milestone field the maximum number of milestones to be saved.

Loading Milestones
You can display all available milestones by selecting the Milestones op-
tion from the Option menu. The Active Milestones field in Figure 2-40
displays a time at which the design was saved. To load a milestone, in-
voke the Milestone option, select a milestone from the Active Milestone
table and then select the Load option. You can delete selected milestones
using the Delete selected milestone or Delete All milestones option.

Printing Simulation Results

Page Setup
To print a timing diagram, you need to specify its format with the help of
the Page Setup option in the File menu. The window shown n Figure 2-
41 allows you to select the following options:

Printing Simulation Results 2-71

The Waveform Spacing section allows you to print extra lines of informa-
tion between the waveforms. These lines may contain your comments
and/or timing measurements.

r High Density Mode - disables all comments and measurements. It
does not delete any empty lines

r Delete Empty Rows - deletes all rows that do not contain any infor-
mation

If neither High Density Mode nor Delete Empty Rows is selected, then
ACTIVE-CAD will print waveforms in the low density mode, and will in-
clude all comments, measurements and empty lines.

The Options section allows you to select some additional information to
be printed with the waveforms.

r The Errors option marks the timing errors on the printed waveforms
r The Time measurements option prints the waveform measurements

Figure 2-41. Page Setup window.

2-72 Page Setup

r The Comments setting allows you to print all comments inserted into
a waveforms diagram.

r The Design Change will mark on the waveform diagram all instances
of design change

r The Markers option will print the current location of the markers

The Pin/Signal Names option allows you to print the signal names with
the waveform data as follows:

r Every n-Page setting - prints signal names on every nth page. You need
to enter the value of n. For example, if you specify 4, the signal names
will be printed on every fourth page.

r None - does not print any signal names
r First - prints signal names only on the first page

Print options - allow you to print selected parts of the waveforms as fol-
lows:

r All option prints the entire waveform diagram

r Current page - prints only one page of the waveform diagram start-
ing from the beginning of the current waveform viewer;

r From-to - allows you to print any part of the waveform diagram by
entering the beginning and end of the timing waveforms, expressed
in nanoseconds, microseconds or miliseconds.

Print Setup
The Print Setup option, located in the File menu, is the standard Win-
dows option that allows you to select a destination printer and set the de-
vice specific options.

Print
The Print option prints the waveform diagram on the selected printer.
The settings for the waveform diagram layout are selected using the
Page Setup option.

Saving Windows Layout
If you arrange the simulator main window, the simulation toolbox and
Waveform Viewers, and you want them to be arranged the same way in
the next simulation session, you can save that layout using the Save Set-
tings Now option in the Options menu.

Printing Simulation Results 2-73

The Save Settings On Exit option saves the last screen settings before ex-
iting ACTIVE-CAD. The last simulator windows arrangement will be re-
stored when you restart the simulator. The layout configuration is saved
in the SUSIE.INI file and can be cleared using the Default Settings op-
tion in the Options menu.

2-74 Saving Windows Layout

Chapter 4

MOBIC Model Builder

Introduction
The MOBIC Model Builder Compiler is based on Boolean logic equa-
tions. The logic equations can be written using any text editor. MOBIC
can be used for generating functional models of SSI and MSI IC parts. It
generates very fast models that can be used to simulate the components
that have no models in the ACTIVE-CAD library. For modeling higher
complexity ICs and for generating timing models, use the VDS (VHDL
Development System).

The logic equations written under MOBIC are based on the equal sign (=)
and on rising and falling clock edge equations. There are no set, reset or
trigger commands under MOBIC. Flip-flops, counters, etc. are modeled
by using the ALDEC clock equation format which is explained in this
chapter.

Model Structure
Each IC model is composed of three (3) sections:

1. Chip declaration

2. Pins and signals definition

3. Model body

The MOBIC source code file can include more than one IC model.

Chip Declaration
The chip declaration is comprised of CIRCUITS and CLASS statements.
The chip declaration must start with a CIRCUITS statement, followed
by the IC model name or a list of functionally equivalent IC models, e.g.:

circuits 74LS00

circuits 74LS00, 54LS00, 54F00

You can write circuits or CIRCUITS but any misspelling will reject the
entire model. For example, CIRCUIT will reject an IC model.

The CLASS statement defines the type of logic, e.g. TTL, ECL, etc. It will
help later in the ACTIVE-CAD simulator to detect any illegal connectiv-
ity between various logic families. The class statement cannot be omitted.
An example of a class statement is:

class TTL

Pins and Signals Definition
The pins and signals definition is comprised of PINS and SIGNALS
statements. The PINS statement lists all I/O pins and defines their I/O
types, e.g. IN (input), OUT (totem-pole output), TRI (tri-state output),
etc. A list of pin types is provided in the MOBIC 6.0 Specification section.

A signal is a logic variable to which you can assign logic values to store
them in the model. The SIGNALS statement lists all signal names that
are used internally by the IC model. Signals are very useful for storing
temporary values, like expression results or internal logic states. Even if
no internal signal names are used, the SIGNALS statement must be in-
cluded, e.g.:

SIGNALS; (empty space)

You do not have to use the SIGNALS statement when you are creating a
new IC model based on an existing one. Instead, enter the USE statement
in place of the SIGNALS statement.

Model Body
The model body starts with the EQU statement and ends with END;
statement, which ends the IC model. The body of the IC model is com-

4-2

prised of Boolean logic equations. Following is an example of a model
body:

EQU
1Y = -(1A*1B);

END;

The specification of syntax, logic states, operators, etc. is included in the
MOBIC 6.0 Specification, later in this Chapter.

Combinatorial Model Conventions
The combinatorial IC parts, such as gates, decoders and similar devices
that do not have storage elements such as flip-flops, are modeled directly
with the help of the equations. To create a combinatorial IC model define
each IC output pin as a logical function of input pin states. For example:

AND Gate

1Y = 1A*1B

OR Gate

1Y = 1A+1B

Sequential Model Conventions
Sequential circuits are driven by rising and falling clock edges. A rising
edge means that a signal is changing its logical state from LOW to HIGH.
A falling edge is a change from HIGH to LOW. All actions in sequential
circuits are related to rising, falling or both edges. It is important then to
detect these edges in the model and be able to write logic expressions
based on the signal changes. The following is an example of a sequential
model (D Flip-Flop):

CIRCUITS 7474;
CLASS TTL;
PINS CK:in:3, \ clock input

D:in:2, \ data input
Q:out:5; \ data output

SIGNALS edge, \ variable used to detect edges
oldclk; \ variable used to store previous CK input state

MOBIC Compiler 4-3

EQU
edge = CK *-oldclk; \ rising edge detection
IF edge EQ HIGH \ if rising edge occurred pass the D input to the
Q output

Q=D
ENDIF
oldclk = CK; \ you have to store the current CK state for the next
simulation cycle
END;

In each simulation cycle, the current state of the clock input pin CK is
compared to its logical value in the previous cycle, stored in the oldclk
variable. The comparison is performed using the AND operator (*). The
result of this comparison is assigned to the edge variable. Edge is HIGH
only when oldclk is LOW and CK is HIGH, which is equivalent to the
rising edge on the CK input.

If the rising edge occurred, the IF statement copies the logic state on the
D input to the Q output pin. Afterwards, you have to save the CK input
state in the oldclk variable for the next simulation cycle.

If you want to detect a falling edge instead of the rising one, use the fol-
lowing expression:

edge = oldclk*-CK

If you want to detect both falling and rising edges use:
edge = oldclk#CK \ exclusive OR of both signals

Remember that ACTIVE-CAD is using a 12-value logic and you should
consider all possible combinations of the input pins. For example you
may want to test input pins for Unkn_X or Hi_Z state.

Compiling a model
The MOBIC compiler is a program that reads the MOBIC Language
source file, compiles models, generates error prompts puts the models
into the current project library once the models are compiled success-
fully.

To run the MOBIC compiler, double-click on the MOBIC icon within the
ACTIVE-CAD program group.

4-4

The source file can be edited in any text editor, e.g. Windows Notepad.
You can save the source file in any directory and have any filename ex-
tension, e.g. SOURCE.SRC. To open the source file for compilation, select
the Open option within the File menu and select the source file.

Next, select the Options from the Compile menu and choose whether
you want to put the compiled models into the library for simulation or
whether you want to generate the source code debugger information,
and whether you want to generate symbolic code.

The simulator’s source code debugger allows for detailed monitoring of
the models operation.

To start the compilation of your models, use the Start Compilation from
the Compile menu. The compiler displays the progress of the compila-
tion in the MOBIC main window. If for any reason, you need to stop the
compilation, use the Stop Compilation option from the Compile menu.

After you compile and insert your models into the project library, you
can use them in both the simulator and the schematic editor. The sche-
matic symbol is generated automatically and can be edited using the
symbol editor.

Figure 4-1. MOBIC Compiler window.

MOBIC Compiler 4-5

MOBIC 6.0 Specification

Set of characters
Allowed characters in MOBIC are:

letters: a-z and A-Z

digits: 0-9

special char.: _ / @ $ % ! . ^ ~ ? [] { } “_”

operators:+ - * # () =

separators: ; :

blank space

comment markers: * \\

Signal and Pin Names
Names can include any letter, digit or special character in any order. If a
pin/signal name includes any of the operator symbols or is to be case
sensitive, the name must be enclosed in quotation marks (“_”). Separator
symbols and blank spaces cannot be used in names. Names cannot be
longer than 32 characters. Names not included within quotation marks
are not case sensitive i.e. “A” and “a” represent different names while A
and a represent the same name.

Chip Names
Chip names can be composed of any allowed characters except separator
characters and blank spaces. Chip names may be enclosed in quotation
marks (“_”). The same rules apply for pin names.

MOBIC Model Structure
The MOBIC source text can describe more than one model. The model
structure is very rigid (i.e. statement sequence cannot be changed, nor
can any statement be omitted). The model is composed of the following
statements:

CIRCUITS list_of_chips;
a list of all chips described by the equations in the EQU section.

4-6

CLASS chip_class(es);
a list of chip class, e.g.. TTL, ECL

PINS list_of_pins;
a list of chip pin names and numbers
equations or references to a model
already defined in the text.

SIGNALS list_of_signals;
list all signals used within EQU;
an empty list is allowed (no signals used).

EQU
enter logic equations describing the functional model behavior;

END;

If you are using an existing model that already has defined SIGNALS
and EQU statements, use the following statements:

CIRCUITS list_of_chips;
PINS list_of_pins;
USE existing_model_name;
END;

As mentioned above, the source text may define more than one model:

CIRCUITS list;
. . .
END;

CIRCUITS list;
. . .
END;

Reserved Words
Operators, constants and reserved words are case insensitive i.e. END
and end represent the same word. The names listed below cannot be
used as signal names. If a pin name is identical to any of the reserved
words, the name must always be included in quotation marks. Statement
and instruction names must always be followed by a blank space if argu-
ments are present.

MOBIC Compiler 4-7

Statement Names
CIRCUITS list of chip names described by equations in the EQU section
CLASS class of chips
PINS list of pins
SIGNALS list of signals
EQU beginning of equations section
END end of the model
USE points to an existing model;

eliminates a need to redefine equations

Class Declarations
TTL TTL voltage level on pins
ECL ECL voltage level on pins
MOS MOS voltage level on pins
ROM ROM memory chip(s) - may be combined with TTL/ECL/MOS
RAM RAM memory chip(s) - may be combined with TTL/ECL/MOS

Pin Types
IN input pin
OUT output pin (Totem Pole)
TRI3-state output pin
TRIIO 3-state bi-directional pin
OC open collector output pin
OCIO open collector bi-directional pin
OE open emitter output pin
TTL TTL pin voltage level (override class level), optional
MOS MOS pin voltage level (override class level), optional
ECL ECL pin voltage level (override class level), optional

Instruction Names
IF conditional instruction
ELSE case clause (optional)
ENDIF end of conditional instruction
READ read word from memory
WRITE write word to memory
VIOLATION report violation

4-8

Operators
Table 4-1. MOBIC Operators

IF instruction relational operators:

EQ equal

NE not equal

Logic equation operators:

= assignment (put state to signal/pin)

* AND

+ OR

XOR

- NOT

() parentheses

Logical States
Table 4-2 . Logical State List

Logic State

LOW Low

HIGH High

Unkn_X Unknown X

Hi_Z High Impedance

Ref_V Reference Voltage (ECL only)

Hi_V High Voltage

Conf_X Conflicting Signal States

Res_High Resistive High

Res_Low Resistive Low

MOBIC Compiler 4-9

Ua_Low Unknown Activity Low

Ua_High Unknown Activity High

Ua_X Unknown Activity X

Power_On Signal
POWER_ON - this signal cannot be user defined. The POWER_ON sig-
nal can have a only logical HIGH or LOW state.

LOW - normal simulation,
HIGH - Power On process.

You can check the value of a POWER_ON signal if you want to set initial
conditions in your model. The POWER_ON signal can be used in logic
expressions like any other signal. However, the user cannot assign to it
any value; this is a read-only signal.

The POWER_ON signal can also be used as an IF instruction argument.
Because it may have only two logic states, a comparison with a state
other than the LOW or HIGH logic state will be considered an error dur-
ing compilation.

Example:

IF POWER_ON EQ HIGH
Clear = HIGH

ENDIF;

Violation Codes
Any code used with VHDL is legal but most codes should not be used be-
cause they report timing violations (MOBIC models are functional). Rec-
ommended codes are as follows:

V_UN_IN undetermined input pin state
V_UN_CLK undetectable clock pulse
V_LOG LOGIC error in cycle (for DRAM)
V_ABORT undetermined pin state - CYCLE ABORTED (for DRAM)

4-10

Statement Syntax
All statements can be written in one or more text lines. The semicolon (;)
character indicates the end of a statement. Blank spaces can be inserted
between words and separators as needed.

CIRCUITS
CIRCUITS name1, name2, ... , nameN ; (unlimited number of names)

wherein:

, is the name separator
; always terminates statement

The above CIRCUIT statement may also be written as follows:

CIRCUITS name1,
name2,
...
nameN;

Example:

CIRCUITS 7400, 5400,
74LS00, 54LS00;

CLASS
CLASS type , ram/rom:0/1 ;

where:

type - TTL, MOS or ECL specifies default voltage level of all pins

ram/rom:0/1 - optional RAM or ROM class:
0/1 - virgin state (optional argument, default setup is 0)
: - virgin state argument separator
ram/rom - RAM or ROM class declaration

Examples:

CLASS ECL;
CLASS TTL, RAM;

MOBIC Compiler 4-11

CLASS TTL, ROM:1; \ default ROM state is 1, unless overwritten with a
hex file.

PINS
PINS name1 :type : volt_level :number , ...;

where:

name1 - pin name (must be present)
type - type definition with separator (:)
volt_level - voltage level - overrides class level [optional]
number - pin number with separator (:) [optional]

Pin number is an integer up to 3 digits (e.g.. 1, 15) or a letter with a 1 or 2-
digit number (e.g.. A1, B12)

Examples:

PINS A1:IN:1, B1:IN:2, Y1:OUT:3;
PINS A1:IN:TTL:1, A2:IN:2, Y:OE:15; - example shows voltage override
declaration (TTL)
PINS IN1:IN, IN2:IN, OUT:OUT; - no pin numbers, name OUT is also a
reserved word.

SIGNALS
SIGNALS sign1, sign2, ... , signN ;

The SIGNALS statement syntax is identical to the CIRCUITS statement
but the signal list may be empty. The SIGNALS statement can be fol-
lowed only by the EQU statement.

Examples:

SIGNALS A1, btp; \ A1 and btp are used in the equation
SIGNALS ; \ empty list; no signals are used within EQU

EQU
EQU - no arguments, ; cannot be present

4-12

END
END ; - no arguments, ; must be present

USE
USE chip_name (; cannot be present)

where:

chip_name is the name of the device defined by an existing model.

This statement is useful for defining a chip when the model is already de-
fined but has a different pin layout.

Example:

CIRCUITS 7400, 5400;
CLASS TTL;
PINS A2:IN:4, B2:IN:5, Y2:OUT:6, ...;
SIGNALS tmp;
EQU

\ logic equations
END;
CIRCUITS 7400W, 5400W; \ the same model as above, dif-
ferent pin layout
CLASS TTL;
PINS A2:IN:6, B2:IN:7, Y2:OUT:5, ...;
USE 7400 - \ note the omitted SIGNALS and EQU
END;

Note: Pin names and types in the model specified within the USE state-
ment must be exactly the same as those listed in the current model. The
CLASS statements must also be identical; the MOBIC compiler will
check for this.

Instruction Syntax
Instructions can be written in one or more text lines. The semicolon (;) in-
dicates the end of the instruction. Blank spaces can be inserted between
words and separators, as needed. An indentation can also be used.

MOBIC Compiler 4-13

Conditional Instruction IF
IF signal/pin_name operator constant

\ other instructions or equations
ELSE

other instructions or equations (optional)
ENDIF;

where:
signal/pin_name - name of signal or pin. The state of this signal/pin will
be compared with a CONSTANT. The special POWER_ON can also be
used.
operator - one of two relational operators: EQ (equal) or NE (not equal)
constant - a logic state

An IF instruction can be nested inside another IF instruction. The
number of levels is not limited.

Example:

IF POWER_ON EQ HIGH
Y = UNKN_X;

ELSE
IF A NE Hi_Z

Y = A*-B;
ELSE

IF B EQ Hi_Z
Y = UNKN_X;

ENDIF;
ENDIF;

ENDIF;

Read from Memory (Instruction READ)
READ (addr0, ..., addrN), (data0, ..., dataK);

where:

(addr0, ..., addrN) - is an address signals list:addr0 is the least significant
bit (LSB) andaddrN is the most significant bit (MSB); parentheses must
be used
(data0, ..., dataK)- is a data signals list:data0 is the LSB anddataK is the
MSB; parentheses must be used

Pin names and temporary signals may be used in both address and data
lists. The READ instruction automatically generates a VIOLATION re-

4-14

port if any of the address list elements is in an undetermined state (e.g.
Hi_Z, UNKN_X, etc.). It assigns the UNKN_X state to the addressed
data (signal) on the data list.

Example:

16x4-bit ROM chip is modeled as follows.

CIRCUITS ROM4x16;
CLASS TTL:ROM:1;
PINS ADDR0:IN, ADDR1:IN, ADDR2:IN, ADDR3:IN,
D0:TRI,D1:TRI,D2:TRI,D3:TRI, \ CS:IN;
SIGNALS ;
EQU

IF \ CS EQ LOW
READ (ADDR0, ADDR1, ADDR2, ADDR3), (D0, D1,

D2, D3);
ELSE

D0 = HI_Z;
D1 = HI_Z;
D2 = HI_Z;
D3 = HI_Z;

ENDIF;
END;

Write to Memory (Instruction WRITE)
WRITE (addr0, ..., addrN), (data0, ..., dataK); This instruction stores

data0...dataKat theaddr0...addrN.

where:

(addr0, ..., addrN) - is the address signals list (addr0 = LSB addrN = MSB)
parentheses must be used
(data0, ..., dataK)- is the data signals list (data0 = LSB dataK= MSB)
parentheses must be used

Pin names and temporary signals may be used in both the address and
data lists. The WRITE instruction automatically generates a VIOLATION
report if any address or data list element is in an undetermined state (e.g.
Hi_Z, UNKN_X, etc.). Memory contents, however, are not updated.

Example:

The 16x4-bit RAM chip is modeled as follows:

CIRCUITS RAM4x16;
CLASS TTL:RAM;
PINS ADDR0:IN, ADDR1:IN, ADDR2:IN, ADDR3:IN,

D0:TRIIO,D1:TRIIO, D2:TRIIO,D3:TRIIO, \ CS:IN,

MOBIC Compiler 4-15

\ WE:IN;
SIGNALS ;
EQU
IF \ CS EQ LOW

IF \ WE EQ HIGH
READ (ADDR0, ADDR1, ADDR2, ADDR3), (D0, D1, D2,

D3);
ELSE

WRITE (ADDR0, ADDR1, ADDR2, ADDR3), (D0, D1,
D2, D3);

ENDIF;
ELSE

D0 = HI_Z;
D1 = HI_Z;
D2 = HI_Z;
D3 = HI_Z;

ENDIF;
END;

Report Violation (Instruction VIOLATION)
VIOLATION code , pin_name ;

where:
codeis the violation code

pin_name is the name of the faulty pin; both pin name and separator (,)
are optional. If the faulty pin cannot be determined, specify only the vio-
lation code

Example:

Clk_Pulse = -Old_Clk * CLK;
IF Clk_Pulse EQ HIGH

IF Din EQ UNKN_X
VIOLATION V_UN_IN, D;

ELSE
Q = Din;

ENDIF;
ENDIF;

4-16

Logical Equation Syntax

Equation Syntax
Logic equations are written in the same way as are standard Boolean
equations. There are 12 logic states but you don’t have to worry what
they mean, because they are processed automatically by the MOBIC com-
piler and the ACTIVE-CAD simulator. Spaces can be added anywhere be-
tween names, constants and operators. The equation can also be written
on more than one line.

Each logic equation is comprised of the following elements:

r left-hand side is an operand which can only be a pin or signal
r assignment operator (=)
r right-hand side is a logic expression or constant
r terminator character ;

Examples:

Y = High;
X = -(A1*B + C)#D;

Operator priority
Operators are listed below in order of precedence, the highest prece-
dence (priority) is listed first:

() - parentheses
- - NOT
* - AND
- XOR
+ - OR

12-Value Logic
Not all logic states can be produced by logic expressions. Only the follow-
ing logic states may be produced by logic expressions:

LOW,
HIGH,
Unkn_X.

These logical states can be assigned to output pins and signals.

MOBIC Compiler 4-17

The following states can be assigned to any output pin using the assign-
ment operator (=):

Hi_Z,
Ref_V,
Hi_V,
Res_High,
Res_Low,
Ua_Low,
Ua_High,
Ua_X,

You can also use the above listed states as IF statement conditions (e.g. IF
sig=Res_High THEN...). These states can never be the result of a logic ex-
pression or assigned to internal signals.

The Conf_X state (bus conflict) cannot be generated by a model at all.
This is a special state created by the netlist analysis procedure, when a
BUS conflict occurs. At run-time MOBIC always treats this state as
Unkn_X, so the user does not have to check for it. Because of that, this
state should not be listed in the truth tables.

Res_High and Res_Low states are logically equivalent to HIGH and
LOW states respectively and should not be listed in the truth tables.

Ref_V and Hi_V are special-purpose states and should not be assigned to
any pins used in the logic expressions. The user should check for them
first and use the IF instruction to process these states (e.g. report a viola-

Table 4-3. Truth Table for
NOT Operation.

