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Introduction

This manual describes the XACTstep Development System, which
enables you to enter, implement, and verify your designs in a matter
of hours. Before actually starting with the design process, you should
read the following introduction to the Xilinx Field Programmable
Gate Array (FPGA) devices.

For information on EPLDs, refer to the XEPLD Design Guide, XEPLD
Reference Guide and XEPLD Schematic Design Guide.

This chapter introduces Xilinx FPGA logic devices, provides an
overview of the FPGA design process, and introduces the XACTstep
Development System documentation set.

Xilinx FPGA Logic Devices
To integrate logic into smaller spaces, Xilinx has developed a type of
FPGA called a Logic Cell Array (LCA). Several families can
accommodate as many as 9,000 gates on a single device. The XC4000
family allows more than 20,000 gates on a single device. For more
information about a specific Xilinx device, refer to The Programmable
Logic Data Book.

Advantages of Xilinx FPGAs
The most significant advantage of using the Xilinx line of FPGA
products is the ability to produce a prototype logic design on your
desktop. You can create a logic design, implement it, and verify it in
hours, while conventional gate array products can take months to
develop and produce working silicon.

In addition, Xilinx logic products are in-circuit programmable, so
even while an FPGA device is soldered to a board, you can
reprogram the Xilinx part with a different FPGA design.
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Xilinx FPGA Families
Xilinx markets and supports many product lines — XC2000,
XC2000L, XC3000, XC3000A, XC3000L, XC3100, XC3100A, XC4000,
XC4000A, XC4000H, and XC5200. The primary difference between
these products lies in the number of gates and the architectural
features of the individual devices, as shown in Table 1-1.

Table 1-1  Maximum Logic Capacities

1Different architectures have different CLB structures, which affects logic im-
plementation in a design.

FPGA Architecture
The FPGA architecture consists of three types of configurable
elements — a perimeter of input/output blocks (IOBs), a core array of
configurable logic blocks (CLBs), and resources for interconnection.
The IOBs provide a programmable interface between the internal
array of logic blocks (CLBs) and the device’s external package pins.
CLBs perform user-specified logic functions, and the interconnect
resources carry signals among the blocks.

A configuration program stored in internal static memory cells
determines the logic functions and the interconnect. The
configuration data is loaded into the device during power-up or
when you reprogram.

FPGA devices are customized by loading configuration data into
internal memory cells (latches). The FPGA device can either actively

Product
Logic Capacity
(Gate Equivalent)

Max.CLB
Count 1

Max. IOB
Count

XC2000/L 1,200 - 1,800 100 74

XC3000/A/L 1,300 - 9,000 484 176

XC3100/A 1,300 - 9,000 484 176

XC4000 2,000 - 20,000 900 240

XC4000A 2,000 - 5,000 196 112

XC4000H 2,000 - 5,000 196 192

XC5200 2,000 - 15,000 484 244
1-2 Xilinx Development System



Introduction
read its configuration data out of an external serial or byte-wide
parallel PROM (master modes), or the configuration data can be
written into the FPGA device (slave and peripheral modes).

XC5200 CLB Structure
Each XC5200 CLB consists of four logic cells, the basic logic elements
in each CLB. Each logic cell contains an independent 4-input function
generator (F), a storage device (FD), and control logic. There are five
independent inputs and three outputs to each logic cell.

The control logic provides direct access to the data input of the flip-
flop through the direct input pin (DI). The control logic also consists
of high-speed carry logic for fast implementation of arithmetic and
counting functions, which can also be used as a cascade chain
allowing high-speed pattern decode and other wide-logic functions.

The storage device in each logic cell is configurable as either a D flip-
flop or a latch. The XC5200 CLB has 20 independent logical inputs, a
clock, clock enable, and asynchronous clear. Each CLB also has 12
independent outputs that permit maximum utilization of the CLB
resources.

Figure 1-1 shows the structure of the XC5200 CLB.
Development System User Guide 1-3
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Figure 1-1 XC5200 CLB Structure

XC4000/XC4000A/XC4000H CLB Structure
Each CLB includes two independent 4-input function generators (F
and G) and two storage elements. A third function generator (H) can
combine the outputs of F and G with a ninth input variable, thus
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Introduction
implementing some functions of up to nine variables. The function
generators can also be configured as Read/Write memory or RAM.

The four control inputs, C1 through C4 each can generate any one of
four logic signals used in the CLB. These control inputs can be used
as direct inputs to the two flip-flops, the clock enable to the two flip-
flops, and/or the asynchronous control (direct Set or direct Reset) of
the two flip-flops.

Each XC4000 CLB also includes dedicated high-speed carry logic that
can generate the arithmetic carry output for incoming operands, and
can pass this extra output to the adjacent upper or lower CLB
function generator. This connection is independent of normal routing
resources. This feature improves the performance of the arithmetic
and counting functions in the XC4000.

Figure 1-2 shows the CLB structure of the XC4000 family.

Figure 1-2 XC4000 CLB Structure

LOGIC
FUNCTION

OF
G1-G4

G4

G3

G2

G1

G'

LOGIC
FUNCTION

OF
F1-F4

F4

F3

F2

F1

F'

LOGIC
FUNCTION

OF
F', G',
AND
H1

H'

DIN
F'
G'
H'

DIN
F'
G'
H'

G'
H'

H'
F'

S/R
CONTROL

D

EC
RD

SD
Q XQ

S/R
CONTROL

D

EC
RD

SD
Q YQ

1

1

K
(CLOCK)

X

Y

H1 DIN S/R EC

C1 C2 C3 C4

X1519

CLB

READOUT POINTS
Development System User Guide 1-5



Development System User Guide
XC3000 CLB Structure
The CLBs in the XC3000/XC3000A/XC3000L/XC3100/XC3100A
devices have two function generators, a combinatorial logic section,
and an internal control section.

Each XC3000 CLB includes five logic inputs, a common clock input,
an asynchronous direct reset input, a clock enable, and two outputs.
A data-in input is also provided for direct input to the flip-flops
within the CLB.

Figure 1-3 illustrates an XC3000 CLB structure.

Figure 1-3 XC3000 CLB Structure
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Introduction
internal routing and control section. In addition, each CLB has four
general-purpose inputs, a clock input, and two outputs. Figure 1-4
illustrates an XC2000 CLB structure.

Figure 1-4 XC2000 CLB Structure

XC5200 IOBs
The XC5200 IOB includes a direct input and a tristatable output.
Configuration options on the IOB include input inversion, output
inversion, tristate control inversion, a controlled slew-rate output,
and a programmable delay to eliminate the input hold time when the
input buffer directly sources a flip-flop. A pull-up or pull-down
resistor can be activated for either inputs or outputs.

Figure 1-5 shows the structure of the XC5200 Input/Output Block.
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Figure 1-5 XC5200 IOB Structure

XC4000/XC4000A IOBs
The XC4000 IOB input includes both registered and direct input
paths, and each output provides a tristate output buffer that can be
driven by a registered or direct output signal. Configuration options
on the IOB output include an inversion, a controlled slew-rate output,
a tristate control inversion, a clock inversion, and programmable flip-
flop initialization states. Configuration options on the inputs include
clock inversion and a programmable delay to eliminate input hold
time.

A pull-up or pull-down resistor can be activated for either inputs or
outputs. Input registers can be flip-flops or latches with
programmable initialization states.
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Introduction
An XC4000 IOB structure is shown in Figure 1-6.

Figure 1-6 XC4000/XC4000A IOB Structure

The XC4000H family is identical to the XC4000 family, except for the
input/output structure. The XC4000H family almost doubles the
number of input/output pins. XC4000H devices, however, contain no
input or output flips, as illustrated Figure 1-7.
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Figure 1-7 XC4000H IOB Structure

XC3000/XC3000A/XC3000L/XC3100/XC3100A IOBs
The XC3000 IOB input includes both registered and direct input
paths, and each output provides a register, optional inversion, a
controlled slew-rate output, and optional tristate control inversion.

IOB clocks for an entire edge can be inverted. Configuration options
on the inputs include a pull-up resistor. An XC3000 IOB structure is
shown in Figure 1-8.
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Figure 1-8 XC3000 IOB Structure

XC2000/XC2000L IOBs
The XC2000 IOBs include a direct or registered input and a tristate
output. Figure 1-9 illustrates an XC2000 IOB structure.
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Figure 1-9 XC2000 IOB Structure

Global Resources
Each Xilinx FPGA device includes global resources, which distribute
clock signals throughout the device with very low skew.

● GCLK and ACLK primitives

The GCLK and ACLK primitives correspond to the global clock
buffer and the alternate clock buffer in XC2000/L, XC3000/A/L,
and XC3100/A devices. You can only use one GCLK and one
ACLK in a single FPGA design.

● BUFGP and BUFGS primitives

BUFGP and BUFGS correspond to the primary and secondary
global buffers, which distribute high-fanout clock or control
signals throughout XC4000/A/H devices. You can use up to four
BUFGP and BUFGS primitives in an XC4000/A/H design.

● BUFG

The BUFG primitive corresponds to the four global clock buffers
that distribute high-fanout clock signals throughout the XC5200
device.
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Introduction
Routing Resources
The CLBs and IOBs, as mentioned in the preceding sections, are
interconnected using the routing resources provided on the device.
The Xilinx mapping, placement, and routing software chooses the
best resource to use for a particular signal type. The different types of
FPGA routing resources are described in this section. For more
detailed information about routing resources for each Xilinx FPGA,
refer to The Programmable Logic Data Book.

● Horizontal and Vertical longlines

In all devices other than XC2000/L, you can use horizontal
longlines driven by tristate buffers for bidirectional data busses.
Other longlines (vertical and non-TBUF-driven horizontal) are
useful for high-fanout nets. Figure 1-10 illustrates horizontal and
vertical longlines on an XC3000 device.

Figure 1-10 Horizontal and Vertical Longlines (XC3000)

Vertical
vpLongline

Horizontal Longline
Four Outer Longlines are Connectable Half-Length Lines
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● Direct interconnect (XC2000, XC3000, and XC5200 only)

Direct interconnect are direct paths used to connect adjacent CLBs
or to connect adjacent CLBs and IOBs. Each CLB output can be
connected to the input of a CLB or IOB adjacent to it through a
direct interconnect segment.

These resources are best used for high-speed signals between
adjacent blocks as illustrated by Figure 1-11.

Figure 1-11 Example of CLBs with Direct Interconnect (XC3000)

● General purpose interconnect

General purpose interconnect consists of an array of short adjacent
metal segments oriented vertically and horizontally between the
rows and columns of CLBs, as illustrated in Figure 1-12. Switch
matrices connect the metal segments.
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Figure 1-12 General Purpose Interconnects (GPIs)

● Programmable interconnect points (PIPs)

PIPs are individual switches that enable the connection between
intersecting routing segments, or from routing segments to CLB
or IOB pins, as illustrated in Figure 1-13.
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.

Figure 1-13 Programmable Interconnect Points (PIPs)

● Switch matrices

A matrix of switches is located at the intersections of the
horizontal and vertical groups of general-purpose interconnect
segments. These matrices are also referred to as magic boxes.
Figure 1-14 shows the possible pin-to-pin connections for an
XC3000 switching matrix.

Figure 1-14 Switching Matrix
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Design Flow Overview
The FPGA design flow is a 3-step process that consists of the
following stages.

● Design Entry — In this stage of the design flow you create your
design using a Xilinx-supported schematic editor or hardware
description language (HDL).

● Design Implementation — By partitioning, placing, and routing
your design, you convert the design file created in the design
entry stage into an LCA file format. Then you create a bitstream
file from the LCA file and optionally program a PROM or EPROM
for subsequent programming of your Xilinx device.

● Design Verification — Using a simulator, the Xilinx XChecker
cable, or the Xilinx Download cable, you ensure that your design
meets your timing requirements and functions properly.

Overviews of design entry, design implementation, and design
verification are discussed in the “Design Entry,” “Design
Implementation,” and “Design Verification” chapters, respectively.

The full design flow is an iterative process of entering, implementing,
and verifying your design until it is correct and complete. The
XACTstep Development System allows quick design iterations
through the design flow cycle. Since FPGA devices permit unlimited
reprogramming, you do not need to discard devices when debugging
your design in-circuit. See the “Design Implementation Flow”
chapter in this user guide for design flows for specific Xilinx devices.

Figure 1-15 illustrates the Xilinx design flow.
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Figure 1-15 Xilinx Design Flow

Table 1-2, defines the terms used in Figure 1-15.
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Table 1-2  Design Flow Terms

XACTstep  Development System Documentation
The XACTstep Development System documentation set consists of a
series of books that help you use the XACTstep Development System
software in conjunction with your schematic entry tools. The
documentation set includes the following manuals: Development
System User Guide, Libraries Guide, Libraries Supplement Guide, X-BLOX
Reference/User Guide, Xilinx ABEL User Guide, Development System
Reference Guide, Hardware & Peripherals User Guide, and your CAE-
specific interface user guide.

The following sections give a brief description of what information
each manual contains.

Term Description

Schematic entry Design entry using graphic symbols

Text-based entry Design entry using a design language

Optimization Converting device-independent or behavioral logic
descriptions to a form that can be efficiently implemented in
a Xilinx FPGA

Mapping Dividing a design’s logic into the resources of the Xilinx
FPGA

Placement Assigning design blocks created during mapping to specific
locations in the FPGA

Routing Assigning the interconnect paths

Bitstream generation Converting a design into a bitstream that can be loaded into a
Xilinx FPGA

Back-annotation Matching schematic and routed nets so that the same input
stimuli can be used for functional and timing simulation

Simulation Software testing of the design logic and timing using input
stimuli

Static timing analysis Analyzing the signal paths to ensure that the delays are
acceptable

In-circuit verification Testing of the design in a system after it is loaded into a
Xilinx FPGA
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Development System User Guide
This guide contains information you need during the FPGA
development process. It contains an overview of design entry, design
implementation, and design verification. This guide also covers how
to perform a readback and boundary scan for XC4000 and XC5200
devices, as well as configuration and debugging hints.

Libraries Guide
The Libraries Guide presents information about the various Xilinx-
supplied primitives and macros in your schematic editor. A cross-
reference assists you in determining which primitives and macros are
designed for use with a particular Xilinx device family.

Libraries Supplement Guide
The Libraries Supplement Guide contains information about the
XC4000E and XC5200 design elements. It also provides the CLB count
and lists the RPMs (Relationally Placed Macros) for existing Xilinx
FPGA architectures, as well as describing the constraints and
attributes that are specific to the XC5200 devices.

X-BLOX Reference/User Guide
The X-BLOX Reference/User Guide describes the X-BLOX (blocks of
logic optimized for Xilinx™) synthesis tool, which consists of a
library of modules you can use to describe a system by means of
high-level functions instead of gate-level primitives.

Xilinx ABEL User Guide
The Xilinx ABEL User Guide describes the Xilinx ABEL program,
which consists of a Xilinx-specific version of the ABEL design entry
software and a series of translation programs. It allows you to create
modules for Xilinx FPGA designs using state machines, Boolean
equations, and truth tables. It also allows you to create full EPLD
designs or modules for these designs.
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Development System Reference Guide, Volume 1
The Development System Reference Guide, Volume 1 provides detailed
information on the various design entry programs in the XACTstep
Development System. The entry for each program includes the
program’s syntax, options, files, and error and warning messages.
Information about program function and examples is also included.

Development System Reference Guide, Volume 2
The Development System Reference Guide, Volume 2 guide provides
detailed information on the various design implementation
programs in the XACTstep Development System. The entry for each
program includes the program’s syntax, options, files, and error and
warning messages. Information about program function and
examples is also included.

Development System Reference Guide, Volume 3
The Development System Reference Guide, Volume 3 provides detailed
information on the various design verification programs in the
XACTstep Development System. The entry for each program includes
the program’s syntax, options, files, and error and warning messages.
Information about program function and examples is also included.

Hardware & Peripherals User Guide
The Hardware & Peripherals User Guide provides detailed information
on the various hardware and peripherals in the XACTstep
Development System. This guide describes the FPGA demonstration
board, which allow you to verify your design; the XPP Serial PROM
Programmer; and the XChecker download cable and software.

CAE Interface User Guides
The Xilinx interface user guides include the following information:

● Design entry interface — This section gives detailed information
on entering an LCA design using a Xilinx-supported schematic
editor and then translating it into a Xilinx Netlist Format (XNF)
file. Documentation for this section comes with a Xilinx-
supported simulation package.
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● Design verification interface — This section gives detailed
information on simulating a design using a Xilinx-supported
simulator. Both timing and functional simulation are described.
Documentation for this section comes with a Xilinx-supported
simulation package.

● Tutorials — These sections are platform-specific tutorials that
walk you step by step through the major functions that your
system performs, such as schematic capture and functional and
timing simulation. The tutorials might also include information on
design issues specific to your platform.

● Additional documentation — Xilinx offers other documents
including applications information and specifications that might
be helpful. Check with your local sales office or field
representative.
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Design Entry

This chapter introduces design entry using both schematic and text-
based entry tools, highlights hierarchical design, and discusses ways
to control design implementation during design entry.

Design entry takes the design from a concept to a netlist. You can
enter a design with a schematic editor, a text-based tool, or both.
These entry methods require Xilinx-supported third-party tools,
which produce a design file in their own netlist formats.

The following sections describe each design entry method in detail.

Schematic Entry
Schematic tools provide a graphic interface for design entry. You can
use these tools to connect symbols representing the logic components
in your design. You can build your design with individual gates, or
you can combine gates to create functional blocks. This section
focuses on ways to enter functional blocks using library elements, the
MemGen program, and the logic-design/synthesis tool X-BLOX.

Library Elements
The following sections discuss primitives, macros, and architectural
resources.

Primitives and Macros

Xilinx FPGA libraries provide primitives as well as common high-
level macro functions. Primitives are basic circuit elements, such as
AND and OR gates, with unique library names, symbols, and
descriptions. Macros contain multiple library elements, which can
include primitives and other macros.
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There are two types of macros you can use with Xilinx FPGAs. Soft
macros, available for all FPGAs, have pre-defined functionality, but
have flexible mapping, placement, and routing. Relationally placed
macros (RPMs), available for XC4000/A/H and XC5200 devices only,
have fixed mapping and relative placement.

Architectural Resources

Your choice of schematic symbol for a particular function is critical.
For example, you can implement the standard AND4 symbol using
the function generator of a CLB. If you need a D flip-flop with
Asynchronous Clear and Clock Enable, you must specify a FDCE
unified libraries primitive in your schematic.

The specific choice of schematic symbol also determines how
registers are implemented. Registers are available in both CLBs and
IOBs. If you want to ensure that a register is implemented using an
IOB, you must use the corresponding I/O library primitive. See the
Libraries Guide and Libraries Supplement Guide for more information.

MemGen for XC4000 Devices
The Xilinx memory generator, MemGen, is a convenient tool for
creating RAMs and ROMs for XC4000/A/H FPGAs. MemGen
creates an XNF file, a log file, and a schematic symbol, which can be
used as part of the design.

You can create memories up to 32 bits wide and 256 words deep. Two
16x1 memories or a single 32x1 memory can fit in one XC4000 CLB.
For more information on MemGen commands and capabilities, refer
to “The MemGen Program” chapter in the Development System
Reference Guide.

X-BLOX
The X-BLOX tool provides a library of variable-size MSI- and LSI-
level design building blocks such as adders, counters, decoders, and
shift-registers. This library complements the XC3000A/L, XC3100A,
XC4000/A/H, and XC5200 macro libraries, which contain simpler,
fixed-size logic and gate functions. The X-BLOX tool also includes the
X-BLOX software, which integrates X-BLOX library elements into
your design. For further information on this software, see the
X-BLOX Reference/User Guide.
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Text-Based Entry
Text-based entry is well suited for many designs, including state
machines and decoders. You can use several hardware description
languages (HDLs) to design Xilinx FPGAs, including ABEL-HDL,
VHSIC HDL (VHDL), Verilog HDL, PALASM, MINC, and CUPL.
This section highlights Xilinx ABEL, VHDL, and Verilog HDL.

Xilinx ABEL
You can enter Boolean equations, state machine descriptions, and
truth tables in ABEL-HDL using Xilinx ABEL. Xilinx ABEL is best
used for creating designs that are functional blocks within designs
entered with a schematic editor. XMake merges functional blocks
containing logic described in ABEL-HDL with the rest of your design
during design entry. For a more detailed description of Xilinx ABEL,
refer to the Xilinx ABEL User Guide.

XSI (Xilinx Synopsys Interface)
The XSI design tool kit enables you to implement FPGA designs
using the Synopsys High-Level Design Automation (HLDA)
synthesis software. Synopsys HLDA synthesis software creates and
optimizes circuit designs from hardware description languages such
as VHDL and Verilog HDL.

Both the Synopsys Design Compiler and the FPGA Compiler support
the XC3000/A/L, XC4000/A/H and XC5200 libraries.

Hierarchical Design
Schematics usually contain hierarchy, which is important because it:

● Helps you conceptualize your design.

● Adds structure to your design.

● Makes it easier to debug your design.

● Makes it easier to combine different design entry methods
(schematic and text) for different parts of your design.
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● Makes it easier to design incrementally. Incremental design
consists of designing, implementing, and verifying individual
sub-blocks that build a design in stages.

● Facilitates concurrent design. Concurrent design is the process of
dividing a design among a number of people who develop
different parts of the design in parallel.

Hierarchical Names
A specific hierarchical name indicates each library element, unique
block, and instance you create. For example, the last three terms in
the name

/Acc/alu_1/mult_4/8count_3/4bit_0/mux_1/or2

might refer to the 2-input OR gate in the first instance of a multiplexer
in a 4-bit counter.

Note: Xilinx strongly recommends that you name the components
and nets in your design. In schematic editors, component names and
net names are preserved and used by the XACT Design Editor. The
component names and net names are also used for back-annotation
and appear in the debug and analysis tools. If you do not name your
components and nets, the schematic editor automatically generates
the names. For example, the software might name the previous
example the following:

/$1a123/$1b942/$1c23/$1d235/$1e121/$1g123/$1h57

Consequently, it can be very difficult to analyze circuits with
automatically generated names, since they have significance only to
the Xilinx software.

Controlling Implementation
If your application requires that you constrain your design, you can
specify mapping and block placement during design entry.

Mapping
You can specify how a particular block of logic is mapped into CLBs
using a CLBMAP for XC2000, XC3000, XC3000A/L, and XC3100/A
FPGAs; an FMAP or HMAP for XC4000/A/H FPGAs; or, an FMAP
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or F5MAP for XC5200 FPGAs. These mapping symbols can be used
in your schematic. However, if you overuse these specifications, it
might be harder to route your design.

Block Placement
Block placement can be constrained to a specific location, an area on
the device, or along a longline. All three can be specified in a
constraints (CST) file. Location and area constraints can be specified
directly from the schematic. Poor block placement can adversely
affect both the placement and the routing. Typically, block placement
defines IOB placement.

Timing Specifications
You can specify timing requirements for paths in your design directly
from your schematic for the following devices: XC3000A/L,
XC3100A, XC4000/A/H, and XC5200. PPR uses these timing
specifications to achieve optimum performance when placing and
routing your design. See the “XACT-Performance Utility” chapter in
the Development System Reference Guide for detailed instructions on
using this feature.

Performing Functional Simulation
After you have entered your design, you can either simulate or
implement your design. Functional simulation tests the logic in your
design to determine if it works properly. You can save a lot of time
during subsequent design steps if you perform functional simulation
early in the design flow. Details on functional simulation can be
found in the CAE-specific interface user guide provided with your
Xilinx interface.
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Design Implementation

Design implementation, performed by the XMake program,
generates a bitstream for a Xilinx FPGA from the design netlist.
Design implementation includes the following steps: translation from
the design netlist to the Xilinx Netlist Format (XNF), design
optimization, merging, mapping, placement, routing, and bitstream
generation. The XMake program automatically carries out all these
steps.

Design flows for each family are discussed in the “Design
Implementation Flows” chapter in this user guide.

Table 3-1 outlines the design implementation programs. Although
XMake automatically runs many of these programs, the following
table enables you to examine the role each program plays in design
implementation.
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Table 3-1  Programs Used in Design Implementation

Program Function Input Output Families

XMake Automatic design
implementation

Schematic output or
XNF file

BIT file and LCA
file

All

XNFMerge Merges multiple
XNF files

XNF files Single flattened
XFF file

All

XNFPrep Performs a design
rule check (DRC)
and removes
unused and
redundant logic

XFF file (or XG file
after X-BLOX
processing)

XTF file (or XTG
file if using
X-BLOX)

XC2000
XC2000L
XC3000
XC3000A
XC3000L
XC3100
XC3100A
XC4000
XC5200

XNFMAP Divides the design
among device
resources

XTF file MAP file and a
CRF file

XC2000
XC2000L
XC3000
XC3000A
XC3000L
XC3100
XC3100A

MAP2LCA Converts a MAP
file to an LCA file

MAP file LCA file
SCP file

XC2000
XC2000L
XC3000
XC3100

APR Automatically
places and routes

LCA, SCP, and CST
files

Routed LCA file XC2000
XC2000L
XC3000
XC3100

PPR Maps, places, and
routes

Merged XNF file
and constraint file

Placed and
routed LCA file

XC3000A
XC3000L
XC3100A
XC4000
XC4000A
XC4000H
XC5200
3-2 Xilinx Development System



Design Implementation
Each of the programs in Table 3-1 produces report files, which you
should examine to determine the progress of your design. For a
description of report file contents, refer to the appropriate volume of
the Development System Reference Guide as indicated in Table 3-2.

Table 3-2  Design Implementation Documentation

XNF Translation
The XNF file provides a common interface between design entry
tools and the Xilinx development software. It is an ASCII text netlist
format containing the logic and connectivity information for the
design. It also supports timing information for the design.

Each entry tool has a specific type of output. A translator must be
used to convert the entry tool output into an XNF file. You can also
translate an XNF file that contains the timing information into a
format that can be used by your simulator. The software
documentation for each entry tool supported by Xilinx details how to
translate to and from an XNF file.

MakeBits Generates FPGA
bitstream

Routed LCA file BIT file All

XDE Manual design
editing

LCA file LCA file All

Program
Development System

Reference Guide

XMake Volume 1
XNFMerge Volume 2
XNFPrep Volume 2
XNFMAP Volume 2
MAP2LCA Volume 2
APR Volume 2
PPR Volume 2
MakeBits Volume 2
XDE Volume 3

Program Function Input Output Families
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Optimization
Optimization converts device independent or behavioral logic
descriptions into a form that can be best implemented in a Xilinx
FPGA. This procedure is performed by programs like Xilinx ABEL
and X-BLOX. An example of design optimization is the encoding of
symbolic state machines using Xilinx ABEL. The following sections
discuss the three types of encoding.

Binary Encoding
Binary encoding uses the minimum number of registers to encode a
state machine. It is also called maximal encoding, since the registers
are used to their maximum capability. Each register represents one bit
of a binary number. Although binary encoding keeps the number of
registers to a minimum, more combinational logic is required to
decode each state.

Binary encoding can be used with Xilinx FPGAs or EPLDs; it is well-
suited to EPLD devices, which have wide gates and few registers.

One-Hot Encoding
One-hot encoding takes an approach that is opposite to that of binary
encoding. In one-hot encoding, an individual state register is dedi-
cated to one state. Only one flip-flop is active, or hot, at any one time.

This type of encoding can significantly reduce the amount of combi-
natorial logic used to implement a state machine. Highly encoded
designs tend to require many high fan-in logic functions to interpret
the inputs. One-hot encoding uses a simpler interpretation process,
since each state has its own register, or flip-flop. As a result, the state
machine is already “decoded,” and the state of the machine is deter-
mined simply by finding out which flip-flop is active. This process
reduces the width of the combinational logic, so the state machine
requires fewer levels of logic between registers, thereby reducing its
complexity and increasing its speed.
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Standard Encoding
Standard encoding incorporates features of both binary encoding and
one-hot encoding. It forms clusters of states and uses binary encoding
for each cluster. One-hot encoding is a special case of standard
encoding in which each cluster contains exactly one state. Binary
encoding is a special case in which all states belong to a single cluster.

