Synplify Training Questions

1. What order do you place the design files in the project listing for a Hierarchical Verilog project (Assume the following hierarchy for the design)?

Answer (same order in project list):

Any order (Macro_a, State_machine, CRC),

Top_level

2. What order do you place the design files in the project listing for a Hierarchical VHDL project (Use the same hierarchy in question 1)?

Answer (Same order in project list):

CRC,

state_machine,

Macro_a,

Top_level
3. What are the 3 major Stregnths of Synplify?

Answer: ease of use, compiler speed, QOR
4. In VHDL how do you compile a package into a VHDL library other than the work directory?

Answer: Use the “set library” command from “Source” menu or from mouse drop down menu

5. What is the easiest way to create your first TCL file (After having just completed your first demo project)?

Answer: Rename the project file as a .tcl file
6. What are the 3 main xilinx specific optimizations?

Answer: (DST for lut’s, i/o synthesis, auto use of xilinx resources like clock buffers and startup blocks)
7. How does FSM compiler help improve designs (3 reasons)?

Answer: (automatic inferencing, optimization <i.e. reachability analysis, transition logic minimization, …>, encoding)
8. Synplify supports xilinx specific attributes that help designers to lock pins and use dedicated pads.

The attribute can be applied as a meta-comment in the language itself.

 In the attached verilog model assign location information for xilinx place and route as follows:

input data: P20,P91,P18,P17

output cout : A1

on the module top_counter2.

module top_counter2(out, cout, data, load, cin, clk,reset);

output cout /* synthesis xc_loc = “A1” */ ;

output [3:0] out ;

input [3:0] data /* synthesis xc_loc= “P20,P91,P18,P17” */ ;

input load,cin,clk,reset;

counter2 my_counter(.cout(cout),.out(out),.data(data),

 .load(load),.cin(cin),.clk(clk),.reset(reset));

endmodule

9. Synplify supports xilinx specific attributes that help designers to lock pins and use dedicated pads.

You can use VHDL language attributes to apply the location information in the source VHDL file.

 In the attached vhdl model assign location information for xilinx place and route as follows:

Input clk: TL

output count: P20,P91,P18,P17

on the entity top_counter.

entity top_counter is

 port (clk, reset, load: in std_logic;

 data: in std_logic_vector (3 downto 0);

 count: out std_logic_vector (3 downto 0));

-- declare the xc_loc attribute

 attribute xc_loc: string ;

 attribute xc_loc of clk: signal is "TL";

 attribute xc_loc of count: signal is "P20, P19, P18, P17";

 etc…..

end top_counter;

architecture arch1 of top_counter is

begin

my_counter: counter port map(clk,reset,load,data,count);

end arch1;

10. Instantiation Verilog

· Synplify distributes an import library containing all the xilinx primitives/macros and one can

use this import library (xc4000.v/xc3000.v) to instantiate the xilinx primitives/macros in

the source verilog file.

In the RAM example below, how would you inform Synplify where the RAM32X1 macro

is located. Assume you are targeting xc4000e devices and the import library file is

located at c:\SYNPLCTY\lib\xilinx directory.

`include “c:\synplcty\lib\xilinx\xc4000.v”

module ram_32x8 (o,we,d,a);

output [7:0] o;

input we;

input [7:0] d;

input [4:0] a;

RAM32X1 U0 (.O(o[0]),.D(d[0]),.WE(we),.A4(a[4]),.A3(a[3]),.A2(a[2]),.A1(a[1]),.A0(a[0])) ;

RAM32X1 U1 (.O(o[1]),.D(d[1]),.WE(we),.A4(a[4]),.A3(a[3]),.A2(a[2]),.A1(a[1]),.A0(a[0]));

RAM32X1 U2 (.O(o[2]),.D(d[2]),.WE(we),.A4(a[4]),.A3(a[3]),.A2(a[2]),.A1(a[1]),.A0(a[0])) ;

RAM32X1 U3 (.O(o[3]),.D(d[3]),.WE(we),.A4(a[4]),.A3(a[3]),.A2(a[2]),.A1(a[1]),.A0(a[0]));

RAM32X1 U4 (.O(o[4]),.D(d[4]),.WE(we),.A4(a[4]),.A3(a[3]),.A2(a[2]),.A1(a[1]),.A0(a[0]));

RAM32X1 U5 (.O(o[5]),.D(d[5]),.WE(we),.A4(a[4]),.A3(a[3]),.A2(a[2]),.A1(a[1]),.A0(a[0]));

RAM32X1 U6 (.O(o[6]),.D(d[6]),.WE(we),.A4(a[4]),.A3(a[3]),.A2(a[2]),.A1(a[1]),.A0(a[0]));

RAM32X1 U7 (.O(o[7]),.D(d[7]),.WE(we),.A4(a[4]),.A3(a[3]),.A2(a[2]),.A1(a[1]),.A0(a[0])) ;

Endmodule

11. Instantiation VHDL

· Synplify distributes an import library containing all the xilinx primitives/macros and one can

use this import library (xc4000.vhd/xc3000.vhd) to instantiate the xilinx primitives/macros in

the source verilog file.

In the RAM example below, how would you inform Synplify where the RAM32X1 macro

is located.

library xc4000;

use xc4000.components.all;
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity ram_32x1 is

port (o : out std_logic;

 d,we,a4, a3, a2, a1, a0: in std_logic);

end ram_32x1;

architecture arch1 of ram_32x1 is

begin

u1: RAM32X1 port map (o,d,we,a4,a3,a2,a1,a0);

end arch1;

12. Create a Synplicity constraint file (.sdc file) and define the clock frequency to be 75 MHz

for the verilog module stub given below.

Use the attributes supplied by Synplify to force a transition time of the output driver to be FAST.

module prep3(CLK, RST, IN, OUT);

input CLK, RST;

input [7:0] IN;

output [7:0] OUT /*synthesis xc_fast = 1 */;

/* functionality described here */;

endmodule

In prep3.sdc

define_clock CLK -freq 75.0

Top_level

Macro_A

State_machine

CRC