A - A

LOW HIGH

HIGH LOW

Unkn_X Unkn_X

Hi_Z Unkn_X

Ref_V Unkn_X

Hi_V Unkn_X

Conf_X Unkn_X

Res_High LOW

Res_Low HIGH

Ua_Low Unkn_X

Ua_High Unkn_X

Table 4-4. Truth Table for
AND Operation

B A B*A

LOW LOW LOW

LOW HIGH LOW

HIGH LOW LOW

HIGH HIGH HIGH

Unkn_X LOW LOW

Unkn_X HIGH Unkn_X

Unkn_X Unkn_X Unkn_X

Unkn_X Hi_Z Unkn_X

Hi_Z LOW LOW

Hi_Z HIGH Unkn_X

Hi_Z Unkn_X Unkn_X

Hi_Z Hi_Z Unkn_X

4-18

tion). The Ref_V is an ECL voltage level used to convert a differential in-
put pair to a single-ended input. The Hi_V level is a TTL high voltage
level (above +5V) which can be used to simulate PROM programming.
Ua_Low, Ua_High, and Ua_X are assigned to 3-state outputs when it is

impossible to determine if the output should be in a strong or High Im-
pedance state. The MOBIC compiler always assumes the worst case and
processes these states as Unkn_X in all logic expressions.

The truth tables of all logic operations are listed in tables 4-3 through 4-6.
The NOT operation truth table includes all 12 logic states. The other ta-
bles are simplified and list only 4 logic states, accordingly to the above ex-
planations.

Table 4-5. Truth Table for
OR Operation

B A B+A

LOW LOW LOW

LOW HIGH HIGH

HIGH LOW HIGH

HIGH HIGH HIGH

Unkn_X LOW Unkn_X

Unkn_X HIGH HIGH

Unkn_X Unkn_X Unkn_X

Unkn_X Hi_Z Unkn_X

Hi_Z LOW Unkn_X

Hi_Z HIGH HIGH

Hi_Z Unkn_X Unkn_X

Hi_Z Hi_Z Unkn_X

Table 4-6. Truth Table for
XOR Operation

B A B#A

LOW LOW LOW

LOW HIGH HIGH

HIGH LOW HIGH

HIGH HIGH LOW

Unkn_X LOW Unkn_X

Unkn_X HIGH Unkn_X

Unkn_X Unkn_X Unkn_X

Unkn_X Hi_Z Unkn_X

Hi_Z LOW Unkn_X

Hi_Z HIGH Unkn_X

Hi_Z Unkn_X Unkn_X

Hi_Z Hi_Z Unkn_X

MOBIC Compiler 4-19

Comments
There are two types of comments in the MOBIC Language:

line comment - starts with \ (backslash) character and ends at the end of
the line;
block comment - starts and ends with the double backslash \\ and may
include many lines.

Example:

Y = A + C; \ this is a line comment
\\ This is a block comment, all lines below are comments

until the next double backslash appears;
\ any line comments inside block comment remain unaffected

\\

Note: For text clarity the user can insert empty lines into his/her program.

Signals and Pins
There are two types of logic variables used in the MOBIC language:

pins - defined within thePINS statement; define variables through
which the model communicates with the simulator and other models;

signals- other variables used in logic equations are defined within the
SIGNALS statement. If no signals are used in equations, theSIGNALS
statement includes an empty list.

Memory Model Addressing
Your model can store up to 16k words. Examples: memory 256K x 8 will
be modeled as 16K x 8 chip, memory 64K x 1 will be modeled as 16K x 1,
chip 8K x 1 will be the same 8K x 1. Addresses overlap at the 16K bound-
ary to save simulator memory. You can model 1, 2, ... ,64-bit memories.

4-20

Sample Models

Gates
CIRCUITS 7400,5400; \ Quad 2-input NAND
CLASS TTL;
PINS 1A:IN:1, 1B:IN:2, 1Y:OUT:3,

2A:IN:4, 2B:IN:5, 2Y:OUT:6,
3A:IN:9, 3B:IN:10,3Y:OUT:8,
4A:IN:12,4B:IN:13,4Y:OUT:11;

SIGNALS ;
EQU
1Y = -(1A*1B);
2Y = -(2A*2B);
3Y = -(3A*3B);
4Y = -(4A*4B);
END;
CIRCUITS 7400W,5400W; \ Quad 2-input NAND

ceramic flat package
CLASS TTL;
PINS 1A:IN:1, 1B:IN:2, 1Y:OUT:3,

2A:IN:6, 2B:IN:7, 2Y:OUT:5,
3A:IN:9, 3B:IN:10,3Y:OUT:8,
4A:IN:12,4B:IN:13,4Y:OUT:14;

USE 7400
END;

Multiplexer
CIRCUITS 74152,74LS152; \ 1-of-8 data selec-

tors/multiplexers
CLASS TTL;
PINS

D0:IN:5,D1:IN:4,D2:IN:3,D3:IN:2,D4:IN:1,D5:IN:13,D6:IN:12
,

D7:IN:11, A:IN:10, B:IN:9, C:IN:8, W:OUT:6;
SIGNALS ;
EQU
W = -(-A*-B*-C*D0 +

A*-B*-C*D1 +
-A* B*-C*D2 +

A* B*-C*D3 +
-A*-B* C*D4 +

A*-B* C*D5 +
-A* B* C*D6 +

A* B* C*D7);
END;

MOBIC Compiler 4-21

D Flip-Flop
CIRCUITS 7474; \ Dual D-type flip-

flops
CLASS TTL;
PINS CLR1:IN:1, D1:IN:2, CK1:IN:3, PR1:IN:4,

Q1:OUT:5,/Q1:OUT:6,

CLR2:IN:13,D2:IN:12,CK2:IN:11,PR2:IN:10,Q2:OUT:9,/Q2:OUT:
8;

SIGNALS tmp, clk, OldCK1, OldCK2, Din1, Din2;
EQU
IF POWER_ON EQ HIGH \ Power ON Procedure

tmp = CLR1 * PR1; \ Section 1
IF tmp EQ HIGH

Q1 = UNKN_X;
/Q1 = UNKN_X;

ELSE
tmp = CLR1 # PR1;
IF tmp EQ UNKN_X

Q1 = UNKN_X;
/Q1 = UNKN_X;

ELSE
Q1 = CLR1 + -PR1;

/Q1 = -Q1 + -CLR1;
ENDIF;

ENDIF;
tmp = CLR2 * PR2; \ Section 2
IF tmp EQ HIGH

Q2 = UNKN_X;
/Q2 = UNKN_X;

ELSE
tmp = CLR2 # PR2;
IF tmp EQ UNKN_X

Q2 = UNKN_X;
/Q2 = UNKN_X;

ELSE
Q2 = CLR2 + -PR2;

/Q2 = -Q2 + -CLR2;
ENDIF;

ENDIF;
ELSE \ Normal Operation

tmp = CLR1 # PR1; \ Section 1
clk = -OldCK1 * CK1;
IF tmp EQ UNKN_X

Q1 = UNKN_X;
/Q1 = UNKN_X;

ELSE
Q1 = (-clk*Q1 + clk*Din1) * CLR1 + -

PR1;
/Q1 = -Q1 + -CLR1;

4-22

ENDIF;
tmp = CLR2 # PR2; \ Section 2
clk = -OldCK2 * CK2;
IF tmp EQ UNKN_X

Q2 = UNKN_X;
/Q2 = UNKN_X;

ELSE
Q2 = (-clk*Q2 + clk*Din2) * CLR2 + -

PR2;
/Q2 = -Q2 + -CLR2;

ENDIF;
OldCK1 = CK1; \ Update old states
Din1 = D1;
OldCK2 = CK2;
Din2 = D2;
ENDIF;
END;

Magnitude Comparator
CIRCUITS 7485; \ 4-bit Magnitude

comparator
CLASS TTL;
PINS A0:IN:10, A1:IN:12, A2:IN:13, A3:IN:15,

B0:IN:9, B1:IN:11, B2:IN:14, B3:IN:1,
IN1:IN:2, IN2:IN:3, IN3:IN:4, OUT1:OUT:5,

OUT2:OUT:6, OUT3:OUT:7;
SIGNALS n;
EQU
n = A0#B0 + A1#B1 + A2#B2 + A3#B3;
IF n EQ HIGH

OUT1=A3*-B3+-(A3#B3)*(A2*-B2+-(A2#B2)*(A1*-
B1+-(A1#B1)*A0*-B0));

OUT3 = -OUT1;
OUT2 = A3*-A3;

ELSE
OUT1 = -IN2*-IN1;
OUT3 = -IN2*-IN3;
OUT2 = IN2;

ENDIF;
END;

EPROM Memory
CIRCUITS 2764A; \ 8Kx8 UV ERASABLE

PROM
CLASS TTL,ROM:1;

MOBIC Compiler 4-23

PINS A0:IN:10, A1:IN:9, A2:IN:8, A3:IN:7,
A4:IN:6, A5:IN:5, A6:IN:4,

A7:IN:3, A8:IN:25, A9:IN:24, A10:IN:21,
A11:IN:23, A12:IN:2,

O0:TRI:11, O1:TRI:12, O2:TRI:13, O3:TRI:15,
O4:TRI:16, O5:TRI:17, O6:TRI:18, O7:TRI:19,
OE:IN:22, CE:IN:20;

SIGNALS n;
EQU
n = OE + CE;
IF n EQ HIGH

O0 = HI_Z;
O1 = HI_Z;
O2 = HI_Z;
O3 = HI_Z;
O4 = HI_Z;
O5 = HI_Z;
O6 = HI_Z;
O7 = HI_Z;

Violation V_lead,a1;
ELSE

READ
(A0,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12),

(O0,O1,O2,O3,O4,O5,O6,O7);
ENDIF;
END;

4-24

Chapter 5

Simulator Macro Operations

1. GENERAL

1.1 Simulator macros
Simulator macros allow you to specify a sequence of operations to be per-
formed by the simulator on a design. You can specify the design configu-
ration, test vectors to be applied to the design, test points to be recorded,
and display conditions. The macro operations are a convenient way to
run design simulations in batch mode and collect vast amounts of design
data off-line. The simulator macro can be used for the final ASIC design
verification, system level design verification, ECO (Engineering Change
Order) verification and approval, automatic parts selection and replace-
ment, and many other applications.

NOTE 1: The waveforms or test vectors that are generated by the macro
are weak signals, which means that they can be overridden by strong sig-
nals on the device outputs and in the nodes driven by strong signals.
However, when applied to device inputs, they cannot be overridden by
any other signal.

ALDECs macro are similar to ViewLogics ViewSim commands. For bet-
ter compatibility, the ALDEC macro use the same command syntax as
ViewSim.

NOTE 2: The simulator macro are available only with the ACTIVE-CAD
product lines. They are not available with the SUSIE-CAD products.

1.2 Naming conventions

COMPONENT NAMES

Simulator macro allow you to use any schematic or netlist component
names. The hierarchical component location can be specified by using
similar to a DOS path name, with the top hierarchical level being listed
first. The root or top-most hierarchical level can be specified as:

root/U1 chip U1 at the root level

or U1 chip U1 at the root level

Hierarchical levels are separated by slashes (/)., e.g:

B11/B12/U22

U22 is located at the B12 hierarchical level which is a sub-hierarchy of
B11.

You cannot use wild characters for component search. They need to be
listed precisely.

PIN NAMES

macro accept any component pin names. The pin names are specified by
listing the component name, followed bya period (.) separator and pin
name. The hierarchical pin name location can be specified using a path,
with the top hierarchical level being listed first. The root or top-most hier-
archical level signal can be specified as:

root/U1.A1 pin U1.A1 at the root level
or U1.A1 pin U1.A1 at the root level

Hierarchical levels are separated by slashes (/), e.g.

B11/B12/U25.Y1

U25.Y1 pin is located at the B12 hierarchical level, which is a sub-hierar-
chy of B11.

You cannot use a wild character for pin name search. It needs to be listed
precisely.

SIGNAL NAMES

macro accept any schematic and netlist signal names. The hierarchical
signal location can be specified by means of path, with the top hierarchi-
cal level being listed first. The root or top-most hierarchical level signal
can be specified as:

5-2 1. GENERAL

root/RESET signal RESET at the root level

or RESET signal RESET at the root level

Hierarchical levels are separated by slashes (/)., e.g:

B11/B12/ENABLE

The ENABLE signal is located at the B12 hierarchical level which is a sub-
hierarchy of B11.

You cannot use wild characters for component search. They need to be
listed precisely.

1.3 Logical states
Logical states are represented by names (HIGH, LOW, etc.) and by num-
bers (0,1). Bus logical states are described by a list or an array of names
or numbers. The left-most names or numbers represent the highest bus
signal values. If you specify fewer bus names than allowed, macro will
automatically fill in 0s or Lows for the higher order bus lines. A single
signal line is treated as a bus with a single line.

Buses can be expressed in Binary (\B), Octal (\O), Decimal (\D) and
Hexadecimal (\H) format. If no format is specified, it is assumed to be a
binary. These formats may also be epressed using their numerical bases,
e.g. \2, \8, \16, \20.

Examples of buses:

r 11100010101 binary bus representation

r 100010101\B binary bus representation

r 1234\8 octal bus representation

r 777\O octal bus representation

r eff3ab\16 hexadecimal bus representation

r 10010101\H hexadecimal bus representation

r 99999\D decimal bus representation

r abcdefg\20 base 20 numbering system

If you specify a bus signal state, as shown below, the signal state pertains
to the entire bus (all its signal lines will have the same signal state):

BUS Signal State Description

Simulation Macros 5-3

Z HI_Z
RL RES_LOW
RH RES_HIGH
RX RES_X
L LOW
H HIGH
X UNKN_X
UL UA_LOW
UH A_HIGH
CX CONF_X
R REF_V
V HIGH_V
SL SV_LOW
SV SV_HIGH
SX SV_X

1.4 Time units
Time is specified in decimal values. Its units are listed below. The default
ACTIVE-CAD time unit is 10 picoseconds, and all simulations are made
with this precision, . However, for full compatibility with ViewLogic, the
default time unit used in all macro is 100 picoseconds. If you want to
specify timing with a 10 picosecond resolution, you must write ps ex-
pilictly. If you omit the units, time will automatically be counted in 100
picosecond units.

r ps 10 exp (-12) seconds

r ns 10 exp (-9) seconds

r us 10 exp (-6) seconds

r ms 10 exp (-3) seconds

r s seconds

r m minutes

r h hours

Time can be referenced to past events or to the beginning of the simula-
tion. If time is referenced to the beginning of the simulation, then the
time values are preceded by the @ marker.

Examples:
100 - indicates 10ns (100x100ps) from the last event for
the selected signal line
70ps - indicates 70ps
@153us indicates 153 microseconds from the beginning of
the simulation

5-4 1. GENERAL

Note: The units must be placed right after the number. For example,
120ns is correct. However, 120 ns is incorrect because the space is
treated as a delimiter, and the ns marker will not be recognized by the
software.

Simulation precision is set manually. For compatibility with ViewSim, it
cannot be set from a macro. Only timing precision can be set by using
macro operations. For example, if the simulation precision is set to 10ps
and the timings resolution is 100ps, then the simulator will accept the
timing with 100ps resolution but will generate output signals with 10ps
resolution. On the other hand, if the timing is given with 10ps resolution
but the simulation precision has been set to 1ns resolution, then the
ACTIVE-CAD simulator will round off the timing to the nearest 1ns.

2. Macro File Structure

You can enter and edit the macro operations file under any ASCII text
editor, such as Notepad and others. macro are separated by semicolons
(;) and [ENTER]. If a macro does not fit in a single line, you need to end
the line with a plus (+) sign and continue the macro in the next line.

Instead of the full macro names, you can use their special abbreviations,
which are listed with each macro description.

macro are executed in the sequence listed in the file, except when there
are loops. The execution of the macro is ended when:

r the last macro in the file has been executed
r the program has encountered the quit macro
r the simulator has encountered a fatal error that inhibits further proc-

essing of the macro.

The macro operations file should have a .CMD file name extension. The
macro file should be added to your project under the Project Manager as
a project resource. Follow these steps to add macro file to your project:

r Select Resources from the Project Manager
r From the Directories field (in the Project Resources window) select the

directory that contains the macro files
r From the Resource Type field select the Stimulator macro
r When the Additional resources available in directory... window dis-

plays the desired macro file, click on the file and then select either
the Copy or Link option.

Simulation Macros 5-5

The macro added to the current project can then be executed by selecting
in sequence:

Utilities Macro Run operations

If the macro file uses additional data files, they need to be added to the
project before invoking the Run operation. The default directory (cata-
log) for these files is the Project directory.

The currently executing macro is listed in the simulator status window.

3. Test Vectors
The simulation proces is comprised of two steps:

1. Create a data file with test vector values.

2. Write a command file that loads (assigns) test vector values and issues
the simulate command to simulate the loaded values.

3.1. Test vector files
Each line in a test vector file lists a set of logical values to be assigned to a
signal line or a bus at a selected time instance. Comments lines start with
the symbol |.

Test Vector File Example:
| ab.dat test vector file
| test vectors for buse s A i B
|
| format
| A[0:7]
| B[0:3]
|
10101101 | binary value
2\D | decimal value of 2; uses four lines B[0:3]
|
AB\H | hexadecimal value of AB
0111
|
10001111
Z
|

In the above example, only the lines without the | symbol will be loaded
into test vector files (executed by the macro processor).

5-6 3. Test Vectors

Command File Example:

Assign A ab.dat | assigns the first data (10101101) from ab.dat to the
A bus

Assign B ab.dat | assigns the second data (2\D) from ab.dat to the B
bus

sim | simulates the assigned bus values
Assign A ab.dat (AB\H) | assigns the 3rd data from ab.dat file
Assign B ab.dat (0111) | assigns the 4th data from ab.dat file
sim
Assign A ab.dat (10001111)
Assign B ab.dat (Z)
sim

|The Assign macro automatically loads the consecutive data from the ab.
dat file.

3.2. Event Files
Each line in the event file describes the new signal or bus state and the
time of its occurrence from the beginning of the simulation.

Event File Example:

@0 = 0\H(hexadecimal)
@100 = 1\H
@200 = Z
@300 = A\H

4. Viewsim Compatible macros

4.1. Comments
Format: |

Abbreviation: none

Operation

A line starting with the | comment symbol is omitted during macro exe-
cution. However, the text of the comments is displayed in the simulators
comment window.

Comment Example:

| this is a procedure for testing the decoder

Simulation Macros 5-7

4.2. Macro (Command) Loops
Format: (list_ of _commands_in_ the_ loop)*n

Abbreviation: none

Operation

The macro (commands) listed in parentheses are performed n times,
where n is a decimal number. A loop within a loop is not allowed.

Example:
(assign A a.dat; assign B b.dat; sim; print re-
sults.dat) * 12

This macro will repeat 12 times the following operations:

r assign to the signal (bus) A the next value listed in the a.dat file

r assign to the signal (bus) B the next value listed in the b.dat file

r simulate one simulation step

r write the signals listed in the Watch file to the results.dat file.

r repeat the first operation, etc.

4.3. Activity
Not implemented

4.4. After
Format: after time do (cmd1;cmd2;...cmdn)

Abbreviation: none

Operation:

AFTER defers the execution of the set of commands listed in parentheses
until after the specified time has elapsed, relative to the current simula-
tion time. The commands in each macro execute in the order in which
they are listed. However, if more than one AFTER macro is scheduled to
execute at the same time, the order of execution of the two macros is un-
defined.

5-8 4. Viewsim Compatible macros

The commands must each be separated by a semi-colon.

Example:

after 10ns do (assign DATA0 1)
sim

After 10ns of simulation (relative to the current time), the signal DATA0
assumes a constant value of 1.

4.5. Assign
Format: assignsignal_or_bus new_state

assign signal_or_bus data_file

Abbreviation: none

Operation

The second parameter is assigned to the first one during the simulation.
The second parameter can be either a concrete signal state or a signal
value from the specified file. The assigned signal behaves as a weak sig-
nal, and the node is controlled by the actual chip outputs, if any.

Example:

assign U1.A1 Z | assigns a tri-state to the U1.A1 pin
assign ADBUS1 AB03\H | assigns hexadecimal value AB03

to the bus ADBUS1
assign DATA data_bus.dat | assigns to DATA the values

from the data_bus.dat file

4.6. Breakpoint
Format: break

break signal_or_test_vector

break signal_or_test_vector event

break signal_or_test_vector event do (sequence of events)

Abbreviation: break

Simulation Macros 5-9

Operation

This macro clears breakpoints as a result of aspecified simulation result
(event). It also stops simulation when specified signal or test vector con-
ditions are met.

r break ; clears all breakpoints

r break signal_or_test_vector ; clears all breakpoints set for specified
signal, device pin or test vector

r break signal_or_test_vector event ; stops the simulation process if the
breakpoint condition (event) is met. Executes the next macro from the
macro file. If the breakpoint was a part of a loop, the loop is aborted
and the next macro is executed.

r break signal_or_test_vector event do (sequence of events) ; stops the
simulation when the selected breakpoint condition is met, and then
executes the macro listed after do. After the completion of these
macro, ACTIVE-CAD continues to execute the macros from the
macro file.

Event format:

r ? - means that any change is the desired event

r condition - indicates the desired state

r condition1 - condition2 - the desired state is achieved upon changing
from condition1 to condition2

Examples:

break - deletes (turns off) all breakpoints
break clock- deletes all breakpoints on clock signal
break clock ? - stops simulation after any clock transition
break enable Z-X - stops simulation when the enable signal changes from
High_Z to Unknown_X
break clock 0-1 do (assign DATAfile.dat; print) - stops simulation when the clock
transitions from low to High and then assigns signal DATA a new value from
file.dat. Next, it prints the new state of all signals.

4.7. Changes

Not implemented

5-10 4. Viewsim Compatible macros

4.8. CHECK
Format: check signal_name [> filename]

check signal_name [value]

Abbreviation: none

Operation:

With no options, this command writes the value of the signal to the con-
sole. If you specify a filename, then the command writes the value to the
file.

If you specify a value, then the command compares the signals value to
the value specified. If there is a discrepancy between the two values, the
command writes a message to the console. Instead of specifying the
value directly, you may read in values from a file. Each time you enter
the command, it reads in one value from the file, then advances the file
pointer to the next value.

Examples:

DATA0 is a signal whose value at 100ns (the current time) is 1.

check DATA0

DATA0 = 1 at time 100ns

The command writes the current value of DATA0 to the console.

check DATA0 >out

The command writes the current value of DATA0 to file out in the cur-
rent directory.

check DATA0 1

The value of DATA0 at the current time equals the value specified, so the
command does not write a result.

check DATA0 0

value 1 on DATA0 does not match 0 at time 100ns

Simulation Macros 5-11

The command writes to the console the fact that the value of DATA0 at
the current time does not match the value specified.

File in contains values 0,1,0,1.

check DATA0 <in
value 1 on DATA0 does not match <in at time 100ns
check DATA0 <in
check DATA0 <in
value 1 on DATA0 does not match <in at time 100ns
check DATA0 <in

Each time the check command is executed with the <in parameter, the
next value is read in. When the end of the in file is reached, the file re-
winds.