Standard encoding can be used with FPGAs only.

Merging
Design hierarchy and multiple design entry sources result in multiple
files that XMake automatically merges into a single XNF file before
proceeding with the subsequent implementation steps. XMake uses
the XNFMerge program to perform this task.

Mapping
Mapping, also known as partitioning, is the process of breaking a
design into small parts that correspond to CLBs, IOBs, or other Xilinx
FPGA resources. This process is represented in Figure 3-1. Because
the available resources differ among different Xilinx FPGA families,
the mapping program chooses different options, depending upon
which device is used.
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Figure 3-1 Logic Being Mapped into XC3000 CLBs

Placement
XMake uses the automated placement software programs APR or
PPR to place the mapped CLBs and IOBs in optimal positions inside
the device, so a minimum amount of routing is necessary to connect
them.

The XACTstep Development System does not require constraints in
order to achieve optimum placement. In fact, constraints such as
manually assigned pins often limit efficient logic placement.
Consequently, you should avoid I/O constraints, if possible.
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Routing
XMake automatically routes the design using either APR or PPR. The
routing algorithms are designed to determine the interconnect paths
that lead to the minimum delays.

Generating a Bitstream
As a final step, XMake uses the MakeBits program to automatically
generate a bitstream for the Xilinx FPGA. MakeBits generates specific
FPGA configuration data in a BIT file.

Before MakeBits generates the final bitstream for production, you
should run MakeBits with the -d option to create a Design Rule
Checker (DRC) report. Then you should run MakeBits using the Tie
operation to define valid logic levels for Xilinx FPGA resources not
specifically used in the design. For more information on MakeBits,
MakeBits options, and configuration modes, consult “The MakeBits
Program” chapter in the Development System Reference Guide.

XACT Design Editor (XDE)
Since XMake can perform all steps for design implementation
automatically, manual implementation using XDE is usually
unnecessary. However, you can use XDE to get a closer look at how
XMake implemented your design. The “Design Verification” chapter
in this guide contains several examples of ways to look at timing
information. You can find additional information on XDE in the
Development System Reference Guide.

Design Size and Performance
Information about design size and performance can help you to
optimize your design. When you place and route your complete
design, the resulting report files list the number of CLBs, IOBs and
other device resources used.

If you want to determine the design size and performance without
running automatic implementation software, you can quickly obtain
an estimate from a rough calculation based on the Xilinx FPGA
architecture. See The Programmable Logic Data Book for more
information on all Xilinx FPGA architectures.
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Estimating Design Size
You can obtain a reasonably accurate size estimate of your design
simply from the number of CLBs and IOBs your design uses. To
estimate the number of CLBs, count the number of registers. You can
improve your estimate by comparing blocks in your design with
macro library components. You can obtain the number of IOBs by
determining the amount of I/O your design uses and adding extra if
you plan to bring out test probes.

Synchronous Design
The Xilinx FPGA architecture is best suited for synchronous design.
Strict synchronous design ensures that all registers are driven from
the same time base with no clock skew. This section outlines several
tips for producing high-performance synchronous designs.

Global Clock Distribution

Xilinx clock networks guarantee extremely small clock skew values.
Table 3-3 lists the global clock resources for XC2000, XC3000, XC4000,
and XC5200 families.

Table 3-3  Global Clock Resources

FPGA Family Resource Number Destination Pins

XC2000
XC2000L

ACLK
GCLK

1
1

Clock or Control
Clock or Control

XC3000
XC3000A
XC3000L
XC3100
XC3100A

ACLK
GCLK

1
1

Clock
Clock

XC4000
XC4000A
XC4000H

BUFGP
BUFGS

4
4

Clock
Clock or Control

XC5200 BUFG 4 Clock or Control
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Note: XC4000 BUFGP and BUFGS also connect to control pin and
logic inputs; however, limited routing resources can add extra delay
on these loads.

Other Synchronous Design Considerations

Other considerations for achieving a synchronous design include the
following:

● Use clock enables instead of gated clocks to control the latching of
data into registers. See Figure 3-2 and Figure 3-3.

● If your design has more clocks than the number of global clock
distribution networks, try to redesign to minimize the number of
clocks. Otherwise, put the clocks that have the lowest fan-out onto
normally routed nets and give them a high net weighting.
Remember that a clock net routed through a normal net has skew.

Data Feedback and Clock Enable

The circuit in Figure 3-2 shows a gated clock. The timing diagram
indicates that this implementation can lead to clock glitches that can
cause the flip-flop to clock at the wrong time.

Figure 3-2 Gated Clock
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Figure 3-3 shows a synchronous alternative to the gated clock using a
data path. The flip-flop is clocked at every clock cycle and the data
path is controlled by an enable. When the enable is Low, the
multiplexer feeds the output of the register back on itself. When the
enable is High, new data is fed to the flip-flop and the register
changes its state. This circuit guarantees a minimum clock pulse
width and it does not add skew to the clock. As illustrated in Figure
3-3, the XC3000, XC4000, and XC5200 flip-flop has a built-in clock-
enable (CE).

Figure 3-3 Synchronous Design Using Data Feedback

Counters

Cascading several small counters to create a larger counter is similar
to a gated clock. For example, if two 8-bit counters are connected, the
TC of the first counter is a large AND function gating the second
clock input. Using the CE input, you can create a synchronous design
as shown in Figure 3-4. In this case, the TC (terminal counter) of the
first stage is connected directly to the CE of the second stage.
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Figure 3-4 Two 8-Bit Counters Connected to Create a 16-Bit
Counter
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Design Verification

This chapter introduces design verification, which is the process of
testing the functionality and performance of your design. The
XACTstep Development System provides three complementary tools
for design verification: simulation, static timing analysis, and in-
circuit verification.

Verification Design Flow
Design verification occurs throughout the design process, as
illustrated in Figure 4-1. You can verify Xilinx FPGA designs in three
different ways:

● Simulation

● Static timing analysis

● In-circuit verification

This section focuses on these three design verification methods.
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Figure 4-1 The Three Verification Methods in the Design Flow

Figure 4-2 summarizes the tools used for simulation, static timing
analysis, and in-circuit verification.
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Figure 4-2 Verification Tools

Simulation
Design simulation involves testing your design using software
models. It is most effective when testing the functionality of your
design and its performance under worst-case conditions. You can
easily probe internal nodes with test vectors or other input stimuli
and use these results to make changes in your schematic.

You perform simulation using third-party tools that are linked to the
XACTstep Development System. Use the various CAE-specific
interface user guides, which cover the specific commands and
features of the simulators supported by Xilinx, as your primary
reference.

The software models provided by simulation tools are designed to
perform detailed characterization of your design.You can perform
functional or timing simulation.

The following sections discuss functional and timing simulation.
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• QueryNet
• XDelay

• Design Rule Checker
• Download or XChecker Cable

MHz
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Functional Simulation
Functional simulation determines if the logic in your design is correct
before you implement it in a device.

As shown in Figure 4-1, functional simulation can take place at the
earliest stages of the design flow. Since timing information for the
implemented design is not available, the simulator tests the logic in
the design using unit delays. It is usually faster and easier to correct
design errors if you perform functional simulation early in the design
flow.

Figure 4-1 shows the design flows for integrated and non-integrated
simulation tools. Integrated tools combine the simulator with a
schematic editor, so that no translation is needed between them. You
can move directly from entry to simulation using an integrated tool.
Non-integrated tools do not combine the simulator and schematic
editor. Translation programs use your XNF file to create a simulator
input file, so you can simulate with a non-integrated tool.

Timing Simulation
Timing simulation verifies that your design runs at the desired speed
in your device under worst-case conditions. It is performed after your
design is mapped, placed, and routed, when all design delays are
known.

Figure 4-1 outlines how to perform timing simulation once delay
information is available after placement and routing. Timing
simulation is valuable because it can verify timing relationships and
determine the critical paths for the design under worst-case
conditions. It can also determine whether or not the design contains
set-up or hold violations.

To input timing information into your simulator, you must convert
the routed LCA file for your design into an XNF file using LCA2XNF
(for XC4000 and XC5200 designs you must run MakeBits with the -w
option on your LCA file before you run LCA2XNF). The back-
annotation tool, XNFBA, combines the information in this XNF file
with the net names contained in the original design XNF file. The
resulting XNF file can then be translated into an input format suitable
for the simulator.
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Note: Naming the nets in your design is very important for both
functional and timing simulation.

Static Timing Analysis
By using XDelay, you can quickly check for timing problems in your
design. XDelay provides access to signal path delay information for
all paths in your design.

You can use XDelay to determine path delays in your design. Static
timing analysis is best for quick timing checks of a design after
placement and routing is complete.

As illustrated in Figure 4-3, you can perform static timing analysis
using the XDelay program and the QueryNet program in XDE. The
remainder of this section discusses these tools and the timing
information they provide.
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Figure 4-3 XDelay and QueryNet

XDelay
XDelay is a static timing analysis tool, which is also available from
the XDE Timing menu and the XACT Design Manager interface
(XDM). XDelay can give an overall analysis of design performance.
For example, XDelay can calculate the maximum clock frequencies
for each clock in the design. A sample from an XDelay output file is
shown in Figure 4-4.
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XDelay: sample.lca (3020PC68-70), xact 5.1, Mon Aug 31
17:51:04 1995

Xdelay path report options:

From all.
To all.
Output will be sorted by decreasing path delays.

Logical Path Delay Cumulative
------------ ----- ----------
From: Blk CQL PAD to P14.I :    6.0ns ( 6.0ns)
Thru: Net GOSCSET to BA.C :    2.6ns ( 8.6ns)
Thru: Blk GOSC to BA.X :    8.0ns (16.6ns)
Thru: Net CLKIN to BB.K :   11.6ns (28.2ns)
  To: Clock Input, Blk J01 :    0.0ns (28.2ns)
Target FFY drives output net ”J1”

From: Blk CQPAD to P12.I:    6.0ns ( 6.0ns)
Thru: Net GOSCRESETto BA.B:    2.5ns ( 8.5ns)
Thru: Blk GOSCto BA.X:    8.0ns (16.5ns)
Thru: Net CLKINto CB.K:   11.6ns (28.1ns)
  To: Clock Input, Blk J23:    0.0ns (28.1ns)
Target FFY drives output net ”J3”

From: Blk CQPAD to P12.I:    6.0ns ( 6.0ns)
Thru: Net GOSCRESETto BA.B:    2.5ns ( 8.5ns)
Thru: Blk GOSCto BA.X:    8.0ns (16.5ns)
Thru: Net CLKINto BB.K:   11.6ns (28.1ns)
  To: Clock Input, Blk J01:    0.0ns (28.1ns)
Target FFY drives output net ”J1”

Figure 4-4 Sample Output from XDelay

XDelay is best suited for examining delay paths. There are four types
of signal paths: pad-to-pad, pad-to-setup, clock-to-setup (register
transfer), and clock-to-pad. Each signal path contains block and
routing delays. You can further specify paths that you want to verify
using options like “from” and “to.” Figure 4-3 illustrates a register
transfer path from a register output in the HH CLB, through logic in
the HG CLB, to a register input in the GH CLB.

XDelay can import the timing information from the XACT-
Performance tool and use it to analyze your design.

QueryNet
Figure 4-3 shows a net that has been examined using QueryNet. You
can use QueryNet to obtain the delay for a single net or specify a
Development System User Guide 4-7



Development System User Guide
number of nets that you wish to probe. QueryNet enables you to
quickly determine if there are nets with large delays or skew. A
sample from a QueryNet output file is shown in Figure 4-5.

Querynet: demo3020.lca (3020PC68-70), xact 5.1, Mon Aug 31
17:50:10 1995

---- CLKIN. . . . .    BA.X (GOSC). . .  6.3 BA.A (GOSC)
                                        11.6 BB.K (J01)
                                        11.6 CB.K (J23)
                                        11.6 DB.K (J4)
                                         6.6 P12.O (CQ)
                                         7.6 P12.T (CQ)
---- GOSCQL . . . .    BA.Y (GOSC). . .  4.6 P14.O (CQL)
                                         4.6 P14.T (CQL)
---- GOSCRESET. . .    P12.I (CQ) . . .  2.5 BA.B (GOSC)
---- GOSCSET. . . .    P14.I (CQL). . .  2.6 BA.C (GOSC)
---- J1 . . . . . .    BB.Y (J01) . . .  1.0 CB.A (J23)
---- J3 . . . . . .    CB.Y (J23) . . .  1.0 DB.A (J4)
---- J4 . . . . . .    DB.X (J4). . . .  9.7 BB.A (J01)
                                         9.6 HB.A (FLASH)
---- OUT7 . . . . .    HB.X (FLASH) . .  7.0 P28.O (O7A)
                                         6.3 P29.O (O7B)

Figure 4-5 Sample Output from QueryNet

In-Circuit Verification
As a final test, you can verify how your design performs in the target
application. In-circuit verification tests the circuit under typical
operating conditions. Because you can program your Xilinx FPGAs
repeatedly, you can easily load your design into your device and test
it in-circuit. To verify your design in-circuit, download your design
bitstream into a device with the Xilinx download cable or the
XChecker cable. You can also use the XChecker cable to probe your
design after you download it.

You can also probe the internal nodes of your downloaded design
using the XChecker cable. Probing makes it easier for you to pinpoint
the location of any design problems. Refer to the “XDE” chapter in
the Development System Reference Guide for more information.
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Design Rule Checker
Before generating the final bitstream, it is important to use the DRC
option in MakeBits to evaluate the LCA file for problems that prevent
the design from functioning properly. You can directly invoke DRC
under MakeBits in the XACT Design Manager (XDM) or inside XDE.

Xilinx Download and XChecker Cables
Xilinx provides either the Download or XChecker cable depending
on which development system you are using. To download your
design, you must create a configuration bitstream using MakeBits.

To read back and verify configuration data, you must use the
XChecker cable. Refer to the “XChecker” chapter in the Hardware &
Peripherals User Guide for more information.

With the XChecker cable, you can use the XChecker Pick function to
take snapshots of the circuit at specific clock cycles. You can obtain
these snapshots by performing serial readback of the nodes during
in-circuit operation. With XChecker, you can increase the speed of
your analysis by limiting the readback bitstream to only those nodes
and clock cycles in which you have interest.

Use the XChecker cable when you do not want to allocate IOBs and
routing resources on your Xilinx FPGA for probing. As a result, you
can decide how you want to probe after you have downloaded your
design.

Probe
Using the Probe command in XDE, you can connect internal nodes in
your design to IOBs for analysis. With this capability, you can use an
oscilloscope or a logic analyzer to perform real-time analysis of nodes
that would not normally be accessible. To use Probe, you must
carefully allocate sufficient IOB and routing resources in your Xilinx
FPGA. Probe is a very flexible tool, since you can change the probe
location based on the resources you allocate. Refer to the “XDE”
chapter in the Development System Reference Guide for more
information.
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FPGA Design Implementation Flows

This section provides an overview of the Xilinx Field Programmable
Gate Array (FPGA) design process and the XACTstep Development
System software. For a more extensive coverage of specific features
and development system commands, refer to the appropriate volume
of the Development System Reference Guide.

The XACTstep Development System software consists of several
packages that provide integrated design entry, implementation, and
verification capability.

Using the XACT Design Manager (XDM) program, a graphical menu
interface, you can select and run any Xilinx program from one menu.
The XMake program in XDM automatically translates designs. For
more information about design entry, design implementation, and
design verification, refer to the appropriate chapters in this user
guide.

This chapters covers automatic design implementation for the
following families:

● XC2000, XC2000L, XC3000, and XC3100

● XC3000A, XC3000L, and XC3100A

● XC4000, XC4000A, and XC4000

● XC5200

XC2000, XC2000L, XC3000, and XC3100 Families
This section introduces some of the programs XMake runs when
performing design implementation of XC2000, XC2000L, XC3000,
and XC3100 devices. Figure 5-1 illustrates the design implementation
flow.
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Figure 5-1 XC2000/XC2000L/XC3000/XC3100 Flow

Logic Reduction and Partitioning
As part of the automatic design-translation process, XMake activates
the logic reduction and partitioning programs, XNFMAP and
MAP2LCA, and the place and route program, APR. XMake uses a
utility called XNFMerge to combine various XNF files into a single
XFF file. For detailed information about each program, refer to the
Development System Reference Guide.

The XNFMerge program merges lower-level XNF files into a top-level
XNF file and writes the result to an output file. After XNFMerge
produces a single, flattened XFF file for the design, the design is
processed through XNFPrep. XNFPrep analyzes the design and
reports all errors and warnings. If no errors are found, XNFPrep
performs; logic reduction, which consists of removing sourceless and
loadless nets, and optimizing the logic for the specific architecture.
The XNFPrep report file has a PRP extension and contains
explanations of the errors and warnings, as well as a detailed
description of why logic was removed.
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XNFMAP partitions the logic in the XNF file into the CLBs and IOBs
that comprise the FPGA architecture then writes the results to a MAP
file. The MAP2LCA program converts this MAP file into an LCA file.

Automatic Place and Route (APR)
The Automatic Placement and Routing program uses an LCA design
file (name.lca) to automatically arrange the CLBs and IOBs; optimize
the block-pin net assignments; and determine interconnection
patterns to route the design and write the resulting design file to disk.
The APR input file can result from XACT-EditLCA or a MAP2LCA
conversion. The program uses the input design file (name.lca), a file of
constraints produced from parameters assigned during schematic
capture (name.scp), and an optional text file of constraints you
produced (name.cst).

The primary results are a new design file (output.lca) and a report file
of routing results, routing order, flag tables, delay table, and
placement results. Refer to the Development System Reference Guide for
complete descriptions of APR commands and options.

APRLoop
The APRLoop command runs iterations of the APR program and
saves the results of each run. You can run APRLoop overnight and
evaluate several resulting placements in terms of areas of congestion,
routing delays, number of unrouted pins. See the “APR” chapter in
the Development System Reference Guide for more information.

You can edit the best APRLoop result with XDE by moving blocks,
using longlines, and routing critical nets. Try running APR with these
options: best result with blocks locked (-l) and higher net weights on
unrouted nets.

XC3000A, XC3000L, and XC3100A Families
For XC3000A, XC3000L, and XC3100A parts, the first part of the
design flow is similar to that discussed in the previous section —
designs are processed using XNFMerge and XNFPrep. However, the
design flows are different from this point on, as illustrated in Figure
5-2.
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Figure 5-2 XC3000A/XC3000L/XC3100A Design Flow

If XMake detects the use of X-BLOX components in the schematic, it
runs the X-BLOX program to synthesize the logic for these functions.
XMake runs XNFPrep again to generate the XTF file.

The Partition, Place, and Route program, PPR, uses the MAP file as
input and reads the constraints from the CST file, if it exists in the
current directory. PPR creates two output files — the design file with
an LCA extension and a summary report file with an RPT extension.

XC4000, XC4000A, XC4000H, and XC5200 Families
The design flow for the XC4000, XC4000A, XC4000H, and XC5200
devices starts with XNFMerge, which combines all XNF files
associated with the design into one XFF file. Figure 5-3 illustrates the
design implementation flow.
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Figure 5-3 XC4000/XC4000A/XC4000H and XC5200 Design Flow

Next, XMake runs XNFPrep, which analyzes the design and reports
all errors and warnings. If no errors are found, XNFPrep performs
logic reduction, which consists of removing sourceless and loadless
nets, and optimizing the logic for the specific architecture. XNFPrep
creates a report file with a PRP extension or a PRX extension, if
X-BLOX is used. The report file contains explanations of error and
warning messages, as well as a detailed description of why logic was
removed. XNFPrep generates an XTF file or an XTG file, if X-BLOX is
used.

If XMake detects the use of X-BLOX modules in the design, it runs the
X-BLOX program. X-BLOX generates a design file with an XTG
extension and a report file with an RPT extension.

PPR uses the XFT or XTG file, which is output from XNFPrep to map,
place, and route a design. PPR has the option of retaining the timing
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of a design that has been previously placed and routed, and
subsequently modified. It re-establishes the same LCA block
mapping, placement, and routing for logic elements that have not
changed in the design.

PPR maps the design logic into the resources of the FPGA such as
logic blocks, I/O blocks, and tristate buffers. It then determines the
best locations for the blocks, based on their connectivity and
performance requirements. Finally, PPR connects the placed blocks.
PPR generates an LCA design file that is input to the Xilinx bitstream
generator.
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Configuration, Length Count, and Debugging

This chapter provides solutions to problems that you might
encounter during the downloading process, such as configuring the
device and verifying the length count.

The Xilinx Development System enables you to enter, place, route,
and verify Field Programmable Gate Array (FPGA) designs. Then
you can use the MakeBits and MakePROM programs to create
configuration files. The resulting configuration data is loaded into the
FPGA configuration memory cells, which control Configurable Logic
Block (CLB) and I/O Block (IOB) look-up functions, multiplexers,
and interconnections.

Configuration
Configuration is the process in which you download a bitstream to
your device or daisy chain of devices. This section covers the
following topics:

● Data generation

● Data format

● Modes

● Loading and framing configuration data

● States for XC2000/XC3000 devices

● States for XC4000/XC5200 devices

Data Generation
Once an LCA file has been created for a design, you can use MakeBits
and MakePROM from within the XACT Design Editor (XDE) to
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generate configuration data files, which can then be used to configure
the device.

MakeBits

The MakeBits program, run from within XDE, uses the LCA file to
generate the specific FPGA configuration data. In MakeBits, you can
use the Configure command from the Configure menu to determine
the device options. These options can also be set directly with the
mouse in the Program Options table at the bottom left corner of the
screen. The MakeBits profile provides a default set of device options.
You can revise these defaults by performing a Saveprofile with the
desired options selected. For future use, the saved makebits.pro file
can be read into MakeBits.

Executing the MakeBits command in the Configure menu with the
desired device options selected generates a bitstream file (BIT) for the
currently loaded design. MakeBits first prompts with the options: Tie,
Norestore, Verbose, UseCriticalNetsLast, IgnoreCriticalNetFlags, and
MakeLL. If none of these options are selected, selecting the Done
button generates an untied bitstream in memory that can be
downloaded directly to the device using the Download option from
the Download menu. You can use an “untied” version for a quick
logic check of a room-temperature breadboard where the increased
supply current is not critical.

There are two steps in the MakeBits process: tying the design and
creating the bitfiles.

● Tying the design

Production designs require the use of Tie to define valid logic
levels for FPGA resources that are not used in the design. The
unused interconnects produce floating CMOS gate input levels
that can result in simultaneous p- and n-channel conduction,
causing additional supply current, heat, and electrical noise. The
use of the Tie option defines all outputs of unused CLBs and IOBs
as logic Lows and uses them to drive accessible unused routing
resources.

The remaining unused resources are then added to nets that were
not flagged as critical with the Flagnet command in the Net menu
of EditLCA. This might result in timing changes relative to the
original LCA design file. The additional selection of the Norestore
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option retains a temporary version of the tied design in memory,
allowing the use of the Querynet command with the Tiechange
option to evaluate the effects of the Tie operation on timing. To
protect the original design file, the tied version of the design is not
saved on your disk unless you specifically request it.

In some cases, the design might not tie if there are too many
critical nets. At this time, you can use the UseCriticalNetsLast
option. This option gives MakeBits the option to use the critical
nets in the design, but only as a last resort. If MakeBits is still
unable to tie the design, you can use the IgnoreCriticalNetFlags
option. This option tells MakeBits to ignore the critical flags found
in the design.

If you used either aforementioned options, UseCriticalNetsLast or
IgnoreCriticalNetFlags, Xilinx strongly recommends that you run
the XDelay program on the design to ensure the timing of the
critical nets in the design.

Unused and unbonded I/O blocks must also have defined pad
voltages. In the XC3000, XC4000 and XC5200 families, this is
automatically accomplished with the internal pull-up resistor as
the default for unconfigured IOBs. For the XC2000 family, the pad
level can be defined with an external signal, a pull-up resistor, or
the output buffer can be enabled and driven by an internal signal.

● Creating the bitfiles

Writebits saves the bitstream to a file. This binary format (BIT) file
can be used by the Download cable or the XChecker cable to
configure an in-circuit FPGA. A user-readable ASCII file of the
configuration data can also be generated by using the Rawbits
command from the Config menu in MakeBits. This file is useful
for verifying the actual bit order loaded into an FPGA.

MakePROM

The MakePROM program translates BIT files into PROM
programmer compatible data files. You can then use these files to
program PROMs that provide the configuration data used to define
an FPGA operation.

MakePROM also appends BIT files and produces a composite PROM
file that contains the total length count and configuration data for a
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chain of devices. This chain is called a daisy chain. In a daisy chain,
multiple devices are configured in a serial fashion from the same
PROM file. The lead device is configured first, with each succeeding
device programmed in the order that it is arranged on the board.

The MakePROM default options are determined by the MakePROM
profile. If the default Promsize setting is not correct, use the Set
command on the Misc menu. The Format command on the Prom
menu selects the desired PROM-programmer format. The formats
written by MakePROM are MCS86 (Intel), Exormax (Motorola),
Tekhex (Tektronix). Most PROM programmers support one or more
of these formats.

The two most common functions are loading and saving.

● Loading

Once you set the format and size options, you can load the BIT
files into the system memory in the desired order using the Load
command found on the Prom menu. The Load command prompts
for a hexadecimal PROM starting address and direction of address
sequence (up or down). The Load command then displays the BIT
files of the current directory. To configure multiple FPGAs, select
multiple BIT files in order — lead device first. When configuring
in parallel multiple devices having the same design, you only
have to select the BIT file once.

You can also generate PROM files containing alternative
configurations with individual starting addresses, so that you can
control the high-order PROM addresses and select different
configurations from different segments within the same PROM.

● Saving

Use the Save command to produce an ASCII file that can be
transferred to a conventional PROM programmer. This hex-
character file contains header, address, PROM data, and checksum
information. The header information identifies record type, record
size, and the address of the first data byte of that record. The
PROM data includes the FPGA configuration data.
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Data Format
Two common types of bitstreams are single device streams and daisy
chain streams. In both cases, the data bitstream consists of header and
program data.

The header contains the start sequence bits and the length count that
specifies the number of configuration data bits needed to configure
the device or devices. The program data contains the information
needed to configure each frame of the device. The program data also
includes a tail-bit sequence that ensures the last data frame is loaded.
The bitstream is padded so it ends on a byte boundary.

Creating Bitstreams

You must create a bitstream for every FPGA design. The MakeBits
program generates a properly formatted file. If devices are daisy-
chained, MakePROM creates a PROM hex file for the chain. Specify
the bitstream (the BIT file) for the first device in the chain, then the
bitstream for the second device, and so on.

Single Device Streams

The 40-bit header of a single device bitstream begins with a minimum
of eight ones (dummy bits) followed by a 0010 preamble. A 24-bit
length count follows the preamble. For more information see the
“Length Count” section at the end of this chapter. The header ends
with a 4-bit separator field of ones.

The program data of a single device bitstream contains configuration
data frames, tail bits, and pad bits. The number of frames and bits
that make up the frames varies from part to part; however, the basic
breakdown is very similar.

The configuration data frames are broken up into a start bit,
configuration bits, and stop bits. Each frame begins with a zero start
bit followed by the actual configuration data bits for the device.
XC2000 and XC3000 parts have 3 ones as their stop bits. XC4000 and
XC5200 parts have a 4-bit field that is either a default 0110 or a
calculated CRC checksum, if selected in the MakeBits options. The
CRC check sum is based on the accumulation of all configuration bits
in the current device.
Development System User Guide 6-5



Development System User Guide
For XC2000 and XC3000 devices, the tail bits are 1111. For XC4000
devices, the tail bits are 01111. The difference in the number of tail bits
combined with the varying number of frame bits for each device
means that the number of byte boundary pad bits vary as well. The
complete sequence of end bits is the combination of the tail bits and
the pad bits, so its length varies from part to part. Figure 6-1
illustrates a partial RBT file.