4.9. Clock

Format clock signal_or_bus_specification signal_state_1 ... signal_state_n

Abbreviation ck

Operation

The clock macro defines a periodical signal or bus which is applied to
the node. Each signal state lasts for the duration of the SHORT step. By
setting the STEP to different values, different clock timings can be gener-
ated.

Clock causes automatic synchronization of all signals and buses gener-
ated by the SETUP operation. Each new signal state, as defined by the
SETUP operation, is applied to the simulator at the beginning of the
clock cycle. If the clock cycle is comprised of four simulation steps (or
logical states), then the SETUP signals will be applied every four simula-
tion STEPS.

Example:

step 20ns
cloc k c 0 1 0 1 1 0 0 1
patter n b 0 1
pattern a 0
run

5-12 4. Viewsim Compatible macros

4.10. Continue
Not implemented

4.11. Cycle
Format: cycle

cycle n

Abbreviation c

Operation

The simulator performs an n number of clock cycles, which need to be de-
fined prior to using this macro (see SETUP Clock macro). If no clock has
been specified, the SHORT step is used. If several clocks have been de-
fined, the longest clock period is used. If no n is listed, only one simula-
tion cycle is performed.

Example:
Cycle 5
c 5

These macro will simulate five clock cycles that have been defined by the
SETUP Clock macro.

4.12. Defaults
Not implemented

4.13. DELAY
Not implemented

4.14. DISPLAY
Format: display

Abbreviation: d

Operation:

Simulation Macros 5-13

This macro displays the values of signals which have been previously se-
lected with the WATCH command. If no signals were selected, then the
macro returns the current simulation time.

Examples:

display ; no signals were selected previously
time = 50ns ; display current time only
watch DATA0 ; select DATA0
display
time = 50ns DATA 0 = 0 ; display current time and

value of DATA0 at that time

4.15. DUMPM
Not implemented

4.16. ECHO
Format: echo any text free of semicolon and new lines

Abbreviation none

Operation

This macro writes into the simulators Interact window the text listed in
the macro. If the macro has been used in a loop, the text cannot include a
closing bracket. The macro is used to provide information about the
simulators internal states and about the simulated circuit.

Example:

echo Start execution of memory test macro

4.17. EVERY
Format: every time do (cmd1;cmd2;...cmdn)

Abbreviation: none

Operation:

5-14 4. Viewsim Compatible macros

The commands in parentheses execute in order at time intervals speci-
fied in the time parameter. In order for this macro to take effect, it must
precede a SIM, RUN, or CYCLE command.

If more than one of these macros specifies that commands should exe-
cute at the same time, the order of execution of the macros is undefined.

Examples:

w DATA0 ; select a signal whose values will be dis-
played
every 10ns do (d)
sim
time = 50ns DATA0 = 0
time = 60ns DATA0 = 1
time = 70ns DATA0 = 0
time = 80ns DATA0 = 1
time = 90ns DATA0 = 0
time = 100ns DATA0 = 1

4.18. EXECUTE
Format: execute command_filename

Abbreviation: ex

Operation: This command executes the commands stored in the com-
mand_filename.

Example:

ex cmd.fil ; the commands in cmd.fil are executed

4.19. FLUSH
Not implemented

4.20. High
Format: high signal_or_bus_specification

Abbreviation: h

Simulation Macros 5-15

Operation

This macro forces a weak High signal state on the specified signal or bus
lines (by signal_or_bus_specification). If applied to an input pin, it will
force that input pin to logical High. However, since this is a weak signal,
if it is applied to an output pin or signal node, it will be overridden by
any strong signal generated by the output pin or node.

Example:

h U21.INPUT ;

It forces a weak High signal state on the U21.INPUT pin. Since input
override signals are never overridden by node signals, this weak signal
will directly control the input pin.

4.21. Info
Not implemented

4.22. Inputs
Not implemented

4.23. Low
Format: low signal or bus specification

Abbreviation: l

Operation

The listed signal or bus will be forced into a weak Low signal state. If the
macro is applied to an input pin, it will force that input pin to logical
Low. However, if the macro is applied to an output pin or signal node,
the signal will be overridden by any strong signal generated by the out-
put pin or node.

Example:

low U12.OUTPUT ;
This macro forces a weak Low signal state into the U12.OUTPUT pin.
This signal will be overridden by the chips strong output signal, if pre-
sent.

5-16 4. Viewsim Compatible macros

4.24. Logfile
Not implemented

4.24. LOG_VECTORS
Not implemented

4.25. NETWORK
Format: network filename (no extension)

Abbreviation: net

Operation: This macro is equivalent to ACTIVE-CADs File/Load Netlist
command.

Example:

net dacdemo ;load the dacdemo netlist into the simulator

4.26. Path
Not implemented

4.27. Pattern
Format: pattern signal_or_bus_ listing explicit_signal_state_listing

pattern signal_or_bus_ listing file_signal_state_listing

Abbreviation: pat

Operation:

The specified signals and buses are forced into the explicitly listed signal
states, or states listed in the file, in the listed sequence. The signals are
forced into weak states, which means that they will control only input
pins. However, if the macro is applied to output pins or nodes, the signal
states may be overridden by strong signals. Each new signal state is ap-
plied at the beginning of the clock cycle. If no clock has been specified,
each new signals state is applied at the beginning of each new simulation
cycle (Step).

Simulation Macros 5-17

Example:
pattern U23.Y 2 0 1 AB\H Z X H 12\D
pat B34.CLK .dat

This macro will assign to the pin U23.Y2, at the successive simulation cy-
cles, the following signals:

L H H (lowest order bit of AB/h=H) High_Z Unkn_X L (lowest order
bit of 12\D=0). Had the macro listed a bus in place of the single-wire pin
U23.Y2, then the AB\H and 12\D would have been used as multi-signal
(wire) data.

Example:

pat B34.CLK .dat

This macro will assign to the B34.CLK pin, at the successive simulation
cycles, the signals from the clock.dat file, in the order in which they are
listed in that file.

4.28. PRINT
Format: print file name

print pagelen n

Abbreviation: none

Operation

The first macro saves to a file the signals and buses listed in the WATCH
macro. The signals are saved in the same in which they were listed in the
WATCH macro. The page header is printed, together with the signal
names. The SETUP Radix macro determines the radix (hex, octal, binary,
etc.) of the signals and buses.

The n parameter in the second command (print pagelen n) list the
number of lines per page and thus the page length. The saved data can
then be printed using the ACTIVE-CAD print option. There is no need to
print signals to the screen because they are automatically displayed by
the simulator.

Example:
print results.dat
print pagelen 24

5-18 4. Viewsim Compatible macros

The results.dat file is printed on a page 24 rows lines long.

4.29. QUIT
Format: quit

Abbreviation: none

Operation

This command ends execution of the current macro.

Example:

quit
Terminates execution of the macro and returns control to the simulator
program.

4.30. SETUP Radix
Format: radix base vector1 vector2 ... vectorN

Abbreviation: none

Operation

This macro establishes the radix (hex, octal, binary, decimal) for each sig-
nal and bus. This base is used both by the simulators Waveform Viewer
and the print operation. The following base abbreviations are allowed:

bin - binary representation

oct - octal representation

dec - decimal representation

hex - hexadecimal representation

Example:

radix oct Data_In
radix hex Address_Bus

The Data_In bus values are provided in the octal format and Ad-
dress_Bus is in the hexadecimal format.

Simulation Macros 5-19

4.31. RELEASE
Format: release signal_or_bus_name

Abbreviation: r

Operation

Disconnects the macros induced signals from the specified signal or bus.
Thereafter, the signal or bus will be under direct simulator control.

Examples:
release Data_In
r Address_Bus

This causes Data_In and Address_bus to be directly controlled from the
simulator.

4.32. SETUP Report
Not implemented

4.33. RESTART
Format: restart

Abbreviation: none

Operation

Executes the Power-on operation

Example:
restart

Causes the simulator Power-on operation. The Power-on setup must be
performed from the simulator menus prior to using this macro. This setup
may include reset to All Low, All High, Random, Unknown, etc.

4.34. RESTORE
See the LOAD macro.

5-20 4. Viewsim Compatible macros

4.35. RUN
Formats: run n

run

Abbreviation: none

Operation

Starts the simulation. The simulator performs n clock cycles, and exe-
cutes signal assignments as defined by the WAVEFORM and PATTERN
macro. If clocks are not defined, n number of short STEPs are executed. If
the n parameter is omitted, the simulation continues till the longest sig-
nal pattern or waveform is processed.

4.36. SAVE
See the Save/Load Simulation Results section in this Chapter.

4.37. SIM
Format: sim time

sim

Abbreviation: none

Operation

Starts simulation. The simulation time is specified by the time parameter.
It the time parameter is not listed, a single short STEP is simulated.

Examples:

sim 53ns
sim
sim 7.34us

These commands simulate the design for the requested time durations:
53 ns, short STEP, 7.34 us, respectively.

4.38. SIMULATE
Not implemented

Simulation Macros 5-21

4.39. STATISTICS
Not implemented

4.40. STEPSIZE
Format: stepsize time

Abbreviation: step

Operation

Sets the short STEP duration which controls all macro operations, includ-
ing clock, simulation time, waveforms, etc.

Examples:
stepsize 15ns
step 260ps

The basic simulation units (short STEPS) as defined by these macro, are
15 ns and 260 ps, respectively.

4.41. TICKSIZE
Not implemented

4.42. TIME_MEASUREMENT
Not implemented

4.43. SETUP Trace
Not implemented

4.44. TYPE
Not implemented

4.45. SETUP Vector
Format: vector bus_name bus_element_1 ... bus_element_n

Abbreviation: v

5-22 4. Viewsim Compatible macros

Operation

This macro is used to describe a bus. Instead of writing the full bus mem-
ber names, you can write them in shorthand. For example, instead of en-
tering bus A as a0 a1 a2 a3 a4 a5 a6 a7, you can enter v A a[0:7]

Both signal names and pin names can be part of a bus. The created buses
are automatically listed in the Signal field of the simulator display.
Please note that a signal cannot be a member of more than one bus.

Examples:
vector Data_In D0 D1 D2 D3
v ADDRESS_BUS AD[0 : 16]

4.46. SETUP Watch
Format: watch signal_name_1 signal_name_2 ... signal_name_n

Abbreviation: w

Operation

Selects which signals and buses should be displayed in the simulators
waveform viewer. These signals are also automatically selected for print-
ing.

Examples:
watch Data_Input
w rst clr enable

The first macro has selected Data_Input to the display list. The second
macro has selected signals rst, clr and enable .

4.47. SETUP Viewwave
Not implemented

4.48. WAVEXFER
Not implemented

4.49. SETUP Wfm Aperiodic
Formats:

Simulation Macros 5-23

wfm signal_or_bus_name at_time_1 at_time_2 ... at_time_n

wfm signal_or_bus_name (at_time_1 at_time_2 ... at_time_n)*m

wfm signal_or_bus_name file name

Abbreviation: w

Operation

In all formats, times are expressed in 100 ps units, unless explicitly stated
otherwise.

The first format defines the signal states that are forced upon the signal
line at specified time instances. The parameter at_time_k can represent
time either since the simulation beginning (absolute time) or since the
last event. If the parameter at_time_k is entered as @k=1, then it speci-
fies the absolute time (marker @). If the marker @ is omitted, then the
time is specified from the last event. For example, k=1 specifies High sig-
nal state at time k*100ps since the last event on that signal line.

If any time is specified as relative, then all following times must also be
relative. For example, in DATA @120=1 @145=0 160=1 185=Z, the last
statement (185=Z) must be relative because the preceding one (160=1) is
relative.

The second format specifies repetitive signal value assignment. All time
values in parentheses must be relative. For example, DATA @0=0
(1000=1 1500=0 2000=Z 1000=0)*5 specifies a signal that is repeated five
times , with the values in the parentheses being relative to the preceding
signal event.

The third format allows for automatic assignment of signal values (at se-
lected times) from a file.

All macro create timing waveforms with weak signals which control all
input pins. When applied at device outputs or nodes, these weak signals
are overriddden by strong signals.

Examples:

wfm D0 @0=0 @1000=1 @2000=Z @3000=0 (format 1)
wfm A5 @0=H (1000 = L 2000=H) * 10 (format 2)
wfm Data0 events.dat (format 3)

5-24 4. Viewsim Compatible macros

4.50. SETUP Wfm Decrement
Format: wfm signal_or_bus_name starting _time starting_value (period= dec

by value) * n

Abbreviation: none

Operation

This macro generates a bus with decrementing values. For example,

WFM DATA @0=FF\H (10000=dec by 2)*8

will generate a DATA bus signal that is decrementing each 100 ns
(10000x.01ns simulation precision) from its starting hexadecimal value of
FF. Since each decrement is by 2, the resulting bus value at the end of the
eighth decrement will be EF. If you explicitly list ns, e.g. @100 ns, then
the time is calculated in ns.

Example:
wfm Data_OUT @20ns = 234\D (100ns=dec by 5) * 32

The macro-generated signals are weak signals, and they will be overrid-
den by strong signals present in the node or on output pins.

4.51. SETUP Wfm Divide
Format: wfm signal_or_bus_name @time1=state1 (period= div by value) * n

Abbreviation: none

Operation

This macro generates n number of signal values in which each new value
equals the current value divided by the div by value. Remember that
macro operate with natural numbers and e.g. 3-divide by-5 = 0.

Example:
wfm Data_OUT @20ns = 625\D (100ns=div by 5) * 3

This macro generates a signal that starts at 20ns (@=from the origin)
with a decimal bus value of 625 (625\D). Each 100ns the current value
is divided by 5 to yield a new current value. As a result, the macro pro-
duces a waveform:

DATA_OUT @20ns=625 @120ns=125 (absolute time!) 100ns=25 (relative
time!) 100ns=5.

Simulation Macros 5-25

This macro is particularly useful in testing binary and other counters.

4.52. SETUP Wfm Increment
Format: wfm signal_or_bus_name @time1=state1 (period= inc by value) * n

Abbreviation: none

Operation

This macro generates n number of signal values in which each new value
equals the sum of the current value and the increment (inc by value). The
initial or starting time can be expressed as an absolute or relative value.

Example:

wfm Data_Bck @20ns = 625\D (100ns= inc by 5) * 3
This macro generates at the absolute time of 20ns a bus signal with the
initial value of 625 (decimal). Each 100 ns thereafter, the bus value is in-
cremented by decimal 5. As a result, the macro generates a bus:

Data_Bck @20=625\D @120ns=630\D @220ns=635\D
@320ns=640\D

4.53. SETUP Wfm Multiply
Format: wfm signal_or_bus_name @time1=state1 (period= mult by value) *n

Abbreviation: none

Operation

This macro generates n number of signal values. Each new value is a
product of the current signal value and the multiplier (mult by value).
The initial or starting time can be expressed as an absolute or relative
value.

Example:

wfm Data_Bck @20ns = 25\D (100ns= mult by 5) * 3

This macro generates at the absolute time of 20ns a bus signal with the in-
itial value of 25 (decimal). Each 100 ns thereafter, the new bus value is
equal to the currentt bus value and the multiplier. As a result, the above
macro generates a bus:

5-26 4. Viewsim Compatible macros

Data_Bck @20ns=25/D @120ns=125/D @220ns=625/D
@320ns=3125/D

4.54. SETUP Wfm Periodic
Format: wfm signal_or_bus_name @time1=state1 (time2=state2

time3=state3) * n

Abbreviation: none

Operation

This macro generates at time1 the initial signal state1. Following this, the
macro generates n number of signal values described by the expression
in parentheses. The initial or starting time can be expressed as an abso-
lute or relative value.

Example:
wfm Data1 @20ns = 0 (100ns= 1 120ns=0) * 3

This macro generates at the absolute time of 20ns a Low signal, followed
by High at @120, Low at @240, High at 340, Low at 460, High at 560
and Low at 680.

4.55. SETUP Wfm Rotate Left
Format: wfm signal_or_bus_name @time1=state1 (period=rl by value) * n

Abbreviation: none

Operation

This macro rotates the binary bus value, starting with the state1 value at
the initial time1. The bus value rotates to the left at the specified time (pe-
riod) intervals. The bus shifts by the number of binary positions specified
by the (rl by) value, and there are n such shifts altogether. The highest or-
der bit shifts into the lowest order bit, thus performing a closed loop bi-
nary-shift operation.

Example:
wfm Data1 @20ns = B (100ns=rl by 1) * 3

This macro generates at the absolute time of 20ns a bus signal with a
value of B (1011\B), followed by 7 (0111\B) at @120ns, E (1110\B) at
@220 ns and D (1101\B) at @320ns.

Simulation Macros 5-27

4.56. SETUP Wfm Rotate Right
Format: wfm signal_or_bus_name @time1=state1 (period=rr by value) * n

Abbreviation: none

Operation

This macro rotates the binary bus value, starting with the state1 value at
the initial time1. The bus value rotates to the left at the specified time (pe-
riod) intervals. The bus shifts by the number of binary positions specified
by the (rl by) value, and there are n such shifts altogether. The lowest or-
der bit shifts into the highest order bit, thus performing a closed loop bi-
nary-shift operation.

Example:

wfm Data1 @20ns = B (100ns=rr by 1) * 3

This macro generates at the absolute time of 20ns a bus signal with a
value of B (1011\B), followed by D (1101\B) at @120ns, E (1110\B) at
@220ns and 7 (0111\B) at @320ns.

4.57. SETUP Wfm Shift Left

Format: wfm signal_or_bus_name @time1=state1 (period=sl by value) * n

Abbreviation: none

Operation

This macro shift the binary bus value, starting with the state1 value at the
initial time1. The bus value shifts to the left at the specified time (period)
intervals. The shifting is by the number of binary positions specified by
the (sl by) value, and there are n such shifts altogether. The highest order
bit is shifted out and lost.

Example:

wfm Data1 @20ns = B (100ns=sl by 1) * 3

This macro generates at the absolute time of 20ns a bus signal with a
value of B (1011\B), followed by 6 (0110\B) at @120ns, C (1100\B) at
@220ns and 8 (1000\B) at @320ns.

5-28 4. Viewsim Compatible macros

4.58. SETUP Wfm Shift Right
Format: wfm signal_or_bus_name @time1=state1 (period=sr by value) * n

Abbreviation: none

Operation

This macro shifts the binary bus value, starting with the state1 value at
the initial time1. The bus value rotates to the left at the specified time (pe-
riod) intervals. The shifting is by the number of binary positions speci-
fied by the (sr by) value, and there are n such shifts altogether. The lowest
order bit is shifted out and lost.

Example:

wfm Data1 @20ns = B (100ns=sr by 1) * 3

This macro generates at the absolute time of 20ns a bus signal with a
value of B (1011\B), followed by 5 (0101\B) at @120ns, 2 (0010\B) at
@220ns and 1 (0001\B) at @320ns.

4.59. FORCE Unknown
Format: x signal_or_bus_name

Abbreviation: none

Operation

This macro assigns Unkn_X to a signal or bus.

Example:

x U21.INPUT

This macro assigns the X (unknown) signal state to the U21.INPUT pin.

5. SPECIAL ALDEC MACRO OPERATIONS

These macro operations are available only with ACTIVE-CAD software.
They give you additional test vector editing power and makeyour work
easier and more productive.

Simulation Macros 5-29

5.1. CHECK Design
Format: chk_design design_name

Abbreviation: chkds

Operation

This macro checks if the currently simulated design state is identical to
the one specified in the design_name. If the design state differs from the
one listed in the design_name, then the macro is stopped and the mes-
sage Check Design failed is displayed. If there is no difference, then the
next macro from the macro file is performed.

Note: This macro checks only the design timing. It does not compare the
hex files, JEDECs and other design elements that have been used in the
current and reference simulations.

Example:

chk_design Design1
chk_design c:\project\proj_ab\prdes

5.2. CHECK MemBlock

Format: chk_memblock hex_file_name memory_block_name

Abbreviation: chkmb

Operation

This macro checks if the currently simulated data, residing in the se-
lected memory_block_name is the same as in the reference hex_file_name. If
there is any difference, the macro displays the message Check Mem
Block Failed and stops the execution of other macro from the macro file.
If there is no difference, then the next macro from the macro file is per-
formed.

Example:

chk_memblock Blok1 Main_RAM
chk_memblock c:\project\proj_ab\blkcont scratch_mem

5-30 5. SPECIAL ALDEC MACRO OPERATIONS

5.3. CHECK MemChip
Format: chk_memchip hex_file_name memory_device_name

Abbreviation: chkmc

Operation

This macro checks if the currently simulated data, residing in the se-
lected memory_device_name is the same as the data in the reference
hex_file_name. If there is any difference, the macro displays the message
Check Mem Chip Failed and stops the execution of other macro from the
macro file. If there is no difference, then the next macro from the macro
file is performed.

Example:

chk_memchip RAM1 U34
chk_memchip c:\project\proj_ab\mem1 U32

5.4. CHECK Timing
Format: chk_timing timing_file_name

Abbreviation: chktm

Operation

This macro checks if the currently simulated data is the same as the data
in the reference timing_file_name. If there is any difference, the macro dis-
plays the message Check Timing Failed and stops the execution of other
macro from the macro file. If there is no difference, then the next macro
from the macro file is performed.

Since the simulation results depend upsuch parameters as on the simula-
tion step, simulation mode, etc., the simulation results are matching the
reference only if these parameters are identical to the ones used for gener-
ating of the reference timing_file_name.

Example:

chk_timing restart
chktm c:\project\proj_ab\memload

Simulation Macros 5-31

5.5. GET Netlist
Format: get_netlist format netlist_file

Abbreviation: getnet

Operation

This macro loads a design netlist in the specified format. The netlist direc-
tory, name and extension are specified by netlist_file. If the directory is
not listed explicitly, it is assumed that the netlist resides within the cur-
rent project. The accepted netlist formats are listed below:

r susie_5 Susie 5.0

r app_bravo Application Bravo

r cadnetix Cadnetix

r capfast CapFast

r case_tech Case Technology

r des_comp Design Computation

r futurenet Futurenet

r omation Omation

r orcad OrCad

r pcad_p P-CAD Pinlist

r pcad_h P-CADH

r pdif Pdif

r racal_redac Racal-Redac

r tango Tango

r visionics Visionics

r viewlogic ViewLogic

r wintek Wintek I

r susie_ascii Susie 6.0 Ascii format

r xilinx Xilinx

r edif Edif 2 0 0

r susie_bin Susie 7.0 Binary format

r lattice Lattice

r massteck Massteck ascii

5-32 5. SPECIAL ALDEC MACRO OPERATIONS

r pads PADS

r intusoft Intusoft

r spice Spice

r actel Actel

r pcad_n PCAD Netlist

r calay Calay

r edif_altera EDIF_ALTERA - MAX+PLUS Edif 2 0 0

r quick_logic Quick Logic

Example:

get_netlist actel newnet

Loads the newnet netlist which resides in the current project directory
and is in the Actel format.