Figure 6-1 Partial Rawbits (RBT) File

Daisy Chain Streams

Daisy chain bitstreams also contain a single composite 40- bit header.
The header is much like the single device header because it begins
with a minimum of eight dummy bits followed by a preamble. The
header contains a 24-bit length count. The length count, however, is
common to all the devices in the daisy chain. Daisy chain headers
also end with a 4-bit separator field.

The program data of a daisy chain bitstream contains each device’s
program data followed by its tail bits and ending with the pad bits for
the entire daisy chain. The configuration data frames for each device
appear in the order in which the actual devices are arranged on the
board. The lead device is at the beginning of the program data and

Xilinx LCA design.lca 40002APC84
File design.rbt
Tue Aug 8 14:02:48 1995
Source
Version
Produced by makebits version 5.1

1111111100100000000000111001110111101111

001111111111111111111111111111111111111111111111111111111111111111111111111

011111101111111011111101111111011111110111111101111111011111110111111111111

011111110111111101111110111111101111111011111110111111101111111011111111111

011111111111111111111111111111111111111111111111111111111111111111111111111

001111111111111111111111111111111111111111111111111111111111111111111111111

001111111111111111111111111111111111111111111111111111111111111111111111111

011111111111111111111111111111111111111111111111111111111111111111111111111

011111110111111101111110111111101111111011111110111111101111111011111111111

011111111111111111111111111111111111111111111111111111111111111111111111111

1111

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Frame

Stop

Bits

Frame

Start

Bits

Preamble Length Count

Postamble X6546
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the last device in the daisy chain is at the end of the program data.
Each device’s set of data includes the device’s tail bits (1111 for
XC2000 and XC3000 devices and 01111 XC4000 and XC5200 devices).
After the last device’s program data and tail bits, the entire stream’s
pad bits are placed. The stream’s pad bits are calculated based on the
total number of devices in a daisy chain plus control of the start-up
sequence relative to a byte boundary. See the “Length Count” section
at the end of the chapter.

PROMs

Typically, after verifying a design through simulation and
implementing the breadboard, you can make a final production
board. Many boards use a PROM to configure the FPGAs; the serial
PROM is the most common.

Once the bitstreams have been created, you can use MakePROM to
create the necessary PROM file. There are three formats supported by
MakePROM: MCS-86, EXORMAX, and TEKHEX. During the
programming of the XC17XXD devices, the polarity of the PROMS
RESET/OE must be set. You can accomplish this task by setting the
polarity bits in the device to either 00000000 HEX for RESET/OE or
FFFFFFFF HEX for RESET/OE.

Figure 6-2 shows the PROM file format and illustrates how the data
in the PROM file is bit-swapped from the way that the FPGA expects
to receive it, serially.
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Figure 6-2 PROM File Format

Modes
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Master versus Non-Master

There are two different configuration methods for FPGAs: Master
mode and non-Master mode. In Master mode, the FPGA loads itself
from an external memory such as a parallel or serial PROM. The
FPGA provides clocks and/or addresses to the PROM and receives
data that it loads into its internal configuration memory. There are
three different Master configuration modes: Master Parallel Up,
Master Parallel Down, and Master Serial.

In non-Master mode, the FPGA is loaded by another device such as a
microprocessor or another FPGA, which provides the data and the
clocks necessary to load the non-Master device’s internal
configuration memory. There are two non-Master configuration
modes for the XC2000 and XC3000 devices: Peripheral and Slave
Serial. XC4000 and XC5200 devices support three: Peripheral
Asynchronous, Peripheral Synchronous, and Slave Serial.

Note: Wire AND the INIT pin of the slave devices and tie the signal
to the INIT pin of the lead device to delay configuration until all
devices have cleared their configuration memories. INIT is an
input/output on the XC4000 and XC5200. The XC4000 and XC5200
require an additional clock to complete startup after loading
configuration data; therefore, it should be used as a master in the
daisy chains of mixed device families.

XC2000/XC3000 Modes

This section describes XC2000/XC3000 modes: Master Parallel
Up/Down, Master Serial, and Peripheral Mode. Table 6-1 lists mode
pin adjustments for the XC2000 to set the device configuration mode.
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Table 6-1  XC2000 Configuration Mode Adjustments

Table 6-2 lists the mode pin adjustments for the XC3000 to set the
device configuration mode.

Table 6-2  XC3000 Configuration Mode Adjustments

● Master Parallel Up/Down

In Master Parallel mode, the device directly addresses an
industry-standard byte-wide EPROM and accepts eight data bits
right before the 16-bit address counter is incremented
(decremented for Master Parallel High mode).

M0 M1 M2 CCLK Mode Data

0 0 0 output Master Bit serial

0 0 1 output Master Byte wide addr. = 0000 up

0 1 0 undefined reserved undefined

0 1 1 output Master Byte wide addr. = FFFF down

1 0 0 undefined reserved undefined

1 0 1 output Peripheral Bit serial

1 1 0 undefined reserved undefined

1 1 1 input Slave Bit serial

M0 M1 M2 CCLK Mode Data

0 0 0 output Master Bit serial

0 0 1 output Master Byte wide addr. = 0000 up

0 1 0 undefined reserved undefined

0 1 1 output Master Byte wide addr. = FFFF down

1 0 0 undefined reserved undefined

1 0 1 output Peripheral Bit wide

1 1 0 undefined reserved undefined

1 1 1 input Slave Bit serial
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The eight data bits are serialized in the device and generate
CCLKs that are used internally by the Master device and by any
Slave devices connected in parallel or in a daisy chain. The device
presents the serialized 40-bit header on the DOUT pin and then
applies a High while accepting its configuration data frames.

There is an internal delay of 1.5 CCLK periods, after the rising
CCLK edge that accepts a byte of data and changes the EPROM
address until the falling CCLK edge that makes the LSB (D0) of
this byte appear on DOUT. This means that DOUT changes on the
falling CCLK edge, and the next device in a daisy chain accepts
the data on the subsequent rising CCLK edge.

Figure 6-3 illustrates the Master Parallel mode for XC2000 devices
with daisy-chained Slave Mode devices.

Figure 6-3 Master Parallel Mode for XC2000 Devices
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Figure 6-4 illustrates the Master Parallel mode for XC3000/XC3100
devices.

Figure 6-4 Master Parallel Mode for XC3000/XC3100 Devices
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The serial PROM CE input can be driven from either LDC or
DONE. Using LDC avoids potential contention on the DIN pin if
it is configured as user I/O, but LDC is then restricted to be
permanently High user output. Using DONE also avoids
contention on DIN, provided the early DONE option is selected.

Figure 6-5 illustrates the Master Serial mode for the XC2000 device
family.

Figure 6-5 Master Serial Mode for XC2000 Devices
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Figure 6-6 illustrates the Master Serial mode for the XC3000/
XXC3100 device family.

Figure 6-6 Master Serial Mode for XC3000/XC3100 Devices
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XC2000 devices accept one serial bit of configuration data on the
DIN pin for each selected Write cycle. XC3000 devices accept one
parallel byte of configuration data on the D0-D7 inputs for each
selected Write cycle.

For the switching characteristics, see The Programmable Logic Data
Book.

Each byte of XC3000 configuration data is loaded into a register.
XC3000 devices generate a configuration clock from the internal
timing generator and serialize the parallel input data for internal
framing and daisy-chained slave devices on DOUT.

When INIT goes High, the RDY/BUSY signal indicates the state of
the device. Prior to the INIT pin going High, the RDY/BUSY
signal is tristated through a pull-up resistor, which gives a false
indication that the device is ready to accept data. A High on the
XC3000 RDY/BUSY output pin indicates loading completion of
the previous byte when the input register is ready. You can use a
Peripheral-mode device as a lead device for a daisy-chain of slave
devices. It can have configuration inputs connected in parallel
with another device for identical configurations.

Figure 6-7 shows the serial data Peripheral mode connections of the
XC2000 devices.

Figure 6-7 Peripheral Mode for XC2000 Devices

X4717

ADDRESS
BUS

DATA
BUS

D0

ADDRESS
DECODE

LOGIC

CS0...

RESETRESET

DONE

...OTHER
I/O PINS

DIN CCLK

DOUT

M2

HDC

LDCLCA
GENERAL-PURPOSE
USER I/O PINS

D/P

M0 M1 PWR
DWN

+5 V

CS2

CS1

8 5 kΩ

*
 IF READBACK IS
ACTIVATED, A 
5-kΩ RESISTOR IS 
REQUIRED IN SERIES
WITH M1

*

OPTIONAL
DAISY-CHAINED
LCAs WITH DIFFERENT
CONFIGURATIONS

IOWRT
WRT
Development System User Guide 6-15



Development System User Guide
Figure 6-8 shows the parallel data Peripheral mode connections of the
XC3000 devices.

Figure 6-8 Peripheral Mode for XC3000/XC3100 Devices
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can also supply data and a clock. XC2000 devices require some
Slave-mode data hold time, while XC3000 devices do not.

Figure 6-9 and Figure 6-10 illustrate slave mode for XC2000 and
XC3000/XC3100 devices, respectively.

Figure 6-9 Slave Serial Mode for XC2000 Devices

Figure 6-10 Slave Serial Mode for XC3000/XC3100 Devices
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XC4000 and XC5200 Modes

This section describes XC4000 and XC5200 modes: Master Parallel
Up/Down, Master Serial, Peripheral Synchronous, Peripheral
Asynchronous, Slave Serial, and for the XC5200 only, Express. Table
6-3 lists the mode pin adjustments for the XC4000 and XC5200 to set
the device configuration mode.

Table 6-3  XC4000 and XC5200 Configuration Modes

● Master Parallel Up/Down

Master Parallel modes Up and Down use byte-wide data from a
PROM that is supplied to the D0-D7 pins in response to the 18-bit
address generated by the FPGA configuration logic.

The HEX starting address is 00000 and increments for Master
Parallel Up mode; and, is 3FFFF and decrements for Master
Parallel Down mode. These two modes provide opposite-address
compatibility with microprocessors that begin executing from
either end of memory. For Master Up or Down, 8-bit data bytes are
read by each read clock (RCLK) and internally serialized (least
significant bit first) by the configuration clock (CCLK).

For multiple devices in a daisy chain, the Master device interfaces
with the parallel PROM and passes configuration data to the other
devices serially. The slave devices use the CCLK generated by the
lead device to shift in the data through DIN. If multiple Slave
Serial devices have identical configurations, their DIN pins can be

Mode M2 M1 M0 CCLK Data

Master Serial 0 0 0 output Bit Serial

Slave Serial 1 1 1 input Bit Serial

Master Parallel Up 1 0 0 output Byte wide, 0000 up

Master Parallel Down 1 1 0 output Byte wide, 3FFF

Peripheral Synchronous 0 1 1 input Byte wide

Peripheral Asynchronous 1 0 1 output Byte wide

Express (XC5200 only) 0 1 0 input Byte wide

Reserved undefined undefined
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connected in parallel. Master devices cannot be connected in
parallel due to lack of CCLK synchronization.

Figure 6-11 illustrates Master Parallel Mode for XC4000 and XC5200
devices.

Figure 6-11 Master Parallel Mode for XC4000 and XC5200
Devices
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devices. For Master Serial Mode switching characteristics, refer to
The Programmable Logic Data Book.

Figure 6-12 illustrates the Master Serial mode for the XC4000 and
XC5200 devices.

Figure 6-12 Master Serial Mode for XC4000 and XC5200 Devices
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RDY/BUSY pulse. For the Peripheral Synchronous switching
characteristics, refer to The Programmable Logic Data Book.

Figure 6-13 Synchronous Peripheral Mode for XC4000 and
XC5200 Devices

● Peripheral Asynchronous

In Peripheral Asynchronous mode, the device looks like a
peripheral on a processor bus. Data is loaded through byte-wide
data input pins, D0-D7. The chip must be selected, CS1=1 and
CS0=0, before a write to the device or a read of the status flag can
occur. For the Peripheral Asynchronous switching characteristics,
refer to The Programmable Logic Data Book.

For the Write cycle, the combination of WS=0, CS0=0, CS1=1, and
RS=1 loads the data byte into a data latch for a parallel to serial
shift register to load into the internal configuration frames. When
the Write condition becomes false, it latches the last data at the
D0-D7 pins to the data latch. A High on the RDY/BUSY output
pin indicates that the data latch is empty and that another Write
cycle can be issued. The next byte of data can be presented to D0-
D7 after each Write cycle after some hold time.

For the Read cycle, RS=0, CS0=0, CS1=1, and WS=1, the RDY/
BUSY status flag is available on D7 so that you can read from the
same bus you write to.

X3395

CONTROL
SIGNALS

+5 V
DATA BUS

PROGRAM

DOUT
XC4000

+5 V

M0 M1 M2

CCLK

D0-7

•
•
•

HDC

LDC

INIT

GENERAL-PURPOSE
USER I/O PINS

Other
I/O Pins

REPROGRAM

5 k½

RDY/BUSY

+5 V

OPTIONAL
DAISY-CHAINED
LCA DECVICES WITH
DIFFERENT
CONFIGURATIONS
Development System User Guide 6-21



Development System User Guide
Note: In Peripheral mode, use of the chip select pins as user outputs
can result in signal contention in the last cycle of configuration as the
user I/O becomes active.

● Slave Serial

Slave Serial devices accept serial data with an externally supplied
configuration clock. Multiple Slave Serial devices can be
connected in parallel if they use identical configurations. Most
Slave Serial applications are daisy chain configurations in which
the data is supplied by the previous devices DOUT, while the
common clock is supplied by a Master or Peripheral mode device
at the head of the chain. A processor or other logic can also supply
data.

The XC2000 devices require some Slave Serial mode data hold
time, while the XC3000 and XC4000, and XC5200 devices do not.

Figure 6-14 illustrates Slave Serial mode for XC4000 and XC5200
devices.

Figure 6-14 Slave Serial Mode for XC4000 and XC5200 Devices
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must be in Slave Serial mode.
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CCLK cycle. An external source drives CCLK while byte-wide
data is loaded directly into the configuration data shift registers.
In this mode, the XC5200 family is capable of supporting a CCLK
frequency of 10 MHz, which is equivalent to an 80-MHz serial
rate, because eight bits of configuration data are being loaded per
CCLK cycle. For instance, an XC5210 in the Express mode, can be
configured in ~2 ms. The Express mode does not support CRC
error checking, but does support constant-field error checking.

In the Express configuration mode, an external signal drives the
CCLK inputs of the FPGA devices. The first byte of parallel
configuration data must be available at the D inputs of the FPGA
devices, a short set-up time before the second rising CCLK edge.
Subsequent data bytes are clocked in on each consecutive rising
CCLK edge.

Figure 6-15 illustrates the Express mode for the XC5200 device family.

Figure 6-15 Express Mode for XC5200 Devices

Loading and Framing Configuration Data
At power-up or when you reprogram, the device clears its memory as
indicated by INIT. After the device clears its memory, configuration
data is loaded into an FPGA from an external storage source such as
an EPROM, RAM, microprocessor, or file. For serial configuration

INIT

CCLK CCLK

XC5200

M0 M1 M2

CS1

D0-D7DATA BUS

PROGRAM

INIT

CCLK

PROGRAM

INIT

DOUTDOUT

To Additional

Optional

Daisy-Chained

Devices

To Additional

Optional

Daisy-Chained

Devices

Optional

Daisy-Chained


XC5200

M0 M1

+5V

5K

+5V

M2

CS1

D0-D7

PROGRAM

X6153

8

8

8

Development System User Guide 6-23



Development System User Guide
modes, each byte of PROM data is loaded into the FPGA least
significant bit first. For parallel configuration modes, the data is
serialized internally by the device to produce the same configuration
result.

Figure 6-16 shows clock and data path selections in the device. They
determine the configuration clock source and provide data
serialization for DOUT and for the frame register of the internal
configuration memory. The serial data of the preamble/length count
and configuration data for additional devices is clocked out by the
negative edge of CCLK and supplied to DOUT for daisy-chained
Slave mode devices.

Figure 6-16 Mode-Line Logic Level Inputs to the FPGA Control
Configuration Data Path Multiplexers

The length count control of operation allows a system of multiple
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as illustrated by Figure 6-17. The frame register accumulates frames
of memory data.

Figure 6-17 Frame Register
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begins with a preamble of 1111 1111 0010 followed by a 24-bit length
count representing the total number of configuration clocks needed
to complete loading of the configuration programs. After the
preamble and length count have been loaded, serial data is shifted
into the internal frame register.

The lead device always passes the preamble, length count, and 4-bit
separator field to the attached devices though the DOUT pin. If there
is only one device in the system, the DOUT pin still reflects this 40-bit
header. Following the length count, the device presents a High
DOUT signal until it intercepts the number of frames required to fill
its configuration memory. It is at this time that the device begins to
pass the data directly through to its DOUT pin.

This scheme allows daisy-chained devices to receive the common
length count and inhibits data-frame start bits for downstream
devices until the leading device memory is filled.

When the internal clock counter matches the length count value
loaded at the beginning of the configuration, the device begins start-
up, if its program memory is full. If the values do not match, then the

X4722

Configuration
Clock

Clock
Counter

Compare

Length Count
Register

Frame
Register

Configuration
Memory

Frame
Address
Pointer

Configuration
Memory Full

Start Bit
Detect

Preamble
Detect

Frame Data

Length Count
Register Empty

LCA
Start-Up

Length Count Compare

0
0
1
0

0

Internal
Serial Data
Development System User Guide 6-25



Development System User Guide
device continues to shift data from its DIN pin to its DOUT pin until
they do.

Serial Loading of Daisy Chains

If several devices are used in a design, they can be configured in a
daisy chain. The first device in the chain can be loaded in any mode
and is known as the lead device; subsequent devices are loaded in
Slave mode.

For daisy-chain configurations, the XACTstep Development System
creates a composite configuration bitstream for the selected FPGA
designs. The bitstream includes a preamble and a length count for the
total bitstream, followed by one or more linked data groups
separated by the device tail bits. With a 24-bit length-count register,
FPGAs can accommodate over 16 million configuration bits or about
700 XC3030s in a single daisy chain.

After loading and passing on the preamble and length count to a
possible daisy chain, a lead device loads its configuration data frames
while providing a High DOUT to possible downstream devices.

When the lead device has received its configuration data and if the
current clock count has not reached the full length count value, the
additional data is shifted out and appears in serial form on the DOUT
pin. The lead device also generates the configuration clock to
synchronize the serial data in and data out of following devices.

Slave devices use the positive edge of CCLK to read data in and the
negative edge of CCLK to shift data out. A Master-Parallel mode
device uses its internal timing generator to produce a continuous
CCLK of eight times its EPROM address rate. XC3000, XC4000, and
XC5200 Peripheral-mode devices produce a burst of eight CCLKs for
each chip-select and write-strobe cycle; an XC2000 device produces a
single CCLK per Write.

The internal timing generator continues to operate for general timing
and synchronization of inputs in all modes.

Concurrent Loading of Multiple Devices

It is possible to configure several FPGAs concurrently, which is
especially useful when you want to load several devices with the
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same design. There are two methods of concurrent loading that differ
only in the source of the configuration clock, as follows.

Method 1: Lead Device Provides CCLK

Follow these steps to perform Method 1:

1. Configure one device in the Master Serial mode and the other
devices in the Slave Serial mode.

2. Connect the CCLK of the lead device to the CLK pin of the serial
PROM and to the CCLK pins of all the Slaves.

3. Connect the DATA pin of the serial PROM to the DIN pins of all
the devices.

4. Enable the serial PROM with the wired-AND of all the device
DONE/PROG (DONE on XC4000 and XC5200 devices) pins.

The Master device provides clocks to the Serial PROM, which sends
out data to the Master device and all the devices in Slave mode. The
Master device also clocks the data into the devices in Slave mode.
When all the DONE/PROG and DONE pins go High, the PROM is
disabled.

Method 2: External Source for CCLK

Follow these steps to perform Method 2:

1. Configure all the devices in Slave Serial mode.

2. Connect all the CCLK pins together and drive them from the
device providing the configuration clock.

3. Connect the DIN pins together and connect them to the device
sending out the data. The DONE/PROG and DONE pins can be
wire-ANDed together to create a signal to monitor the time at
which all devices have been configured.

4. When loading the devices, use a wire AND of INIT pins to make
sure that you have allowed enough time for them to finish the
Clear state before sending data.

5. Be careful not to violate any of the CCLK timing specifications.

Note: Due to dynamic circuitry, there is a 5-µs maximum limit on
CCLK Low time for XC2000 and XC3000 devices. Since there is no
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dynamic configuration circuitry in the XC4000 and XC5200 parts,
there is no limit on the configuration CCLK Low time.

Loading Alternate Configurations

You can accomplish selection from alternate configurations with
external control of high-order PROM address inputs or by selecting
M1 for incrementing or decrementing addresses. For Master High or
Low, 8-bit data bytes are read and internally serialized (least
significant bit first) by the configuration clock. One Master-mode
device can be used to interface to the PROM and pass additional
linked configuration data to additional devices in a serial daisy chain
fashion.

When all the data of a parallel configuration PROM has been read,
the data output pin is disabled by a High from LDC or an early
DONE. The configuration clock output is generated for the Slave
Serial devices, which use the serialized data output supplied from
previous devices DOUT pin. If multiple Slave Serial mode devices
have identical configurations, their DIN pins can be connected in
parallel.

With a Master Serial configuration, additional identical devices can
be configured simultaneously, each in Serial Slave mode. Multiple
Master mode devices cannot be connected in parallel because their
clocks cannot be synchronized.

States for XC2000/XC3000 Devices
During configuration, the FPGA traverses through several states.
During these states the FPGA performs such things as power-on time
delay, configuration memory clear, and configuration programming.
When the device has loaded its last frame of configuration bits, it goes
through startup and becomes operational. The device can also be sent
back into re-configuration if the proper signals are applied.

The state diagram of the configuration process for the XC2000 and
XC3000 families is described in the following subsections and
illustrated by Figure 6-18.
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Figure 6-18 State Diagram for XC2000/XC3000 Devices
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supply voltage can stabilize. The Initialization state time-out of non-
Master mode device (11 to 33 ms) timing is determined by a 14-bit
counter.

Even a slow daisy-chained Slave Serial device must be allowed to
complete initialization before a fast Master device. Master mode
devices extend their initialization state to four times the non-Master
delay (43 to 130 ms).

The time-out counter is clocked by a 1-MHz (nominal) internal timer,
which is subject to variation from 0.5 to 1.5 MHz with process
temperature and supply voltage. This internal timer is also used to
synchronize inputs and provides CCLK in Master modes.

The external RESET pin must be held Low if VCC power does not rise
from 2.0 V to VCC minimum in less than 25 ms. Until Initialization
and Clear are completed, the power-down input (PWRDWN) is
inhibited in the XC3000 devices. You can assert PWRDWN after
Initialization and Clear are completed on XC3000A and XC3000L
devices. However, you should not assert PWRDWN for XC2000,
XC3000, and XC3100 devices until after configuration is completed.

Clear

After initialization, the FPGA enters the Clear state, where it clears
the configuration memory. This process takes one internal timer cycle
per configuration data frame. After the Clear state, the device tests for
the absence of an external active Low RESET before it makes a final
sample of the mode lines and enters the Configuration state.

If RESET is active, the device waits before entering the Configuration
state. For Slave- or Peripheral-mode XC2000 devices, an external time
delay must assure that the Initialization and Clear states are
completed before configuration begins.

For the XC3000 devices, a High on the active-Low, open-drain,
initialization signal INIT indicates that the Initialization and Clear
states are complete. An external wired-AND of multiple XC3000 INIT
pins can be used to indicate that Clear for all devices is complete. This
wired-AND signal can be used to control the start of configuration
and re-configuration by asserting the active Low RESET of a lead
Master-mode device or by signaling a processor that all connected
XC3000 devices are initialized.
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Configuration

Before entering the configuration cycle, the complete configuration
memory is cleared. During configuration program loading,
combinatorial inputs begin to propagate as the device becomes
configured, but device flip-flops and latches are held reset and output
buffers are held high-impedance.

High During Configuration (HDC) and Low During Configuration
(LDC) are two user I/O pins that define active output levels when the
device is in its Initialization, Clear, or Configuration state. HDC, LDC
and DONE/PROG provide signals for control of external logic
functions such as reset, bus enable or PROM enable during
configuration. This allows other configuration pins to be shared with
user logic functions.

Other user I/O pins that, depending on the configuration mode, have
temporary functions during configuration include the address pins,
data pins, chip-select/write-strobe, data in, data out, and the XC3000
INIT. Output pins that are shared with configuration functions
become active a clock cycle before DONE in any XC2000 device and
in XC3000 devices programmed for late DONE. Contention between
active device outputs and configuration inputs must be avoided. This
contention can be avoided with isolation resistors, isolation buffers,
an external signal used to temporarily disable user outputs, or
internal FPGA logic used to match initial outputs to external levels.

User inputs can be programmed globally to have either TTL- or
CMOS-compatible thresholds. The inputs have TTL thresholds at
power-up and during configuration. The thresholds change to CMOS
levels at the completion of configuration if the user has selected that
MakeBits option. TTL-input thresholds are required for interfacing
because of their 2.4 V minimum High levels. CMOS thresholds
generally provide better system noise immunity.

Note: The TTL-threshold option only affects the inputs, except for
PWRDWN, which is fixed at a CMOS level. All XC2000 and XC3000
outputs are always CMOS compatible, that is, they switch rail-to-rail.

If the crystal oscillator is used, it begins operation early in the
configuration to provide time for stabilization before it is connected
by DONE to the internal circuitry.
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An assertion of RESET during configuration is recognized after two
or three internal-clock cycles (2 to 6 µs), and the device initiates an
abort, returning to the Clear state to clear the partially loaded
configuration-memory words. The device then tests for an inactive
RESET and re-samples the mode lines before re-entering the
Configuration state.

Note: The Clear time-out for a Master mode re-program or abort does
not have the four-times delay of the Initialization state. If a daisy
chain is used, an external RESET is required long enough to
guarantee clearing of all non-Master mode devices. In the XC3000,
you can achieve the necessary time-out delay from a wired-AND of
the slave device INIT signals.

Start-up

When the initially loaded length count and internal clock count
compare and the configuration memory is full, the devices execute a
synchronous start-up sequence and becomes operational. For both
XC2000 and XC3000 devices, this includes the following:

● The release of the DONE pin

● The activation of the user I/O

● De-activation of the internal global Reset signal

Figure 6-19 illustrates start-up timing for XC2000 and XC3000
devices.
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Figure 6-19 Start-up Timing for XC2000/XC3000 Devices

One CCLK after the length count and CCLK compare, the user I/O
becomes active. Then, one CCLK period after the user I/O is
released, the DONE pin is released and the internal global Reset is
de-activated. At the same time the DONE signal is released and the
global Reset signal is deactivated, the CCLK becomes an input with a
pull-up resistor.

The XC3000 family offers some flexibility with the ability to program
both the DONE timing and the de-activation of the global Reset
relative to the release of the user I/O — either one CCLK before or
one CCLK after. The user I/O is released two CCLKs after the length
count compares. The timing selections of the DONE signal and the
de-activation of the global Reset are programmed using the MakeBits
options when the BIT file is created.

In both the XC2000 and XC3000 devices, you can program the
DONE/PROG signal to be an open-drain output or to include an
internal pull-up resistor to accommodate external wire-ANDing. Use
of internal pull-ups must be limited to less than 16 devices on any
wired-AND to allow any single device to drive the combined load
Low. The devices begin operation even if the DONE/PROG pin is
externally held Low.