5.6. LOAD ASCII

Format: load_ascii timing_file_name

Abbreviation: lat

Operation

This macro loads the ASCII (text) format-based timing signals from the
timing_file_name into the simulator. The following macro can load addi-
tional timings, start simulation, or start simulation with comparison, etc.

Examples:

load_ascii atim_1
lat ascii_tim2

5.7. LOAD Design

Format: load_design design_file_name

Abbreviation: lds

Simulation Macros 5-33

Operation

This macro loads the design represented by the design_file_name into the
simulator. The following macro can load timing files, start simulation, or
start simulation with comparison, etc.

Examples:
load_design design_1
lds init

5.8. LOAD Fault
Format: load_fault timing_fault_file_name

Abbreviation: lft

Operation

This macro loads timing data from the timing_fault_file_name into the
fault simulator, which is a ACTIVE-CAD option. The following macro
can load other timing files, start simulation, or start simulation with com-
parison, etc.

Examples:
load_fault fault_1
lft init

5.9. LOAD Fuse Map
Format: load_fuse JEDEC_file_name device_name

Abbreviation: lfm

Operation

This macro loads a JEDEC from the JEDEC_file_name into the PLD speci-
fied by the device_name. Without this JEDEC file, the PLD would simulate
as a device with all fuses intact. The following macro can load additional
PLDs with JEDECs, timing files, start simulation, or start simulation with
comparison, etc.

Examples:
load_fuse decoder U23
lfm init PAL1

5-34 5. SPECIAL ALDEC MACRO OPERATIONS

5.10. LOAD Memory Block
Format: load_memb block_hex_file_name memory_block_name

Abbreviation: lmb

Operation

This macro loads the hex code from the block_hex_file_name into the
memory devices specified by the memory_block_name.

Examples:
load_memb ram_cnts ram
lmb romst rom

5.11. LOAD Memory Chip
Format: load_memch device_hex_file_name memory_device_name

Abbreviation: lmc

Operation

This macro loads the hex code from the device_hex_file_name into the
memory device specified by the memory_device_name.

Examples:
load_memch ram_cnts M5
lmc romst M12

5.12. LOAD Selective Preset
Format: load_preset preset_file_name

Abbreviation: lsp

Operation

The simulator loads the design preset conditions from the file specified
by preset_file_name. The STARTUP macro executes the actual preset of
the design.

Examples:
load_preset initpres

Simulation Macros 5-35

lsp clear

5.13. LOAD Timing
Format: load_timing test_vector_file_name

Abbreviation: ltm

Operation

The simulator loads the simulation test vectors from the file specified by
the test_vector_file_name.

Examples:

load_timing init
ltm clear

5.14. SAVE ASCII
Format: save_asciiASCII_file_name

Abbreviation: sat

Operation

The simulator saves the simulation timings (test vectors) as a text (ASCII)
in the ASCII_file_name.

Examples:

save_ascii new_tim
sat init_tim

5.15. SAVE Design
Format: save_designdesign_file_name

Abbreviation: sds

Operation

The simulator saves the design simulation conditions and results in the
design_file_name. For example, the simulator saves the operational mode,
simulation steps, JEDECs, hex files, initialization conditions, externally
loaded netlists, timings, etc. The saved design data allow for a complete
and flawless continuation of the design simulation.

5-36 5. SPECIAL ALDEC MACRO OPERATIONS

Examples:
save_design des_1
sds ddd

5.16. SAVE Fault Timing
Format: save_fault design_file_name

Abbreviation: sft

Operation

Simulator saves in the design_file_name, the current simulation timings
(test vectors) for future fault simulations.

Examples:

save_fault error
sft test

5.17. SAVE Memory Block
Format: save_membblock_hex_file_name memory_block_name

Abbreviation: smb

Operation

This macro saves the contents of the memory block, specified by mem-
ory_block_name, into a file specified by the block_hex_file_name.

Examples:

save_memb initial ram
smb simul blok1

In the first example, the contents of the memory block ram is saved in the
initial hex file. In the second example, the contents of the memory block
(block1) is saved in the simul hex file.

5.18. SAVE Memory Chip
Format: save_memch device_hex_file_name memory_device_name

Abbreviation: smc

Simulation Macros 5-37

Operation

This macro saves the contents of the memory device, specified by mem-
ory_device_name, into a file specified by the device_hex_file_name.

Examples:
save_memch s220 M23
smc init M15

In the first example, the contents of the memory device M23 is saved in
the s220 hex file. In the second example, the contents of the memory de-
vice M15 is saved in the init hex file.

5.19. SAVE Selective Preset
Format: save_presetpreset_file_name

Abbreviation: ssp

Operation

This macro saves the current preset conditions, entered manually under
the simulators Options menu, in a file specified by the preset_file_name.

Examples:
save_preset mypreset
ssp dr21

In the first example, the currently used design presets are saved in the
mypreset file. In the second example, the design presets are saved in
the dr21 file.

5.20. SAVE Timing
Format: save_timing timing_file_name

Abbreviation: stm

Operation

Simulator saves the current simulation timings (test vectors) in the tim-
ing_file_name. The timings are stored in the binary format.

Examples:
save_timing aftclk

5-38 5. SPECIAL ALDEC MACRO OPERATIONS

stm aft25ns

Simulation Macros 5-39

Chapter 6

Breakpoint Operations

A breakpoint is a software routine that checks for selected signal condi-
tions in the design. When these conditions are met, you have reached a
breakpoint condition and may perform the following design operations:

r Stop simulation.
r Place a marker on the screen.
r Place a milestone (save design status).
r Save test vectors.
r Load a new test vector file.
r Modify the existing test vectors (Append operation).

Breakpoints are very handy in tracking major design activities and error
conditions. They are used extensively both in hardware tools such as
logic analyzers and hardware emulators, and in software development
systems.

To create breakpoints, select the Breakpoints option from the Utilities
menu. ACTIVE-CAD responds by displaying the Breakpoint Options
menu (Figure 6-1). These options perform the following functions:

r Breakpoints ON activates the previously set breakpoint conditions.
r Breakpoints OFF deactivates breakpoint detection.
r Edit invokes the breakpoint editor.
r Load loads previously edited test vector files.

Breakpoint editor
Clicking on the Edit option in the Breakpoint Options menu (Figure 6-1)
invokes the Breakpoint Conditions window (Figure 6-2), whose Signals
field shows all signals currently displayed in the simulator.

Options
The Breakpoint Conditions window contains the following action but-
tons:

r States allows you to specify the signal logical states for which you
want to search.

r Load loads the previously saved breakpoints file.

Figure 6-1. Breakpoint Options Menu

Figure 6-2. Breakpoint Conditions Window

6-2 Breakpoint Operations

r Save saves current breakpoints.

r Edit allows you to create the breakpoint program.

r Bus toggles buses between discrete and hex display.

r OK activates the breakpoint program(s).

r Cancel cancels all breakpoint setups and operations.

Breakpoint programs consist of two (2) steps:

1. Creating breakpoint conditions for the selected signals.

2 Building breakpoint programs based on the breakpoint conditions.

Creating a Breakpoint Condition on an Individual Signal

1. Select the first signal in the Signals field.

2. Click on a Conditions column, e.g. 0. A red frame now highlights this
column.

3 Click on the States... button. ACTIVE-CAD displays the Breakpoint
States window (Figure 6-3), which you will use to assign logical
states to the signals you have selected. The signals will then be used
to create breakpoint programs.

4 In the Breakpoint States window click on the button representing the
signal logical level you want. To select a signal transition instead of
a signal level, click first on the button representing the signal logical
level before the transition, and then on the button representing the
signal logical level after the transition.

5. Select other signals from the Signals field and perform steps 2 through
4 for each one.

6. When completed, the Breakpoint Condition will represent the logical
AND function of all selected signals.

You can define up to fifteen (15) Breakpoint Conditions (0 through F)
and use them in your breakpoint program.

Breakpoint editor 6-3

Creating Breakpoint Conditions on Buses

You can assign a breakpoint condition to individual bus signal lines and
to an entire bus line (global bus operations).

Individual bus line breakpoint conditions

To set breakpoint conditions on individual signal lines, click on the Bus
button. It automatically displays buses as sets of signal lines. You can set
breakpoint conditions on these lines as described in Creating a Break-
point Condition on an Individual Signal, above.

Global bus line breakpoint conditions

The bus must be shown as a hex bus signal in the Signals field. If the sig-
nal line is split into individual lines, toggle the Bus button. Next, follow
these steps:

1. Click on the selected bus signal line in the Signals field.

2. Click on the selected Conditions field.

3. Click on the States button. When the Breakpoint States window ap-
pears, enter the bus hexadecimal value into the Bus State field and
then click on the Bus button. This button operates as a confirmation
of the bus setup. If you want to set a breakpoint on a condition when
all bus signal lines transition, click on the ?Edge button.

4. If you want the simulator to stop when it detects the bus breakpoint
condition, click on the OK button. If you want to create a more com-
plex breakpoint program, click on the Edit button to invoke the
Breakpoint Edit window (Figure 6-4). The Programming Process
section below describes how to use this window. Click on the Can-
cel button to delete the breakpoint setups.

Figure 6-3. Breakpoint States Window

6-4 Breakpoint Operations

Breakpoint Edit Window Options

r Delete deletes the selected instruction, argument or empty line.
r Delete All deletes the entire breakpoint program.
r Insert inserts an empty line.
r Edit displays a window with programming options.
r Check verifies that the program is correct.
r Conditions returns you back to the Breakpoint Conditions window.
r OK activates the breakpoint detection process.
r Cancel cancels the program in process, but does not delete it.

Programming Process

All operations described below refer to the Breakpoint Edit window:

1. When the Breakpoint Edit window appears, it generally lists the If
...Then...If construct. If it is not listed, position the cursor on the first
line and double-click. An Instruction List window appears which
lists two basic instructions (If and If Else). Double-clicking on one of
these instructions transfers the instruction into the Breakpoint Edit
window and leaves empty rows in which you may enter the instruc-
tion arguments (e.g. IfThenEnd If).

2. To nest instructions, double-click on the If or End If instructions, pro-
ducing the Instruction List or the Instruction-Argument List win-
dow, respectively. By double-clicking on the instruction you need, or
by highlighting the instruction and then clicking on the Set and
Close buttons, you will add this instruction to the breakpoint pro-
gram.

3. When you double-click on the line located below the If (or Else If) in-
struction, ACTIVE-CAD displays the Conditions List window. To

Figure 6-4. Breakpoint Edit Window

Breakpoint editor 6-5

simplify programming, the window lists only two options: Condition
and Not Condition. Clicking on the Expand box will produce addi-
tional instructions in this window (Figure 6-5).

r Condition activates the program if the Condition occurred.
r NOT Condition activates the program if the Not Condition occurred.
r Trigger activates the program if the Trigger occurred.
r Not Trigger activates the program if the Not Trigger occurred.
r Elapsed activates the program after an indicated time has lapsed.

4. If you double-click on the Then instruction, the AND/OR Instruction
window will appear and allow you to specify AND and OR logical
operations on several conditions defined in the Breakpoint Condi-
tions window. Do not use this option if you are using only one condi-
tion in the breakpoint program.

5. Double-clicking on the line located below the Then instruction invokes
the Instructions-Actions List window, which lists actions available
to ACTIVE-CAD upon breakpoint detection. Initially this window
lists only the actions most frequently used. However, if you click on
the Expand box, you will see additional options (Figure 6-6). You
need to select the action you want, e.g. Mark Breakpoint, Save Test
Vector. For example, if you select Mark Breakpoint and enter the let-
ter q into the Argument field, then each time that ACTIVE-CAD de-
tects a breakpoint, it will mark the breakpoint with the letter q. You
can select several actions to be executed one after another at a break-
point condition.

Figure 6-5. Expanded Conditions List Window

6-6 Breakpoint Operations

r Mark Breakpoint marks the location of the breakpoint occurrence.
r Save Milestone saves the design status and marks the display.
r Save Test Vectors saves existing signal wave forms as test vectors.
r Load New Test Vectors File loads a test vector file.
r Load Additional Test Vectors adds additional signals and test vectors

to the screen.
r Append Test Vectors loads test vectors starting at the blue cursor.
r Stop Simulation stops the simulation when it reaches a breakpoint.
r Delay delays the action following the command by a specified time.
r Count Time starts counting time.
r Set Trigger marks certain signal conditions or program branches.
r Clear Trigger clears the triggers you have set.

6. Click on the Set button to complete the selection of an instruction, con-
dition or action. Click on the Close button to complete or terminate
the breakpoint programming process.

7. Click on the OK button in the Breakpoint Edit window. ACTIVE-CAD
will check the breakpoint program and report any errors so that you
can correct them right away.

8. Click on the OK button in the Breakpoint Conditions window. This
sets the Breakpoint ON condition in the Utilities/Breakpoint Menu
(Figure 6-1).

Figure 6-6. Expanded Instructions-Actions List Window

Breakpoint editor 6-7

Appendix A

ASCII Timing Format Specification

ALDEC ASCII TIMING is a text file used to save and load timing for se-
lected signals and/or pins.

ASCII Timing File structure
ALDEC ASCII TIMING is composed of three blocks, each followed by a
block designator. Block designators are made of the pound sign (#) and
the name, followed by CR/LF. The sequence of data blocks is fixed and
listed below:

#Hier
#Signals
#Timing
#End

Any line beginning with a semicolon (;) is a comment and will be ig-
nored by the timing loader. Comments are allowed within any line and
in any part of the file.

#Hier block
This block lists all hierarchical levels used in the Timing diagram by
means of identifiers. An identifier is made of a @ followed by a number.
You should assign the identifiers to hierarchical blocks. The assignment
sequence is not important because it is used for housekeeping purpose
only. However, all identifiers should be listed in the #Hier block in as-
cending order, starting with @1 for the design ROOT.

The hierarchy name begins with ROOT followed by names of the follow-
ing levels, with spaces between each level.

Example:

#Hier
@1 ROOT ; ROOT has identifier @1
@3 ROOT A001 A1 ; this block has been given identifier @3

The #Hier block lists only the hierarchies used in the test vector defini-
tion. The above example has two hierarchy identifiers: @1 and @3.
ROOT is the name of the top hierarchical level of the design,
A001 is the name of the next lower hierarchical level (child of the ROOT),
A1 is the name of the next lower hierarchical level (child of A001).

#Signals block

This block lists all pins and signals included in the Timing diagram. They
are listed in the same order here as on the ACTIVE-CAD screen (from
top to bottom). The pin/signal description includes a number followed
by the hierarchy identifier (@1, etc.) and the pin/signal name. The pin
name (e.g. U23 X1) is composed of the component name and pin name,
separated by a space. The signal name (e.g. OUT1) is a one-word identi-
fier. Pins/signals should be listed in the display (ascending) order, start-
ing with 1. The example below shows three signals in their display order:

#Signals
1 @3 U23 X1 ; pin X1 of U23, located at @3 hierarchical level
2 @1 OUT1 ; signal OUT1 at the @1 hierarchical level (lowest)
3 @3 U2 14 ; pin 14 of U2, located at @3 hierarchical level

The example defines three signals, wherein:
1, 2, 3 are sequential signal numbers,
@1, @2, @3 are hierarchy identifiers that show each signal location in the

design hierarchy
U23, U2are part names, from the specified hierarchy levels
X1, 14 are pin names of the specified part, and they define the signal,
OUT1 is the name of the signal from of the specified hierarchical

level and is the equivalent to the signal name in ACTIVE-CAD.

NOTE: Any signal defined by part and pin name is comprised of four ele-
ments (e.g. 1 @3 U23 X1), and any signal defined only by its name is
comprised of three elements (e.g. 2 @1 OUT1).

A-2 #Signals block

#Timing block
This block lists timing for pre-specified pins and signals. Each line speci-
fies the time and state of all signals. Time is the number of nanoseconds
from the beginning of timing (0ns). You can use the following formats to
specify time:

10 10 nanoseconds
10.2 10.2 nanoseconds
72p 72 picoseconds
2.1u 2.1 microseconds

Use the following time scale designators:

blank nanoseconds
n nanoseconds
p picoseconds
u microseconds

The logical state is represented by one digit or letter, as shown in the ta-
ble below:

1 input high
0 input low
H output high
L output low
X unknown
Z high impedance
R reference voltage
V high voltage
. (period) designates no Timing

There is a space separating the states for each signal. The logical state of
the first signal begins in the same column in every line (e.g. 15th column)
in order to provide clarity.

Example of format:

#Timing
; 1 2 3 this comment line may be provided for ref-
erence
0 1 H X ;each row lists states of all signals
at the specified time
10.2 1 L X
21 0 L X
30 1 H X
40 1 . H

A-3

| | |
; | 3rd column lists the signal #3 test vector
; 1st column lists the signal #1 test vector
This listing represents specific time events, listed in the left column. They
are expressed in nanoseconds (default).

#End
This keyword ends the timing file. Any information following #End is ig-
nored.

Example

Following is an example of a Timing diagram and its ASCII Timing conversion.

Timing diagram:

U23.X1 _ ; this graphics represents signal waveform of U23.X1pin
OUT1 -__ ; this graphics represents OUT1 signal waveform
U2.14 xxxx- ;this graphics represents signal waveform of of U2.14 pin

ASCII equivalent of the timing:

#Hier
@1 ROOT
@3 ROOT A001 A1
#Signals
1 @3 U23 X1 ;this signal will be listed in the 1st test vector column
2 @1 OUT1 ;this signal will be listed in the 2nd test vector column
3 @3 U2 14 ; this signal will be listed in the 3rd column,below

NOTE: To better differentiate between inputs and outputs, all input sig-
nals have 1s and 0s. Output signals have Hs and Ls, respectively.

#Timing
; 1 2 3
0 1 H X
10.2 1 L X
21 0 L X
30 1 H X
40 1 H H

#End

NOTE: Both lower and upper case characters can be used interchange-
ably in the Timing file, with the exception of the pin name.

A-4 #End

Appendix B

ALDEC ASCII Netlist Format

The ALDEC Netlist is a text file used as an intermediate format for netlist
loading. This netlist includes all information about hierarchy, compo-
nents, connections, line delays, name aliasing and programmable block
configuration.

Netlist Structure
The ALDEC netlist is comprised of several data blocks (some of them op-
tional), each preceded by a block designator. Block designators are built
from a pound sign (#) and a 4-character name, and must be followed by a
space, TAB or CR/LF. A netlist defines all blocks in the following se-
quence:

#File
#Qnty
#Type
#Comp

#conf
#Sign

...
#Node

...
#EndN

Any text enclosed in brackets (< >) will be treated as a comment and will
be ignored by the netlist loader. Comments can be placed anywhere.
Both DOS and UNIX file formats are legal. All names (types, component
names, pin names) are enclosed in quotation marks. Block fields are ter-

minated by semicolons; commas separate field records. Space, TAB and
LF (or CR/LF) characters may be placed anywhere because they are ig-
nored by the loader. Names enclosed in quotation marks (“”) cannot in-
clude spaces, TABs or CR/LFs; any other character in the name is legal.
All words can be written in upper or lower case letters. However, names
within quotation marks (“”) are case sensitive.

List of special characters

block designator marker
<> comment delimiters
“” name delimiters
, record separator
; field terminator
() line delay delimiters
. separates component number from component

pin number or name

Section #FILE
This block specifies a source netlist file name (i.e. the one from which the
netlist was created). The filename cannot include an extension.

Format:
#File “file_name”;

Example:
#File “TEST1";

Section #QNTY
This block specifies the number of components, nested blocks, signals,
connections, and/or line delays in the netlist.

Format:
#Qnty no_of_components, no_of_nested_blocks, no_of_signals,
no_of_types, no_of_delays, no_of_nodes;

Where:
no_of_components - total number of all netlist components
no_of_nested_blocks- number of nested blocks
no_of_signals - number of signals (labels and terminals)
no_of_types - number of type names
no_of_delays - total number of line delays specified within

B-2 Section #FILE

parentheses “()”, in all #Node block fields
no_of_nodes total number of #Node blocks

Examples::
#Qnty 120,12,21,36,0,126;
#Qnty 15,0,9,4,5,155;
#Qnty 120, 12, <signals> 36, <types >21, <delays> 5, 155;

You must list all six blocks in the Block Section.

Section #TYPE
#Type block specifies the list of component types used in the netlist.

Format:
#Type
No, “type_name”;
. . .
No, “type_name”;

Where:
No is the sequential type_name number (1, 2, ...);

Example:

#Type
1, “SN74LS75N” ; this is a chip type name
2, “AmPAL20R8-10"; comments can be inserted in lines
. . .
20, ”ADDER-4" ; this is a nested block file name

Section #COMP
This block lists all netlist components, except signals and their class
(Nested Block or Chip). Programmable components can also be de-
scribed here within #CONF subblock. All components should be listed in
alphabetical order.

Format:
: #Comp

No, “name”, “location” , type_No, class;
...
No, “name”, “location” , type_No, class;

Where:
No - sequential name number (1, 2, ...)
name - component name (e.g. 7400)

B-3

location - component location (e.g. U21)
type_No - component type name number specified in #Type block
class: - C = chip or cell, N = nested block.

Examples:

#Comp
1, “P101", , 2, C;
2, ”US12",<no location>, 1, C;
3, <name> “US15", < no location>, <type> 1, C;
...

#Comp
1, “IN1",”P11", 9, C <both name and location present>
#Conf ... ;
2, ,"P15", 9, C <name only>
#Conf ... ; ...

Section #CONF
This is the only subblock in the netlist. It is optional and allows you to
specify programmable cells and logic block configuration. The format of
this subblock is flexible because the configuration descriptions are differ-
ent for different cells. The first field specifies the configuration code, the
second one lists the #conf subblock terminator (character). These two
fields are followed by the configuration description lines; comments are
not legal within these lines.

The following is a list of configuration codes and what they stand for, as
per LCA and XNF specification (all for XILINX FPGA):

1 - OSCx - internal oscillator
2 - TBUF - internal tri-state buffer
3 - CLB2 - 2000 family CLB
4 - IOB2 - 2000 family IOB
5 - CLB3 - 3000 family CLB
6 - IOB3 - 3000 family IOB
7 - Xilinx 4000 family ROM/RAM initial contents

Format:
#Comp No, “name”, “location” , type_No, class

#Conf code, “terminator”,configuration lines
terminator ;

Examples:
#Comp 1, “TCO”,"AD", 12, C

B-4 Section #CONF

#Conf 5, “#”,
Base FG
Config X:F Y:G RSTDIR: ENCLK: DX: DY: CLK: F:A:B:C:D G:A:B:C
Equate F=(A*B*C*D)
Equate G=(C*A*B)

#;
2, ,"TBUF.AP.1", 38, C #Conf 2, “.”, 1 .;
3, ,"TBUF.AA.1", 38, C #Conf 2, “.”, 0 .;

Section #SIGN

This block lists all signals and their types.