XC3000

XC2000

CCLK

DONE

Global Reset

I/O

DONE

Global Reset

I/O

F = Finished, no more
configuration clocks needed
Daisy-chain lead device
must have latest F

Heavy lines describe
default timing

CCLK Period
Length Count Match

F

F

X4724
Development System User Guide 6-33



Development System User Guide
Reprogramming

The configuration memory can be rewritten while the device is
operating in your system. The device returns to the Clear state where
the configuration memory is cleared, I/O pins are disabled, and the
mode lines re-sampled, as described above for an aborted
configuration.

Re-program control is often implemented using an external open-
collector driver that pulls DONE/PROG Low. Once it recognizes a
stable request, the device itself holds DONE/PROG Low until the
new configuration has been completed. Even if the DONE/PROG pin
is externally held Low beyond the configuration period, the device
begins operation upon completion of configuration.

To reduce sensitivity to noise, these re-program signals are filtered for
two-to-three cycles of the internal timing generator (2 to 6 µs). Note
that the Clear time-out for a Master mode re-program or abort does
not have the four-times delay of the Initialization state. If a daisy
chain is used, an external RESET must be long enough to guarantee
clearing all non-Master mode devices.

For the XC2000 family, indicate an external time delay of 400 µs. With
XC3000 devices, this can be achieved with an 800-µs external time
delay or with a wired-AND of INIT pins.

In some applications, the system power supply might have
momentary failures, which can leave the device control logic in an
invalid state. There are two methods to recover from this state:

● The first method is to cycle the VCC supply to less than 0.1 V and
re-apply valid VCC.

● The second method is to provide simultaneous Low levels for 6 µs
on RESET and DONE/PROG pins after the RESET pin has been
High for 6 µs following a return to valid VCC.

This guarantees the FPGA returns to the Clear state. Either of these
methods is needed in the event of an incomplete supply-voltage
interruption. They are not needed for a normal application of power
from an off condition.
6-34 Xilinx Development System



Configuration, Length Count, and Debugging
States for XC4000 and XC5200 Devices
The XC4000 and XC5200 families configuration process is similar to
the XC2000 and XC3000 families. It has four phases:

● Power-up and Memory Clear

● Initialization

● Configure

● Startup-up

Reprogramming is a task in the configuration process where you can
rewrite the configuration memory.

The state diagram of the configuration process for XC4000 and
XC5200 devices is shown in Figure 6-20.
Development System User Guide 6-35



Development System User Guide
Figure 6-20 State Diagram for XC4000 and XC5200 Configuration
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Power-up and Memory Clear

When power is first applied or re-applied to an XC4000 or XC5200
FPGA, an internal circuit forces initialization of the configuration
logic. When VCC reaches an operational level (approximately 2.5 to
3.0 V), and the circuit passes a write and read test of a sample pair of
configuration bits, a nominal 85 ms time delay is started. During this
time delay or as long as the PROGRAM input is asserted, the
configuration logic is held in a Configuration Memory Clear state.
The user-programmable I/O output buffers not used in the
configuration are disabled and High impedance pull-up resistors are
provided for the I/O package pins. Configuration handshake output
signals assume their configuration state logic levels — HDC=High,
LDC=Low and INIT=Low. The CCLK pin becomes high impedance.
The configuration memory frames are consecutively initialized, using
the internal oscillator. The configuration clear takes approximately
1.3 µs per frame. At the end of each complete pass through the frame
addressing the power-on time-out delay circuitry and the level of the
PROGRAM pin are tested. If neither is asserted, the logic initiates an
additional complete clearing of the configuration frames and then
releases the INIT pin.

Initialization

The open drain INIT pin is released after the final pass of memory
clearing. In the XC4000 or XC5200, there is a deliberate delay of 40 to
160 µs before a Peripheral or Master mode device recognizes an
inactive INIT. To hold off configuration for an extended period of
time, the INIT signal can be driven with an external open collector
Low. Two internal clocks after the INIT pin is recognized as High,
and the three mode lines are sampled to determine the configuration
mode. The appropriate configuration interface pins then become
active.

Configuration

The preamble and length count configuration data is passed to all
devices in a daisy chain. The 24-bit length count is loaded into a
register to be compared with an internal counter that counts the
number of configuration clocks (CCLKs). After the preamble and
length count is passed to all devices in the daisy chain, DOUT is held
High to prevent frame start bits from reaching any other devices.
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A specific configuration bit early in the first frame of a master device
controls the configuration clock rate. This configuration bit can be set
in the MakeBits options for XC4000 or XC5200 devices. The default is
Slow, ~0.75 MHz. This rate is compatible with XC2000 and XC3000
devices and should be used in mixed daisy chains.

The Fast rate, ~6 MHz for XC4000 devices and ~12 MHz for XC5200
devices, speeds up the configuration. The Medium rate for the
XC5200 is ~6MHz. The devices end each frame with four bits of a 16-
bit CRC checksum. During the loading of each frame, a 16-bit CRC
checksum is generated. The final four bits of the data frame are
checked against the 16-bit checksum. If there is an error found within
a particular frame, the device stops loading and signals an error by
pulling the open-drain INIT Low. If a frame error occurs, the device
must be reprogrammed by pulling the PROGRAM pin Low.

The internal counter is checked against the length count. If these
values match and the device has filled its configuration memory, the
device moves on to the start-up phase. Otherwise, the device keeps
sending data from the DIN pin to the DOUT pin.

Start-up

The start-up state has several options to control the sequence of
events when the device becomes operational. The following figure
illustrates start-up timing for XC4000 and XC5200 devices:

Note: Due to the large number of clocks from length count to
“Finished” in the XC4000 and XC5200, do not use an XC2000/XC3000
device as a master with XC4000 or XC5200 devices as slaves.
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Figure 6-21 Start-up Timing for XC4000/XC5200 Devices
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● DoneActive determines when the open-drain DONE output
signal is released.

● GSRInactive determines when the global SET/RESET signal for
all CLB and IOB flip-flops is released. At the end of configuration,
flip-flops configured with set direct (FDSD) are set while all others
are reset. (For XC5200 it is only a RESET; flip-flops do not come up
set.)

Note: The XC4000 and XC5200 devices do not have a power-down
mode. The global 3-state net is provided to hold all outputs in the
high-impedance state to minimize power consumption.

● OutputsActive determines the time the configuration-related pins
change to the user-defined functions.

Note: The input pins of the device are active throughout the
configuration process, which means that signals applied to inputs
other than the configuration pins propagate through the device.

When selecting a particular start-up scheme for a given design, first
decide which clock to use. Then decide whether the system on the
board needs to be synchronized by using the DONE signal.

The XC4000 and XC5200 families allow you to use the internal CCLK
to drive the start-up sequence or an external User clock. The MakeBits
default indicates use of the internal CCLK. However, if the FPGA
needs to be started with the rest of the system, you can use an
external User clock. To use the User clock, you must connect the clock
to the CLK pin of the Startup symbol in the design and set the
appropriate MakeBits option, as follows:

● CCLK_NOSYNC — internal CCLK driven start-up, not
synchronized to DONE

● CCLK_SYNC — internal CCLK driven start-up, not synchronized
to DONE

● UCLK_NOSYNC — external User clock driven start-up, not
synchronized to DONE

● UCLK_SYNC — external User clock driven start-up,
synchronized to DONE

When configuring multiple FPGAs in parallel or in a daisy chain, the
DONE signal can be wired together so that all devices go High
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simultaneously. The resulting DONE signal can be used to
synchronize the OutputsActive and GSRInactive for all the devices.

You can choose between internal and external clocks, and whether to
select synch to DONE. In the event of a data error, you can use Sync-
To-DONE to prevent correctly configured upstream devices from
going active.

Note: When you use a user-supplied start-up clock, the first user
clock after C1 clocks an additional register to resolve potential
metastability problems caused by the asynchronous relationship
between CCLK and the user clock. For multiple XC4000 and XC5200
devices in a chain, Xilinx recommends that you synchronize the start-
up sequence to DONE if the user clock option is desired.

Table 6-4 summarizes the four options you can set in MakeBits. The
default values for the various settings are indicated in italic. The table
footnotes describe each setting.

Table 6-4  MakeBits Options

Note: When using the NOSYNC modes, the device becomes
operational even if the DONE pin is externally held Low.

a. First rising edge of CCLK after the length count compares
b. Second rising edge of CCLK after length count compares
c. Third rising edge of CCLK after length count compares
d. Fourth rising edge of CCLK after length count compares
e. When the DONE input goes High
f. First rising edge of CCLK after DONE goes High
g. Second valid rising edge of user clock after C1
h. Third valid rising edge of user clock after C1
i. Fourth valid rising edge of user clock after C1
j. First rising edge of user clock after DI
k. Second rising edge of user clock after DI

MakeBits
Options

DoneActive OutputsActive GSRInactive

CCLK_NOSYNC C1a, C2, C3, C4 C2b, C3, C4 C2, C3c, C4d

CCLK_SYNC C1, C2, C3 C2, C3, DIe, DI_PLUS_1f C2, C3, DI, DI_PLUS_1

UCLK_NOSYNC C1, U2g, U3, U4 U2, U3h, U4 U2, U3, U4i

UCLK_SYNC C1, U2 U2, DI, DI_PLUS_1j, DI_PLUS_2 U2, DI, DI_PLUS_1, DI_PLUS_2k
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Reprogramming

The configuration memory can be rewritten while the device is
operating in your system. Reprogramming might be required to load
a different configuration or to reload the configuration after a power
supply interruption. To reprogram, pull the PROGRAM pin Low. The
device returns to the Clear state where the configuration memory is
cleared, I/O pins are disabled, and the mode lines are re-sampled, as
described previously.

To reduce sensitivity to noise, the PROGRAM signal is filtered for 2-3
cycles of the devices internal timing generator (2-6 µs). Once the
device recognizes a stable request, it holds DONE Low until the new
configuration has been completed. Even if DONE is externally held
Low beyond the configuration period, the device begins operation
upon completion of configuration unless you used Sync-To-DONE.

On a reprogram, Xilinx devices do not provide a time-out delay;
therefore, you must provide one to ensure that downstream devices
can clear their own configuration memories. See The Programmable
Logic Data Book for the appropriate time-out delays. The Clear time-
out for a Master or Peripheral mode reprogram does not have the 40-
160 µs delay as in powering up condition. If a daisy chain is used,
wiring the INIT pins together guarantees that the chain does not start
configuring until all devices are finished clearing.

Length Count
When an FPGA begins its configuration sequence, it loads in the 24-
bit length count (LC) found in the 40-bit bitstream header. It then
proceeds to clock in data and increment an internal counter that
keeps tracks of the number of configuration clocks that have
occurred. The counter begins its enumeration of configuration clocks
after INIT has gone inactive. When this internal counter equals the
loaded 24-bit length count value, the device begins its individual
start-up sequence if the memory is full.

Note: This section provides an overview of how the Xilinx software
calculates length count (LC). Use this information for verification
only.

Two methods of calculating length count have been devised. The first
method is called the DONE Alignment and the second is the Length
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Count Alignment. Xilinx recommends the latter method for all
peripheral programming modes. Also, when discussing the position
of length count, the nth bit in the bit stream is being referred to where
n is the value of length count.

Table 6-5 lists the frames and bits per frame that are needed to
calculate the length count using either of the described methods.

Table 6-5  Bits per Frame and Frames for Xilinx Devices

Device Bits per Frame Frames

XC2064 74 160

XC2018 91 196

XC3020
XC3020A
XC3020L
XC3120
XC3120A

75 197

XC3030
XC3030A
XC3030L
XC3130
XC3130A

92 241

XC3042
XC3042A
XC3042L
XC3142
XC3142A

108 285

XC3064
XC3064A
XC3064L
XC3164
XC3164A

140 329

XC3090
XC3090A
XC3090L
XC3190
XC3190A

172 373
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DONE Alignment
The DONE Alignment method is used to calculate LC in the XACT
tools prior to XACT 5.0. The DONE Alignment method, however,
does not readily accommodate peripheral mode devices. Because the
last bit of the byte of data is not clocked in until the next byte, DONE
might never occur if the device does not receive enough
configuration clocks. Also, if the number of XC4000 devices is greater
than three, LC is greater than the number of bits in the stream.

When calculating LC using the DONE Alignment method, LC occurs
somewhere in the last byte. This positioning of LC might seem
arbitrary, but in fact is calculated based on the number of

XC3195
XC3195A

188 505

XC4002A 102 310

XC4003A 122 374

XC4003
XC4003H

126 428

XC4004A 142 435

XC4005A 162 502

XC4005
XC4005H

166 572

XC4006 186 644

XC4008 206 716

XC4010 226 788

XC4013 266 932

XC4025 346 1,220

XC5202 376 112

XC5204 440 160

XC5206 576 184

XC5210 712 232

XC5215 848 280

Device Bits per Frame Frames
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configuration clocks needed to produce a DONE signal at the end of a
data byte.

To manually calculate the length count using the DONE alignment
method, follow these steps:

1. Initialize LC and then add 40 to represent the 40-bit header.

2. For each of the devices in the chain, repeat the following:

a) Add (bits per frame) * (number of frames) to LC using the
values given for the particular device.

b) Add number of tailbits to LC, where the number of tail bits is 4
for XC2000 and XC3000 parts, and 5 for XC4000 and XC5200
parts.

3. If there is more than 1 device in the bit stream, add the number of
devices to LC.

4. Add the value K to LC using the following criteria:

● K = 3 if the chain consists only of XC2000 devices.

● K = 2 if the chain consists only of XC3000 devices all with
DONE scheduled before the release of the user I/O.

● K = 4 if the chain contains an XC3000 device with its DONE
scheduled after the release of the user I/O.

● K = 3 with any mix of devices with no late XC3000 DONEs
(this includes single XC4000/XC5200 bit files and XC4000/
XC5200 chains).

5. Add the value P to LC where P is the number of pad bits.

● P = 0 if LC is evenly divisible by 8.

● P = n where n is the number added to LC to make it evenly
divisible by 8 if it is not already evenly divisible by 8.

6. Take the rounded value of LC and subtract the K value you added
in step 4.

Note: Although it appears in the following examples as if the K value
does nothing to LC, it needs to be added so that the proper value of P
is calculated.
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7. If the chain does not contain any XC4000 or XC5200 devices the
LC calculation is complete; otherwise, add the number of XC4000
or XC5200 devices in the chain to LC.

Table 6-6 illustrates the formula that calculates the length count for
the specified device chain. It does not cover the entire set of possible
daisy chains, but does represent a large subset.

Table 6-6  Length Count Formulas for DONE Alignment Method

a. Early DONE
b. Late DONE
c. Daisy chain with two devices
d. Daisy chain with early and late DONE
e. Daisy chain with two devices
f. Daisy chain with early DONE
g. Daisy chain with late DONE
h. Daisy chain
i. Daisy chain with early DONE

Part Formula
Length
Count

XC2018 [(40) + [((91)*(196)) + (4)] + (0) + (K=3) + (P=5) - (K=3)] 17885

XC3020a [(40) + [((75)*(197)) + (4)] + (0) + (K=2) + (P=3) - (K=2)] 14822

XC3020b [(40) + [((75)*(197)) + (4)] + (0) + (K=4) + (P=1) - (K=4)] 14820

XC4010 [(40) + [((226)*(788)) + (5)] + (0) + (K=3) + (P=0) - (K=3) + (1)] 178134

XC2018c [(40) + [((91)*(196)) + (4) + ((91)*(196)) + (4)] +
 (2) + (K=3) + (P=3) - (K=3)]

35725

XC3020d [(40) + [((75)*(197)) + (4) + ((75)*(197)) + (4)] +
(2) + (K=4) + (P=4) - (K=4)]

29604

XC4010e  [(40) + [((226)*(788)) + (5) + ((226)*(788)) + (5)] + (2) + (K=3) +
(P=1) - (K=3) + (2)]

356321

XC2018;
XC3020f

[(40) + [((91)*(196)) + (4) + ((75)*(197)) + (4)] +
(2) + (K=3) + (P=0) - (K=3)]

32661

XC2018;
XC3020g

[(40) + [((91)*(196)) + (4) + ((75)*(197)) + (4)] +
 (2) + (K=4) + (P=7) - (K=4)]

32668

XC2018;
XC4010h

[(40) + [((91)*(196)) + (4) + ((226)*(788)) + (5)] + (2) + (K=3) +
(P=6) - (K=3) + (1)]

195982

XC3020;
XC4010i

 [(40) + [((75)*(197)) + (4) + ((226)*(788)) + (5)] + (2) + (K=3) +
(P=3) - (K=3) + (1)]

192918
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Note: To make the position of LC more consistent and to provide you
with better handling of the peripheral mode, Xilinx recommends
using the Length Count Alignment method.

Length Count Alignment
The Length Count Alignment method forces the LC position to be the
first bit of the last byte in the bit stream. This technique ensures that
there is a sufficient number of configuration clocks provided to the
devices in the chain, regardless of their type or start-up sequence.

To manually calculate the length count using the Length Count
alignment method, follow these steps:

1. Initialize LC and then ADD 40 to represent the 40-bit header.

2. For each of the devices in the chain repeat the following:

a)  Add (bits per frame) * (number of frames) to LC using the
values given for the particular device.

b)  Add number of tailbits to LC, where the number of tail bits is
four for XC2000 and XC3000 parts, and five for XC4000 and
XC5200 parts.

3. If there is more than one device in the bit stream, add the number
of devices to LC.

4. Add the value P to LC where P is the number of pad bits.

● P = 0 if LC is evenly divisible by 8.

● P = n where n is the number added to LC to make it evenly
divisible by eight if it is not already evenly divisible by eight.

5. Add one to LC and a byte (FF) to the actual bit stream. This forces
LC to fall in the first bit of the last byte.

Note: There is no K value used in the Length Count Alignment
method.

Table 6-7 illustrates the formula that calculates the length count for
the specified device chain.
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Table 6-7  LC Formulas for Length Count Alignment Method

Debugging Hints
There are two categories of configuration problems.

● The FPGA fails to configure; that is, the DONE/PROG (XC2000
and XC3000) or DONE (XC4000 and XC5200) pin does not go
High.

● The FPGA does not configure correctly; that is, the configuration
program is wrong.

The following hints help with debugging both categories of
configuration problems. First, read the general debugging hints. Then
turn to the page that has hints for the type of configuration mode you
are using and follow those suggestions.

General Debugging Hints
During design verification, if the DONE output does not go High,
there are several conditions that you can check.

a. Early or late DONE
b. Late DONE
c. Daisy chain
d. Daisy chain with two devices
e. Daisy chain with three devices

Part Formula
Length
Count

XC2018 [(40) + [((91)*(196)) + (4)] + (P=0) + (1)] 17881

XC3020a [(40) + [((75)*(197)) + (4)] + (0) + (K=2) + (P=3) - (K=2)] 14822

XC3020b [(40) + [((75)*(197)) + (4)] + (P=5) + (1)] 14825

XC4010 [(40) + [((226)*(788)) + (5)] + (P=3) + (1)] 178137

XC2018;
XC3020c

[(40) + [((91)*(196)) + (4) + ((75)*(197)) + (4)] + (2) + (P=3) + (1)] 32665

XC4010d [(40) + [((226)*(788)) + (5) + ((226)*(788)) + (5)] + (2) + (P=4) + (1)] 356233

XC2018;
XC3020;
XC4010e

[(40) + [((91)*(196)) + (4) + ((75)*(197)) + (4) + ((226)*(788)) + (5)] +
(3) + (P=5) + (1)]

210761
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All Families

The following debugging hints apply to all families:

● Even without a Slave mode device, CCLK and DOUT are very
informative signals. CCLK synchronizes input data and shifts it
through DOUT. The preamble/length count begins with the onset
of CCLK negative edges and the bit order must match.

1111 1111 0010 ( length count) 1111 . . .

Verify the length count is produced on each DOUT pin.

Note: In XC2000 and XC3000 devices low pulses on RESET abort
configuration. This input/output pattern can be repeated at the
Clear-state time interval rather than waiting for complete
configuration attempts.

● If extraneous configuration clocks are applied after Clear but
before the preamble data, the clock count equals the length count
before the configuration data is completely loaded. In this case,
the DONE output does not become active until the clock counter
again equals length count. This requires 224 extra clocks, or about
16 s at 1 MHz.

Note: If configuration takes 15 to 25 seconds, there is a mismatch
between length count and the number of CCLK pulses generated.

● Check supply and configuration-related pins with an oscilloscope
or logic analyzer to provide invaluable information, such as
wiring errors, bad socket pins, noisy ground, missing VCC on a
serial configuration PROM Vpp, and so on.

● Ringing on a clock line can cause extraneous clocking and loss of
frame synchronization in an FPGA.

● XChecker and the XACT Download Cable provide alternate
methods of configuration to verify configuration data and isolate
wiring errors, such as interchanged or inverted configuration data
or control signals.

● Try a different device; the devices are 100% tested at the factory,
but they could be damaged after leaving the factory.

● Configuration functions can be disrupted by signal contention
between configuration inputs and the device user outputs, which
become active at the end of configuration. This disruption can be
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indicated by I/O pins being active and HDC/LDC no longer
being active at their configuration levels. Avoid these contentions
by rearranging pin-outs, maintaining additional 3-state control of
user I/O outputs, or matching start-up output levels to the
configuration input levels on inputs other than chip-select. It is
also possible to use a series resistor (1-10 kΩ) to provide isolation
between conflicting signal sources that could occur after
configuration is complete.

● During reprogramming, user logic must generate a time-out that
ensures all devices have completed the Clear cycle before any
configuration data is sent to them.

● When externally powered signals continue to drive input pins,
removing VCC from the device may leave VCC at a 0.5-to-2.0 V
level, which can leave a device in an invalid state. The input-
protection circuits of the device include diodes to clamp input-
voltage excursions to ground and VCC. When VCC falls more than
half a volt below the input signal, the input signal might begin to
supply degenerate VCC levels. If input signals are not current-
limited, the input-protection circuit can be damaged by the
excessive current required.

● If the preamble and length count appear correctly on DOUT but
DONE is missing, some dummy bits can be added to the end of
the normal configuration data. Some PROM programmers can be
used to edit the PROM length count and append this dummy
Slave data. An alternative is to add an additional device in
MakePROM. This step is rarely necessary.

● If the device chain is failing to go though the start-up sequence,
remake your bit stream using the alternate length count
generation method.

XC2000 and XC3000

The following debugging hints apply to XC2000 and XC3000 families
only:

● A slowly rising or noisy RESET can cause multiple devices to get
out of synchronization. Always debounce reset switches.

●  The internal state of the device can be disrupted if the PWRDWN
is not pulled up or if the RESET pin is experiencing noise.
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● An undefined (floating) or active Low PWRDWN during
configuration can disturb the operation.

● The configuration-clock input signal drives some quasi-static
circuitry that requires a maximum Low-time input specification.
Never hold the configuration clock input Low for more than 5 µs.

● Check for missing pull-up resistors on DONE/PROG (or INIT in
the XC3000). Refer to The Programmable Logic Data Book for
appropriate pin assignments.

● Make sure VCC rises in 25 ms or less. If this cannot be guaranteed,
hold RESET, active on the devices and any serial PROMs until
power is up on your system.

● If RESET is used to delay configuration, make sure it has a rise
time of less than 200 ns and that it is error-free.

XC4000 and XC5200

The following debugging hints apply to XC4000 and XC5200 families
only:

● Check for missing pull-up resistors on DONE, and so on. Refer to
The Programmable Logic Data Book for appropriate pin assignments.

● Make sure VCC rises in 25 ms or less. If this cannot be guaranteed,
hold PROGRAM or INIT active on the devices and reset any serial
PROMs until power is up on your system.

● An excessive number of loads on the configuration clock can
cause noise incorrect information to be loaded into the device.

● The boundary scan input pins are active during configuration
even if boundary scan is not used in the design. During
configuration, it is possible to toggle the boundary scan inputs
and send the device into boundary scan mode. This process halts
configuration.
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Master Parallel Up and Down Modes
The following sections provide debugging information for failed and
incorrect configuration during Master Parallel Up and Down modes.

Debugging Failed Configuration

For a failed configuration, make the following checks:

● Verify that the FPGA is sending addresses to the PROM. If it is not,
make sure the FPGA mode pins (M0, M1, M2) are at their proper
values, shown below.

● M0 = 0, M1 = 0, M2 = 1 for Master Parallel Up

● M0 = 0, M1 = 1, M2 = 1 for Master Parallel Down

● Make sure VCC is at 5 V and ground is at 0V.

● Check to see that the PROM is sending out data. If it is not, try the
following:

● Make sure that the addresses from the FPGA are arriving at the
PROM address pins.

● Make sure that power and ground are connected to the PROM.

● Make sure that the PROM is enabled.

● Verify that the PROM is programmed with the correct data.

● Check the PROM data pins to be sure they are connected to the
FPGA data pins D0-D7. Be sure the PROM address pins are
connected to the FPGA address pins A0-A15. Verify that all
connections are in the appropriate order. Monitor the FPGA pins,
not the socket pins. Check the socket connections.

● Check for contention between the FPGA address pins or the
PROM data pins and other signals on the board.

Debugging Incorrect Configuration

For an incorrect configuration, make the following checks:

● Make sure that the device is addressing the correct part of the
PROM. The device starts at address 0000 hex and counts up in
Master Parallel Up mode and at address FFFF hex, and counts
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down in Master Parallel Down mode. If the PROM addressing is
different, it must be taken care of by external hardware.

● Check for contention between the device address pins or the
PROM data pins and other signals on the board.

● Check for ringing and noise on address and data lines.

● Make sure the data and address pins on the PROM are wired to
the correct data and address pins on the device.

● Make sure the data in the PROM is correct. You can check it
against the Rawbits file.

Master Serial Mode
The following sections provide debugging information for failed and
incorrect configuration during Master Serial mode.

Debugging Failed Configuration

For a failed configuration, make the following checks:

● Monitor the DOUT pin of the Master device. In the beginning of
configuration, you should see the following.

1111 1111 0010 ( length count) 1111 . . .

After this sequence, DOUT should be all ones — a continuous
High level — until the DONE/PROG or DONE pin goes High. If
this is a Master device for a daisy chain, this pattern remains until
the Master device has received all its data. After receiving the
data, the Master device becomes transparent and passes data
through the DOUT pin to the Slave devices. If you do not see this
pattern, you have an error. Try some of the other debugging hints
in this section.

● Verify that the FPGA is sending a clock signal on its CCLK pin
and that this signal is reaching the Serial-Configuration PROM
CLK pin. If it is not, make sure the device mode pins (M0, M1, M2)
are at their proper values, shown below.

M0 = 0, M1 = 0, M2 = 0 for Master Serial mode

● Verify that the Serial-Configuration PROM is sending data.

● Make sure that power and ground are applied to the PROM.
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● Make sure VPP is connected to VCC. A floating VPP pin results
in temperature-dependent unreliable operation.

● Make sure the PROM is enabled with OE and CE Low.

● Verify that the PROM is programmed with the correct data.

● Make sure that the DATA pin of the PROM is connected to the
DIN pin of the device.

● Check for contention between the device pins or the PROM data
pin and other signals on the board.

● A symptom of slow VCC rise time is that the device sends out
clocks continuously, the CEO pin on the PROM goes Low, but the
DONE/PROG or DONE pin never goes High.

● If you abort the FPGA configuration by asserting device RESET,
you must also reset the serial PROM by asserting the OE/RESET
pin.

Debugging Incorrect Configuration

For incorrect configuration, make the following checks:

● Make sure that the VPP pin on the Serial Configuration PROM is
tied to VCC. A floating VPP pin results in temperature-dependent
unreliable operation.

● Check for contention between device pins or the PROM data pins
and other signals on the board.

● Check for ringing and noise on the clock and data lines.

● Make sure the PROM data is correct.
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Peripheral Mode
The following sections provide debugging information for failed and
incorrect configuration during Peripheral mode.

Debugging Failed Configuration

For a failed configuration, make the following checks:

● Monitor the DOUT pin of the Master device. In the beginning of
configuration, you should see the following.

1111 1111 0010 ( length count) 1111 . . .