Format:
#Sign
No, “name”, type, bus;
...
No, “name”, type, bus;

Where:
No - signal number (N+1, N+2, ...), N is the last number in #Comp block;
name - signal name;
type - signal type; Table B-1 lists all the signal types
bus - bus number; Members of the same bus have the same number

(1 - bus 1, 2 - bus 2, etc.). Discrete signals have no number or
their number is 0.

Examples:

#Sign
58, “INP1", I, 1;<name numbering continues>
59, ”INP2", I, 1; <signals INP1 and INP2 are members of same bus>
60, “I/O_A”, B,; ...

NOTES:

r A terminal is unidirectional if it is not connected to a chip or cell pin.
An example of such a connection is from terminal to terminal:
TERM_1>————————< TERM_2
If the source netlist does not indicate a terminal type, the terminal will
be listed as unidirectional.

r The #Sign block lists bus LSB (least significant bit) first, MSB is the last.
r Only bus signals can be listed between the LSB and MSB bus members

within the #Sign block.

B-5

Table B-1. List of Signal Types.

Signal Type Description

I input terminal,

O output terminal,

B bi-directional terminal,

U unidirectional terminal,

L internal label,

1 HIGH state terminal (e.g. Vcc),

0 LOW state terminal (e.g. GND),

H high voltage terminal (e.g. Vpp),

R reference voltage terminal (e.g. Vbb).

Section #NODE

There are as many #Node blocks as nodes in a netlist. Each of them lists
components wired together.

Format:
#Node
Comp_No.pin, Comp_No.pin(delay), Comp_No.pin(delay),... ;

Where:
Comp_No component number (as listed in #Comp or #Sign);
pin pin name or number, 0 for signals;
(delay) line delay in [ns]; this record is optional.

Examples:

#Node
10."AD0" <name>, 25.4 <number>, 47.0;

#Node
35."CS", 47."CS", 28."Y1";

B-6 Section #NODE

#Node
10."O", 18."A"(3), 17."DI"(0), 25."B", 37."B"(4.7); <this node has line de-
lays>

Section #ENDN
This keyword ends the netlist file. The ending “;” can be omitted.

Notes
All blocks except #File, #Qnty and #EndN are optional. If there is nothing
to list, the entire block will be omitted.

B-7

Appendix C

Library Listing

The following is an abbreviated list of SUSIE libraries. The parts can be
available in all technologies, packaging and from all manufacturers.

TTL
00
01
02
03
04
05
06
07
08
09
10
11
12
14
15
20
21
22
25
26
27
30
31
32
33
34
36
37
42
45
46
48
49
50
51
53
54
55
56
57
64
65
68
69
70
72
73
74
75
76

77
78
83
85
86
89
90
91
92
93
94
95
96
97
107
109
111
113
116
120
121
122
123
125
126
128
131
132
133
134
135
136
137
138
139
140
143
147
148
150
151
153
154
155
156
157
158
159
160
161
162
163

164
165
166
167
168
169
173
174
175
178
180
181
182
183
190
191
192
193
194
195
196
197
198
199
221
229A
225
230
231
232A
233A
234
235
236
240
241
242
243
244
245
246
248
250
251
253
256
257
258
259
260
264
265

266
269
273
276
279
280
282
283
286
292
294
295
297
298
299
348
350
352
353
354
355
356
365
366
367
368
373
374
376
377
378
379
381
382
385
386
390
393
396
398
399
410
412
422
423
432
436
440
441
442
444
455

456
465
466
467
468
490
518
519
520
521
522
526
527
528
533
534
537
538
539
540
541
543
545
547
548
56o
561
563
568
569
574
575
577
579
583
588
590
591
592
593
594
595
596
597
598
604
605
606
607
614
615
620

621
622
623
638
639
640
641
642
643
644
645
646
647
648
649
651
652
653
654
655
656
657
673
674
676
677
678
679
680
682
685
686
687
688
689
711
712
723
725
732
733
746
747
755
756
757
758
759
760
762
763
776

777
779
786
804
805
808
810
811
821
822
823
824
825
826
827
828
832
841
842
843
844
845
846
850
851
861
862
863
864
866
867
869
870
873
874
876
878
879
881
882
899
990
991
996
1000
1004
1032
1241
1242
1243
1244
1245

1604
1645
1760
1760A
1762
1779
1894
1895
1896
1897
2232
2233
3037
3038
3040
3893
5074
8003
8960
8961
30240
30244
30245
30640
50109
50728
50729

Passive
DIP314A
DIP314B
DIP316A
DIP316B
RES
RPAK10
RPAK14
RPAK16
RPAK8
SIP106A
SIP106B
SIP108A
SIP108B
SIP110A
SIP110B

List of available libraries:
r 8051(Intel 8051, 8052, 8031, 8032)
r ACTEL1, ACTEL2, ACTEL3 (Actel FPGA macro library)
r ATMEL (Atmel EPLDs)
r ALTERA (Altera MAX & FLEX)
r CMOS (TTL-CMOS & CD4000)
r ECL (10K, 100K, 10H, 10E)
r EPLD (Altera & Intel EPLD, e.g. EP300, EP1800)
r ISA (Intel ISA Simulation library)
r LATTICE (Lattice pLSI macro library)
r M6809 (Motorola MPU)
r MACH (AMD CPLD, MACH1, 2, 3 & 4)
r MEMORY (RAM, ROM, SRAM, DRAM, FIFO, Dual Port, etc.)
r PASSIVE (Resistors, Capacitors, Inductors, Switches)
r PERIPHE (Intel and Motporola Peripheral Devices)
r PLD (Classical PLD and PAL devices e.g. 10H8, 22V10)
r QUICKLOG (Quicklogic PASIC Macro library)
r TTL (LS, S, F, ALS, etc.)
r XILINX2, XILINX3, XILINX4 (Xilinx FPGA macro library)
r X2000U, X3000U, X4000U, X7000U, XBLOXU (Xilinx Unified Libraries)
r Z80 (Zilog Z80 MPU)
r AMD (symbols only, AMD devices)
r ANALOG1 (symbols only, Analog devices, amplifiers)
r DEVICE1 (symbols only, discrete components, transistors, diodes)
r DIP (symbols only, footprint symbols)
r MEM (symbols only, Additional memory devices)
r MICRO (symbols only, Microprocessors)
r PAL (symbols only, additional PAL & PLD symbols)
r SEMI (symbols only, CD4XXX symbols)

NOTE: Libraries marked as “symbols only” do not contain simulation
models.

SUSIE Library Listing

Appendix D

Error Messages

Netlist Import Messages
This Appendix explains error messages reported by ACTIVE-CAD dur-
ing loading the netlist into the simulator, and suggests ways to correct
the problems.

WARNING: There is no netlist associated with current project

ACTIVE-CAD cannot find the requested netlist on the hard disk. Either an error
has been created during netlist conversion or the requested netlist file has been
renamed or deleted.

ACTION: Check if the requested netlist file resides in the selected directory
and has the same file name extension as entered. If the file exists, reload the
netlist again.

Unknown component -xxx, yyy

The specified xxx model of the yyy type has not been found in the project librar-
ies. ACTIVE-CAD creates an empty (dummy) model for the selected symbol.

ACTION: Check if the desired libraries have been included in the project. If
not, add them with the help of theProject Librariesoption. Ignore if you don’t
have the model.

Some IC Models not loaded. They were not found or not available in the
keylock

ACTIVE-CAD informs you that some of the models were incorrectly loaded.
This may happen when some of the model files have been deleted from the pro-

ject and the model cannot be completely loaded. Such models are replaced by
dummy models so that ACTIVE-CAD will be able to run the simulation.

ACTION: Reload the project libraries and load the netlist again.

Insufficient memory, loading gate array will be aborted

There is not enough RAM memory to load the entire ASIC design. Loading of
the ASIC gate array will be aborted.

ACTION: Free more RAM memory and load the design again.

Error while loading model; loading gate array will be aborted

A model-related error has been detected during loading of the ASIC design.
Loading of the ASIC will be aborted.

ACTION: First load the correct ASIC library and then load the design again.

Improper format netlist for gate array

An improper netlist format has been selected for the ASIC design netlist. For ex-
ample, you may have selected the Schema format instead of the Xilinx XNF for-
mat. ACTIVE-CAD will not load the ASIC design till the correct netlist format
is specified.

ACTION: Select the correct netlist format within the Load Netlist option.

xxx - not loaded. Library not found in the keylock

Model xxx has not been loaded because it is not allowed in the keylock.
ACTIVE-CAD creates a dummy model so that the simulation may proceed.

ACTION: Insert a keylock with the desired library enabled.

Board - bbb, board id - iii , port - ppp, error code - eee

This is an error message related to the Virtual Hardware I/O board installation
(PC-DIO-24 or PC-DIO-96). ACTIVE-CAD displays the I/O board and its port
ID numbers and the error ID number, as listed in the I/O board documentation.

ACTION: Reinstall the VHE I/O board as per ALDEC installation procedure.

Incorrect pin number nnn for hhh, ccc

While loading a netlist ACTIVE-CAD has found that thennnnetlist pin number
is different from thehhhASIC (library symbol) pin number. ACTIVE-CAD
stops loading the ASIC netlist.

ACTION: Correct either the ASIC symbol (in the Symbol Editor) or correct
the netlist.

D-2 Appendix F

Load Netlist for hhh , ccc

This is an advisory message only; a netlist of anhhhASIC design and theccc
type is being loaded.

ACTION: No action is required.

Incorrect hierarchy name - hhh

There is an error in the hierarchy created by loading annnnhierarchical alias.

ACTION: Correct (rename) the hierarchical schematic or macro.

Not enough memory for a new node

ACTIVE-CAD ran out of memory while loading the current netlist node.

ACTION: Free some more RAM and load the netlist again.

LDNODE: Node element number equal to zero

Incorrect ID name or number of signal or component in the netlist. Either the
wrong netlist format has been used or there is a disk read error.

ACTION: Check the netlist format and create a new netlist. Or, read the
netlist again.

LDNODE: Cannot read node element identifier

An error occurred while reading a netlist from disk. The hardware disk may
have failed or the netist file may have been corrupted.

ACTION: Create a new design netlist and check the hard drive.

LDNODE: There is no pin name and no pin number

An error occurred in the netlist node; missing a pin ID (it could be a wrong
netlist format or software bug). It could be created during the netlist read opera-
tion or the file has been corrupted.

ACTION: Check the netlist format. Regenerate the design netlist. If error per-
sists, contact ALDEC.

LDNODE: Unknown pin name

A discrepancy between the pin names in the netlist and the symbol li-
brary has been detected. It could be the result of ACTIVE-CAD searching
the component libraries in improper sequence. For example, two compo-
nents in two different libraries may have the same name yet they may dif-
fer in pin designations. If the libraries are in the improper order, a
component from the wrong library may be selected.

ACTION: Check if the libraries are in the proper search sequence and rear-
range them if needed. Also, check the netlist format.

Error Messages D-3

LDNODE: Unknown pin_numbering and pin number specified

The netlist has some pin numbers which are missing in the symbol (library).
Either a wrong or incomplete library has been attached to the project or the li-
braries are in the wrong sequence. Also, a wrong netlist format may have been
used.

ACTION: Check if the desired library has been loaded and if the libraries are
in the desired search sequence. Rearrange them if needed. Also, check the netlist
format.

LDNODE: Unknown pin_number

The netlist has a pin number which is missing in the symbol (library).
Either a wrong library has been attached to the project, an incomplete li-
brary has been attached (some library files may be missing) or the librar-
ies are in the wrong sequence. Also, the wrong netlist format may have
been used.

ACTION: Check if the desired library has been loaded and if the libraries are
in the proper search sequence. Rearrange them if needed. Also, check the netlist
format.

LDNODE: Cannot read empty pin name

If the netlist uses pin numbers, then the space for the pin names must be empty.
If ACTIVE-CAD does not see the empty pin name space, then either the netlist
file is corrupted or there is a hardware error.

ACTION: Check if the hardware is operational. Next, generate a new netlist.

LDNODE: Pin name and pin number specified simultaneously

The netlist contains both the pin name and its number. It should have either one
or the other but never both. This error could be caused by an erroneous netlist
format or by a corrupted netlist file.

ACTION: Check the netlist format. Generate a new design netlist format.

LDNODE: Incorrect chip identifier

An erroneous description of a netlist node. It could be caused by the wrong
netlist format, a conversion error or file corruption due to hardware failure.

ACTION: Check the netlist format. Generate a new design netlist format.

LDNODE: Cannot read pin number

An erroneous description of a netlist node. It is most probably caused by file
corruption due to hardware failure.

ACTION: Check the hardware (disk). Generate a new design netlist format.

D-4 Appendix F

LDNODE: Cannot read pin name

An erroneous description of a netlist node. It is most probably caused by hard-
ware failure.

ACTION: Check the hardware (disk). Generate a new design netlist format.

DUMMY: Node element number equal to zero

An error has been found while writing a dummy model. Either the wrong chip
ID or netlist format has been used. It could also be caused by a conversion error
or a corrupted netlist file.

ACTION: Generate a new design netlist format. Also check the chip ID and
symbol libraries.

DUMMY: Cannot read node element identifier

A node processing error has been found while writing a dummy model.
This error is most often caused by hardware failure. Sometimes, netlist
file corruption may be the cause.

ACTION: Check the hardware (disk). Generate a new design netlist format.

DUMMY: Cannot read pin number

A pin number error has been found while writing a dummy model. This error is
most often caused by hardware failure. Netlist file corruption may be yet an-
other cause.

ACTION: Check the hardware (disk). Generate a new design netlist format.

DUMMY: Cannot read pin name

A pin name error has been found while writing a dummy model. This error is
most often caused by hardware failure. Netlist file corruption may be yet an-
other cause.

ACTION: Check the hardware (disk). Generate a new design netlist format.

DUMMY: There is no pin name or pin number

Neither pin name nor number have been found while writing a dummy
model. This error is most often caused by a wrong netlist format. Some-
times, hardware failure or netlist file corruption may be the cause.

ACTION: Check the netlist format, then the hardware (disk). Generate a new
design netlist format. If the problem persists, contact ALDEC (converter prob-
lem).

Error Messages D-5

DUMMY: Cannot read an empty pin name

If the netlist uses pin numbers, then the spaces for the pin names should be
empty. If ACTIVE-CAD does not see the empty pin name spaces while it gener-
ates dummy models, then either the netlist file is corrupted or there is a hard-
ware error.

ACTION: Check if the hardware is operational. Next, generate a new netlist.

DUMMY: Pin name and pin number specified simultaneously

The netlist contains both the pin name and its number. It could be caused by an
erroneous netlist format or by a corrupted netlist file.

ACTION: Check the netlist format. Generate a new design netlist format.

LDNODE: Incorrect signal identifier

The netlist contains an incorrect signal name and number. It could be caused by
an erroneous netlist format or corrupted netlist file.

ACTION: Check the netlist format. Generate a new design netlist format.

Not enough memory for a dummy model table

There is not enough RAM memory to create dummy model tables.

ACTION: Free RAM memory and then load the netlist.

DUMMY: Redundant pin name

ACTIVE-CAD found an erroneous node description while creating dummy
models. The netlist contains both the signal name and its number. The error
could be caused by an erroneous netlist format or by a corrupted netlist file.

ACTION: Check the netlist format. Generate a new design netlist format

No inputs in the node

This is only a warning that there is no input signal in the node. Such a node will
float during simulation. The floating node could be driven by an analog-to-digi-
tal converter, which may not have a model in the library (seeMissing Modelsin
theLoading a Designsection, Chapter 2).

ACTION: Check the design node for a missing terminal and/or output pin. If
needed, override the node with a signal waveform which emulates the desired
node behavior.

No outputs in the node

This is only a warning that there is no output signal in the node.

ACTION: Check the design node for a missing terminal and/or input pin.

D-6 Appendix F

More than one label in the node

This is only a warning that there is more than one signal node name. ACTIVE-
CAD will not know for sure which name to use.

ACTION: Check the design node for multiple signal names.

More then one normal (Totem_Pole) output in the node

This is a warning that two totem-pole output pins are connected in the same
node. This is generally an improper design and should be corrected.

ACTION: Check the design node for multiple totem-pole outputs in a single
node and remove the illegal ones.

Power point is connected to the output pin

This is only a warning that an output pin is connected to a logical ground.

ACTION: Check the design node for a grounded output pin.

Mixed logic level drivers in the node

A warning that outputs from different technology devices (e.g. TTL and ECL)
are connected together.

ACTION: Check the design node for the illegal output pin connection.

Mixed power source levels in the node

This is a warning that several different power supplies are connected together in
the same node, e.g. Vcc and GND.

ACTION: Check the design node and remove the unnecessary power supply
signals.

NETGEN: Cannot read component identifier

ACTIVE-CAD cannot read component parameters
most often caused by bad hardware. Sometimes, netlist file corruption may be
the cause.

ACTION: Check the hardware (disk). Generate a new design netlist format

NETGEN: Undefined generics

ACTIVE-CAD cannot read component parameters from the netlist be-
cause they do not exist in the associated library. You have either used the
wrong library or assigned the wrong library search sequence.

ACTION: Check the project library listing. Add a new library or rearrange
the sequence of existing libraries.

Error Messages D-7

NETGEN: Cannot read generic name

ACTIVE-CAD cannot read component parameters from the netlist. This error is
most often caused by bad hardware. Sometimes the netlist file corruption may
be the cause.

ACTION: Check the hardware (disk). Generate a new design netlist format

NETGEN: Unknown generic name :ggg

ACTIVE-CAD cannot read component parameters from the netlist because they
do not exist in the associated library. You have either used the wrong library or
assigned the wrong library search sequence.

ACTION: Check the project library listing. Add a new library or rearrange
the sequence of existing libraries.

NETGEN: Cannot read generic max. value

ACTIVE-CAD cannot read the component generic max. value from the netlist.
This error is most often caused by bad hardware. Sometimes netlist file corrup-
tion may be the cause.

ACTION: Check the hardware (disk). Generate a new design netlist format.

NETGEN: Cannot read generic avg. value

ACTIVE-CAD cannot read the component generic average value from the
netlist. This error is most often caused by bad hardware. Sometimes netlist file
corruption may be the cause.

ACTION: Check the hardware (disk). Generate a new design netlist format.

NETGEN: Cannot read generic min. value

ACTIVE-CAD cannot read the component minimum value from the
netlist. This error is most often caused by bad hardware. Sometimes
netlist file corruption may be the cause.

ACTION: Check the hardware (disk). Generate a new design netlist format.

Cannot read package information

ACTIVE-CAD cannot read the component packaging ID from the netlist.
This error is most often caused by bad hardware and netlist corruption.
Sometimes there can be a discrepancy between the package information
and the library component.

ACTION: Check the hardware (disk). Generate a new design netlist format. If
it does not help, check the component packaging information in the library.

D-8 Appendix F

Cannot read chip attribute

ACTIVE-CAD cannot read component parameters from the netlist. This error is
most often caused by bad hardware and netlist file corruption.

ACTION: Check the hardware (disk). Generate a new design netlist format.

Cannot read pin attribute

ACTIVE-CAD cannot read component pin attributes from the netlist. This error
is most often caused by bad hardware and netlist file corruption.

ACTION: Check the hardware (disk). Generate a new design netlist format.

Cannot read block attribute separator

ACTIVE-CAD cannot read the block separator in the netlist. This error is most
often caused by bad hardware and netlist file corruption.

ACTION: Check the hardware (disk). Generate a new design netlist format.

Cannot read signal attribute

ACTIVE-CAD cannot read signal attributes from the netlist. This error is most
often caused by bad hardware and netlist file corruption.

ACTION: Check the hardware (disk). Generate a new design netlist format.

Error Messages D-9

Appendix E

ISA Bus Simulation Library

Introduction
If you are designing a printed circuit board that goes into a PC, you need
to verify it with the PC mother board. With the todays clock speeds, you
cannot take any chances even if the board seems to function properly.

ACTIVE-CAD CAE tools allow you to test your designs in conjunction
with PC mother boards. Equipped with the ISA bus model they allow
you to test your design over the full spectrum of functionality and propa-
gation delays. The ISA bus model also allows you to verify mother board
designs over the full range of ISA specifications.

The ISA model is comprised of two kinds of modules: checker and pro-
grammable ISA bus agents. The checker monitors all bus signals to and
from the ISA and warns of any violations. The programmable bus agents
allow direct programming of ISA bus transactions and complete verifica-
tion of the ISA interface timing.

The ISA bus model agents can be drawn on the schematic and intercon-
nected directly to the appropriate buses and control lines on your sche-
matic designs. The ISA bus model agents look like other IC devices on
your schematic and behave like them. By selecting , drawing and pro-
gramming the appropriate ISA interface, you can test your design
quickly and effectively.

Each agent emulates a device directly interfacing to the ISA Bus. It is re-
quired only for simulation purposes. Each agent works independently
and its operation is programmable. A memory expansion board and
graphics controller are examples of such agents.

Lexicon:

The following is a description of terms used in this Appendix:

An Agent is a physical unit which has an interface to the Intel ISA Bus.

A Requesting Agent initiates an Intel ISA Bus cycle. It is either a Pri-
mary or a Secondary Requesting Agent (PRA or SRA).

A Primary Requesting Agent (PRA) is a required agent of which there
can be only one. The only PRA is a motherboard itself.

A Secondary Requesting Agent (SRA) is an optional requesting agent
that normally does not have immediate control of the ISA Bus. Control is
requested from the PRA. Multiple SRAs are allowed. An SRA must have
a 16-bit bus interface.

A Replying Agent (RPA) is an agent which responds to ISA Bus cycles
initiated by a Requesting Agent. It cannot initiate Intel ISA Bus cycles by
itself. A PRA can have an 8-bit or a 16-bit bus interface.

General
The ISA bus library is provided for verification of the design interface to
the ISA bus according to the Intel ISA Bus Specification, 458057-001 Rev
1.1, January 27, 1989". The following are the modules that can be used
with ISA designs:

ISA-CHECKER is a module that monitors bus signals, automatically de-
tects all discrepancies with the Intel ISA Bus Specification and generates
messages whenever a timing violation has been detected. This module is
very similar to a logic analyzer that is programmed to detect specific tim-
ing problems.

ISA-PRA, ISA-SRA, ISA-RPA are programmable ISA bus agents. They
allow you to effectively test your design with the environment in which
your design will work. For example, if you are designing an 8-bit I/O
board for the PC computer, you can add some other modules that emu-
late the motherboard and other 16- or 8-bit cards. By programming each
bus agent to perform a sequence of I/O cycles, you can test whether your
board is in conflict with the other boards in the computer and conforms
to the ISA specification. Each bus agent is programmable separately and
the test sequence can be saved and loaded from a disk file.