After this sequence, DOUT should be all ones, a continuous High
level, until the DONE/PROG or DONE pin goes High. If this is a
Master device for a daisy chain, this pattern remains until the
Master device has received all its data. When it has, the Master
device becomes transparent and passes data through the DOUT
pin to the Slave devices. If you do not see this pattern, you have a
gross error somewhere. Check the following hints:

● Verify that the device is receiving data at its input pins and that it
is receiving valid Write-Strobe and Chip-Select signals. If it is not
receiving the proper data and valid signals, check the device
loading the device. Make sure that these signals meet the device
timing requirements listed in The Programmable Logic Data Book.

● Observe minimum times listed in The Programmable Logic Data
Book.

● Make sure the device mode pins (M0, M1, M2) are at their proper
values.

M0 = 1, M1 = 0, M2 = 1 for Peripheral mode

● Make sure that the device is ready to receive data.

XC3000 and XC4000 devices — on power up, make sure that the
INIT pin has gone High, or wait at least 34 ms (22 ms for XC4000
and XC5200) before you begin sending data to the device. Make
sure that the RDY/BUSY signal is High before sending each data
byte.

XC2000 Family — on power up, make sure that the device has had
time to “wake up,” at least 34 ms, before sending it data.
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● Check for contention between the Chip Selects (CS0, CS1, and
CS2) or the Write Strobe (WS) and signals on these pins after
configuration. It is best to use the Chip Select pins as inputs after
configuration. Avoid contention if they are used as outputs. With
XC2000 Family devices, the I/Os become active before the device
receives its final data bits and clocks, and also before the DONE/
PROG pin goes High. If the I/Os for any of the Chip Selects or the
Write Strobe become outputs after configuration, they could
contend and, in effect, de-select the device so that it never receives
its final data bits.

Warning: Beware of contention!

● Check for contention between the FPGA pins and other signals on
the board.

Debugging Incorrect Configuration

For an incorrect configuration, make the following checks:

● Make sure that you are sending the data to the device in the
correct order. Monitor DOUT and verify that the pattern below
appears at the beginning of configuration.

1111 1111 0010 ( length count) 1111 . . .

● XC3000, XC4000, and XC5200 devices — data is sent as a byte.
Make sure bit 0 is connected to the FPGA D0 pin, bit 1 to D1
pin, and so on.

● XC2000 devices — data is sent serially. If a PROM file is used as
a data source, make sure you serialize the data by sending the
LSB of each byte first. For example, if the data byte is 14 (0001
0100), it must be sent to the device as 0010 1000.

● Check for contention between device pins and other signals on the
board.

● Check for ringing and noise on the Chip-Select and Write-Strobe
lines.
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Slave Mode
The following sections provide debugging information for failed and
incorrect configuration during Slave mode.

Debugging Failed Configuration

For failed configuration, make the following checks:

● Monitor the DOUT pin of the Master device. In the beginning of
configuration, you should see the following pattern.

1111 1111 0010 ( length count) 1111 . . .

After this sequence, the DOUT pin should output all ones (be
continuously High) until the DONE/PROG or DONE pin goes
High. If this is the first device for a daisy chain, this pattern
remains until the Master device has received all its data. Then, the
Master device becomes transparent and passes data through the
DOUT pin to the Slave devices. If you do not see this pattern, you
have a gross error somewhere. Check the following hints.

● Verify that the device is receiving data at its input pin (DIN) and
that it is receiving a valid clock signal on its CCLK pin.

● Check the device sending the data.

● Check the device sending the clock signal and make sure the
clock meets the device timing requirements. Refer to the “Slave
Mode Programming” section of The Programmable Logic Data
Book. If the clock is being generated by the configuration clock
of a Master device, it always meets the proper timing
requirements.

● Make sure the device mode pins (M0, M1, M2) are at their proper
values.

M0 =1, M1 = 1, M2 = 1 for Slave mode

● Make sure the device is ready to receive data.

● XC3000 and XC4000 devices — on power up, make sure the
INIT pin is High or wait at least 34 ms (22 ms for XC4000 and
XC5200 devices) before you begin sending data to the device.

● XC2000 devices — on power up, make sure that the device has
had time to “wake up,” at least 34 ms, before sending it data.
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● Check for contention between the device pins and other signals on
the board.

Debugging Incorrect Configuration

For incorrect configuration, make the following checks:

● Make sure that you are sending the data to the device in the
correct order. Monitor DOUT and verify that the following pattern
appears at the beginning of configuration.

1111 1111 0010 ( length count) 1111 . . .

● Data is sent serially. Make sure you send the LSB of each byte first
if a PROM file is used as a data source. For example, if the data
byte is 14 (0001 0100) it would be sent to the device as 0010 1000.

● Check for contention between device pins and other signals on the
board.

● Check for ringing and noise on the data and clock signals.

Daisy Chain Debugging Hints
The key to debugging daisy-chain configurations is to isolate the
problem and attempt to configure a single device.

1. Remove all but the first device from the board and configure it.

2. Then insert the second device and configure both.

3. Repeat as you add one device at a time until they all configure.

To debug the daisy chain, make the following checks:

● The first device in the chain can be in any of the configuration
modes. Debug it first, using the hints provided for the appropriate
mode.

● All devices after the first one are in a Slave mode, so refer to Slave
Mode Debugging Hints section to solve any problems with Slave
device.

● Monitor the DOUT pin of each device in the chain and verify the
pattern below appears at the beginning of configuration.

1111 1111 0010 ( length count) 1111 . . .
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● Make sure that the length count is long enough to represent a
chain of all the devices.

● Add a dummy bitstream or just zeros to the end of the bitstream.
Change the LC to reflect the number of bits you added to the end.
This verifies that the last device in the daisy chain goes
transparent.
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The XC4000 and XC5200 Readback Capability

This chapter describes the XC4000 and XC5200 readback capability
and covers the following topics:

● When is readback necessary?

● Readback features

● Performing a readback

● Readback initialization

● Configuration and readback bitstreams

● Software support for readback

● Readback timing

● Cyclic redundancy check

Every FPGA device shipped by Xilinx is tested using the device
readback capability. All CLBs and IOBs are configured and read back
using extensive test patterns to guarantee 100 percent functionality of
the FPGA device.

You can perform a readback on a device at any time after
configuration.The readback data consists of the configuration data
and, optionally, the current state of the CLBs and IOBs.

When is Readback Necessary?
Xilinx FPGAs are 100 percent pretested making it unnecessary to use
readback to screen them for errors. You can use cyclic redundancy
checking (CRC) for XC4000 and XC5200 device families on the
configuration bitstream to check the integrity of the bitstream loaded
into the configuration memory. This CRC logic traps any data or
noise corruption as the bitstream is loaded.
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The configuration bitstream includes a 4-bit partial check of a 16-bit
CRC of the configuration data for each data frame transmitted into
the FPGA device. Using this technique, the device detects invalid
data bits and aborts the configuration process. The INIT status pin is
pulled Low, signaling that an error occurred during loading of the
configuration memory.

Consequently, readback is useful only in the following cases:

● To verify the configuration in an unstable or noise-prone
environment

● To read back the internal state of the RAM, CLBs, and IOBs during
the FPGA development phase (a highly useful in-circuit
debugging feature)

● To test high-reliability applications that require in-system
functional analysis and verification

Readback Features
The readback operation does not interfere with the FPGA operation.
After a valid readback request, the current state of the internal nodes
can be captured into a special shift register. Then the data can be
transferred out of the device using a user-defined clock signal.

The following internal configuration data and circuit nodes are
available for readback as follows:

● Configuration memory bits that define the logic configuration of
CLBs, IOBs, and the interconnects

● X output pins of the XC2000 CLB function generators

● X and Y output pins of the XC32000 and XC4000 CLB function
generators

● LC0.X through LC3.X output pins of the XC5200 CLB function
generators

● XQ and YQ output pins of XC4000 CLB flip-flops

● LC0.Q through LC3.Q output pins of the XC5200 CLB flip-flops

● Output pins of flip-flops in IOB output paths in the XC4000

● I1 and I2 input pins of IOBs
7-2 Xilinx Development System
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Note: The XC4000 CLB includes special connections between the C1-
C4 input pins and the XQ and YQ output pins that can be used to
route signals from one side of the CLB to the other. Although these
signals leave the CLB through the XQ or YQ pin, they are not
captured in the readback bitstream; only the actual flip-flop outputs
are captured.

Figure 7-1 illustrates the XC4000 IOB configuration.

Figure 7-1 XC4000 IOB Logic Configuration
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Figure 7-2 illustrates the XC4000 CLB logic configuration.

Figure 7-2 XC4000 CLB Logic Configuration
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Figure 7-3 illustrates the XC5200 CLB logic configuration.

Figure 7-3 XC5200 CLB Logic Configuration
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Scan in XC4000and XC5200 Devices” chapter in this user guide for
more information.

Daisy chaining FPGA devices for readback is not possible. Each
device must be read back individually.

The XChecker download cable and logic probe handles configuration
and readback of XC2000, XC3000, XC4000, and XC5200 FPGA
families. In addition, it displays selected internal nodes on the screen.

Performing a Readback
The following section describes performing a readback and covers
these topics:

● Readback state diagram

● Readback primitive

Readback State Diagram
An FPGA-internal state machine controls the readback process. See
Figure 7-4 for the readback state flow diagram.
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Figure 7-4 Readback State Diagram

READBACK Primitive
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two outputs as illustrated by Figure 7-5.
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Figure 7-5 The READBACK Primitive

Note: If the RDCLK symbol is not present, or not connected, the
default clock is CCLK

Table 7-1 describes the READBACK primitive connections to the user
I/Os and CLBs.

Table 7-1  READBACK Primitive Connections

Readback
Pin

XDE Pin Description

CLK rdclk.I The clock input can be connected to any device input
pin, or any CLB output. If it is not connected to a user
net, it connects to the device CCLK input pin, if the
appropriate option is selected in the MakeBits program.

TRIG rdbk.TRIG A Low-to-High transition on the TRIG input starts a
readback sequence. The minimum required pulse width
is one rdclk.I cycle. A valid trigger causes the current
value of certain nodes to be latched into an internal
holding register.

If ReadAbort was selected as an option in MakeBits, a
High-to-Low on the TRIG input aborts the readback. In
this case, additional clocks must be provided until
rdbk.RIP signals the end of a readback. The rdbk.TRIG
cannot be reasserted until at least three clock periods
after the previous readback has been terminated
correctly.

DATA
RIP

TRIG

RDBK

I

RDCLK
CLK

TRIG DATA
RIP
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Note: In XC3000 devices, the input pin M0/RTRIG is used as a
readback trigger pin and M1/RDATA as a readback data pin. With
the XC4000 and XC5200 devices, you can use the M0 pin as an input
pin and the M1 pin as a tristate output; you could also use any other
pins for these functions.

The XC3000 devices have a MakeBits option to inhibit readback. With
the XC4000 and XC5200 devices, conventional readback is possible
only if you use the readback primitive in the design or perform a
boundary-scan readback.

Readback Initialization
You can prepare an FPGA design for readback by any of these
methods, which are described in the following sections:

● Using the readback primitive on the schematic

● Activating readback from XDE

● Performing a readback during a boundary scan

Using the Readback Primitive on the Schematic
The Xilinx Libraries include a READBACK primitive that can be used
in a schematic like any other library primitive. Simply connect the

RIP rdbk.RIP
(readback in
progress)

A High on this output indicates that a readback is being
performed. RIP goes active one readback clock cycle after
a valid readback trigger has occurred. It goes Low with
the last data bit shifted out of the FPGA device. If a
readback aborts, RIP remains active until the readback
sequence is terminated correctly.

DATA rdbk.DATA The readback data is available on the DATA output of the
readback primitive. Each rising edge on rdclk.I shifts one
data bit from the LCA-internal holding register to the
DATA output. You can opt to disable the user data bits in
the readback bitstream.

Readback
Pin

XDE Pin Description
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inputs and outputs of the READBACK primitive to your user nets as
desired. See Figure 7-6 for an example.

Figure 7-6 READBACK Symbol on the Schematic

Note: If the CLK input is not connected to any net, the bitstream
generation software connects it to the CCLK input pin, if you selected
the appropriate ClkSelect=Cclk in the MakeBits program.

Performing a Readback during a Boundary Scan
No changes are required to prepare a design for readback through the
boundary-scan port.

Configuration and Readback Bitstreams
The following sections describe the XC4000 configuration and
readback bitstreams.

The Configuration Bitstream
Figure 7-7 shows the format of the XC4000 configuration bitstream, as
generated by the MakeBits program. The bitstream consists of header
and program data. The header consists of four dummy bits, the
preamble code, the configuration-program-length count, and an
additional four dummy bits. The program data is divided into frames
consisting of a start bit (0), the data field, and four error check bits
(eeee). The bitstream ends with eight or more postamble bits
(01111111). The exact number of the bits in the bitstream is
represented by the 24-bit program-length count.

DATA
RIP

TRIG

RDBK

I

RDCLK
CLK

TRIG DATA
RIP
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Figure 7-7 XC4000 Configuration Bitstream Format

Figure 7-8 illustrates the XC5200 configuration bitstream format.

Figure 7-8 XC5200 Configuration Bitstream Format

Note: The configuration bitstreams are subject to change without
notice.

For more information on length count, refer to the “Configuration,
Length Count, and Debugging” chapter in this user guide. For more
information on gate count, number of CLBs, number of RAMs,
number of IOBs, and number of flip-flops for the various XC4000
devices, refer to The Programmable Logic Data Book.

The Readback Bitstream
The readback bitstream for the XC4000 and XC5200 devices contains
configuration information as well as the state of internal user logic.
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The readback bitstream starts with five dummy bits. The readback
data frame has the same format as the configuration data frame,
which facilitates a bit-by-bit comparison between readback and
configuration data. Each data frame consists of a start bit (0), the data
field, and four stop bits (1111). The bitstream ends with 11 CRC bits,
as illustrated by Figure 7-9.

Figure 7-9 XC4000 Readback Bitstream

Figure 7-10 illustrates the readback bitstream for the XC5200.

Figure 7-10 XC5200 Readback Bitstream

Both the configuration data and the internal-logic data are included
in the readback bitstream. In the readback bitstream, the
configuration data bits are not inverted with respect to the
configuration bitstream, unlike XC3000 readback. The user-logic data
bits, however, are inverted with respect to their values during
readback capture.

Note: For the XC4000, the readback configuration data might differ
from the original data downloaded into the device if CLB RAM is
used in the design. The RAM data is stored in the F- and G-function
tables of the CLB.
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The first two bits of the first readback data frame are variable; they
are non-user, non-configuration bits. Their input state is dependent
on the configuration speed and the configuration error-check mode
of the device. The last seven bits of the last readback data frame are
always ones.

If readback capture of user data is disabled in the MakeBits program,
logic Highs replace the user data. The XC4000 RAM data is not part
of the captured user logic data; it is contained in the readback
configuration data.

The bitstream ends with eleven bits of a CRC signature appended. If
ReadCapture is disabled and the design does not use any CLB RAM,
this signature is constant in successive readbacks. See the “Cycle
Redundancy Check” chapter in this user guide for more information
about the polynomial cyclic redundancy check, CRC-16.

Software Support for Readback
The user can set readback options with the MakeBits program. The
following MakeBits options are relevant for readback of XC4000 and
XC5200 devices.

ReadCapture
Table 7-2 lists the default setting for the ReadCapture option. This
option determines whether the state of internal user logic is included
in the readback bitstream. If ReadCapture is disabled, the user data is
replaced by ones.

Table 7-2  ReadCapture Option

ReadAbort
Table 7-3 lists the default setting for the ReadAbort option.
ReadAbort enables the level-sensitive signal rdbk.TRIG to abort the
readback. A High-to-Low transition stops the readback. You must
supply additional clocks to terminate the readback correctly. As a

Settings Default

Enable, Disable Disable
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minimum, the number of data frames contained in the device plus
three must be sent as additional clocks. During this period, the
readback data is High. The rdbk.RIP signal indicates the completion
of a readback process.

Table 7-3  ReadAbort Option

ReadClk
Table 7-4 lists the defaults setting for the ReadClk option. The rdclk.I
pin can be connected to any user net or to the CCLK I/O pin. With
this option, you can choose between the alternatives.

Table 7-4  ReadClk Option

LL File
MakeBits features an option used to create a logic location file
(design.ll) that contains information on which bit in the readback
bitstream corresponds to which signal in the design. This ASCII mask
file, illustrated in Figure 7-11, indicates the offset from the beginning
of the readback bitstream, the frame number, the offset within a
frame, and names of user signals in the readback bitstream. The file
offset indicates the bit position i the bitstream, thus it increases from 0
to the size of the bitstream. The frame offset and frame number
columns is the coordination of the memory in the die map. The origin
is at the lower left corner. After configuration, bit 0 of the bitstream is
shifted into the rightmost cell.

Settings Default

Enable, Disable Disable

Settings Default

CCLK, RDBK (user supplied) CCLK
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; Offset Column (Frame) Row (Frame Offset) Description

21 1 100 P57 I1

32 1 90 U37 I1

41 1 79 P60 U1

. . . .

. . . .

. . . .

36640 303 23 CD YQ

36650 303 13 BD YQ

37044 307 103 LD XQ CFG/TOGGLE

37054 307 93 KD XQ CFG/RDATA_REG/Q9

37064 307 83 JD XQ CFG/RDATA_REG/Q1

37074 307 73 ID XQ CFG/RDATA_REG/Q2

37084 307 63 HD XQ REFDATA_REG/Q5

37095 307 52 FD XQ

37105 307 42 ED XQ

. . . .

. . . .

. . . .

Figure 7-11 Sample Logic Location File

Readback Timing
Minimum readback frequency is 10 kHz; maximum readback
frequency is 1 MHz. The rdclk.I High time and Low time are each
0.5 µs minimum.

The readback speed is 10 kHz minimum, 1 MHz maximum. Table 7-5
indicates the timing parameters for readback.
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Table 7-5  Timing Parameters

See Figure 7-12 for additional preliminary readback switching
characteristics.

Figure 7-12 Readback Switching Characteristics

Cyclic Redundancy Check
The following section discusses the cyclic redundancy check (CRC)
for FPGA configuration and readback. This section contains the
following topics.

Description Symbol
Limits

Min Max Units

rdbk.TRIG rdbk.TRIG setup 1 TRTRC 200 — ns

rdbk.TRIG hold 2 TRCRT 50 — ns

rdbk.TRIG Low to
abort readback

3 TRTL 100 — ns

rdclk.I rdbk.DATA delay 7 TRCRD — 250 ns

rdbk.RIP delay 6 TRCRR — 250 ns

High time 5 TRCH 0.5 50 µs

Low time 4 TRCL 0.5 50 µs

RTRCT
RCRTT

2

RCLT4

RCRRT
6

RCHT 5

RCRDT
7

DUMMY DUMMYrdbk.DATA

rdbk.RIP

rdclk.I

rdbk.TRIG

Finished
Internal Net

VALID

RTLT
3

X1790

VALID

1
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● What is CRC?

● CRC during FPGA configuration

● CRC during FPGA readback

What is CRC?
CRC is a method of error detection in data transmission applications.
Generally, the transmitting system performs a calculation on the
serial bitstream. The result of this calculation is tagged onto the data
stream as additional check bits. The receiving system performs an
identical calculation on the bitstream and compares the result with
the received checksum. CRC checksum compare is often referred to
as signature analysis.

CRC During FPGA Configuration
Each data frame of the FPGA configuration bitstream has four error
bits at the end, as illustrated in Figure 7-7. If a frame data error is
detected during the loading of the device, the configuration process
with a potentially corrupted bitstream is terminated. The FPGA pulls
the INIT pin Low and goes into a wait state.

CRC During Readback
During a readback, 11 bits of the 16-bit checksum are appended to the
end of the readback data stream, as illustrated in Figure 7-9.

The checksum is computed using the CRC-16 polynomial, as
illustrated in Figure 7-13. The checksum consists of the 11 most
significant bits of the 16-bit code. A change in the checksum indicates
a change in the readback bitstream. Statistically, one in 2048 errors
might go undetected.
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Figure 7-13 Circuit for Generating the CRC-16
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Boundary Scan in XC4000 and XC5200
Devices

The following information assumes that you are familiar with
boundary-scan testing and the IEEE standard. Only issues specific to
the XC4000 and XC5200 implementation are discussed in detail in
this chapter. For general information on boundary scan, please refer
to the bibliography at the end of the chapter.

In production, boards must be tested to assure the integrity of the
components and the interconnections. However, as integrated
circuits have become more complex and multi-layer PC-boards have
become more dense, it has become increasingly difficult to test
assembled boards.

The inclusion of boundary-scan registers in ICs greatly improves the
testability of boards. Boundary scan provides a mechanism for
testing component I/Os and interconnections, while requiring as few
as four additional pins and a minimum of additional logic in each IC.
Component testing can also be supported in ICs with self-test
capability.

Devices containing boundary scan have the capability of driving or
observing the logic levels on I/O pins. To test the external
interconnect, devices drive values onto their outputs and observe
input values received from other devices. Data to be driven onto
outputs is distributed through a chain of shift registers, and observed
input data is returned through the same shift-register path. A central
test controller compares the received data with expected results.

Data is passed serially from one device to the next, thus forming a
boundary-scan path or loop that originates at the test controller and
returns there. Any device can be temporarily removed from the
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boundary-scan path by directing it to bypass its internal shift
registers and pass the serial data directly to the next device.

XC4000 and XC5200 FPGA devices contain boundary-scan registers
that are compatible with the IEEE Standard 1149.1, that was derived
from a proposal by the Joint Test Action Group (JTAG). External (I/O
and interconnect) testing is supported; there is also limited support
for internal self-test.

Boundary-Scan Features
XC4000 and XC5200 devices support all the mandatory boundary-
scan instructions specified in the IEEE Standard 1149.1. A test access
port (TAP) and registers are provided that implement the Extest,
Sample/Preload and Bypass instructions. The TAP can support two
User Code instructions, configure the FPGA device, and read back the
configuration data.

Boundary-scan operation is independent of individual IOB
configuration and package type. All IOBs are treated as
independently controlled bidirectional pins, including any unbonded
IOBs. Retaining the bidirectional test capability even after
configuration affords tremendous flexibility for interconnect testing.

Additionally, internal signals can be captured during Extest by
connecting them to unbonded IOBs or to the unused outputs in IOBs
used as unidirectional input pins. This partially compensates for the
lack of Intest support.

The public boundary-scan instructions are always available prior to
configuration. After configuration, the public instructions and any
User Code instructions are only available if specified in the design.
While Sample and Bypass are available during configuration, it is
recommended that boundary-scan operations not be performed
during this transitory period.

Deviations from the IEEE Standard
The XC4000 boundary-scan implementation deviates from the IEEE
standard in that three dedicated pins — CCLK, PROGRAM, and
DONE — are not scanned.

The XC5200 boundary-scan implementation deviates from the IEEE
standard in that three dedicated pins — CCLK, PROGRAM, and
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DONE — are not scanned and may not be affected by bound-scan
test data; the data at the pad is always used.

Also note that for XC4000, the test data register contains three Xilinx
test bits (BSCANT.UPD, TDO.O and TDO.T) and that bits of the
register might correspond to unbonded or unused pins. For the
XC5200, the test data register contains a single Xilinx test bit
(BSCANT.UPD) and that bits of the register may correspond to
unbonded or unused pins.

Additionally, the Extest instruction incorporates Intest-like
functionality that is not specified in the standard, and system clock
inputs are not disabled during Extest, as recommended in the
standard.

The TAP pins (TMS, TCK, TDI and TDO) are scanned, but connections
to the TAP controller are made before the boundary-scan logic.
Consequently, the operation of the TAP controller cannot be affected
by boundary-scan test data.

For the XC5200, the TAP pins (TDI, TCK, TMS, and TDO) are fully
scannable and use test data for input data (not tristate or output). The
pins are unaffected by the test data. For the CCLK, PROGRAM, and
DONE pins, the pads are not scannable, but use test data for input
data (not tristate or output). The pins are unaffected by the test data.
For the other configuration pins on the XC5200, configuration logic
uses the actual pin values for input data; test data does not affect
configuration. For output pins, test data can affect values.

Boundary-Scan Hardware Description
The following sections describe the boundary scan hardware:

● Test Access Port

● TAP Controller

● Instruction Register

● The Boundary-Scan Data Register

● The Bypass Register

● User Registers
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Test Access Port
The boundary-scan logic is accessed through the test access port
(TAP), which comprises four semi-dedicated pins: test mode select
(TMS), test clock (TCK), test data input (TDI) and test data output
(TDO), as defined in the IEEE specification.

The TAP pins are permanently connected to the boundary-scan
circuitry. However, once the device is configured, the connections can
implement user logic unless the use of boundary scan is specified in
the design. See “Using Boundary Scan” at the middle of this chapter.

If you specify the use of boundary scan, the TAP input pins (TMS,
TCK and TDI) can still be shared with other logic, subject to
limitations imposed by external connections and the operation of the
TAP controller. In designs that do not use boundary scan after
configuration, you can use TAP pins as inputs to or outputs from the
user logic in the FPGA device. TMS, TCK and TDI are available as
unrestricted I/Os. In the XC4000, TDO only provides a tristate
output, while in the XC5200 TDO is an unrestricted I/O.

TAP Controller
The TAP controller is a 16-state machine that controls the operation of
the boundary-scan circuitry in response to TMS. This state machine
implements the state diagram specified by the IEEE standard, Figure
8-1, and is clocked by TCK.
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Figure 8-1 State Diagram for the TAP Controller

Upon power-up or assertion of PROGRAM, the TAP controller is
forced into the Test-Logic-Reset state. After configuration, the
controller is disabled, unless its use is explicitly specified in your
design.

For the XC4000 and XC5200, the TAP controller states are as follows:

● TEST-LOGIC-RESET

Resets the boundary-scan registers and any user scan registers,
through the RESET signal; removes the current instruction.

● RUN-TEST/IDLE

Idle state that has special meaning if a boundary-scan readback is
in progress.
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NOTE:  The value shown adjacent to each state transition in this figure
represents the signal present at TMS at the time of a rising edge at TCK.
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● SELECT-DR-SCAN

Temporary controller state.

● CAPTURE-DR

Parallel-loads the data registers on the rising edge of TCK.

● SHIFT-DR

Shifts the data register between TDI and TD0 one stage toward
TDO on the rising edge of TCK.

● EXIT1-DR

Temporary controller state.

● PAUSE-DR

Temporary controller state.

● EXIT2-DR

Temporary controller state.

● UPDATE-DR

● Latches (updates) the data registers on the falling edge of TCK.

● SELECT-IR-SCAN

Temporary controller scan.

● CAPTURE-IR

Captures the instruction register status word on the rising edge of
TCK.

● SHIFT-IR

Shifts the instruction register, by one stage, from the MSB to the
LSB on the rising edge of TCK; MSB receives data from TDI and
the LSB outputs to TDO.

● EXIT1-IR

Temporary controller state.

● PAUSE-IR

Allows shifting of the instruction register to be temporarily halted.
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● EXIT2-IR

Temporary controller state.

● UPDATE-IR

Latches (updates) the instruction register on the falling edge of
TCK.

Instruction Register
Loading a 3-bit instruction into the instruction register (IR)
determines the subsequent operation of the boundary-scan logic, as
illustrated in Table 8-1. The instruction selects the source of the TDO
pin and selects the source of device input and output data, which is
either the boundary-scan register or input pin/user logic.

Table 8-1 Boundary Scan Instructions

Note: In XC4000 and XC5200, whenever the TAP controller is in the
Shift-DR state, all data registers are shifted, regardless of the
instruction. DR data is modified even if a Bypass instruction is
executed.

A 3-bit status word returned to the central test controller during an IR
cycle comprises a boundary-scan availability flag bit, preceded by
two mandatory bits; I0 is a one and I1 is a zero. This flag is High

a. I0 is closet to the TDO pin.