E-2

The bus agents generate bus cycles synchronized with the bus clock.
Each agent can also respond to the cycles generated by other bus agents.

You can place on your schematic any combination of ISA modules. Since
they are used for verification only they should be deleted from the sche-
matic after you finish the testing. To get the best results, you need to pro-
gram the testing sequence, one bus agent at a time. Other agents will
respond to this agents cycles. If you program more than one agent to op-
erate at the same time, they will most likely conflict with each other.

Each agent is able to:

r respond to bus cycles according to the ISA bus specification
r generate bus cycles according to the sequence stored in its memory

(RAM). These cycles are synchronous with the bus clock.

Inserting Bus agents on the schematic
To test the interface between boards, you can place any number of ISA
agents on the schematic. The symbols of ISA agents can be found in the
ISA library, which has to be added to the Project Library (see Chapter 1
for details on selecting Project Libraries). You can place the ISA agents on
the same schematic as your design or on separate sheets. The last method
is better because it allows you to quickly disconnect the test circuits from
the actual design by removing the extra sheets from the current project.
These ISA-related schematic sheets can also be reused in other designs.
The ISA agents are placed on the schematic for simulation purposes only
and should be removed before creating a PCB netlist.

PRA SRA1 SRAn ISA
CHECKER

RPA1 RPAn Your Design

Figure E-1. ISA Bus Testing Environment.

ISA Simulation Library E-3

Viewing agents’ Registers
After loading your design into the simulator, you can open separate win-
dows for each agent placed on the schematic. To do that, select the Inter-
nal State Editor option from the Utilities menu. The Select Chip for
Internal State Editor window will appear with a list of devices that have
special configuration windows, such as microprocessors, ISA agents, etc.
Select all of the agents and open their ISE (Internal State Editor) windows.

An agents windows allows you to:

r view and edit the agents status and control registers
r enter the simulation program (list of bus cycles)
r view the agents simulation progress

Each agents window has an Info section that describes the selected
items, and the Prev and Next buttons that switch between different
pages of the window (some agents have as many as five different pages
of information.)

Editing Control Registers
To edit a control register, e.g. dma# in Figure E-2, click on the registers
current value shown in the little box, edit it and then click on the OK but-
ton. This will write the new value of the register into its simulation
model.

Editing the control registers is very useful if you want to specify the ad-
dress or data value that should appear on the bus in the simulated cycle.

Figure E-2. ISA Agent Internal State Editor Window.

E-4

You can edit these registers interactively during the simulation and set
different values for different cycles.

Editing agents simulation program
Each bus agent has a 16-instruction buffer for storing the simulation pro-
gram. This program can be edited using the agents ISE (Internal State
Editor) window. It can also be saved and loaded using the Save/Load
Memory Chip options from the File menu. The simulation program is
represented as a 256-byte memory block in the agents model.

To edit the program listed in the agents window use the Next button to
select a page similar to Figure E-3. Then click on the desired instruction
(e.g. memory #0) and select the desired cycle from the list. This list shows
all available cycles for the selected agent. If you want the agent not to per-
form any cycles, then select the STOP instruction.

ISA Checker
The ISA-CHCK module monitors bus signals and is invisible to the rest
of the devices connected to the bus. All of its pins are inputs and the only
output that the module generates are error messages. ISA-CHCK is able
to recognize any bus cycle and verify the timing relationship between the
bus signals. It also detects logical states that are prohibited (e.g. Low

Figure E-3. Editing the Simulation Program.

ISA Simulation Library E-5

state on high address bits during the refresh cycle). All errors are re-
ported as Timing Violations and are included in the error report.

The RESETDRV, nIOCHCK and IRQ signals are not monitored by the
ISA-CHCK module.

ISA-CHCK verifies the following bus sequences:

r Memory Read
r Memory Write
r I/O Read
r I/O Write,
r DMA Read
r DMA Write
r Global Refresh
r Refresh Initiation by SRA
r Bus Arbitration and Ownership

ISA Primary Requesting Agent
The ISA-PRA is the Primary Requesting Agent, which is a default bus
owner. It simulates all of the bus cycles listed above and responds to:

r Interrupt Requests,
r DMA Requests,
r Bus Arbitration Requests.

ISA-PRA has built-in signal generators for CLK and OSC that are used
by all other ISA agents. The bus cycle generator works off the CLK fre-
quency.

ISA-PRA has 256 bytes of RAM memory for storing a simulation pro-
gram. In addition, ISA-PRA has status and control registers for monitor-
ing the simulation process.

The ISA-PRA agent executes the simulation program instructions (cy-
cles),and after each instruction it checks (during CLK transition) for the
bus request (DRQi lines). If there are any requests, they are handled ac-
cording to the request priority (DRQ0 first... DRQ7 last). The request han-
dling procedure depends upon DMA mode. If there is no request on the
bus, ISA-PRA executes the next program instruction until STOP. IRQ re-
quests and nIOCHCK are handled asynchronously, immediately after
they occur.

E-6

Control and Status Registers

Definitions

InstCount
An 8-bit address register pointing at the next control instruction that will
be fetched from the agents simulation program memory.

CurrInst
An 8-bit register containing the current simulation program instruction.

INADDR
A 24-bit address for all Read operations (Memory Read, I/O Read, DMA
Read, Refresh). This address is set by PRA on the LA/SA signal lines.
The most significant bits (MSB 23..20) decide whether to set either the
nMEMR or nSMEMR bus lines. For I/O Read bits (23..16) are ignored
and the Low state should be set on all of these lines. Similarly during the
Refresh cycle, bits 10 and up are set to Low.

INDATA
A 16-bit data register for all Read operations (Memory Read, I/O Read,
DMA Read). PRA reads data from SD lines.

OUTADDR
A 24-bit address for all Write operations Memory Write, I/O Write,
DMA Write). This address is set by PRA on LA/SA signal lines. The
most significant bits (MSB 23..20) determine the setting of either
nMEMW or nSMEMW bus lines. Bits (23..16) are ignored during I/O
Write and the Low state is set on all of these lines.

OUTDATA
A 16-bit data register for all Write operations (Memory Write, I/O Write,
DMA Write.) PRA sets the data on the SD lines.

DMAMode
An 8-bit register in which the user determines the response of PRA to
DRQi bus access request. Its default value is set to SRA_SERVICE=00h:

r SRA_SERVICE (00h)
PRA releases the bus to the SRA, waiting for the nMASTER signal;

r DMAMEMRD8L (01h)
PRA generates the Read cycle of the lower data byte into the mem-
ory; INADDR determines the address that is being set; the read byte
SD(7..0) is written into the least significant byte of INDATA,

ISA Simulation Library E-7

r DMAMEMRD16 (02h)
PRA generates the Memory Read cycle of the entire data word;
INADDR determines the address that is being set on the bus, the
data word SD(15..0) is written into INDATA,

r DMAMEMWR8L (03h)
PRA generates the Memory Write cycle of the low data byte; OU-
TADDR determines the address set on LA/SA, the low byte of OUT-
DATA is stored in the byte SD(7..0)

r DMAMEMWR16 (04h)
PRA generates the Memory Write cycle of the entire data word; OU-
TADDR determines the address set on LA/SA, the word OUTDATA
is loaded onto the SD(15..0) lines,

INTReq
16-bit register reflects the state of the IRQi interrupt requests on the ISA
lines.

Bus Cycles generated by ISA-PRA
The ISA-PRA simulation instruction set consists of the following:

STOP 00h
Causes the timing generation to stop; during the idle state the program
memory contains only zeroes, i.e. only STOP instructions.

MEMRD8L 01h
Generates the Memory Read cycle of the lower data byte (connected to
the ISA bus). The address is put into INADDR, the value of the byte
SD(7..0) is put into the lower byte of INDATA.

MEMRD8H 02h
Generates the Memory Read cycle of the higher data byte (connected to
the ISA bus). The address is put into INADDR, the value of the SD(15..8)
is set into the higher byte of INDATA.

MEMRD16 03h
Generates the Memory Read cycle. The address is put into INADDR, the
value of the read word SD(15..0) is put into the INDATA input data regis-
ter.

IORD8L 04h
Generates the I/O Read cycle of the lower data byte (connected to the
ISA bus). The address is put into INADDR, the value of the read byte

E-8

SD(7..0) is put into the least significant byte of INDATA, the 16 least sig-
nificant bits of INADDR are sent to the device, the most significant bits
are set as Low state.

IORD8H 05h
Generates the I/O Read cycle of the higher data byte. The address is
loaded into INADDR, the value of the read byte SD(15..8) is put into the
higher byte of INDATA, the 16 least significant bits of INADDR are sent
to the device, the most significant bits are set to the Low state.

IORD16 06h
Generates the I/O Read cycle of the entire word of data. The address is
put into INADDR, the value of the read word SD(15..0) is put into the IN-
DATA input data register, the 16 least significant bits of INADDR are
sent to the device, the most significant bits are set to the Low state.

MEMWR8L 07h
Generates the Memory Write cycle of the lower byte of OUTDATA. The
address is determined by OUTADDR; the transfer is made using SD(7..0)

MEMWR8H 08h
Generates the Memory Write cycle of the higher byte of OUTDATA. The
address is determined by OUTADDR; the transfer is made using
SD(15..8).

MEMWR16 09h
Generates the Memory Write cycle of the entire OUTDATA word. The
address is determined by OUTADDR; the transfer is made using
SD(15..0).

IOWR8L 0Ah
Generates the I/O Write cycle of the lower byte of OUTDATA into the
I/O device (connected to the ISA bus). The address is determined by OU-
TADDR, the transfer is made using SD(7..0), the 16 lower bits of
INADDR are sent to the device, the most significant bits are set to the
Low state.

IOWR8H 0Bh
Generates the I/O Write cycle of the higher byte of OUTDATA into the
I/O device (connected to the ISA bus). The address is determined by OU-
TADDR, the transfer is made using SD(15..8), the 16 lower bits of
INADDR are sent to the device, the most significant bits are set to a Low
state.

IOWR16 0Ch
Generates the I/O Write cycle of the entire OUTDATA word into the

ISA Simulation Library E-9

I/O device (connected to the ISA bus). The address is determined by OU-
TADDR, the transfer is made using SD(15..0), the 16 lower bits of
INADDR are sent to the device, the most significant bits are sent as a
Low state.

REFRESH 0Dh
Generates the memory refresh cycle; address is determined by NADDR,
only the lower bits SA(9..0) are relevant. If memory requires an 8-bit re-
fresh address, the user must set bits 9 and 8 of the INADDR address reg-
ister to zero.

RSTDRV 0Eh
Generates RESETDRV, - the signal which resets the bus for a period of
one clock cycle.

IDLEINSTR 0Fh
This is an empty instruction. It is used to generate delay time of one
clock cycle (CLK). IDLEINSTR may be inserted any number of times be-
tween other instructions.

ISA-PRA served cycles and sequences:
The model responds to the cycles generated by other devices (i.e. stand-
ard generators or user modules) as follows:

DMA Requests (DMAMode= DMAMEMRD8L, DMAMEMRD16, DMA-
MEMWR8L, DMAMEMWR16); the preprogrammed cycle is generated
periodically until the DMA request (DRQi) is off.

Bus Arbitration Requests (DMAMode= SRA_SERVICE); the bus is re-
leased to SRA (default),

Interrupt Requests; each appearance and disappearance of an interrupt
request signal is reflected accordingly in the INTReq register bits. Note:
according to the standard, not all bits of this register are used; interrupt
requests are registered asynchronously.

IOCHECK detection; the occurrence of an active error signal on the
nIOCHCK bus stops the bus action for one clock cycle and displays an er-
ror message.

INTERNAL STATE EDITOR (ISE) enables display and on-line modifica-
tion of the key model parameters and the first 16 bytes of the memory
containing the simulation program. The following is a description of the
displayed parameters:

E-10

PROGRAM COUNTER displays the hex value of InstCount parameter;
the user can modify it freely to control the simulation progress. After
POWER ON, InstCount=0.

INSTRUCTION displays CurrInst parameters as mnemonic codes; it is
the last fetched program instruction; Cannot be edited by the user.

DMAmode displays the DMAmode parameter with mnemonic codes;
the user may modify it freely to control the ISA-PRA reaction to the
DRQi requests; after POWER ON, DMAmode =SRA_SERVICE,

INTReq displays the binary format of INTReq parameter; each bit re-
flects one line of the IRQi bus; non-existing lines (as determined by the
standard) are displayed as asterisks (e.g. *111*000),

INADDRH, INADDRM, INADDRL display each byte of the input ad-
dress in the hex format. You can set this address to a desired value.

INDATAH, INDATAL display each byte of the input data in hex for-
mat. You can modify these registers.

OUTADDRH, OUTADDRM, OUTADDRL display each byte of the out-
put address in the hex format, which the user can modify.

OUTDATAH, OUTDATAL display each byte of the output data in the
hex format, which the user can modify.

MEM#0..MEM#15 display the first 16 simulation program instructions;
each cell is displayed in mnemonics; modifications are carried out by us-
ing the list box. The program memory can be loaded and saved in a hex
file.

ISA Secondary Requesting Agent
ISA-SRA is the Secondary Requesting Agent representation. SRA can
generate data transfer cycles on the bus if PRA gives it permission to con-
trol the bus. SRA requests bus access by setting DRQi. In reply PRA sets
DACKi and releases the bus while the SRA sets nMASTER and begins
the data transfer managed by itself (i.e. SRA). After completing the trans-
fer, SRA returns the bus control to PRA by setting the nMASTER signal
to High. While having control over the ISA bus SRA is responsible for re-
freshing dynamic memory in the system. If SRA does not perform this
task by itself, it initiates the refresh process by releasing the bus manage-
ment to PRA for short periods of time.

ISA Simulation Library E-11

The SRA model is clocked by the CLK bus signal. The ISA-SRA has 256
bytes of memory for storing program instructions. There is also a set of
status and control registers. After completing execution of each instruc-
tion (bus cycle), the next instruction is fetched from the memory (assum-
ing it is not STOP) during the CLK transition from Low to High.

Note: The ISA-SRA cannot distinguish between communication with
DRAM and communication with other memories (timing values are not
appropriate for DRAM.)

Following is a description of the status and control variables:

InstCount
An 8-bit address register pointing to the control instruction which will be
fetched from the memory after executing the current instruction.

CurrInst
An 8-bit register containing the currently executed cycle.

BusOwner
A Boolean value which shows whether PRA currently controls the bus.

INADDR
A 24-bit address for all Read operations (Memory Read, I/O Read, DMA
Read, Refresh). This address is set by SRA on the LA/SA signal lines.
The most significant bits (MSB 23..20) decide about setting of either the
nMEMR or nSMEMR bus lines. For I/O Read, bits (23..16) are ignored
and the Low state is set on all of these lines. Similarly, during the Refresh
cycle bits 10 and up are set to Low.

INDATA
A 16-bit data register for all Read operations (Memory Read, I/O Read,
DMA Read); SRA reads the data from the SD lines.

OUTADDR
A 24-bit address for all Write operations (Memory Write, Write I/O).
This address is set by SRA on the LA/SA signal lines. The most signifi-
cant bits (MSB 23..20) decide about setting of either the nMEMW or
nSMEMW bus lines. For I/O Write, bits (23..16) are ignored and the Low
state is set on all of these lines.

OUTDATA
A 16-bit data register for all output operations (Memory Write, I/O
Write); SRA sets the data on the SD lines.

E-12

DMA_NO
An 8-bit register in which the user specifies the unique number of the ac-
cess request line (DRQi).

Note : According to the standard, some of the lines represent 8-bit chan-
nels; the DRQ4 line does not exist. After POWER ON, DMA_NO=0:

INT_NO
An 8-bit register in which the user specifies a unique number for the in-
terrupt request line (IRQi).

Note: According to the standard, some lines do not physically exist, after
POWERON INT_NO=3:

Cycles generated by ISA-SRA
Following is a description of the ISA-SRA simulation instruction set:

STOP 00h
Instruction stops the timing generation; during the idle state the program
memory contains only zeroes, i.e. only STOP instructions.

SRAMEMRD 01h
Generates the Memory Word Read cycle. The address is put into
INADDR, the value of the read word SD(15..0) is put into the INDATA
input data register.

SRAIORD 02h
Generates the I/O Word Write cycle from the OUTDATA data register.
The address is determined by OUTADDR, the transfer is made by using
SD(15..0).

SRAMEMWR 03h
Generates the Memory Word Write cycle from the OUTDATA data regis-
ter. The address is determined by OUTADDR, the transfer is made using
SD(15..0).

SRAIOWR 04h
Generates the I/O Word Write cycle from the OUTDATA data register.
The address is determined by OUTADDR; the transfer is made using
SD(15..0).

BUSREQ 05h
Generates the Bus Arbitration sequence by setting DRQi (specified by the
user in the control word DMA_NO) After gaining control over the bus,

ISA Simulation Library E-13

SRA can execute any combination of data transfer cycles. SRAMEMRD,
SRAIORD, SRAMEMWR and SRAIOWR initiate the DRAM refreshing
cycle, and then they release the bus to PRA using RELBUS.

RELBUS 06h
Generates the Release Bus sequence by setting off the nMASTER signal,
thus returning control of the bus back to PRA.

INTSET 07h
Sets the IRQi interrupt request signal to on (IRQ number is defined by
the user in the control word INT_NO); the interrupts are handled by
PRA. The standard does not force the way the interrupts are handled.

INTRST 08h
Sets the IRQi interrupt request signal to off.

REFRINIT 09h
Initiates the DRAM refreshing cycle. SRA activates the nREFRESH sig-
nal. PRA generates the refresh cycle and prolongs the duration time of
the nREFRESH signal. Disappearance of the nREFRESH signal on the
bus completes the execution of the REFRINIT instruction,

IDLEINSTR 0Ah
This is an empty instruction. It is used to generate delay time of one
clock cycle (CLK). IDLEINSTR may be inserted any number of times be-
tween other instructions.

The number of cycles that SRA can perform depends on whether it cur-
rently controls the bus. The BusOwner register value is true when SRA
controls the ISA bus. BusOwner is set to TRUE by BUSREQ and set to
FALSE by RELBUS.

The following instructions are permitted while BusOwner=TRUE:

r STOP
r RELBUS
r SRAMEMRD
r INTSET
r SRAIORD
r INTRST
r SRAMEMWR
r REFRINIT
r SRAIOWR

These instructions are permitted while BusOwner=FALSE:

E-14

r STOP
r INTSET
r BUSREQ
r INTRST

ISA-SRA served cycles and sequences
The model responds to the cycles generated by other devices (i.e. stand-
ard generators or user modules) as follows:

RESETDRV detection; the occurrence of an active RESETDRV signal
generates a message.

INTERNAL STATE EDITOR (ISE) enables display and on-line modifica-
tion of key model parameters and the first 16 bytes of the memory con-
taining simulation program instructions. The following is a description
of the display registers:

PROGRAM COUNTER displays the value of the of InstCount parame-
ter; the user can modify it to control the program execution; after
POWER ON, InstCount=0.

INSTRUCTION displays CurrInst parameter in mnemonic codes; it is
the last fetched instruction; Cannot be edited by the user.

BUS OWNER displays if the bus is controlled by PRA or SRA: PRA(Bus-
Owner=FALSE) or SRA (BusOwner=TRUE).

DMA# displays DMA_NO parameter.

INTREQ# displays INT_NO parameter.

INADDRH, INADDRM, INADDRL display each byte of the input ad-
dress in the hex format, which the user can modify.

INDATAH, INDATAL display each byte of the input data in the hex for-
mat, which the user can modify.

OUTADDRH, OUTADDRM, OUTADDRL display each byte of the out-
put address in the hex format, which the user can modify.

OUTDATAH, OUTDATAL display each byte of the output data in the
hex format, which the user can modify.

ISA Simulation Library E-15

MEM#0..MEM#15 display the first 16 simulation program instructions;
each cell is displayed in mnemonics. Modification is possible by using
the list box with available instructions. The program can be saved and
loaded from a hex file.

ISA Replaying Agent
ISA-RPA is the Replaying Agent. RPA is controlled by other modules
(PRA or one of the SRA agents) connected to the bus. ISA-RPA requests a
service by the following sequence:

r Interrupt Requests,
r DMA Requests,

The RPA responds to the following sequences generated by the PRA or
SRA:

r Memory Read
r Memory Write
r I/O Read
r I/O Write
r DMA Read
r DMA Write
r Global Refresh

The model generates its cycles according to the CLK frequency on the
bus. ISA-RPA has a 256 byte RAM memory for storing program instruc-
tions. In addition, there is a set of status and control registers used to
store these parameters; the registers are accessible through the INTER-
NAL STATE EDITOR windows.

InstCount
An 8-bit address register pointing at the next program instruction that
will be fetched from memory after completing the execution of the cur-
rent instruction.

CurrInst
An 8-bit register containing the currently executed instruction.

INADDR
A 24-bit address for all input operations (Write cycles into the ISA-
RPA:Memory Write, I/O Write, DMA Write). ISA-RPA may be treated
as a memory or I/O device. ISA-RPA compares the LA/SA address with
an address in the INADDR register. If they are identical the ISA-RPA
module is activated.

E-16

INDATA
A 16-bit data register for data read from the SD lines into ISA-RPA.

OUTADDR
A 24-bit address for all output operations (the Read cycles from the ISA-
RPA Memory Read, I/O Read, DMA Read). ISA-RPA may be treated as
a memory or I/O device. ISA-RPA compares the LA/SA address with an
address in the OUTADD Register. If they are identical, the ISA-RPA mod-
ule becomes active.

OUTDATA
A 16-bit data register for all output operations for the data output from
the ISA-RPA to SD lines.

DMA_NO
An 8-bit register in which the user specifies the number of the bus access
request line(DRQi).

Note: According to the standard, some of the lines represent 8-bit chan-
nels; DRQ4 line does not exist. After POWER ON, DMA_NO=1.

INT_NO
An 8-bit register in which the user specifies the number of the interrupt
request line (IRQi).

Note: According to the standard some of the lines do not physically ex-
ist, after POWERON INT_NO=3.

WAITS
An 8-bit register where you can specify the number of WAIT cycles, (de-
fines the time when the Ready signal is set during the I/O RPA cycle).
n0WS is set only if WAITS=0. nIOCHRDY is delayed by one CLK cycle
when WAITS=0 or 1. It is delayed by X CLK cycles when WAITS=X (X=2
and more) after POWER ON WAITS=1.

Cycles generated by ISA-RPA

STOP 00h
INTSET 01h
INTRST 02h
DMASET 03h
DMARST 04h
IOCHCKSET 05h
IOCHCKRST 06h
IDLEINSTR 07h

ISA Simulation Library E-17

INTERNAL STATE EDITOR (ISE) window displays the following pa-
rameters for the RPA agent:

PROGRAM COUNTER displays the value of the InstCount parameter;
the user can modify it to control the simulation program execution. After
POWER ON, InstCount=0.