Instruction Test
Selected

TDO
Source

I/O Data
SourceI2 I1 I0

a

0 0 0 EXTEST DR DR

0 0 1 SAMPLE/
PRELOAD

DR Pin/Logic

0 1 0 USER 1 TDO1 Pin/Logic

0 1 1 USER 2 TDO2 Pin/Logic

1 0 0 READBACK Readback Data Pin/Logic

1 0 1 CONFIGURE DOUT Disabled

1 1 0 RESERVED — —

1 1 1 BYPASS Bypass Reg Pin/Logic
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before and after configuration, when the full boundary-scan
capability is available, and Low during configuration, when only
Sample/Preload and Bypass are available.

The Boundary-Scan Data Register
The data register (DR) is a serial shift register implemented in the
IOBs of the FPGA device, as illustrated by Figure 8-2. Potentially, you
can configure each IOB as an independently controlled bidirectional
pin. Therefore, three data register bits are provided per IOB: for input
data, output data and tristate control. In practice, many of these bits
are redundant, but they are not removed from the scan chain.

In the XC4000 and XC5200 each IOB represents one pad; it is defined
by one data register set.

Figure 8-2 XC4000 and XC5200 Boundary Scan Logic in a Typical
IOB
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An update latch accompanies each bit of the DR that is used to hold
injected test data stable during shifting. The update latch is opened
during the Update-DR state of the TAP controller when TCK is Low.

In a typical DR instruction, the DR captures data during the Capture-
DR state (on the rising edge of TCK). This data is then shifted out and
replaced with new test data. Subsequently, the update latch opens,
and the new test data becomes available for injection into the logic or
the interconnect. The injection of data occurs only if an Extest
instruction is in progress.

Note: The update latch is opened whenever the TAP controller is in
the Update-DR state, regardless of the instruction. Make sure that
appropriate data is contained in the update latch prior to initiating an
Extest. Any DR instruction, including Bypass, that you execute after
the test data is loaded, but before the Extest commences, changes the
test data.

The IEEE standard does not require the ability to inject data into the
on-chip system logic and observe the results during Extest. However,
this capability helps compensate for the lack of Intest. You can set
logic inputs to specific levels by a Sample/Preload or Extest
instruction. You can capture the resulting logic outputs during a
subsequent Extest. However, all DR bits captured during an Extest
might change.

Pull-up and pull-down resistors remain active during boundary scan.
Before and during configuration, all pins are pulled up. After
configuration, the IOB can be configured with a pull-up resistor, a
pull-down resistor, or neither. Internal pull-up/pull-down resistors
must be taken into account when designing test vectors to detect
open circuit PC traces.

The primary and secondary global clock inputs (PGCK1-4 and
SGCK1-4) are taken directly from the pins, and cannot be overwritten
with boundary-scan data. However, if necessary, you can drive the
clock input from boundary scan. The external clock source is 3-stated,
and the clock net is driven with boundary scan data through the
output driver in the clock-pad IOB. If the clock-pad IOBs are used for
non-clock signals, the data can be overwritten normally.

Figure 8-3 shows the data-register cell for a TAP pin. An OR-gate
permanently disables the output buffer if boundary-scan operation is
selected. Consequently, it is impossible for the outputs in IOBs used
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by TAP inputs to conflict with TAP operation. TAP data is taken
directly from the pin, and cannot be overwritten by injected
boundary-scan data.

Note: Boundary scan is enabled for TMS, TCK, and TDI only on the
XC5200.

Figure 8-3 XC4000 and XC5200 Boundary Scan Logic in a TAP
Input IOB (TMS, TCK, and TDI Only)

Figure 8-4 lists, in data-stream order, the boundary-scan cells that
make up the DR. The cell closest to TDO corresponds to the first bit of
the data-stream, and is at the top of the table. This order is consistent
with the BSDL description.
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Figure 8-4 Boundary Scan Order

Each IOB corresponds to three bits in the DR. The 3-state control is
first (closest to TDO), the output is next, and the input is last. Other
signals correspond to individual register bits. IOB locations assume
that the die is viewed from the top, as in XDE.

Note: All IOBs remain in the DR, whether they are actually used or
even bonded. Three bits, BSCANT.UPD, TDO.O and TDO.T, are
included for Xilinx test purposes, and can be ignored. CCLK,
PROGRAM and DONE are not included in the boundary scan.

The DR also includes the following non-pin bits: TDO.T and TDO.I,
which are always bits 0 and 1 of the DR, respectively, and
BSCANT.UPD which is always the last bit of the DR.

The Bypass Register
This is a 1-bit shift register that passes the serial data directly to TDO
when a bypass instruction is executed.
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User Registers
The XC4000 and XC5200 boundary-scan instruction set includes two
User Code instructions, User1 and User2. Connections are provided
to the TAP and TAP controller that, together with direct connections
to the TAP pins, permit you to include boundary-scan self-test
features in the design.

The XC4000 boundary scan block has six connections for user
registers: SEL1, SEL2, TDO1, TDO2, DRCK and IDLE. TDI is
available directly from the IOB that provides the TDI pin.

The XC5200 boundary scan block has nine connections for user
registers: SEL1, SEL2, TDO1, TDO2, DRCK, IDLE, RESET, UPDATE,
and SHIFT. TDI is available directly from the I/O pad that provides
the TDI pin.

Note: The TDI signal supplied to user test logic is overwritten by
boundary-scan test data during Extest. During user tests, it is not
altered.

Table 8-2  Connections for User Registers

Connection Description

SEL1, SEL2 They enable user logic. They are asserted (High) when the instruction
register contains instructions User1 and User2, respectively.

TDO1, TDO2 They are inputs to the TDO output multiplexer, permitting user access
to the serial boundary-scan output. They are selected when executing
the instructions User1 and User2, respectively. Input to user data regis-
ters can be derived directly from the TDI pin, thus completing the
boundary-scan chain. There is a one flip-flop delay between TDO1/
TDO2 and the TDO output. This flip-flop is clocked on the falling edge
of TCK.
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DRCK For XC4000 — The data register clock (DRCK) is a gated and inverted
version of TCK. It is provided to clock user test-data registers. TDI
data should be sampled with the falling edge of DRCK (rising edge of
TCK). The TDO output flip-flop accepts data on the rising edge of
DRCK (falling edge of TCK). DRCK is active only during the Capture-
DR and Shift-DR states of the TAP controller. While inactive, DRCK is
parked High.
For XC5200 — This signal is only active when either the USER1 or
USER 2 is loaded in the instruction register. Data register clock
(DRCK) is a gated and uninverted version of TCK. It is provided to
clock user-test data registers. TDI data is sampled with the rising edge
of DRCK (rising edge of TCK). The TDO output flip-flop accepts data
on the rising edge of DRCK (falling edge of TCK). DRCK is active only
during the Capture-DR and Shift-DR states of the TAP controller.
Unlike previous families, the boundary data register is not clocked
with this signal — the boundary data register and user data registers
have independent clocks.

IDLE It is a second gated and inverted version of TCK. It is active during the
Run-Test/Idle state of the TAP controller, and may be used to clock
user test logic a set number of times, determined through TMS by the
central test controller.

RESET For XC5200 only — TAP controller is in Reset state.

UPDATE For XC5200 only — This signal is only active when either User1 or
User2 instruction is loaded in the instruction register. It is a gated and
inverted version of TCK that is active when the TAP controller is in the
Update-DR state.

SHIFT For XC5200 only — This signal is only active when either User1 or
User2 instruction is loaded in the instruction register.

Connection Description
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Using Boundary Scan
This section covers the following topics:

● Boundary Scan Availability

● Post-Configuration Boundary-Scan Operation

● XC4000 and XC5200 Boundary-Scan Instructions

Boundary Scan Availability
Access to the built-in boundary-scan logic is always available
between power-up and the completion of configuration, so you must
exercise caution. Optionally, the built-in logic is fully available after
configuration if boundary scan is specified in the design. At this time,
user test logic is also available, and can be accessed through the
boundary-scan port. During configuration, a reduced boundary-scan
capability remains available: the Sample/Preload and Bypass
instructions only.

Note: For the XC4000 and XC5200 devices, it is always possible to
load the Reserved, User1 and User2 instructions. If the User1 or User2
instructions are not defined, the output to TDO is an undefined value.

Figure 8-5 is a flow chart of the FPGA start-up sequence that shows
when the boundary-scan instructions are available.
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Figure 8-5 Start-up Sequence
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Extest and Configure capabilities are available until INIT is High. For
the XC5200 some boundary-scan capabilities are available until INIT
is High.Without external intervention, INIT automatically goes High
after about 1 ms. If more time is required for boundary-scan testing,
INIT can be held Low beyond this period by applying an external
Low signal to the INIT pin until testing is complete. As INIT is an
open-drain output with a 40K-100Kpull-up, a resistor can be
sufficient to hold it Low.

Warning: The INIT pin is included in the boundary-scan coverage,
and can be replaced by boundary-scan test data during an Extest
instruction. When performing an Extest prior to configuration in the
XC4000 design, make sure that boundary-scan input data does not
force INIT High; this condition terminates the Extest and begins
configuration. For the XC5200, performing Extest prevents the INIT
pin from going High while the instruction is loaded.

During configuration, only Sample/Preload and Bypass are
available; no other instruction should be loaded at this time. Since the
duration of the configuration period is determined by the
configuration process, which you cannot externally control, Xilinx
recommends that you do not use this period for boundary-scan
operations.

If you are not going to use boundary scan after configuration, delay
the start of configuration until all boundary-scan operations are
complete. This delay can be achieved by controlling INIT as
described above. If you enable boundary scan after configuration,
you can conduct unrestricted boundary-scan operations once the
configuration process is complete.

The exact point at which you can resume boundary-scan operations
after configuration (point F) depends upon the configuration mode. It
is the point defined as Finished in the configuration timing diagram
found in the “Start-up” section of the XC4000 Data Sheet in The
Programmable Logic Data Book. For the XC5200, refer to the XC5200
Data Sheet.

The period of reduced boundary-scan availability is identified by a
flag in the status word that is returned through the boundary-scan
path whenever an instruction is loaded into the IR (instruction
register). The flag is High when all boundary-scan functions are
available, and Low when only Sample/Preload and Bypass are
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available. See the “Instruction Register” section at the beginning of
this chapter.

Post-Configuration Boundary-Scan Operation
In a configured FPGA device, the boundary-scan logic might not be
active depending on the configuration data loaded into the part.
Activation of the boundary-scan logic, if desired, is part of the FPGA
design process. After configuration, boundary scan cannot be
activated or de-activated without changing the configuration.

Figure 8-6 illustrates the typical connections to the XC4000 and
XC5200 boundary scan schematic symbols.

Figure 8-6 Boundary-Scan Schematic Symbols for XC4000 and
XC5200

If the BSCAN primitive is not included, boundary scan is not
selected, and the IOBs used by the TAP input pins are freely available
to PPR as general purpose IOBs. Xilinx recommends that you use the
TDO output pin as a logic output by explicitly connecting the TDO
pad primitive to an OBUF or OBUFT as required. Figure 8-7
illustrates a non boundary-scan TDO connection.

Note: Until configuration without boundary scan is complete, the
boundary-scan logic is active and can respond to random inputs on
TCK, TMS, and TDI.

Figure 8-7 Typical Non-Boundary-Scan TDO Connection
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You can also select boundary scan in XDE, though this is not the
recommended method. You can use the EditBlk command to change
the configuration of the BSCAN block, found in the top left corner of
the die. In the Configuration Options box, select USED so that it is
highlighted. The TAP pins are permanently connected to the BSCAN
block, although the connections are not explicitly shown. You can
make connections to user test logic using XDE, if required.

XC4000 and XC5200 Boundary-Scan Instructions
The XC4000 and XC5200 boundary scan supports three IEEE-defined
instructions: Extest, Sample/Preload and Bypass; two user-definable
instructions: User1 and User2; and two FPGA-specific instructions:
Configure and Readback. The instruction codes are shown in Table 8-
1 at the beginning of this chapter.

The following sections describe each XC4000 and XC5200 boundary-
scan instruction in detail.

Extest

While the Extest instruction is present in the instruction register, the
data presented to the device output buffers is replaced by data
previously loaded through the boundary-scan DR and stored in the
update latch. Similarly the output 3-state controls are replaced, and
the data passed to internal system logic from input pins is replaced.
The Extest data flow is illustrated in Figure 8-8.
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Figure 8-8 Extest Data Flow
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The XC4000 and XC5200 effectively performs Extest and Intest
simultaneously. This functionality permits the testing of internal logic
and compensates for the absence of a separate Intest instruction.
However, when performing an Extest, you must decide carefully
what signals are driven into the system logic; data captured from
internal system logic must be masked out of the test-data stream
before performing check-sum analysis.

Sample/Preload

The Sample/Preload instruction permits visibility into system
operation by capturing the values of the I/O signals. It also permits
valid data to be loaded into the update register before commencing
an Extest. The DR and update latch operate exactly as in Extest data
flow. However, user data flows through the I/O unmodified.

Bypass

The Bypass instruction permits data to be passed synchronously to
the next device in the boundary-scan path. There is a one-bit shift
register between the TDI and TDO flip-flop.

User1 and User2

These instructions permit test logic, designed by you and
implemented in CLBs, to be accessed through the TAP. Test clocks
and paths to TDO are provided, together with two signals that
indicate that user instructions have been loaded. For details, see the
“User Registers” section in the middle of this chapter.

User tests depend upon CLBs and interconnect that must be
configured to operate. Consequently, they can only be performed
after configuration.

A simple example of a User instruction might be a 3-state instruction.
You can define your own User instruction. You could have a flip-flop,
clocked by DRCK whose data input is connected to Vcc, driving the
GSR net. Therefore, when the flip-flop is clocked, the GSR net 3-states
all the IO.
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In Figure 8-9, the clock goes from DRCK to K, and the Reset-Direct
goes from SEL1 to RD if the User1 instruction is used.

Figure 8-9 3-state Instruction

Configure

You can configure and reconfigure XC4000 and XC5200 devices
through the TAP. Like the Extest instruction, this instruction is only
available before INIT goes High or after a conventional configuration
is finished.

When powering up the FGPA, hold INIT Low to give yourself
sufficient time to update the IR with the Configure instruction. If you
are reprogramming a configured device, toggle Program, then hold
INIT Low until you have updated the IR with the Configure
instruction. After the IR has been updated with the Configure
instruction, release INIT and wait for it to go High before clocking in
the BSCAN configuration data.

Loading and updating the Configure instruction initiates a
reprogram, as if the PROGRAM pin were pulled Low. You must wait
for completion of the memory cells initialization before continuing
with the configuration. Unfortunately, the only method for
determining the status of the FPGA is to monitor the INIT pin
externally. However, waiting for a period time that is appropriate to
the particular FPGA should guarantee the FPGA’s state. Thereafter,
TCK clocks a normal configuration bitstream into TDI, while the TAP
controller is in the Capture-DR or Shift-DR state. The configuration
preamble is passed to both TDO and DOUT. Configuration bits used
by the device are not passed to the output, but are replaced by “1”s,
as in a conventional configuration. Any bits beyond those required to
configure the device are passed to both TDO and DOUT.

Configuration may be paused by exiting the Shift_DR state and
entering the Pause-DR state — the configuration clock is disabled

TDO2

TDO1

TCK

TMS

SEL2

BSCANTDI

SEL1

IDLE

DRCK

TDO

CLK

GTS

GSR

DONEIN

STARTUP
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Vcc
+5

CLR

C

QD
FDCE
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when it is not in either the Capture-DR or Shift-DR states. To continue
the configuration, re-enter the Shift-DR state and continue inputting
the bitstream through TDI.

The configuration can be aborted (the same as pulling the PROGRAM
pin Low) by removing the configuration instruction, and by updating
a different instruction into the IR. The memory initialization sequence
begins immediately afterward and you may re-initiate a boundary-
scan Configuration instruction prior to the completion of memory
initialization. You might want to do this if a framing error has
occurred (externally visible by checking the INIT pin).

Boundary-scan (re)Configuration may be disabled as a configuration
option.

Note: To begin a reconfiguration, the current boundary-scan
instruction must not be a Configure instruction. If a Configure
instruction was the last instruction loaded, you must clear the
internal register of any other instructions and then load in a
Configure instruction.

Note: Be careful when disabling boundary scan when using
boundary-scan to configure the device since the TAP controller will
be reset at the time that I/Os become active in the startup sequence.
Consequently, the startup sequence will not be completed unless that
cycle coincides with the last cycle of the startup sequence.
Alternatively, you may provide a sufficient number of CCLKs to
complete startup. Otherwise, the boundary-scan block must be in the
design and must be active during normal post-configuration
operation of the device.

The error checking is done at the end of each data frame by the device
loading that frame. Daisy chained devices do not look at data they
pass through to other devices. Preamble “ones” before the first “0010”
only affect the length count. Any extra bits due to bypassed parts up
stream require an increase in length count (or chop off one of the
eight dummy preamble ones). All TCK clocks must be accounted for
in the length count after INIT has gone High.

Readback

Readback permits the configuration data of an FPGA device to be
read back through the TAP. This instruction differs from other
boundary instructions in a number of ways.
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Readback permits the configuration data of an FPGA device to be
read back through the TAP. The readback logic trigger is dependent
upon both the user net and the TAP controller. The readback trigger
is the logical OR of the user net and the state of the controller in either
the Capture-DR or Shift-DR states. Readback is triggered on the
rising edge of TCK when a Low-to-High transition of the trigger is
clocked. The readback capture flag is level-sensitive and occurs on
the asynchronous rising edge of the trigger, regardless of TCK.
Therefore, the user net could be used to do a Capture instruction and
data could then be shifted out at your convenience.

Readback data is passed out to TDO while the controller is in the
Shift-DR state. The readback may be aborted by leaving the
Shift-DR state and entering the Idle state. You must stay within the
Idle state for a sufficient number of TCK cycles to complete the abort.

Note: TDI does not connect to the input end of the Readback shift
register. Consequently, data from upstream devices is lost.

For details on the readback bitstream, refer to “Verification by
Readback and Signature Analysis” in this user guide.

Note: Readback data can be captured by a user net (trigger) using the
READBACK symbol. This data can then be shifted out by holding the
user trigger active (High), later loading the instruction register with
the readback instruction, and shifting the data out by performing a
shift data register.

Note: The disable option applies only if the Readback instruction is
loaded after memory initialization of the current configuration. If a
previous configuration allowed boundary-scan readback, the
Readback instruction may be loaded prior to that bit being cleared
and a readback can be done after configuration.

Instruction Availability
There are three periods of LCA operation in which some or all
boundary-scan operations are available.

Pre-Configuration

The Pre-Configuration period is defined as being prior to INIT going
High. Table 8-3 lists the Pre-Configuration instructions.
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Table 8-3  Pre-Configuration Instructions

1 Unlike the XC4000, the PROGRAM pin for the XC5200 must be High before
a SAMPLE/PRELOAD instruction may be loaded

Inter-Configuration

The Inter-Configuration period is time between INIT rising and the
completion of the configuration start-up sequence. There are two
Inter-Configuration instructions, Sample/Preload and Bypass.

Post-Configuration

The Post-Configuration period is the normal LCA operation duration
after the configuration start-up sequence. The Post-Configuration
instructions are: Sample/Preload, Bypass, Extest, Configure,
Readback, User1, and User2.

Note: You must have selected Boundary Scan within the design;
otherwise, no boundary-scan instructions are available for Post-
Configuration.

Instruction Load Failure

Certain instructions may not be available at all times. When you
attempt to load these instructions, the instructions may be loaded and
updated into the IR. However, the operation does not perform as
expected.

Boundary Scan Description Language Files
Boundary Scan Description Language (BSDL) files describe
boundary-scan-capable parts in a standard format used by
automated test generation software. The order and function of bits in
the boundary-scan data register are included in this description.

Instruction PROGRAM

SAMPLE/PRELOAD H1

BYPASS X
EXTEST H
CONFIGURE H
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BSDL files for XC4000 and XC5200 devices can be obtained from your
Xilinx Field Applications Engineer (FAE) or by calling the Xilinx
Applications Hotline. These files can also be downloaded from the
Xilinx Technical Bulletin Board (BBS), and have file names device.bsm.

Boundary Scan Bibliography
The following publications contains information about the IEEE
Standard 1149.1. Consult them for general boundary-scan
information beyond the scope of this chapter.

Colin M. Maunder & Rodham E. Tulloss. The Test Access Port and
Boundary Scan Architecture. IEEE Computer Society Press, 10662 Los
Vaqueros Circle, P.O. BOX 3014, Los Alamitos, CA 90720-1264.

John Fluke Mfg. Co. Inc. The ABC of Boundary Scan Test. John Fluke
Mfg. Co. Inc., P.O. BOX 9090, Everett, WA 98206.

GenRad Inc. Meeting the Challenge of Boundary Scan. GenRad Inc., 300
Baker Ave., Concord, MA 01742-2174.

Ken Parker. The Boundary Scan Hanbdbook. Kluwer Academic
Publications, (617) 871-6600.
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Chapter 9
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XACT Design Editor Tutorial

The XACT Design Editor (XDE) contains several programs that
enable you to make changes to an existing design or to create a new
design. This tutorial demonstrates the EditLCA program, a device-
level graphical editor for your FPGA designs.

Warning: Your schematic does not reflect the changes you made
using XDE; therefore, you should document any changes to
placement and logic on your schematic. Indicating the changes on the
schematic ensures the integrity of the design and keeps all changes
documented in the design.

Generally, you will use XDE to look at timing information found in
the XDelay program or to make changes to an existing FPGA design
file.

This tutorial serves as an introduction to some of the more useful
commands in XDE. It is a presentation of the XC3000 FPGA family;
however, you can apply many of the concepts to the XC2000, XC4000,
and XC5200 families. The exercises presented in this tutorial
familiarize you with the Logic Cell Array (LCA) architecture and
show you how to take advantage of this information when using
XDE. For detailed information about XDE, refer to “The XACT
Design Editor” chapter of the Development System Reference Guide.

This chapter contains the following sections:

● “Getting Started” describes the notational conventions used in
this tutorial. It also steps through the installation and set-up
procedures necessary to get XDE running in the correct mode.

● “High-level Editing” contains examples that use some of the
design editor higher-level commands.
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● “Low-level Editing” describes the different types of routing
resources in an FPGA and how to use them effectively.

● “Building a Four-bit Multiplier” involves entering a design using
XDE.

● “Downloading a Bitstream” shows how to download a design to
the demo board.

Getting Started
In XDE, you can enter commands and information in many different
ways. For consistency, this manual uses specific notational
conventions, which are described in the “Preface” at the beginning of
this manual.

Before you can begin the XDE tutorial, you must perform the tasks
described in the following sections:

● Setting the Mode

● Setting the Directory

● Choosing the Design File

● Loading the Design

Once you load the design, you can begin the tutorial by performing
the following tasks:

● Viewing the Logic Cell Array

● Setting the Profile

● Using the EditBlk Display

Begin XDE by entering the following command:

xact ↵
The XDE program loads, and a message appears stating that the
xact.pro file is being read. This file contains user-preferred settings.
Rather than having to choose the same options at the beginning of
every session, these settings can be selected once and saved in the
xact.pro file using the SAVEPROFILE command found in the
PROFILE pull-down menu. The next time you start XDE, these
options are the default settings.

The Executive Display appears on the screen, as shown in Figure 9-1.
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Figure 9-1 The Design Editor Executive Screen on a Sun
Workstation

Setting the Mode
You must run XDE in Expert mode to perform this tutorial. If you are
not already in Expert mode, do the following:

1. With the left mouse button, click on the current mode. XDE
displays a dialogue box with the two mode options: Expert or
Safe.

2. Click once on Expert, which highlights your selection.

3. Select Done to close the dialogue box and return you to the main
screen.

5.00

Command Line

Pull-Down Menus

Current Settings
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Setting the Directory
The path of the current directory is shown on the directory line of the
current settings section. To switch to the directory in which the
tutorial file is located, refer to the appropriate subsection that follows.

PCs

To access the tutorial files, follow these steps.

1. With your left mouse button, select the Directory command from
the Designs menu. The system displays a dialogue box that
enables you to change the current directory without exiting the
program.

2. Set the path so that the current working directory reads:

C:\XACT\TUTORIAL\CORE\EDIT_LCA

3. Then select Done to change directories.

All Other Platforms

To access the tutorial files, follow these steps.

1. With your left mouse button, select the Directory command from
the Designs menu. The system displays a dialogue box that
enables you to change the current directory without exiting the
program.

2. Set the path so that the current working directory reads:

$XACT/TUTORIAL/CORE/EDIT_LCA

3. Then select Done to change directories.

Choosing the Design File
This section describes how to load the edit_lca.lca file, which is used
in the first part of this tutorial. Perform the following steps:

1. With your left mouse button, select the Design command from the
Designs menu, from the main XDE menu.

2. Indicate the name of the sample design file, edit_lca.lca, in one of
the following ways:

● From the Select File command line, type edit ↵
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● From the pop-up window. Select edit_lca.lca and then select
Done.

The file name appears on the Design Line at the lower left of the
screen, in the Current Settings.

Loading the Design
To load the design, select the Editlca command from the Programs
menu with your left mouse button. XDE loads the design called
“example,” reads the editlca.pro profile, and displays the LCA Editor
screen.

Viewing the FPGA
The EditLCA Screen, shown in Figure 9-2, is a graphical
representation of the FPGA. It consists of an array of configurable
logic blocks (CLBs), configurable input/output blocks (IOBs), 3-state
buffers (TBUFs), and programmable interconnect.

Figure 9-2 The EditLCA Screen

Figure 9-3 illustrates the input and output pins for these block types.

IOB

3-State Buffer

CLB
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Figure 9-3 Block Types

Definitions

Xilinx uses the following definitions:

● Block — A logic component of the design, for example, CLB or
IOB.

● Pin — Any input or output of a block.

● Net — A set of pins that should be interconnected in the final
design.

Each CLB has a physical location name defined by its horizontal row
position followed by its vertical column position, for example, JC.
Each IOB has a location name defined by its package pin number, for
example, P36. When you use blocks in a design, “logical” names,
which describe the block function, replace these location labels.

The EditLCA Screen

Perform the following steps to familiarize yourself with the EditLCA
screen:

1. Press a mouse button and move the pointer; the world view
appears in the lower right corner of the screen and shows the
entire chip.

The red rectangle encases the part of the FPGA that currently
appears on the screen.

2. Continue moving the mouse to pan over the rest of the design.

The unused logic cell resources are shown in green and the used
blocks are shown in yellow.
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3. Release the mouse button. The world view window disappears.

4. Pan over the design until you find a set of configured logic blocks.

5. Place the cursor on a used input pin of the CLB, and note that the
cursor status line displays information about that pin.

Setting the Profile
When you run the EditLCA program, XDE reads the editlca.pro file.
This file contains default settings for the mouse buttons, function
keys, screen settings, and color settings. Since there are so many
available options, this section shows you how to set some of these
options so that you can customize the editor to your own personal
tastes.

This section explains how to change your profile for the following
options:

● Setting the mouse buttons

● Defining the function keys

Setting the Mouse Buttons

To set the mouse buttons, perform the following steps:

1. Select the Mouse command from the Profile menu on the XDE
screen and click the left mouse button.

A pop-up window appears that lists the left, middle, and right
mouse buttons, which are designated by B1, B2, and B3,
respectively.

2. To set the left mouse button, select B1 from the pop-up window.
Another pop-up window appears that lists the functions you can
assign to the mouse buttons.

3. Choose Select.

From now on, when XDE prompts you to select something, put
the cursor on the item and push the left mouse button.

Once you choose a function in this pop-up window, XDE returns
you to the pop-up window that lists the three mouse buttons.

4. To set the middle mouse button, select B2.
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5. Choose Done from the pop-up window.

From now on, to finish a command, either select Done from the
top of the screen or press the middle mouse button.

6. To set the right mouse button, select B3 from the pop-up window.

7. Select Switch.

From now on, the right mouse button performs the Switch
command. When using the EditBlk command, clicking this button
switches between the EditLCA screen and the EditBlk screen.

8. Now that you have defined all three mouse buttons, select Done
to exit the pop-up window.

Defining the Function Keys

Next, set the function keys. You can define function keys to perform
frequently used commands. Instead of repeatedly typing commands
or searching through menus, you can define the function keys to
perform these commands at the push of a button as follows:

1. Select the Keydef command from the Profile menu on the
EditLCA menu.

The system displays a pop-up window that lists all available
function keys.

Note: The F1 key is reserved for Help, so start the definitions with the
F2 key.

2. Select the specific function key in the pop-up window, for
example, F2. The system closes the pop-up window and positions
the cursor on the Enter Key Definition command line.

3. Type the command that you want to map to this function key as
follows:

editnet ↵
This process defines F2 to perform the EditNet command.

You can also define function keys by entering the following syntax
directly on the command line:

keydef f3 routepin ↵
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To easily create function key mappings using the keyboard, perform
the following steps:

1. Use the up arrow key to bring the last command back to the
command line.

2. Use the left arrow key to move back along the line.

3. Edit the command so that it reads:

keydef f4 unroutepin ↵
This way you can enter similar commands without having to re-
type the entire line.

4. Set the rest of the function keys according to Table 9-1. These
commands are explained in the following sections. At this time
you might also want to write these key definitions on a strip of
paper and place them by your keyboard.

5. When you are finished, save your profile by typing:

saveprofile ↵
From now on, any time you use XACT in this directory, these mouse
button and function key settings are the default.

Table 9-1 lists the function key definitions.

Table 9-1  Function Key Definitions

Function Key Definition

F5 SwapBlk
F6 SwapSig
F7 MoveBlk
F8 EditBlk
F9 Route
F10 Unroute
F11 QueryNet
F12 DOS
Development System User Guide 9-9



Development System User Guide
Using the EditBlk Display
This section describes XDE’s graphical representation of the interior
of IOBs and CLBs. When you edit a block, the display switches from
the EditLCA screen, which shows the exterior of all blocks, to the
EditBlk screen, which displays the interior of a single block. To
practice using the EditBlk display, perform the following steps:

1. Move the cursor so that the lower left corner of the chip is
displayed on the screen.

2. With your left mouse button, select the EditBlk command from the
Blk menu or select the appropriate function key; in this case, F8.

This choice allows you to view the current setup of the chosen
block and to edit the logic functions performed by that block. The
command line displays:

Select block:

3. Choose block P36 by either selecting it with the mouse or entering
the block’s name using the keyboard.

The screen now displays the Block Editor display for I/O block
P36, as shown in Figure 9-4.
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Figure 9-4 The EditBlk Screen (IOB)

You can switch the display between the EditBlk screen and the
EditLCA screen by any of the following methods:

● Select the Switch command from the Screen menu.

● Enter switch  on the command line.

● Press the right mouse button, which you defined as the Switch
button.

Tags

Schematic Diagram

Block Comments

Configuration Options

Net Binding Table
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4. Switch to the EditLCA screen. Block P36 is now colored red. This
denotes that P36 is the active block — the block that appears when
the switch command is executed.

To edit another block, perform the following steps:

5. With your left mouse button, select EditBlk command from the
Blk menu. The command line displays the following message:

Select block:

6. Type the desired block label, as follows:

jc ↵
The screen changes to display the Block Editor display for block
JC, as shown in Figure 9-5.
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Figure 9-5 The EditBlk Screen (CLB)

7. Select each configuration option by clicking on it with the left
mouse button.

XDE updates the schematic diagram area to reflect the change. In
the configuration area, the system highlights enabled tags in
yellow and unused tags are shown in green. Not only can you

Tags

Karnaugh
Map

Truth Table

Equations Net Binding Table
Schematic Diagram

Block CommentsConfiguration Options
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change the placement and routing of a design, but also edit the
functionality of your design at the CLB level.

Table 9-2 describes the functions of these tags.

Table 9-2  Tag Definitions

Tag Option Description

X F The X tag refers to the top output from a CLB (refer to Figure 9-3).
Choosing F sets X equal to the output of the F function generator.

QX Choosing QX sets X equal to the output of the top flip-flop (QX).

M1 Choosing M sets X equal to the value of F if E equals 0; it is the
value of G if E equals 1.

Y G The Y tag refers to the bottom output from a CLB. Choosing G
sets Y equal to the output of the G function generator.

QY Choosing QY sets Y equal to the output of the bottom flip-flop
(QY).

M1 Choosing M sets X equal to the value of F if E equals 0; it is the
value of G if E equals 1.

DX DI The DX tag refers to the input of the top flip-flop. Choosing DI
sets DX equal to the direct input pin of the CLB.

F Choosing F sets DX equal to the output of the F function
generator.

G Choosing G sets DX equal to the output of the G function
generator.

M1 Choosing M sets X equal to the value of F if E equals 0; it is the
value of G if E equals 1.

DY DI The DY tag refers to the input of the top flip-flop. Choosing DI
sets DY equal to the direct input pin of the CLB.

F Choosing F sets DY equal to the output of the F function
generator.

G Choosing G sets DY equal to the output of the G function
generator.

M1 Choosing M sets X equal to the value of F if E equals 0; it is the
value of G if E equals 1.
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1 For BASE FGM only

Figure 9-6 shows an example of a configured CLB with a user-
assigned block name, comments in the top center box, and pin names
in the lower center of the display.

Figure 9-6 A Configured CLB

CLK K The CLK tag refers to the clock input of both storage elements.
Choosing K sets the clock inputs of the flip-flops equal to the K
pin of the CLB. The flip-flops are clocked on the rising edge of K.

NOT Choosing NOT sets the clock inputs of the flip-flops equal to the
complement of the K pin.

RSTDIR RD The RSTDIR tag refers to the active-high reset direct input of both
flip-flops. Choosing RD sets the reset input of both flip-flops
equal to the RD pin of the CLB. If this tag is not selected, the RD
input is disabled.

ENCLK EC The ENCLK tag refers to the active-high clock enable input of
both flip-flops. Choosing EC sets the clock-enable input of both
flip-flops equal to the EC pin of the CLB. If this tag is not selected,
the EC input is disabled.

Tag Option Description
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To configure CLB JC, perform the following steps:

1. Type the following equation on the command line:

f=a*b@d ↵
Both the truth table and Karnaugh map representation appear for
equation F.

2. Move the cursor to the Karnaugh map, select a square, and click
on it with the left mouse button. Notice that the equation reflects
the change.

3. Type the following on the command line to terminate the Block
Editor and return to the LCA Editor graphics display.

endblk ↵
EndBlk is different from Switch. EndBlk ends the EditBlk sequence; it
does not leave block JC colored red. If you try a switch now, nothing
happens since there is no longer an active block.

High-level Editing
Now that you are familiar with EditLCA and some of its features, you
can now perform some editing. High-level editing involves using
XDE’s higher-level block and signal commands to structure or
restructure a design. High-level editing requires knowledge of the
following commands:

● SwapSig

● SwapBlk

SwapSig
The SwapSig command interchanges the net connections and block
functionality of two pins. In other words, the attributes of the two
pins are traded, but the function of the design remains unchanged.
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Figure 9-7 and Figure 9-8 show the results of performing a SwapSig.

Figure 9-7 Before SwapSig

Figure 9-8 After SwapSig

You can easily reroute nets using this command, which can reduce
timing delays and free interconnect resources. To understand the
usefulness of SwapSig, perform the following steps:

1. Type the following on the command line:

find bb ↵
The system positions the cursor on CLB BB.

Note: You can also use Find to locate IOBs and nets.

2. Select the QueryNet command from the Net menu on the
EditLCA screen.

The Querynet pop-up window appears. The command line
displays the following message:

Select option(s) or net(s):

3. To select nets using the mouse, put the cursor on a pin of the net
and press the left button. Click on the following pins:

BB.X Selects net net0.

BB.Y Selects net net1.

4. When you are finished select Done.

The screen switches to text mode and displays information about
net0 and net1.

EG EH

EG EH
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5. Press any key to return to the graphics screen.

Figure 9-9 shows the screen display. Note the timing of the nets.

— net0 . . . . .     BB.X . . . . . .  2.5 BC.E
— net1 . . . . .     BB.Y . . . . . .  2.5 BC.B

Figure 9-9 Querynet Display

6. Now swap the two signals by selecting the SwapSig command
from the Pin menu.

The command line displays the following information:

From pin:

7. Type the following on the command line:

BB.X ↵
The Status Line displays Pin BB.X Selected . The command
line displays the following information:

To pin:

8. Choose the pin for which you want to swap net connections and
block functionality. For this example, enter the BB.Y pin on the
command line as follows:

BB.Y ↵
The net connections and the CLB functionality of the two pins are
interchanged. The message flashes the three following messages:

Pin BB.X and BB.Y: Signals swapped.
Pin BB.X: Routed.
Pin BB.Y: Routed.
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9. Now perform another QueryNet, as illustrated by Figure 9-10, on
the same two nets, and compare the new timing delays to the
previous delays, as illustrated in Figure 9-9. In this case,
exchanging the pins results in a shorter routing path for net1,
reducing its delay time.

— net0 . . . . .     BB.Y . . . . . .  2.5 BC.E
— net1 . . . . .     BB.X . . . . . .  1.0 BC.B

Figure 9-10 QueryNet Display

You can swap most pins except, for example, the .K (clock) pin and
the .DI (direct input) pin. You cannot swap input pins with output
pins; and depending on how the CLB is configured, you cannot
directly exchange some of the general input pins with each other.

Figure 9-11 shows all the configurations possible in a CLB.
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Figure 9-11 CLB Configurations
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SwapBlk
The SwapBlk command interchanges the configurations and net
connections of two blocks; for example, two blocks switch positions
without affecting the functionality of the design. Because of certain
design issues (delays through critical nets, routing resource usage),
you might want to have some blocks in certain relative positions.

You can use the SwapBlk command to change the positioning of the
blocks. To practice using SwapBlk, perform the following steps:

1. Type the following on the command line:

find da ↵
2. Select the SwapBlk command from the Blk menu on the EditLCA

screen. The command line displays:

Select block 1:

3. Click once on block DA with the left mouse button or enter da ↵
on the command line.

The message line and command line display:

Block DA: Selected

Select block 2:

4. Click once on block DB with the left mouse button.

The message line displays:

Block DA and DB: Swapped.
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Figure 9-12 illustrates the net assignments before using SwapBlk.

Figure 9-12 Net Assignments Before SwapBlk

Figure 9-13 illustrates the net assignment after using SwapBlk.

Figure 9-13 Net Assignments After SwapBlk
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Figure 9-14 and Figure 9-15 illustrate the CLB configuration before
and after using SwapBlk.

X: Y:G F: G:B:E DX: DY: ENCLK: RSTDIR: CLK:
G = -~E+B

A= X=
B=net4 Y=net5
C=
D=
DI=
E=net3
EC=
RD=
K=

X: Y:G F:C:D G:D DX: DY: ENCLK: RSTDIR: CLK:
F = -~C+D
G = ~D

A= X=net3
B= Y=net4
C=net2
D=net6
DI=
E=
EC=
RD=
K=

Figure 9-14 CLB Configuration Before SwapBlk
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X: Y:G F:C:D G:D DX: DY: ENCLK: RSTDIR: CLK:
F = -~C+D
G = ~D

A= X=net3
B= Y=net4
C=net2
D=net6
DI=
E=
EC=
RD=
K=

X: Y:G F:C:D G:D DX: DY: ENCLK: RSTDIR: CLK:
F = -~C+D
G = ~D

A= X=net3
B= Y=net4
C=net2
D=net6
DI=
E=
EC=
RD=
K=

Figure 9-15 CLB Configuration After SwapBlk

Low-level Editing
Low-level editing is a very powerful feature of XDE. It gives you
absolute control over net routing paths. This control is very useful
when trying to meet timing constraints, or when trying to route the
last net in a packed FPGA. This type of editing requires detailed
knowledge of both the FPGA architecture and the available routing
resources. These resources consist of programmable interconnection
points (PIPs) and switch matrices, which interact to make the
connections between metal segments and block pins.

This section discusses the following topics:

● Screen Options

● Switch Matrices

● Programmable Interconnection Points

● Routing Resources
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● Manual Routing

● Routing through a Switch Matrix

● Routing Nets Using a Longline

Figure 9-16 is an example of a routed net with the PIPs and matrices
shown.

Figure 9-16 EditLCA Screen with PIPs Shown

To manually route nets at this level, you must be able to see the PIPs
and switch matrices. The Show option on the Screen menu selects the
different options for the screen display.

The first group of options determines what items are displayed. Refer
to Table 9-3.
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Table 9-3  Show Options

A second group of options determines the zoom level of the Editor
Screen:

● XSmall/Small/Medium/Large/Xlarge

● In — Zoom in one level

● Out — Zoom out one level

Screen Options
Set the screen options as follows:

1. Select the Show command from the Screen menu.

The screen options pop-up window appears.

2. From the pop-up window, enable the following options:

Pips
Matrix
In

3. Select Done to close the zoom level pop-up window.

Option Description

Pips/NoPips Turn on/off display of PIPs and
switching matrices.

World/NoWorld/
NeverWorld

Turn on/off display of world view.

Used/Available Show the interconnect segments that
are used (connected to a programmed
PIP or switching matrix pin) or show
the interconnect that is not currently
used.

Bidis/NoBidis Turn on/off display of the position of
the bidirectional buffers for the general
purpose interconnect.

Matrix/NoMatrix Turn on/off display of routing options
through the switching matrices.
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The message line displays:

Drawing screen...

When the redraw is complete, the screen shows programmable
interconnection points (PIPs) and switch matrices in addition to the
CLBs and IOBs.

4. Save this profile by typing the following on the command line:

saveprofile ↵

Switch Matrices
Switch matrices join the ends of metal segments and allow
interconnections between adjoining rows and columns of
interconnect. You can establish the connections through the switch
matrix by the automatic router, or by using the EditNet command to
manually select the desired pairs of matrix pins.

To view the matrix combinations, place the cursor on a pin of a switch
matrix. Since the Show Matrix option is enabled, XDE highlights all
legitimate switching matrix combinations for that pin. Figure 9-17
shows the possible connections for all of the pins in a switch matrix.
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Figure 9-17 Possible Connections in a Switch Matrix

Programmable Interconnection Points
PIPs are the only places where distinct wire segments can connect.
You can think of them as on/off switches that pass a signal only when
enabled. However, some of these switches are directional — they
conduct signals in only one direction.

Place the cursor on any PIP. The status line indicates the PIP’s
directionality, as listed in Table 9-4.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20
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Table 9-4  PIP Directionality

Since these definitions can be unclear for new users, XDE has a
command to change the square PIPs into arrows that denote
directionality.

1. On the command line, type the following command:

show directional ↵
PIP arrows that point to the right are PIPs that drive horizontally
(both right and left). PIP arrows that point up are PIPs that drive
vertically (both up and down). PIPs that still appear as squares are
non-directional PIPs that drive in any direction.

Routing Resources
For efficient routing at the lower level, you should have a good
understanding of the different routing resources available, and how
best to use them. The programmable interconnect consists of three
distinct types:

● Direct interconnect

● General purpose interconnect

● Longlines

Direction Description

ND Nondirectional interconnection

D:H->V PIP that drives from a horizontal to a vertical line

D:V->H PIP that drives from a vertical to a horizontal line

D:C->T PIP that drives from the horizontal segment of a T to
the vertical segment

D:T->C PIP that drives from the vertical segment of a T to the
horizontal segment

D:CW Corner PIP that drives in the clockwise direction

D:CCW Corner PIP that drives in a counter-clockwise direction

P0 Non-conducting (Off) PIP

P1 Conducting (On) PIP
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Direct Interconnect

Direct interconnect, shown in Figure 9-18, provides the most efficient
way to connect nets that run between adjacent blocks. Signals routed
using direct interconnects have very short delays and use no general
interconnect resources. For each CLB, the .X output can be directly
connected to the .B input of the CLB immediately to its right and to
the .C input of the CLB directly to its left. The .Y output can use direct
interconnect to drive the .D input of the block immediately above it
and the .A input of the block below it.

Figure 9-18 Direct Interconnect Routing Resources

The following exercise shows the benefits of using direct interconnect
wherever possible.

1. At the command line, type the following:

querynet ↵
The system displays a pop-up window with options. The
command line displays:

Select net(s) or option(s):
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2. At the command line, type the following:

net3 ↵
net4 ↵
↵

Note: The final ↵ (Return) tells the system that you are finished
entering net names.

3. Make a note of the net delays, and then swap the outputs of block
DA. At the command line, enter the following:

swapsig

The command line displays the following:

From pin:

4. Enter the first pin on the command line:

da.x ↵
The command line displays the following:

To pin:

5. Enter the next pin on the command line:

da.y

6. Note that one of the nets has been routed using direct
interconnect, while the other net has not.

7. Select the QueryNet command from the Net menu.

8. Enter net3  on the command line.

9. Enter net4  on the command line.

10. Select Done. The system displays a pop-up window that lists the
delays for the specified nets.

The delay of net4, which uses direct interconnect, is now 1.0 ns, while
the delay for the other net is 2.5Êns.

It is beneficial to place blocks and choose pin positions to take
advantage of direct interconnect, since direct interconnect exhibits
the shortest routing delays and uses no general purpose interconnect
resources, thus reducing routing density and congestion.
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General Purpose Interconnect

General purpose interconnect consists of a grid of horizontal and
vertical wire segments that can be interconnected through the use of
PIPs and switching matrices. In Figure 9-19, the horizontal segment is
a piece of general purpose interconnect.

Special buffers within the general interconnect area provide signal
restoration for the improved performance of lengthy nets. The
interconnect buffers propagate signals in the required direction on a
given interconnect segment. These bidirectional buffers (BIDIs) are
found adjacent to the switching matrices and are highlighted in red
by the use of the ShowBidis command, which you enabled at the
beginning of this section.

Figure 9-19 General Purpose Routing Resources

Longlines

Longlines avoid switch matrices and are intended primarily for
signals that must travel a long distance, or must have minimum skew

General Purpose Interconnect
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between multiple destinations. Longlines, shown in Figure 9-20, run
vertically and horizontally the height or width of the interconnect
area. In devices larger than the XC3020, two of the vertical longlines
are connectable half-length lines.

The global clock buffer (GCLK) in the upper-left corner of the chip
drives one reserved longline in each column, which connects to the .K
inputs of the logic blocks. Using the global buffer for a clock signal
provides a skew-free, high fan-out, synchronized clock available to
all CLBs and IOBs. Direct access to this buffer is available at the
second IO pad from the top on the left side of the chip. Remember to
use GCLK in all of your designs; since certain longlines are dedicated
to the global clock buffer, they are only used if GCLK is specified.

The alternate clock buffer (ACLK) is similar to GLCK, and is located
in the lower-right corner of the FPGA.

There is no command in XDE to show the longlines, so they must be
located indirectly. Vertical longlines can be found to the left of a CLB.
The left-most and right-most lines run through the PIPs on the .K
clock pin. Horizontal longlines are located above and below switch
matrices. These longlines cross through the PIPs that connect to the
outputs of the TBUFs. Refer to Figure 9-20 for the positioning of the
longlines.
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Figure 9-20 XC3000 Family Interconnect Resources

Manual Routing
Generally, when you modify a net, XDE automatically configures the
corresponding interconnect. However, you can also route nets
manually. The following subsections describe routing a net through a
switch matrix:

● Disable Autoroute Option

● Route Nets Manually

● Connect Source and Load Pins

● Route through a Switch Matrix

Global Net 3 Vertical Longlines
per Column
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Disable Autoroute Option

For the next set of examples, turn the autorouter off by performing
the following steps:

1. Select the Autoroute command from the Profile menu.

The system displays a pop-up window with the autoroute
options.

2. Select Off with your left mouse button.

The XACT autoroute option is disabled. Now, when you create nets
or move pins, you have to manually route the nets.

Route Nets Manually

To practice manually routing nets, perform the following tasks:

1. At the command line, type:

find net8 ↵
The cursor moves to the source pin of the net.

2. Select the Hilight command from the Net menu.

The system displays a pop-up window with color options.

3. Select Magenta from the pop-up window. The command line
displays:

Select net(s):

4. Enter net8 ↵
5. Select Done.

The system highlights the interconnect attached to the pins in
magenta.

6. Select the EditNet command from the Net menu.

The command line displays:

Select net:

7. Enter net8 ↵.

The command line displays:

Select PIPs:
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Connect Source and Load Pins

Now use the mouse to select PIPs so that the routing connects the
source and the load pins.

1. Place the cursor on the second PIP to the right of pin FA.X and
click the left mouse button, which turns the PIP on.

2. Move the cursor down in a straight line until it is on top of the PIP
that is on the other highlighted wire.

3. Click on this PIP.

The net is now routed.

4. Select Done from the pull-down menu, or click the middle mouse
button to end the EditNet command.

If you now place the cursor on the destination pin of the net (pin
FB.D), the message line displays the delay from the source to that pin.
If you place your cursor on the FB.D while in EditNet, the net delay is
shown as a question mark since delays are not calculated until
EditNet has ended.

Route Through a Switch Matrix

In the next example, the source and load pins cannot be directly
connected. Therefore, you must route the net through a switch matrix
as follows:

1. At the command line, enter:

find net10 ↵
2. Select the Hilight command from the Net menu.

The system displays a pop-up window with color options.

3. Select Magenta from the pop-up window.

The command line displays the following message:

Select net(s):

4. Enter net10 ↵ ↵.
The second carriage return sends you back to the main menu. The
system highlights the interconnect attached to the pins in
magenta.
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5. Select the Net command from the EditNet menu.

The command line displays the following message:

Select net:

6. Enter net10 ↵.

The command line displays the following message:

Select PIPs:

The best way to route this net is through the switch matrix above
row F and between columns C and D.

7. Click on the first PIP, as illustrated in Figure 9-21.

Figure 9-21 Manual Routing — Step 1

Choose this PIP first
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8. Click on the first pin, as illustrated in Figure 9-22.

Figure 9-22 Manual Routing — Step 2

9. Check the cursor status line to make sure you are on the correct
pin and then click the left mouse button.

10. The command line displays the following message:

Select other pin:

Choose this pin
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11. Select switch matrix pin 9 next, as illustrated in Figure 9-23.

Figure 9-23 Manual Routing — Step 3

12. Finally, click on the PIP on the highlighted wire directly to the
right of switch matrix pin 9, as indicated by Figure 9-24.

The net is now routed. Figure 9-24 shows the complete routing
path for net10.

Next, choose this pin
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Figure 9-24 Manual Routing — Step 4

Routing Through a Switch Matrix
When routing through a switch matrix, you might need to use an
output pin that is not a legitimate connection of the input. In this case,
you can use a bank-shot to connect the pins through an intermediate
pin that is a valid connection of both the input and output, as
illustrated in Figure 9-25.

Choose this PIP last
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Figure 9-25 Switch Matrix Bank-shot

In the following example, the only way to connect the routed
segments is by using a bank-shot, since there is no way to directly
connect the routed segments of the net.

1. Redraw the screen to remove other highlighting by selecting the
Redraw command from the Screen menu.

2. Type the following command on the command line:

find af ↵
3. Highlight the text to be edited using the following command:

hilight ↵
The system displays a pop-up window with color options.

4. Select Magenta. The status line displays:

Select net(s):

5. Enter the following:

net13 ↵
6. Select Done to return to the main menu.
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7. Select the EditNet command from the Net menu.

The status line displays the following:

Select net:

8. Enter net13 ↵.

9. In switch matrix BH.20, click on pins 19, 14, 14, and 2, in that
order.

The status line displays the current switch box and pin numbers.

10. Choose Done to end the EditNet command.

The net is now connected through a bank-shot.

Routing Nets Using a Longline
The following example shows how to route nets using a longline. To
use longlines efficiently, arrange the CLBs in a column, so that only
one longline is needed. Use the SwapSig command to arrange the
load pins so that the same pin is used on all the CLBs. In this way, you
can directly connect the inputs to the longline, and no general
interconnect is necessary. The .B pin is the best choice to which to
move the load pins, because the majority of the inputs already come
in on this pin.

The following sections walk you through each procedure in detail:

● Swap the Blocks

● Swap the Pins

● Route the Net

● Perform a QueryNet

Swap the Blocks

To swap the blocks, follow these steps:

1. Type the following on the command line:

find net15 ↵
2. Rearrange the blocks so that they line up in one column. Select the

SwapBlk command from the Blk menu.
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The command line displays:

Select block 1:

3. Enter bi ↵. The command line displays:

Select block 2:

4. Enter bj ↵.

Swap the Pins

1. Move to block CJ.

2.  Swap net15 from the C pin to the B pin to use a single longline.
Type the following on the command line:

swapsig cj.c cj.b ↵
3. Move net15 to the B pin for blocks DJ and JJ. Type the following

on the command line:

swapsig dj.c dj.b ↵
swapsig jj.a jj.b ↵

4. Now unroute the net so it can be rerouted using a longline. Type
the following on the command line:

unroute net15 ↵
5. Highlight the net so that you can easily find the pins. Type the

following on the command line:

hilight magenta net15 ↵

Route the Net

To route the net using a longline, perform these steps:

1. Use EditNet to route the net as follows:

editnet net15 ↵
The command line displays the following:

Select PIP(s):

2. Go to I/O pin P76. Click on the first PIP below P76.I, which is the
highlighted pin.
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3. Move to the left and click on the second PIP to the right of the PIP
on the highlighted wire. This PIP drives the longline.

4. Moving downward, choose every PIP you cross that is on a
highlighted wire segment. Stop when you reach block FJ.

5. Click on the longline PIP for FJ.B. The status line displays the
following message:

net net15: No sources reachable.

This warning message means that the PIP you have just turned on
is not connected to the source pin. As mentioned in the beginning
of this section, longlines are only half the length of the chip. This
halfway point is between rows E and F. To connect the longline
halves, you must turn on the splitter PIP.

Between CLBs EJ and FJ, and level with the top of the switch
matrix, are a pair of adjacent PIPs with no wire segments attached
to them. These are the splitter PIPs for the B and C longlines.

6. Click on the left one. The two halves of the longline are now
connected.

7. Continue moving down, connecting the rest of the unrouted load
pins.

Perform a QueryNet

Perform a Querynet to make sure that you have not missed any load
pins.

1. On the command line, type the following:

querynet net15 ↵
The system displays a pop-up window that lists all load pins.
Three asterisks (***) indicates a non-connected load pin.

2. Go back to the schematic and connect the missing pin.

Commands that Perform Similar Functions
This section explains the differences between commands that
perform similar functions. Complete the exercises to illustrate the
differences.
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Unroute and UnroutePin
To remove all the routing from a net, use Unroute. To remove the
routing from selected pins, use UnroutePin. For example, perform the
following steps:

1. Enter:

find net15 ↵
2. Change the color of the net:

colornet ↵
3. Select the color from the pop-up window or enter it directly on the

command line:

magenta ↵
The system displays the following:

Select net(s):

4. Enter the specific net, in this case:

net15 ↵
5. Try the UnroutePin command, as follows:

unroutepin ↵
BJ.B CJ.B ↵

6. Try the unroute command as follows:

unroute net15 ↵

Route and Routepin
Route configures the interconnection for an entire net. RoutePin
connects only the selected pin to the net’s source. For example,
perform the following steps:

1. Enter:

find net26 ↵
2. Change the color of the net:

hilight ↵
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3. Select the color from the pop-up window or enter it directly on the
command line:

magenta ↵
The system displays the following:

Select net(s):

4. Enter the specific net, in this case:

net26 ↵
5. To route a single load pin, use the RoutePin command as follows:

routepin cf.a ↵
Note: Performing a Routepin on the source pin routes all the load
pins, which is the equivalent to specifying “route net26.”