INSTRUCTION displays the CurrInst parameter as a mnemonic code; it
is the last fetched simulation instruction. It cannot be edited by the user.

BUS OWNER displays the BusOwner parameter: PRA (Bus-
Owner=FALSE) or SRA (BusOwner=TRUE).

DMA# displays DMA_NO parameter.

INTREQ# displays INT_NO parameter.

INADDRH, INADDRM, INADDRL display each byte of the input ad-
dress in the hex format, which the user can modify.

WAITS displays the number of WAITS.

MEM#0..MEM#15 display the first 16 simulation instructions; each cell is
displayed in mnemonics. Modification is feasible by using the list box
with available cycles. The program can be saved and loaded as a hex file.

Examples
The set of bus agents provided in the ISA library allows you to design a
sophisticated test configuration for verifying your designs behavior dur-
ing various bus situations. The following examples demonstrate a few ap-
plications of the ISA models.

Example 1:

Your design is a multiport I/O card (RPA type). To verify the ISA bus in-
terface place the following modules on your schematic or separate sheets
and connect them to the ISA signals in your design:

r ISA-PRA to emulate the motherboard
r ISA-CHK to monitor the bus timing

After loading the design into the simulator, select the PRA agents win-
dow (Internal State Editor option within the Utilities menu). Enter the
simulation program by selecting the desired bus cycles in the Memory

E-18

registers #0 through #0Fh. Select the appropriate values for the address
and data control registers. Put the desired signals to the Waveform
Viewer. Generally, you do not need to design any test vectors because
the PRA agent generates the CLK and OSC signals. The frequency of
these signals is specified by TcC and TcOSC timing parameters, respec-
tively. To edit these values, use the Edit Timing Specification option
from the Patching menu.

The simulation starts with the Power On message window. Click the OK
button. The first simulation step can be lengthy since the system calcu-
lates all initial design states. From that point, the PRA agent controls the
design cycles according to the simulation program and will repeat the en-
tire sequence after reaching the last cycle. Remember that the agents win-
dows allow you to edit only the first 16 instructions. The remaining part
of the 256 instructions have to be edited as a memory or loaded from a
hex file.

Example 2:

You design a secondary processor board (SRA type), that works in paral-
lel with the main processor. To verify the ISA bus interface, place the fol-
lowing modules on your schematic:

r ISA-PRA to generate main board signals
r ISA-SRA (one or more) to verify bus arbitration
r ISA-CHK to verify the bus timing

The programmed ISA-PRA will test the data exchange with the designed
module. Edit the simulation program of the PRA agent so that it gener-
ates the transfer cycles handled by your board. Remember to correctly
set the control registers (data, address, etc.) Then start the simulation.

The arbitration is tested when the SRA agents, other than yours, are pre-
sent.

Example 3:

If you design the main PC board (PRA type), place the following mod-
ules on your schematics:

r ISA-SRA (one or more) to verify the arbitration
r ISA-RPA (one or more) to verify data exchange
r ISA-CHK to verify bus timings

In this case, your design controls the ISA bus and by programming differ-
ent SRA and RPA agents you can test all possible cycles and configura-

ISA Simulation Library E-19

tions. You can program more than one agent at a time, but make sure
that you do not generate conflicts between each other. To control cycles
generated by multiple agents, use the IDLEINSTR (Idle Instructions) so
that only one agent module generates the cycles at any given time.

E-20

INDEX

A
Active output pin 1-18
Add New Comment window 2-58
Add Signals option 1-7, 1-9, 2-23
Add Stimulators option 1-14 - 1-15, 2-8
Advantages of simulation 1-12
ALDEC ASCII netlist format B-1 - B-7
ALDEC macro operations 5-29 - 5-40

Check Design 5-30
Check MemBlock 5-30
Check MemChip 5-31
Check Timing 5-31
Get Netlist 5-32 - 5-33
Load ASCII 5-33
Load Design 5-33 - 5-34
Load Fault 5-34
Load Fuse Map 5-34
Load Memory Block 5-35
Load Memory Chip 5-35
Load Selective Preset 5-35
Load Timing 5-36
Save ASCII 5-36
Save Design 5-36 - 5-37
Save Fault Timing 5-37
Save Memory Block 5-37
Save Memory Chip 5-37 - 5-38
Save Selective Preset 5-38
Save Timing 5-38 - 5-39

ALDEC netlist structure B-1
#COMP section B-3 - B-4
#CONF section B-4 - B-5
#ENDN section B-7
#FILE section B-2
#NODE section B-6
#QNTY section B-2 - B-3
#SIGN section B-5 - B-6
#TYPE section B-3
List of special characters B-2

Alignment between signals 1-28
Analyzing simulation results 1-26 - 1-33,
2-53, 2-55, 2-57, 2-59
Analyzing waveform displays 2-53 - 2-54
Applying signal waveforms 1-23 - 1-24,
1-39 - 1-40
ASCII test vector files 2-62

ASCII Timing Blocks A-1
ASCII Timing File Structure A-1
ASCII Timing Format Specification A-1 -
A-4

#End A-4
#Hier block A-1
#Signals block A-2
#Timing block A-3
ASCII timing file structure A-1
Example A-4

ASICs
Setup and hold times 1-49

Assign Formula button 1-21
Assign Netlist option 1-79

B
Backup

Automatic 2-9
Bc 2-33
Bi-directional terminal B-6
Binary counter 1-18 - 1-19, 2-34

Clock 1-19
Outputs 1-19

Block, #COMP B-3
Block, #CONF B-4
Block, #ENDN B-7
Block, #FILE B-2
Block, #Hier A-1
Block, #NODE B-6
Block, #QNTY B-2
Block, #TYPE B-3
Blocks, ASCII Timing A-1
Boolean equations 4-1
Breadboard, electronic

Creating 1-3 - 1-7
Breakpoint conditions 6-2 - 6-3

Buses 6-4
Individual signal 6-3

Breakpoint editor 6-2 - 6-3, 6-5 - 6-7
Breakpoint options menu 6-1
Breakpoints 2-11, 2-71, 5-9 - 5-10, 6-1 -
6-7

Event format 5-10
Bus

Breakpoint conditions 6-4
Conflicts 1-31
Creating 1-34 - 1-35, 2-8, 3-4
Define in Simulator 2-27 - 2-28
Define in Test Editor 3-4

Index I-1

Deselect 2-29
Destroy 2-29
Display 1-35, 2-8
Enter current value 3-6
Expand 3-4
Logical states 5-3 - 5-4
Members 3-3
Naming, renaming 1-36, 3-3
Segment duration 3-6
Sub-menu 2-28 - 2-29
Working with 1-34 - 1-36

Bus agents
Inserting E-3
Programmable E-1 - E-7, E-16, E-18 - E-20
Viewing registers E-4

Bus Conflicts 2-62
Bus cycles generated by ISA-PRA E-8 - E-
10
Bus names

Entering 3-3

C
Case Sensitive B-2
Change Generic Values 2-10, 2-67
Change Line Delays 2-10
Change Line Delays option 1-66, 2-65
Change technology 2-10, 2-66
Chip declaration 4-2
Chip-level

Control 2-8
Simulation 1-78

Chip-selection field 1-33, 2-26
Clock button 2-40
Clock Editor 1-16
Clock Settings option 1-19, 2-9, 2-34
Clock stimulators 1-15 - 1-16
Clocks 2-33

Applying 1-71
Asynchronous 2-39
Binary counter 1-18 - 1-19
Creating 1-71
Multiple 1-70

Colors 2-55
Comments

Inserting 2-58
Comparison with other simulators ii-ix
Compiling a model 4-4
Component names 5-2
Component Selection window 1-6 - 1-8,

1-11, 2-23, 2-26
Components

Locating 1-37 - 1-38
Passive 1-69 - 1-70

Connections
View 2-30

Connections option 1-76, 1-78, 2-30
Connections window 2-30
Connectivity

Design 1-36 - 1-37, 1-73
Pins 1-6
Signal 1-36, 2-8 - 2-9

Control and status registers E-7 - E-8
Creating a bus 1-34
Creating reports 2-63
Cross-probing 1-38
CS symbol 1-16, 1-23
Cycles generated by ISA-SRA E-13 - E-15

D
Debugger

VHDL 2-11
Defined Assignments field 1-21
Delete stimulus signals 2-9
Deleting empty rows 1-34
Design analysis 1-12 - 1-13
Design connectivity 1-36 - 1-37
Design environment 1-2
Design error reporting 2-63
Design initialization 2-43
Design macros

Disabled 2-51
Enabled 2-51

Design netlist 1-4, 1-9, 1-12, 1-73
Design preset

Manual 1-68
Directories window 1-5 - 1-6
Disabled design sections 1-53
Disabled device 1-53, 2-52
Disconnect 2-9
Display scale 1-28

E
EDIF B-1
Edit

Agent simulation program E-5
Control registers E-4 - E-5
Propagation delays 2-64 - 2-65
Timing parameters 2-65
Timing specification 2-10, 2-65, 2-67

I-2 Index

Waveforms 1-21 - 1-23, 2-9, 2-36, 2-41
Editor

Internal state 2-11
Memory 2-11
Signal waveform 1-14
Test vector (external) 1-14
Test vector macro 1-14

Editor buffer
Contents 3-4

Effective design testing 1-12
Electronic breadboard 1-1 - 1-3, 1-7

Creating 1-3 - 1-6
Empty line

Delete 2-72
Insert 2-8

END statement 4-2, 4-13
EQU statment 4-2, 4-12
Error Messages D-1 - D-9
Error option 2-54
Error Reports 2-62 - 2-63

Bus conflicts 2-62
Create 2-63
Timing violations 2-62

Errors
Classes 1-46
Correcting design timing 1-46 - 1-47
Handling 1-46
Line delays 1-51
Reporting 1-45 - 1-46, 2-10, 2-62 - 2-63
Setup time 2-62
Timing violations, device-related 1-50 -

1-51
Tracking through a netlist 1-75 - 1-78
Viewer 2-11, 2-63

Event files 5-7
Example

Test vector file 5-6 - 5-7
Expanding Scale Resolution button 1-28
External Netlist Format window 1-73
External Text Vector Editor 3-1, 3-3 - 3-7

F
Fault simulator 2-11
File menu 2-7, 2-15

Load 2-7
Load ASCII Test Vectors 2-7, 2-40, 2-62
Load Fuse Map 2-7, 2-17 - 2-18
Load Memory Block 2-7
Load Memory Chip 2-7, 2-20 - 2-21

Load Netlist 2-8
Load Simulation 2-7, 2-60
Load Test Vectors 2-7
Page Setup 2-7
Print 2-7
Print Error Report 2-7
Print Setup 2-7, 2-73
Project Libraries 2-8, 2-15
Project Manager 2-8
Save ASCII Test Vectors 2-7, 2-62
Save Memory Block 2-7
Save Memory Chip 2-7
Save Simulation 2-7, 2-60
Save Test Vectors 2-7
Test PLD 2-8, 2-18 - 2-19

File structure
Event 5-7
Macros 5-5 - 5-6
Test vectors 5-6 - 5-7

Files, ASCII Timing A-1
Flat netlist 1-73
Flat netlist format 1-5, 1-9
Flat netlist format 1-5, 1-9 1-6
Format

External 2-14
Formula editor 1-20, 2-37
Formula stimulators 1-15, 1-19 - 1-21,
1-40, 2-33
Formula-based signals 1-39 - 1-42, 2-9, 2-
33, 3-6
FPGA

Multiple 1-79
FPGA designs

Simulating 1-79
Simulating, system level 1-78

From Format field 1-4 - 1-5
Functional analysis 1-27, 1-29
Functional simulation 1-26 - 1-29, 2-49
Functional system-level analysis 1-78

G
Generic Values 2-10

Changing 2-67
Glitch mode 1-29
Glitch simulation 1-26, 1-28 - 1-31, 2-50
Global

Propagation delays 1-50
Propagation setups 1-49
Reset 1-45, 1-54 - 1-57, 2-10, 2-47

Index I-3

Graphical waveform editor 1-21 - 1-23, 2-
35 - 2-36
Grid option 3-6
Grid spacing 3-6

H
Hardware breadboard 1-1 - 1-3, 1-7, 1-12,
1-65
Help menu 2-11
Hierarchical designs 1-9 - 1-10, 1-73

JEDEC fuse maps 2-18
Loading HEX files 2-21
Schematics 1-9
Simulation 1-9, 2-26

Hierarchical format 1-73
Hierarchical macros 1-73
Hierarchical netlist 1-9, 1-73, 2-13
Hierarchical simulation option 1-9
Hierarchical viewer 2-11
Hierarchy

Levels in Simulator 2-26
Netlist 2-13
Signals 2-8

HIGH state terminal B-6
High voltage terminal B-6
Hold times

ASICs 1-49

I
Impedance, High A-3
Import Netlist 2-13
Incremental netlist updating 1-72
Inductors 2-68
Input Netlist field 1-5
Input pins

Overriding 1-17
Input terminal B-6
Input, High A-3
Input, Low A-3
Inserting comments 2-58
Internal label B-6
Internal state editor 2-11
ISA bus model agents E-1 - E-7, E-16, E-
18 - E-20
ISA bus simulation library E-2 - E-20

Import messages E-1
ISA checker E-5 - E-6
ISA control and status registers E-7 - E-8
ISA model E-1, E-18

Agent E-1 - E-5, E-7

Primary requesting agent E-2, E-6
Replying agent E-2, E-16 - E-18
Requesting agent E-2
Secondary requesting agent E-2, E-11 - E-

13
ISA-PRA

Bus cycles generated by E-8 - E-10
Served cycles and sequences E-10 - E-11

ISA-SRA
Cycles generated vy E-13 - E-15
Served cycles and sequences E-15 - E-16

J
JEDEC test vectors 2-20
Jumpers

Move 1-65
Toggle 2-67

K
Keyboard key assigned signals 2-35
Keyboard key controlled signals 2-34
Keyboard keys 1-15 - 1-18, 2-33
Keyword, #End A-4

L
Large designs 1-52
Large memory

Simulation 1-62
Large memory devices

Simulation 1-62
Layout changes

Emulating 1-67
Layout propagation delays 1-66
LF B-2
Library Manager 2-64
Line Delays

Analyzing 1-51
Change 1-66, 2-10, 2-65
Editing 2-65
Simulating 1-66 - 1-67

Line Delays:Table 2-66
Line Feed B-2
Load

ASCII Test Vectors 2-40, 2-62
Design 2-12 - 2-13, 2-15 - 2-23
Fuse map 2-7, 2-17
HEX files 2-21
JEDEC file into PLD 2-19
Memory block 2-7
Memory chip 2-7, 2-20 - 2-21

I-4 Index

Memory contents 2-20
Milestones 2-71
Netlist 2-8, 2-12 - 2-15, 2-17
PLD fuse map 2-16
PLD test vectors 2-19
Simulation 2-7, 2-60
Test vectors 2-7, 2-62

Load Netlist option 1-4
Load Netlist window 1-4, 1-6
Locating

Components 1-37 - 1-38
Pins 1-37 - 1-39, 2-8
Signal conditions 1-62 - 1-64
Signal names 1-37 - 1-39, 2-8

Logic equations 4-1
Logical states

Buses 5-3 - 5-4
List 1-22 - 1-23
Representation 5-3 - 5-4
Select 3-5
Waveform signals 3-5

Long simulations 2-53
Running 1-60
Start 1-65
Stop 1-65

Long Step 2-43
LOW state terminal B-6
Lower Scale Resolution button 1-28

M
Macro 2-11
Macro file structure 5-5 - 5-6
Macro naming conventions

Component names 5-2
Pin names 5-2
Signal names 5-2 - 5-3

Macro operations 5-1 - 5-39
Logical states 5-3 - 5-4
Macro file structure 5-5 - 5-6
Naming conventions 5-2 - 5-3
Simulator macros 5-1
Time units 5-4 - 5-5
Viewsim compatible macros 5-7 - 5-29

Main menus 2-7 - 2-11
File menu 2-7 - 2-8
Help menu 2-11
Options menu 2-9 - 2-10
Patching menu 2-10
Signal menu 2-8

Stimulator menu 2-8 - 2-9
Utilities menu 2-10 - 2-11
Waveform menu 2-9
Window menu 2-11

Maximum propagation delay 1-48
Measurements button 2-56
Measuring time intervals 2-55, 3-7
Memory

Configurator 2-11
Contents 2-22
Load Hex File 2-20
Range 2-10
Simulation Range 2-22

Memory block
Load 2-7
Save 2-7

Memory chip
Load 2-7
Save 2-7

Memory Editor 2-11, 2-22, 2-59
Memory Editor option 2-59
Memory Range 2-22
Memory Range option 1-62, 2-22
Milestones 2-69

Automatic 1-58 - 1-59, 2-70
Breakpoint-driven 1-60, 2-70
Delete 2-71
Loading 2-71
Manual 1-59 - 1-60, 2-70
Option 1-58, 2-9
Saving 2-69 - 2-71
Selected 2-69
Setting 1-58
Time interval 1-59

MOBIC 6.0 specification
Chip names 4-6
Class declarations 4-8
Instruction names 4-7 - 4-8
Instruction syntax 4-13
Logical states 4-9
Model structure 4-6
Operators 4-9
Pin names 4-6
Pin types 4-8
Power-On signal 4-10
Reserved words 4-7
Set of characters 4-6
Signal names 4-6
Source text 4-6

Index I-5

Statement names 4-7 - 4-8
Violation codes 4-10

MOBIC instruction syntax
Conditional IF 4-14
Memory, Read from 4-14
Memory, Write to 4-15
Temporary signals 4-15
Violation, report 4-16

MOBIC logical equations syntax
Equation syntax 4-17
Logic, 12-value 4-17
Memory model addressing 4-20
Operator priority 4-17
Signals and pins 4-20

MOBIC Model Builder Compiler 4-1 -
4-24

Chip declaration 4-2
Compiling a model 4-4
Model Body 4-2
Model conventions, combinatorial 4-3
Model conventions, sequential 4-3
Pin definition 4-2
Signal definition 4-2
Source text 4-6

MOBIC sample models
Gates 4-21
Multiplexer 4-21

MOBIC statement syntax 4-11
MOBIC statements

END 4-2
EQU 4-2
PINS 4-2
SIGNALS 4-2

Model
Body 4-2
Compiling 4-4
Conventions, Combinatorial 4-3
Conventions, Sequential 4-3
Missing 2-15
Structure 4-6

Mouse 3-2
Left button 3-2

Right button 3-2
Moving signals 3-7
Moving test vectors to
another design 1-75
Multiple clocks 1-70

N
Naming buses 1-36
NBc 2-33
Net signal names

Overriding 1-18
Netlist

Assign 2-13
Board-level 2-12
Combining 2-13
External 1-73
Flat, simulation 1-73
Format 1-3 - 1-5
Format, external 2-14
Format, flat 1-5
Hierarchical 1-74, 2-13
Hierarchical, simulation 1-73 - 1-74
Import 2-13
Import messages D-1 - D-9
Incremental 1-72
Input 1-5
Load 1-4, 1-6, 2-12, 2-14, 2-17
Off-line mode 1-73
Simulating 1-71, 1-73, 1-75, 1-77, 1-79
Simulating external 1-75
Tracking errors 1-75 - 1-78

O
Off-line test vector editor 1-14
Options menu 2-9

Clock Settings 2-9, 2-34
Default Settings 2-10, 2-74
Delete Tag Condition 2-10
End of Step Estimation 2-9
Error Reporting 2-10, 2-62 - 2-63
Global Reset 2-10
Memory Range 2-10, 2-22
Milestones 2-9, 2-71
Power On Settings 2-9, 2-44
Save Settings Now 2-10, 2-73
Save Settings on Exit 2-10, 2-74
Selective Simulation 2-9, 2-51
Set Tag Condition 2-10, 2-57
Simulation Precision 2-9
Simulation Stop 2-9, 2-53
Timing Automatic Backup 2-9
Transport Delay 2-10

Output pins
Overriding 1-18

Output signals

I-6 Index

Unknown 2-43
Output terminal B-6
Output, High A-3
Output, Low A-3
Overdrive mode 1-24
Override

Input pins 1-17
Mode 2-8
Net signal names 1-18
Output pins 1-18

Override Mode 1-18, 1-23 - 1-24

P
Page Setup

Simulator 2-7, 2-71 - 2-72
Part

Replaced 2-67
Passive Components 1-69, 2-68
Patching menu 1-33, 1-48, 1-65, 2-10

Change Generic values 2-10, 2-67
Change Line Delays 2-10, 2-65
Change Technology 2-10
Edit Timing Specifications 2-10
Switch Settings 2-10

Pin connectivity information 1-6
Pin transfer

Individual 2-24
Pins

Definition 4-2
Locating 1-37 - 1-39
Names 5-2
Overriding input 1-17
Overriding output 1-18
Selecting 1-8

Pins statement 4-2
PLD

Load JEDEC File 2-16
Loading fuse map 2-16
Selecting 2-19
Test PLD 2-8, 2-18

Power-On 2-46, 2-48
Button 1-56, 2-46 - 2-47
Executing 1-55
Global reset 1-57
Instructions 1-56
Parameters 1-56
Preset 1-57
Settings 1-56, 2-9, 2-44, 2-47
Settings, default 1-56

Power-On Setting window 1-56
Precision

Simulation 1-42 - 1-43, 2-9, 5-5
Timing 5-5

Preset 1-55, 1-57
Automatic 1-69
Design 1-67 - 1-68
Manual 1-69
Selective 2-11, 2-45

Preset conditions
Forcing 2-46
Selecting 2-45

Print 2-7
Error report 2-7
Options 2-72 - 2-73
Results 2-71 - 2-73
Setup 2-7, 2-73
Waveforms 2-71 - 2-73

Probes
Select in Simulator 2-23 - 2-24
Select on Schematic 2-23

Project Library 2-8, 2-12, 2-15
Project Manager 2-8, 2-12, 2-17, 2-21
Propagation Delays 1-49 - 1-50

Editing 2-64 - 2-65
Layout 1-66
Maximum 1-48
Rescale 1-50
Rescaling 1-67
Result of 1-30
Unit 2-50

R
Race conditions 1-26, 1-28 - 1-30
Reference voltage terminal B-6
Renaming buses 1-36
Report window 2-63
Reset

Design 1-45, 1-54 - 1-55
Global 1-45, 1-54 - 1-55, 1-57, 2-10

Resimulation 1-21
Resistors 2-68

Pull-Down 2-69
Pull-Up 2-69

Ruler option 3-5

S
Sample, #End A-4
Sample, #Hier A-4
Sample, #Signals A-4

Index I-7

Sample, #Timing A-4
Save

Layout configuration 2-74
Memory block 2-7
Memory chip 2-7
Milestones 2-69, 2-71
Settings 2-10, 2-73
Simulation 2-7, 2-60
Test vectors 2-7, 2-62
Windows layout 2-73 - 2-74