6. To route all load pins by specifying the source pin, enter the
following:

routepin cd.x

7. To route all load pins, enter:

route net26 ↵
8. To unroute all load pins from the net, enter:

unroute net26 ↵

Route, EditNet, and RoutePoint
The differences between these three commands are as follows:

● The Route command uses the autorouter to pick the entire routing
path. You have no control over the path taken.

● The EditNet command requires that you chose the entire path
manually. You must turn on every PIP and choose the pins on
every switch matrix.

● RoutePoint allows you to choose intermediate points, which the
autorouter routes between. This command offers the speed of the
Route command combined with the control of EditNet.
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Hilight and ColorNet
Hilight highlights not only the routed interconnect, but also unused
stubs that connect to routed lines in the specified color. ColorNet
changes only the part of the interconnect that contains routing.

Perform the following steps:

1. Type the following on the command line:

hilight magenta net6 ↵
colornet magenta net2 ↵
Hilight draws over a net (slow and temporary), and ColorNet
assigns a new color to the net (fast and permanent). If a net is
unrouted, Hilight colors the pin stubs; however, ColorNet appears
to do nothing since it colors only routed interconnect. However,
when the net does get routed, it has the color assigned to it by the
ColorNet statement.

2. Enter:

unroute net2 net6 ↵
3. Use Hilight to color the routed interconnect as follows:

hilight magenta net6 ↵
4. Use ColorNet to change the interconnect that contains routing as

follows:

colornet brightblue net2 ↵
5. Route the net as follows:

route net2 ↵

Building a Four-Bit Multiplier
The first part of this tutorial introduced the commands needed for
using the design editor. This section walks you through an actual
design, as follows:

● Creating a new design

● Creating the mult0, mult1, and mult2 CLBs

● Configuring IOBs as input and output pins
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● Giving blocks logical names

● Adding nets to the design

● Checking the nets in your design

● Routing the nets

● Using the Delay command

● Improving the routing

Figure 9-26 shows the design flow.

Figure 9-26 FPGA Design Flow Using XDE

The design to be implemented is a 4 x 4 bit combinatorial multiplier.
The block diagram in Figure 9-27 shows the placement for the CLBs,
their block names, and which of three possible ways each CLB should
be configured. The inputs are labeled with X and Y; the outputs have
a Z prefix.

X4697

Design & Partition Logic

Implement Design
• Configure CLBs
• Configure IOBs
• Place and Route Design
• Check Design Rules
• Calculate Delay

LCA

Create the Design 
Configuration File (.BIT)

Download Bitstream for
In-System Verification
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Figure 9-27 Combinatorial Multiplier Block Diagram/EditLCA
Layout

A combinatorial multiplier uses one CLB per partial product. A
2-input AND gate generates each partial product, but additional
circuitry is required to add together all partial products of equal
weight.

Figure 9-28 gives the schematics for the three different types of CLBs
that make up the multiplier, which have been named mult0, mult1,
and mult2. The mult2 CLB generates the partial products, adds two
input values to it, and generates two outputs — Sum and Carry. Sum
has the same binary weight as the partial product; Carry has the next
higher weight. The blocks on the left and top edge have fewer inputs
and are simpler, but perform the same fundamental function.
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Figure 9-28 Schematics for Multiplier Cells

The following subsections describe step-by-step how to create the
four-bit multiplier.

Creating a New Design
To exit EditLCA and prepare to edit the new design, perform the
following steps:

1. Enter:

exit ↵
Exit sends you back to the main XDE screen.

2. Select the Part command from the Designs menu on the XDE main
screen.
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3. Change the part type to a 3020pc68.

4. Edit a new design called mult4 as follows:

editlca new mult4 ↵
The system displays a pop-up window asking you if you want to
save or discard the changes to the design you are currently
editing.

5. Select Yes to discard current changes.

The system redraws the screen.

Next, build the four CLBs.

Creating the mult0 CLB
Create the first CLB called mult0:

1. Enter the following command:

editblk ga ↵
2. Use Figure 9-29 as a guide to configure block GA.
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Figure 9-29 CLB Configured as mult0

3. Enter the following equation on the command line:

f=b*d ↵
4. Select F from the Configuration Options area for X.

Block GA is now configured. The F function generator ANDs the
signals that come in on pins B and D.

5. Return to the editor screen from the Editblk screen:

switch

According to Figure 9-27, this block configuration is used in four
CLBs. Rather than re-entering this information in each location,
copy the configured CLB to the other blocks as follows:

6. Select the CopyBlk command from the Blk menu on the EditLCA
screen.

Configuration Options
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The status line displays the following:

From block:

7. Enter the block from which you want to copy its configuration, in
this case, GA.

ga ↵
The status line displays the following:

To block(s):

8. Enter the following blocks on the command line:

fa ↵
ea ↵
da ↵

9. Select Done off the CopyBlk menu or click your middle mouse
button.

Creating the mult1 CLB
Configure the next CLB, called mult1, as follows:

1. Enter the following command:

editblk gb ↵
2. Add the following equations on the command line:

f=c@b*d
g=c*b*d

3. Click on F for X and G for Y from the Configuration Options area.

Make sure block GB resembles Figure 9-30.
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Figure 9-30 CLB Configured as mult1

4. Now copy the mult1 block to the other locations where it is used.
Switch back to the EditLCA screen:

switch

5. Enter the following command:

copyblk ↵
6. Enter the block from which you want to copy its configuration, in

this case, GB.

gb ↵
The status line displays the following message:

To block(s):
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7. Enter the following blocks on the command line:

fb ↵
eb ↵
db ↵

8. Select Done or click your middle mouse button.

Creating the mult2 CLB
Create the next CLB, called mult2, as follows:

1. Enter the following command:

editblk gc ↵
2. Enter:

f=(a@(c@(b*d)))
g=((a*c)+(c*(b*d))+((b*d)*a))

3. Select F for X and G for Y from the Configuration Options area.
Make sure block GC resembles Figure 9-31.
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Figure 9-31 CLB Configured as mult2

4. Switch back to the EditLCA screen.

5. Copy GC to the other locations where it is used and type the
following on the command line:

copyblk gc fc ec gd fd ed dc dd ↵

Configuring an IOB as an Input Pin

Configure an IOB as an input pin as follows:

1. Enter the following command:

editblk p24 ↵
2. Configure block P24 as an input pin. Click on the LATCH and

PULLUP tags to turn them off.
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3. Click on the I tag to turn it on. This is the configuration for an
input pin.

4. Make sure that block P24 resembles Figure 9-32 as follows:

Figure 9-32 IOB Configured as an Input Pin

5. Copy the input pin to the other locations where it is used by
entering the following command:

copyblk p24 p23 p21 p19 p17 p15 p13 p11 ↵

Configuring an IOB as an Output Pin
Configure an IOB as an output pin:

1. Enter the following command:

editblk p37 ↵
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2. Configure block P37 as an output pin.

3. Click on the I, LATCH, and PULLUP tags to turn them off.

4. Click on the O tag to turn it on. This is the configuration for an
output pin.

5. Make sure your EditBlk screen resembles Figure 9-33 as follows:

Figure 9-33 IOB Configured as an Output Pin

6. Copy this pin to the other locations where it is used using the
following command:

copyblk p37 p36 p34 p33 p32 p31 p30 p29 ↵
7. Save your changes, with the following command:

save ↵
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You should periodically save the design since XACT has no Undo
command. The message line prompts for the design name.

8. Enter ↵ to indicate the default name, in this case, edit_lca.lca.

Giving Blocks Logical Names
To make the design easier to understand, give all the blocks logical
names using the NameBlk command.

1. Enter the following command:

nameblk p24 y0_in ↵
This command changes the name of block P24 to Y0_IN. You can
enter either name when using commands that expect a location as
input, such as Editblk or Find.

You can enter the names in either of two ways:

● Manually, as described above

● Automatically, by creating a batch file that contains a set of
NameBlk statements

2. Rename the rest of the I/O blocks and CLBs according to the
information shown in Figure 9-34.
Development System User Guide 9-59



Development System User Guide
IOB NAME IOB NAME

P23 Y1_IN GA BLK_00
P21 Y2_IN FA BLK_01
P19 Y3_IN EA BLK_02
P17 X0_IN DA BLK_03
P15 X1_IN GB BLK_10
P13 X2_IN FB BLK_11
P11 X3_IN EB BLK_12
P37 Z7_OUT DB BLK_13
P36 Z6_OUT GC BLK_20
P34 Z5_OUT FC BLK_21
P33 Z4_OUT EC BLK_22
P32 Z3_OUT DC BLK_23
P31 Z2_OUT GD BLK_30
P30 Z1_OUT FD BLK_31
P29 Z0_OUT ED BLK_32

DD BLK_33

Figure 9-34 IOB and CLB Block Names

3. Type the following command at the command line to create a file
that automatically names the IOBs and CLBs:

exec names ↵
The system automatically renames all IOBs and CLBs.

You can put any list of XDE commands into a file and execute
them with the Exec command. In cases where you perform the
same sequence of commands repeatedly or perform them on
different designs, this method is faster than entering commands
manually.

Adding Nets to the Design
1. Make sure that the autorouter is off. Selectthe Autoroute

command from the Profile menu.

A pop-up window appears.

2. Select Off from the pop-up window.

3. Switch back to the EditLCA screen if you are still in EditBlk mode.
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4. Select the AddNet command from the Net menu.

You are prompted for the name of the new net.

5. Type the following on the command line:

x<0> ↵
6. Move the mouse to each of the following pin locations and click

on them with the left mouse button, which adds the pin to the net.

P17.I
GA.D
FA.D
EA.D
DA.D

7. Choose Done to finish adding pins to the net.

8. Add net X<1> by typing:

addnet x<1> p15.i gb.d fb.d eb.d db.d ↵
The rest of the nets can be added by typing the lines as they appear in
the figure, using the mouse to select the individual pins, or using a
supplied command file called “nets.”

9. To use the command file, type:

exec nets ↵
Figure 9-35 shows all the pin connections for the multiplier.

NET NAME SOURCE PIN LOAD PIN(S)

X<0> P17.I GA.D FA.D EA.D DA.D
X<1> P15.I GB.D FB.D EB.D DB.D
X<2> P13.I GC.D FC.D EC.D DC.D
X<3> P11.I GD.D FD.D ED.D DD.D
Y<0> P24.I GA.B GB.B GC.B GD.B
Y<1> P23.I FA.B FB.B FC.B FD.B
Y<2> P21.I EA.B EB.B EC.B ED.B
Y<3> P19.I DA.B DB.B DC.B DD.B
Z<0> GA.X P29.O
Z<1> GB.X P30.O
Z<2> GC.X P31.O
Z<3> GD.X P32.O
Z<4> FD.X P33.O
Z<5> ED.X P34.O
Z<6> DD.X P36.O
Z<7> DD.Y P37.O
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SUM_O1 FA.X GB.C
SUM_O2 EA.X FB.C
SUM_O3 DA.X EB.C
SUM_11 FB.X GC.C
SUM_12 EB.X FC.C
SUM_13 DB.X EC.C
SUM_21 FC.X GD.C
SUM_22 EC.X FD.C
SUM_23 DC.X ED.C
CARRY_10 GB.Y GC.A
CARRY_11 FB.Y FC.A
CARRY_12 EB.Y DB.C
CARRY_13 DB.Y DC.C
CARRY_20 GC.Y GD.A
CARRY_21 FC.Y EC.A
CARRY_22 EC.Y DC.A
CARRY_23 DC.Y DD.C
CARRY_30 GD.Y FD.A
CARRY_31 FD.Y ED.A
CARRY_32 ED.Y DD.A

Figure 9-35 Net Connection Information

Checking the Nets in Your Design
1. To obtain a list of all the nets in the design, select the QueryNet

command from the Net menu.

The system displays a pop-up window with QueryNet options.

2. Select -All.

3. Select Done.

The system displays the results of your QueryNet. The QueryNet
listing should resemble the one illustrated in the following figure:

— CARRY_10 U  GB.Y (BLK_10) *** GC.A (BLK_20)
— CARRY_11 U  FB.Y (BLK_11) *** FC.A (BLK_21)
— CARRY_12 U  EB.Y (BLK_12) *** DB.C (BLK_13)
— CARRY_13 U  DB.Y (BLK_13) *** DC.C (BLK_23)
— CARRY_20 U  GC.Y (BLK_20) *** GD.A (BLK_30)
— CARRY_21 U  FC.Y (BLK_21) *** EC.A (BLK_22)
— CARRY_22 U  EC.Y (BLK_22) *** DC.A (BLK_23)
— CARRY_23 U  DC.Y (BLK_23) *** DD.C (BLK_33)
— CARRY_30 U  GD.Y (BLK_30) *** FD.A (BLK_31)
— CARRY_31 U  FD.Y (BLK_31) *** ED.A (BLK_32)
— CARRY_32 U  ED.Y (BLK_32) *** DD.A (BLK_33)
— SUM_01 U  FA.X (BLK_01) *** GB.C (BLK_10)
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— SUM_02 U  EA.X (BLK_02) *** FB.C (BLK_11)
— SUM_03 U  DA.X (BLK_03) *** EB.C (BLK_12)
— SUM_11 U  FB.X (BLK_11) *** GC.C (BLK_20)
— SUM_12 U  EB.X (BLK_12) *** FC.C (BLK_21)
— SUM_13 U  DB.X (BLK_13) *** EC.C (BLK_22)
— SUM_21 U  FC.X (BLK_21) *** GD.C (BLK_30)
— SUM_22 U  EC.X (BLK_22) *** FD.C (BLK_31)
— SUM_23 U  DC.X (BLK_23) *** ED.C (BLK_32)
— X<0> U P17.I (X0_IN) *** GA.D (BLK_00)

*** FA.D (BLK_01)
*** EA.D (BLK_02)
*** DA.D (BLK_03)

— X<1> U P15.I (X1_IN) *** GB.D (BLK_10)
*** FB.D (BLK_11)
*** EB.D (BLK_12)
*** DB.D (BLK_13)

— X<2> U P13.I (X2_IN) *** GC.D (BLK_20)
*** FC.D (BLK_21)
*** EC.D (BLK_22)
*** DC.D (BLK_23)

— X<3> U P11.I (X3_IN) *** GD.D (BLK_30)
*** FD.D (BLK_31)
*** ED.D (BLK_32)
*** DD.D (BLK_33)

— Y<0> U P24.I (Y0_IN) *** GA.B (BLK_00)
*** GB.B (BLK_10)
*** GC.B (BLK_20)
*** GD.B (BLK_30)

— Y<1> U P23.I (Y1_IN) *** FA.B (BLK_01)
*** FB.B (BLK_11)
*** FC.B (BLK_21)
*** FD.B (BLK_31)

— Y<2> U P21.I (Y2_IN) *** EA.B (BLK_02)
*** EB.B (BLK_12)
*** EC.B (BLK_22)
*** ED.B (BLK_32)

— Y<3> U P19.I (Y3_IN) *** DA.B (BLK_03)
*** DB.B (BLK_13)
*** DC.B (BLK_23)
*** DD.B (BLK_33)

— Z<0> U  GA.X (BLK_00) *** P29.O(Z0_OUT)
— Z<1> U  GB.X (BLK_10) *** P30.O(Z1_OUT)
— Z<2> U  GC.X (BLK_20) *** P31.O(Z2_OUT)
— Z<3> U  GD.X (BLK_30) *** P32.O(Z3_OUT)
— Z<4> U  FD.X (BLK_31) *** P33.O(Z4_OUT)
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— Z<5> U  ED.X (BLK_32) *** P34.O(Z5_OUT)
— Z<6> U  DD.X (BLK_33) *** P36.O(Z6_OUT)
— Z<7> U  DD.Y (BLK_33) *** P37.O(Z7_OUT)

Figure 9-36 QueryNet Output

Compare your listing to Figure 9-36. If a mistake has been made or if
the Design Rules Checker program (DRC) issues a warning about a
net or pin, use the DelNet command to delete the offending net and
redo that net.

Routing the Nets
The design is now functionally correct. The only thing left to do is
route the nets.

1. Type the following on the command line:

route * ↵
XDE uses the autorouter to route all the nets.

2. Select the Drc command from the Misc menu to run DRC.

This program checks the routing and the block configuration for
any possible mistakes. The system displays a pop-up window
with DRC options.

3. Select Done.

DRC checks to make sure that no fatal mistakes have been made
in the design. The system displays a pop-up window with
informational message, warnings, and fatal errors. There should
be no errors or warnings. If any occur, go back and fix them.
Alternately, you can reload the last-saved version of the design
and start again at that point.

Using the XDelay Command
Now use the XDelay command to find the worst-case path delay
through the multiplier.

1. Select the XDelay command from the Timing menu.

The system displays a pop-up window with XDelay options.

2. Select the Analyze option from the pop-up window.
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This option shows an overview of the worst-case timing delays.

Improving the Routing
Improve the routing of the four-bit multiplier by using the AlignSig
command to swap multiple pins at once, as follows:

1. Unroute the design by typing the following command:

unroute * ↵
A dialogue box asks:

Unroute 36 nets. Are you sure?

2. Select Yes.

3. Select the AlignSig command from the Pin menu on the EditLCA
screen.

4. Select the first net. At the command line, enter this command:

x<0> ↵
The command line displays:

Select pin:

5. Enter the following command:

c ↵
The command line displays:

Select block(s):

6. Enter the following:

*a ↵
The system displays a pop-up windowing verifying that you
want to perform this function.

7. Select Yes.

XDE puts net X<0> on the C pin of all the CLBs in column A. Now
a longline can drive these CLBs.
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8. Enter the following on the command line to swap the pins for the
specified nets:

alignsig x<1> c *b ↵
alignsig x<2> c *c ↵
alignsig x<3> c *d ↵
alignsig y<0> a g* ↵
alignsig y<1> a f* ↵
alignsig y<2> a e* ↵
alignsig y<3> a d* ↵

9. Now route X<0:3> and Y<0:3> onto the longlines. You do not have
to route the nets completely, just turn on the PIPs that connect the
loads to the longlines.

The system displays the following the warning message:

No sources reachable.

10.  Ignore it or turn off DRC by typing the following command:

autodrc off ↵
11. Now refer back to Figure 9-18 and find where you can use direct

connections to improve the routing. Net CARRY_10 can use the X-
to-B direct connect, and CARRY_22 can use the Y-to-D direct
connect.

12. Find the other nets that can use direct connects and use SwapSig
to put the net on the correct pins. If a direct connect can be used
but is not, routing resources are wasted.

13. Now route the design by typing the following command:

route * ↵
Use the delay calculator to again find the worst-case delay
through the part.

14. Select the XDelay command from the Timing menu.

The system displays a pop-up window with XDelay options.

15. Select the Analyze option from the pop-up window.

This option shows an overview of the worst-case timing delays.
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The worst-case delay time is lower now since the design is less
congested and uses the longlines more efficiently.

Downloading a Bitstream
Now that you entered the design, it can be downloaded to the demo
board. Perform the following steps:

1. Save the design using the default name.

save ↵
↵

2.  Go back to the Executive Screen.

exit ↵
3. Select the MakeBits command from the Programs menu on the

XDE Executive menu:

4. Select the MakeBits command from the Config menu on the
MakeBits menu.

5. Select Done.

This translates the design into a bitstream that can be loaded into
the part.

6. Select the Writebits command from the Config menu.

7. Enter ↵ to indicate the default file name.

8. Make sure that the download cable is attached to both the demo
board and parallel port.

On the demo board, turn switches 2, 3, and 4 to the off position so
that the FPGA configures in slave mode. Now turn the demo
board on.

Note: If you are working on a Sun Workstation, you can skip the next
two steps.

9. Next, initialize your parallel port. For PC users, select the Port
command from the Misc menu for MakeBits.

The system displays a pop-up window with port options.

10. Select LPT1.
Development System User Guide 9-67



Development System User Guide
11. Now download the bitstream by selecting the Download
command from the Download menu for MakeBits.

12. Press the reset button on the demo board and then press ↵.

The following message appears on the screen:

‘done’ signal now high

13. Enter quit on the command line to exit the MakeBits screen.

The demo board is now configured as a four-bit multiplier. Switches
one through four control X<3:0>. Switches five through eight control
Y<3:0>. The output appears on the LEDs.

Quitting XDE
To exit from XDE, do this step:

1. Enter quit  or exit  on the XDE command line to exit XDE.

A pop-up window appears verifying you want to quit XDE and save
any changes.
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MakePROM, 6-1, 6-3, 6-5, 6-7
MAP2LCA, 3-2, 5-2
mapping, 1-19, 2-4, 3-5
mask file, 7-5
Master Parallel mode, 6-10, 6-18
Master Serial mode, 6-12, 6-19
MemGen, 2-2
merging, 3-5
MINC, 2-3
modes

Express, 6-22
master, 6-9
Master Parallel Up/Down, 6-10, 6-18
Master Serial, 6-12, 6-19
non-master, 6-9
Peripheral Asynchronous, 6-21
Peripheral Mode, 6-14
Peripheral Synchronous, 6-20
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Slave mode, 6-16
Slave Serial, 6-22
XC2000, 6-9
XC3000, 6-9
XC4000, 6-18

N
Norestore, 6-2

O
one-hot encoding, 3-4
optimization, 1-19, 3-4

binary encoding, 3-4
one-hot encoding, 3-4
standard encoding, 3-5

P
pad bits, 6-5
PALASM, 2-3
Partition, Place, and Route program see
PPR
partitioning, 5-2
Peripheral Asynchronous mode, 6-21
Peripheral mode, 6-14
Peripheral Synchonrous mode, 6-20
PIPs, 1-15, 9-28
placement, 1-19, 3-6
PPR, 3-2, 5-4
preamble, 6-25
primitives, 2-1
probe, 4-9
PROGRAM, 8-5, 8-11
programmable interconnect points see PIPs
PROM file, 6-3
PROMs, 1-17, 6-7

Q
QueryNet, 4-7

R
ReadAbort, 7-13
readback, 7-1, 8-22

bitstream, 7-5, 7-11
daisy chain, 7-6

during boundary scan, 7-10
features, 7-2
frequency, 7-15
initialization, 7-9
options, 7-13
performing, 7-6
pins, 7-8
ReadAbort, 7-13
ReadCapture, 7-13
ReadClk, 7-14
state flow diagram, 7-6
switching characteristics, 7-16
symbol, 7-10
timing, 7-15
uses, 7-2

readback bitstream, 7-11
READBACK primitive, 7-7, 7-9
READBACK symbol, 7-10, 8-23
ReadCapture, 7-13
ReadClk, 7-14
RIP, 7-9
routing, 1-19, 3-7

manual via XDE, 9-34
routing resources, 1-13, 9-29

direct interconnect, 1-14
general purpose interconnect, 1-14
longlines, 1-13
PIPs, 1-15
switch matrices, 1-16

S
Sample/Preload, 8-9, 8-14, 8-16, 8-19, 8-20
schematic entry, 1-19, 2-1

MemGen, 2-2
X-BLOX, 2-2

SEL1, 8-12
SEL2, 8-12
simulation, 1-19, 4-3

functional, 4-4
timing, 4-4

Slave mode, 6-11, 6-16
Slave Serial mode, 6-22
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standard encoding, 3-5
states

clear, 6-30
configuration, 6-37
configuration cycle, 6-31
initialization, 6-37
memory clear, 6-37
power-up, 6-37
power-up and initialization, 6-29
reprogramming, 6-34, 6-42
start-up, 6-32, 6-38
XC2000 devices, 6-28
XC3000 devices, 6-28
XC4000 devices, 6-35

static timing analysis, 1-19, 4-5
QueryNet, 4-7
XDelay, 4-6

SwapBlk command, 9-21
switch matrices, 1-16, 9-27
synchronous design, 3-8

global clock distribution, 3-8
Synopsys, 2-3

T
tail bits, 6-5
TAP, 8-4, 8-10, 8-20
TAP controller, 8-4, 8-9, 8-12
TAP pins, 8-3, 8-9
TCK, 8-4, 8-9, 8-12, 8-13, 8-17
TDI, 8-4, 8-12, 8-17, 8-20
TDO, 8-4, 8-7, 8-10, 8-11, 8-20
TDO1, 8-12
TDO2, 8-12
test access port see TAP
test clock see TCK
test data input see TDI
test data output see TDO
test mode select see TMS
text-based entry, 1-19, 2-3

Verilog HDL, 2-3
VHDL, 2-3
Xilinx ABEL, 2-3

Xilinx Synopsys Interface, 2-3
timing simulation, 4-4
timing specification, 2-5
TMS, 8-4, 8-13, 8-17
TRIG, 7-8
tying the design, 6-2

U
unused IOB configuration, 6-3
UseCriticalNetsLast, 6-2
user registers, 8-12

connections, 8-12
User1, 8-12, 8-18, 8-20
User2, 8-12, 8-18, 8-20

V
Verbose, 6-2
Verilog HDL, 2-3
VHSIC HDL (VHDL), 2-3

X
XACT Design Editor see XDE
XACT Design Manager, 5-1
XACT Development System documenta-
tion see documentation
XACT-Performance, 2-5, 4-7
X-BLOX, 2-2, 5-4, 5-5
XC2000, 1-6, 1-11, 5-1
XC2000L, 1-6, 1-11, 5-1
XC3000, 1-6, 1-10, 5-1
XC3000A, 1-6, 1-10, 5-3
XC3000L, 1-6, 1-10, 5-3
XC3100, 1-6, 1-10, 5-1
XC3100A, 1-6, 1-10, 5-3
XC4000, 1-8, 5-4
XC4000 CLB, 1-4
XC4000 configuration, 8-21
XC4000A, 1-8, 5-4
XC4000H, 1-9, 5-4
XC5200, 8-21
XC5200 boundary-scan, 8-16
XC5200 CLB structure, 1-3
XC5200 configuration, 8-21
vi Xilinx Development System



Index
XC5200 control logic, 1-3
XC5200 IOB structure, 1-7
XC5200 storage device, 1-3
XChecker cable, 1-17, 4-9, 6-3, 6-22
XDE, 3-3, 3-7, 4-5, 5-3, 6-1, 8-18

Executive Display screen, 9-2
Probe command, 4-9

XDE tutorial, 9-1
add nets to design, 9-60
beginning, 9-2
building a four-bit multiplier, 9-47
choosing design file, 9-4
ColorNet, 9-47
connect pins, 9-36
direct interconnect, 9-30
disable Autoroute, 9-35
downloading a bitstream, 9-67
EditBlk screen, 9-10
EditNet, 9-46
exiting, 9-68
function keys, 9-8
general purpose interconnect, 9-32
getting started, 9-2
high-level editing, 9-16
Hilight, 9-47
improve routing, 9-65
loading the design, 9-5
logical block names, 9-59
longlines, 9-32, 9-42
low-level editing, 9-24
manual routing, 9-34, 9-35
mouse buttons, 9-7
new design, 9-50
PIPs, 9-28

QueryNet, 9-19, 9-44
quitting, 9-68
Route, 9-45, 9-46
route nets, 9-64
RoutePin, 9-45
RoutePoint, 9-46
screen options, 9-26
setting the directory, 9-4
setting the mode, 9-3
setting the profile, 9-7
Show Matrix option, 9-27
similar commands, 9-44
SwapBlk command, 9-21
SwapSig command, 9-16
switch matrix, 9-36
Unroute, 9-45
UnroutePin, 9-45
viewing FPGA, 9-5
world view, 9-6
XDelay, 9-64

XDelay, 4-5, 4-6, 6-3, 9-64
XDM, 5-1
XFF file, 5-2
Xilinx ABEL, 2-3
Xilinx Netlist Format, 3-1
Xilinx Synopsys Interface, 2-3
Xilinx Technical Bulletin Board, 8-25
XMake, 3-1, 3-2, 5-1
XNF translation, 3-3
XNFMAP, 3-2, 5-2
XNFMerge, 3-2, 5-2, 5-3
XNFPrep, 3-2, 5-2, 5-3, 5-5
XSI, 2-3
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