Save ASCII Test Vectors option 2-62
Save selected signal names 1-74
Save Test Vectors option 1-9
Scale resolution 2-42
Scan Hierarchy window 1-11, 1-52 - 1-53,
1-65
Schematic editor

Off-line 2-12
On-line 2-12

Search button 2-55
Searching for tags 1-64
Select Memory Chip window 2-20
Select Netlist button 1-73
Selected Stimulator field 1-21
Selecting bus display format 1-35
Selecting signals for display 2-23 - 2-25, 2-
27, 2-29, 2-31
Selection

Device pins 2-26
Probes 2-23
Signals 2-23 - 2-24
Test points 1-1, 1-7 - 1-12

Selective design simulation 1-52, 1-54, 2-9
Selective Preset 2-11, 2-44 - 2-46
Selective Preset window 2-45 - 2-46
Selective simulation 1-53 - 1-54, 2-9, 2-51
- 2-52
Settings

Default 2-10, 2-74
Save 2-10, 2-74
Switch 2-10

Setup times
ASICs 1-49

Short Step 2-43
Signal

Weak 1-69
Signal conditions

Locating 1-62 - 1-64
Selected 1-69

Signal connectivity 1-36
Signal line

Toggling 1-17
Signal menu 2-8

Add Signals 2-8, 2-23
Bus 2-8, 2-28
Connections 2-8, 2-30
Delete 2-8
Find...in SC 2-8
Hierarchy 2-8, 2-27
Insert Empty Line 2-8
Move to 2-8
Search 2-8
Select 2-8
Signal Set 2-8

Signal names
Entering 3-3
Searching for 1-37 - 1-38

Signal selection button 1-6
Signal states

Toggle 3-7
Signal transfer

Group 2-24
Individual 2-24

Signal transition
Force 1-68
Measuring separation between 3-7

Signal waveform editor 1-14
Signal waveforms 1-13 - 1-16

Applying 1-23 - 1-24
Creating 1-39
Formula-based 1-42
Ready-made 1-15 - 1-16
Summary 1-24 - 1-25

Signal, Bus B-5
Signals

Add 2-8
Applying 1-39 - 1-42
Color code 2-55
Definition 4-2
Delete 2-8
Formula-based, creating 1-40 - 1-42
Locating 1-37 - 1-39
Logical state 3-5
Moving 2-29, 3-7
Names 5-2 - 5-3
Names, saving 1-74
Rearrange 3-4
Select 2-8

I-8 Index

Types B-6
Unknown 2-43
View Connections 2-30

Signals Selection field 1-7, 1-11, 1-37, 2-
27
Signals statement 4-2
Sim. Till End option 2-53
Simulation

Advantages 1-12
Backup 1-45
Basics 1-1 - 1-4, 1-6 - 1-24, 1-26 - 1-27,

1-29, 1-31, 1-33
Clocks 1-70 - 1-71
Error Reports 2-62 - 2-63

Files 2-60 - 2-61
FPGA designs 1-78 - 1-79
Functional 1-26 - 1-29,

2-48 - 2-49, 2-51
Glitch 1-26, 1-29 - 1-31, 2-

50
HEX code 2-22
Initialize 2-43
Introduction 1-1 - 1-3, 1-5 -

1-25
Large memory devices 1-62
Line (layout) delays 1-66 -

1-67
Long 1-61, 2-53
Netlist 1-71, 1-73 - 1-75,

1-77, 1-79
Override Outputs 2-51 - 2-

52
Power On 2-46, 2-48
Precision 1-42 - 1-43, 2-9,

5-5
Reference points 1-58
Result 1-26 - 1-27, 1-29,

1-31, 1-33, 2-53
Run 2-42 - 2-43, 2-45, 2-47
Running long 1-60, 2-53
Running time 2-53
Save/Load Results 2-60 - 2-

62
Selective 1-52 - 1-54, 2-51 -

2-52

Speed 1-52
status, current 1-59
Step 2-11, 2-42 - 2-43
Stop 2-9, 2-53
Switches, manipulating 1-65
System-level 1-79
Test vector limit 1-61
Time estimate 1-43 - 1-44,

2-9
Timing Mode 1-31 - 1-33,

2-50
Timing Mode, summary 2-

51
Unit delay 2-49
Very large designs 1-52

Simulation results
Backup 1-44
Load 2-60 - 2-62
Print 2-71 - 2-73
Save 2-60 - 2-62

Simulation Stop option 1-
65, 2-53
Simulator

Fault 2-11
Glitch 1-26
Main Toolbox 2-2
Main Window 2-1 - 2-4, 2-

12, 2-30, 2-34, 2-74
Missing Models 2-15
Step window 2-2
Title bar 2-2

Simulator data
Locating 1-38

Simulator macros 5-1
Simulator window 2-1 -
2-4, 2-12, 2-30, 2-34, 2-74

Binary counter status 2-3
Long step setup 2-3, 2-43,

2-50
Long step simulation button

2-3
Main toolbox 2-2, 2-11, 2-

50, 2-54 - 2-55
Maximize button 2-3

Index I-9

Menu bar 2-3
Minimize button 2-2
Power On button 2-4
Schematic editor button 2-3
Search backward button 2-3
Search button 2-3
Search forward button 2-3
Short step setup 2-3, 2-50
Short step setup 2-42
Short step simulation but-

ton 2-3
Simulation mode setup 2-3
Simulation time display 2-3
Step window 2-2
Stop simulation button 2-4
System menu 2-2
Title bar 2-2

Snap option 3-6
Space B-2
States, logical

List 1-22 - 1-23
Status line 3-5
Steps

Long 2-42
Short 2-42

Stimulator
Add 2-8
Assigning 1-15 - 1-16
Binary counter 1-18
Clock 1-15 - 1-16
Definition 1-14
Formula 1-15, 1-19 - 1-21,

1-40, 2-38
Formula, assigning 2-39
Keyboard key 1-15 - 1-17
Menu 2-8
Override 2-41
Ready-made 1-15 - 1-17
Signal 2-31
Sub-menu 1-14

Stimulator menu 2-8
Add Stimulators Mode 2-8
Chip Controlled 2-8
Connect 2-9

Delete 2-9
Delete All 2-9
Disconnect 2-9
Override Mode 2-8

Stimulator Selection win-
dow 1-15, 1-21, 2-38
Stimulus signals

Creating 1-12
Summary

Signal waveforms 1-24 -
1-25
Switch Setting window 1-65
Switch Settings 2-10, 2-67
Switch Settings option 1-65
Switch window

Minimized 2-68
Switches

Manipulate 1-65
Multiple 2-68
Position 2-68
Toggle 2-67

Switching between sche-
matic & external netlist 1-75
Syntax specification 4-3
System-level

Simulation 1-79
System-level design tools 1-
79

T
Tab B-2
Tag button 1-64
Tag conditions 2-56 - 2-57, 2-59

Creating 1-63 - 1-64
Deleting 2-10
Locating 1-64 - 1-65, 2-56, 2-58
Search mode 2-58
Setting 2-10, 2-57
Signal transitions 2-57

Tag feature 2-56
Tag option 1-62, 2-55
Tag search mode 1-64
Technology Application Notes 1-34 - 1-70
Technology Change 2-65
Technology Selection window 1-33

I-10 Index

Terminal Type B-5 - B-6
Test Clock Rate 2-20
Test Editor 3-1

Create menu 3-3
Edit menu 3-4
File menu 3-2
Main menu 3-2
Options menu 3-7
View menu 3-5 - 3-6

Test PLD 2-8, 2-18 - 2-19
Test PLD window 2-19
Test points

Selecting 1-7 - 1-12
Selecting in hierarchical designs 1-9 - 1-10

Test vector 1-1 - 1-3, 1-8 - 1-9, 1-12 -
1-14, 1-16, 1-21 - 1-22, 1-25 - 1-26, 1-29 -
1-31, 1-39, 1-44 - 1-45, 1-58 - 1-60, 1-62,
1-70, 1-74, 1-76, 2-4, 2-6 - 2-8, 2-16, 2-18
- 2-20, 2-31 - 2-37, 2-39 - 2-41, 2-50, 2-
52, 2-60 - 2-62, 2-69, 3-3, 3-6, 5-1, 5-6, 5-
10, 5-29, 5-36 - 5-38, 6-1, 6-6 - 6-7, A-2,
A-4

ASCII Files 2-40, 2-62
Binary Counter 2-34
Clocks 2-39
Design Custom 2-35 - 2-36
Edit 2-41
External Editor 3-1 - 3-7
File 2-61, 5-6 - 5-7
Formula 2-37
Keyboard 2-34
Load 2-7
Load ASCII 1-75, 2-7, 2-40
Moving to another design 1-75
Save 2-7
Save ASCII 1-75, 2-7
Set, define 2-8

Test vector limit
Overcoming 1-61

Test vector macro editor 1-14
Test Vector State Selection window 2-35 -
2-36
Time intervals

Measuring 2-55
Time relationship 2-55
Time units 5-4 - 5-5
Timing diagram

Print 2-71
Timing parameters 1-48, 2-64 - 2-65

Timing performance 1-32
Timing precision 5-5
Timing simulation 1-31 - 1-34, 2-50

Summary 2-51
Timing specification 2-64

Edit 2-10
Edit window 2-65

Timing Violations 1-31, 2-50, 2-62
Device-related 1-50 - 1-51

Toggle button 2-68
Toggling switches 2-67 - 2-68
Tracking errors through a design 1-75 -
1-76
Transport delay 2-10

U
Uni-directional terminal B-6
Unit delay simulation 2-49
Unit propagation delays 2-50
Unknown signal conditions 2-43
Unknown signals 2-43
Utilities menu 2-10

Breakpoints 2-11, 2-71
Error Viewer 2-11, 2-63
Fault Simulator 2-11
Hierarchical Viewer 2-11
Internal State Editor 2-11
Macro 2-11
Memory Configurator 2-11
Memory Editor 2-11, 2-22, 2-59
Selective Preset 2-11, 2-44
Simulation Step 2-11
VHDL Debugger 2-11
Waveform Viewer 2-11

Utilities menu
Breakpoints 6-1

V
Values

Change generic 2-10
VHDL debugger 2-11
View 2-11

Agents’ registers E-4
Viewer

Error 2-11
Hierarchical 2-11

Viewsim compatible macros 5-7 - 5-8,
5-10, 5-12, 5-14, 5-16, 5-18, 5-20, 5-22, 5-
24, 5-26, 5-28

After 5-8 - 5-9

Index I-11

Assign 5-9
Breakpoint 5-9 - 5-10
Breakpoint, event format 5-10
Check 5-11 - 5-12
Clock 5-12
Comments 5-7
Cycle 5-13
Display 5-13 - 5-14
Echo 5-14
Every 5-14 - 5-15
Execute 5-15
Force high 5-16
High 5-15
Low 5-16
Macro (command) loops 5-8
Network 5-17
Pattern 5-17 - 5-18
Print 5-18 - 5-19
Quit 5-19
Radix 5-19
Release 5-20
Report 5-20
Restart 5-20
Restore 5-20
Run 5-21
Save 5-21
Sim 5-21
Stepsize 5-22
Ticksize 5-22
Time measurement 5-22
Unknown 5-29
Vector 5-22 - 5-23
Watch 5-23
Wfm Aperiodic 5-23 - 5-24
Wfm Decrement 5-25
Wfm Divide 5-25 - 5-26
Wfm Increment 5-26
Wfm Multiply 5-26 - 5-27
Wfm Periodic 5-27
Wfm Rotate Left 5-27
Wfm Rotate Right 5-28
Wfm Shift Left 5-28
Wfm Shift Right 5-29

Voltage, High A-3
Voltage, Reference A-3

W
Waveform

Analyze 2-54

Comments 2-9
Display 2-41
Formula 2-9
Insert Comments 2-58
Logical state 3-5
Markers 2-9
Measure Intervals 2-9, 2-55
Measurement mode 2-55
Print 2-71, 2-73
Scale resolution 2-42
Select blocks 3-2
Select Scale 2-41
Shape 1-40
Spacing section 2-72
Symbols and Colors 2-53, 2-55, 2-57, 2-59
TAG Search 2-56, 2-58

Waveform Editor
Graphical 1-21 - 1-23, 2-9

Waveform Menu 1-22, 2-9
Comments 2-9, 2-58 - 2-59
Edit 2-9, 2-36
Formula 2-9, 2-37 - 2-38
Markers 2-9
Measurements 2-9, 2-55

Waveform Viewer 2-4, 2-6, 2-11, 2-58
Waveform Viewer window 1-7, 1-9, 2-4 -
2-6, 2-24
Waveforms window 2-7

Test vector entry 2-4
Waveforms window areas 2-4 - 2-6

Blue cursor location 2-6
Bus On/Off 2-5
Current Logical State 2-7
Display Comments On/Off 2-5
I/O Attribute field 2-6
Logical States 2-6
Measurements On/Off 2-5
Red cursor location 2-6
Ruler On/Off 2-5
Scale Adjustment field 2-6
Scale Display 2-6
Screen resolution 2-6
Select Probes 2-6
Signal entry 2-4
Signal field 2-6
Signal waveform display 2-6
Stimulator field 2-7
Stimulus 2-6
Tag column 2-57

I-12 Index

Test vector entry 2-4
Time Scale Display 2-6
Waveform Delete 2-5
Waveform window setups 2-4
Zoom In 2-4, 2-53
Zoom Out 2-4, 2-53
Zoom, dynamic 2-53

Waveforms window areas 2-4 - 2-6
Measurements On/Off 2-56

What-if analysis 1-21, 1-40
Window menu 2-11
Worst-case conditions 2-65

Checking for 1-47 - 1-49
Hold time 1-47
Setup time 1-47, 1-49

Z
Zoom

Dynamic 2-53

Index I-13

	Logic Simulator
	Preface
	Chapter 1. Simulation Basics
	Creating An Electronic Breadboard
	Selecting Design Test Points
	Selecting Test Points In Hierarchical Designs
	Creating Design stimulus Signals
	Signal Waveforms and Test Vectors
	Ready-Made Signal Waveforms
	How Use Ready-Made Stimulators
	Keyboard Keys
	Overriding device input pins
	Overriding device output pins
	Overriding net signal names
	Binary Counter
	Formula Stimulators
	Graphical Waveform Editor
	Applying Signal Waveforms
	Signal Waveforms Summary
	Analyzing Simulation Results
	Functional simulation mode
	Glitch Simulation Mode
	Timing Simulation Mode
	Unit Delay Simulation Mode

	Deleting empty rows between signals
	How to work effectively with buses
	Tracing design connectivity
	Searching for signal names, components and device pins
	Applying signal waveforms at any screen location
	Simulation precision
	Simulation time estimate
	Automatic backup of simulation results
	Global design reset
	Error reporting
	Design Error Handling
	Error Classes:
	Error handling
	Correcting design timing errors
	Checking for the worst-case test condition
	Analyzing ASICs for setup and hold times
	Global design propagation delays setups
	Device related timing violations
	Analyzing line delays

	Simulating Very Large Designs
	Selective design simulation option

	Resetting A Design
	Power-On model instructions
	Power-on Settings
	Preset
	Global Reset

	Setting simulation reference points (Milestones)
	Automatic Milestones
	Manual Milestones
	Breakpoint-driven Milestones

	Runninglong simulations
	Overcoming the test vectors limit
	How to simulate large memory devices
	How to search for selected signal conditions
	Creating Tag conditions
	Searching for tags
	Stopping long simulations
	Manipulating switches
	Simulating line (layout) delays
	Emulating layout changes
	Presetting a design to the desired state
	Manual design preset
	Automatic preset from a file

	Passive components in digital designs
	Using multiple clocks in the design
	Applying Clocks
	Simulating a Netlist
	Incremental netlist mode
	Off-line netlist mode
	Flat netlist simulation
	Hierarchical netlist simulation
	How To Save Selected Signal Names
	Switching between schematic and external netlist
	Tracking Errors Through a Design Netlist
	How To Simulate FPGA Designs At The System Level

	Chapter 2. Using ACTIVE-CAD simulator
	Simulator Window
	Waveforms Window
	ACTIVE-CAD Main Menus
	FILE Menu
	SIGNAL Menu
	STIMULATOR Menu
	Waveform Menu
	OPTIONS Menu
	PATCHING Menu
	UTILITIES Menu
	WINDOW Menu
	HELP Menu

	Loading a Design
	Board-Level Netlist
	Hierarchical Netlist
	Combining Design Netlists
	Loading a Netlist
	Missing Models
	Loading a PLD Fuse Map
	Loading JEDEC fuse maps into hierarchical designs
	Test PLD option
	Loading Memory Contents
	Loading hex files into hierarchical designs
	Memory Range

	Selecting Signals for Display
	Selecting Signals for Display
	Selecting Signals in the Simulator
	Selecting Device Pins
	Simulating hierarchical designs
	Defining Buses
	Moving Signals
	View Connections

	Test Vectors
	ACTIVE-CAD Test Vector Generator Panel
	Binary Counter
	Keyboard Key Controlled Signals
	Assigning permanent logical levels
	Graphical Waveform Editing
	Formula Waveform Editor
	Formula-based Stimulators
	Assigning Formula Stimulators
	Asynchronous Clocks
	ASCII Test Vector Files
	Stimulator Override

	Waveform Display
	Selecting Waveform Scale
	Scale Resolution

	Running A Simulation
	Short and Long Steps
	Initialization of the design
	Selective preset
	Power On

	Simulation Modes
	Functional Simulation
	Unit Delay Simulation
	Glitch Simulation
	Timing Simulation
	Selective Simulation
	Long Simulations

	Analyzing Simulation Results
	Analyzing waveform displays
	Measuring time intervals
	TAG conditions
	Searching for a TAG
	Inserting Comments
	Memory Editor

	Save/Load Simulation Results
	Simulation Files
	Test Vector Files
	ASCII Test Vector Files

	Error Reports
	Timing Violations
	Bus Conflicts
	Creating Reports

	Design Patching
	Editing Propagation Delays
	Editing Device Timing Parameters
	Editing Line Delays
	Change Technology
	Changing Generic Values
	Toggling Switches
	Passive Components

	Milestones
	Saving Milestones
	Loading Milestones

	Printing Simulation Results
	Page Setup
	Print Setup
	Print
	Saving Windows Layout

	Chapter 4. MOBIC Model Builder
	Introduction
	Model Structure
	Chip Declaration
	Pins and Signals Definition
	Model Body
	Combinatorial Model Conventions
	Sequential Model Conventions

	Compiling a model
	MOBIC 6.0 Specification
	Statement Syntax
	Instruction Syntax
	Logical Equation Syntax
	Sample Models

	Chapter 5. Script Command Operations
	1. GENERAL
	1.1 Simulator macros
	1.2 Naming conventions
	1.3 Logical states
	1.4 Time units

	2. Macro File Structure
	3. Test Vectors
	3.1. Test vector files
	3.2. Event Files

	4. Viewsim Compatible macros
	4.1. Comments
	4.2. Macro (Command) Loops
	4.3. Activity
	4.4. After
	4.5. Assign
	4.6. Breakpoint
	4.7. Changes
	4.8. CHECK
	4.9. Clock
	4.10. Continue
	4.11. Cycle
	4.12. Defaults
	4.13. DELAY
	4.14. DISPLAY
	4.15. DUMPM
	4.16. ECHO
	4.27. Pattern
	4.17. EVERY
	4.18. EXECUTE
	4.19. FLUSH
	4.20. High
	4.21. Info
	4.22. Inputs
	4.23. Low
	4.24. Logfile
	4.24. LOG_VECTORS
	4.25. NETWORK
	4.26. Path
	4.28. PRINT
	4.29. QUIT
	4.30. SETUP Radix
	4.31. RELEASE
	4.32. SETUP Report
	4.33. RESTART
	4.34. RESTORE
	4.35. RUN
	4.36. SAVE
	4.37. SIM
	4.38. SIMULATE
	4.39. STATISTICS
	4.40. STEPSIZE
	4.41. TICKSIZE
	4.42. TIME_MEASUREMENT
	4.43. SETUP Trace
	4.44. TYPE
	4.45. SETUP Vector
	4.46. SETUP Watch
	4.47. SETUP Viewwave
	4.48. WAVEXFER
	4.49. SETUP Wfm Aperiodic
	4.50. SETUP Wfm Decrement
	4.51. SETUP Wfm Divide
	4.52. SETUP Wfm Increment
	4.53. SETUP Wfm Multiply
	4.54. SETUP Wfm Periodic
	4.55. SETUP Wfm Rotate Left
	4.56. SETUP Wfm Rotate Right
	4.57. SETUP Wfm Shift Left
	4.58. SETUP Wfm Shift Right
	4.59. FORCE Unknown

	5. SPECIAL ALDEC MACRO OPERATIONS
	5.2. CHECK MemBlock
	5.3. CHECK MemChip
	5.4. CHECK Timing
	5.1. CHECK Design
	5.5. GET Netlist
	5.6. LOAD ASCII
	5.7. LOAD Design
	5.8. LOAD Fault
	5.9. LOAD Fuse Map
	5.10. LOAD Memory Block
	5.11. LOAD Memory Chip
	5.12. LOAD Selective Preset
	5.13. LOAD Timing
	5.14. SAVE ASCII
	5.15. SAVE Design
	5.16. SAVE Fault Timing
	5.17. SAVE Memory Block
	5.18. SAVE Memory Chip
	5.19. SAVE Selective Preset
	5.20. SAVE Timing

	Chapter 6. Breakpoint Operations
	Breakpoint editor
	Creating a Breakpoint Condition on an Individual Signal
	Creating Breakpoint Conditions on Buses
	Breakpoint Edit Window Options
	Programming Process

	Appendix A. ASCII Timing Format Specification
	ASCII Timing File structure
	#Hier block
	#Signals block
	#Timing block
	#End

	Appendix B. ALDEC ASCII Netlist Format
	Netlist Structure
	Section #FILE
	Section #QNTY
	Section #TYPE
	Section #COMP
	Section #CONF
	Section #SIGN
	Section #NODE
	Section #ENDN
	Notes

	Appendix C. Library Listing
	TTL
	List of available libraries:

	Appendix D. Error Messages
	Netlist Import Messages

	Appendix E. ISA Bus Simulation Library
	Introduction
	General
	Inserting Bus agents on the schematic
	Viewing agents’ Registers
	Editing Control Registers
	Editing agents simulation program
	ISA Checker
	ISA Primary Requesting Agent
	Control and Status Registers
	Bus Cycles generated by ISA-PRA
	ISA-PRA served cycles and sequences:
	ISA Secondary Requesting Agent
	Cycles generated by ISA-SRA
	ISA-SRA served cycles and sequences
	ISA Replaying Agent
	Examples

	INDEX

