
Xilinx PCI Data Book



, XILINX, XACT, XC2064, XC3090, XC4005, XC-DS501, FPGA Archindry, NeoCAD, NeoCAD EPIC, NeoCAD
PRISM, NeoROUTE, Plus Logic, Plustran, P+, Timing Wizard, and TRACE are registered trademarks of Xilinx, Inc. 

, all XC-prefix product designations, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-
Performance, XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, Foundation Series, Alli-
anceCORE, BITA, Configurable Logic Cell, CLC, Dual Block, FastCLK, FastCONNECT, FastFLASH, FastMap, HardWire,
LCA, Logic Cell, LogiCORE, LogiBLOX, LogicProfessor, MicroVia, PLUSASM, PowerGuide, PowerMaze, Select-RAM,
SMARTswitch, TrueMap, UIM, VectorMaze, VersaBlock, VersaRing, and ZERO+ are trademarks of Xilinx, Inc. The Program-
mable Logic Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx does not assume any liability arising out of the application or use of any product described or shown herein; nor does
it convey any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx reserves the right to
make changes, at any time, in order to improve reliability, function or design and to supply the best product possible. Xilinx
will not assume responsibility for the use of any circuitry described herein other than circuitry entirely embodied in its prod-
ucts. Xilinx devices and products are protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740;
4,706,216; 4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626; 4,855,619;
4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193;
5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238; 5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866;
5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406;
5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207;
5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379;
5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021; 5,450,022; 5,453,706; 5,466,117; 5,469,003; 5,475,253;
5,477,414; 5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; RE 34,363, RE 34,444, and RE 34,808.
Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are
free from patent infringement or from any other third party right. Xilinx assumes no obligation to correct any errors contained
herein or to advise any user of this text of any correction if such be made. Xilinx will not assume any liability for the accuracy
or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such appli-
cations without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1999 Xilinx, Inc. All Rights Reserved.

R



Xilinx PCI Solutions (www) www.xilinx.com/pci
Xilinx Home Page www.xilinx.com

Application Service Centers
North America Hotline: +1 408-879-5199 (USA, Xilinx Headquarters)

+1 800-255-7778
Fax: +1 408-879-4442

Email: hotline@xilinx.com

United Kingdom Hotline: (44) 1932-820821
Fax: (44) 1932-828522

Email: ukhelp@xilinx.com

France Hotline: (33) 1-3463-0100
Fax: (33) 1-3463-0959

Email: frhelp@xilinx.com

Germany Hotline: (49) 89-93088-130
Fax: (49) 89-93088-188

Email: dlhelp@xilinx.com

Japan Hotline: (81) 3-3297-9163
Fax: (81) 3-3297-0067

Email: jhotline@xilinx.com

Korea Hotline: (82) 2-761-4277
Fax: (82) 2-761-4278

Email: korea@xilinx.com

Hong Kong Hotline: (85) 2-2424-5200
Fax: (85) 2-2424-7159

Email: hongkong@xilinx.com

Data Book

2100 Logic Drive

San Jose, CA 95124

United States of America

Telephone: +1 408-559-7778

Fax: +1 408-559-7114

R



Dear PCI customer,

On behalf of the PCI Team at Xilinx, and our CORE partners, welcome to our March 1999 PCI Data Book, and thank you for
your interest in Xilinx PCI Solutions. 

As the inventor and leading provider of Field Programmable Gate Array Technology, we want to pledge our continuing com-
mitment to support your great ideas in logic design and PCI applications. 

Since the last version of this databook we have added the Real 64/66 PCITM, the industry's first general-purpose 64-Bit, 66
MHz PCI Solution, and the PCI32 Spartan XL, a single-chip PCI solution at half the cost of standard PCI bridge chips.

Our mission is to provide you with a high-quality PCI solution that offers better flexibility, higher performance, and lower cost
than any other available solution. Xilinx PCI allows you to integrate a PCI interface with your unique logic, into one flexible
programmable device. Since the first PCI product introduction in February 1996, we have developed a complete solution for
PCI including super-fast FPGAs, easy-to-use predictable LogiCORE modules with guaranteed timing, as well as PCI
boards, drivers, and design examples. We believe you will find Xilinx PCI Solution interesting and we hope that you will con-
sider us for future designs.

Together we can bring the great ideas to life!

Sincerely

Per Holmberg

LogiCORE Product Manager

CORE Solutions Group



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

Section Titles





May, 1999 iii

Introduction
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 1

Using an FPGA for PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 1
Using Xilinx for PCI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 1
Highest-Performance PCI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 1
Lowest-cost PCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 1

The Real-PCI from Xilinx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 1
Real Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 1
Real Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 2
Real Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 2
Real Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 3
Xilinx PCI Design Kits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 3
PCI over the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 4
About this Databook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 - 4

PCI Products
PCI64 Virtex Interface Version 3.0 

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 1
Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 2
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 2
Smart-IP Technology - guaranteed timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 3

PCI Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 3
PCI I/O Interface Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 4
Parity Generator/Checker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 4
Target State Machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 4
Initiator State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 4
User Application with Optional Burst FIFOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 4

Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 4
Supported PCI Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 4
Burst Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 4
Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 4
Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 5
Verification Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 5
Ping Reference Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 5
Device Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 6
Recommended Design Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 6

PCI32 Virtex Version 3.0
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 7
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 7
Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 8
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 8
Smart-IP Technology - guaranteed timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 9
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 9

PCI Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 9
PCI I/O Interface Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 10
Parity Generator/Checker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 10
Target State Machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 10
Initiator State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 10
User Application with Optional Burst FIFOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 10

Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 10
Supported PCI Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 10
Burst Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 10
Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 11

 

9
0

0 May, 1999



iv May, 1999

Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 11
Verification Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 11
Ping Reference Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 11
Device Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 12
Recommended Design Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 12

PCI32 4000 XLA Interface Version 3.0
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 13
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 13
Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 14
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 14
Smart-IP Technology - guaranteed timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 15
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 15

PCI I/O Interface Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 15
Parity Generator/Checker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 15
Target State Machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 15
Initiator State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 15
PCI Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 15
User Application with Optional Burst FIFOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 16

Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 16
Supported PCI Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 16
Burst Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 16
Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 17
Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 17
Verification Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 18
Ping Reference Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 18
Synthesizable PCI Bridge Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 18
Device Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 18
Recommended Design Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 18

PCI32 SpartanXL Interface Version 3.0
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 19
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 19
Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 20
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 20
Smart-IP Technology - guaranteed timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 21
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 21

PCI I/O Interface Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 21
Parity Generator/Checker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 21
Target State Machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 21
Initiator State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 21
PCI Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 21
User Application with Optional Burst FIFOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 22

Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 22
Supported PCI Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 22
Burst Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 22
Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 23
Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 23
Verification Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 23
Ping Reference Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 24
Synthesizable PCI Bridge Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 24
Device Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 24
Recommended Design Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 24



May, 1999 v

PCI32 Spartan Master & Slave Interface
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 25
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 25
Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 26
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 26
Smart-IP Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 27
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 27

PCI I/O Interface Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 27
Parity Generator/Checker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 27
Target State Machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 27
Initiator State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 27
PCI Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 27
User Application with Optional Burst FIFOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 27

Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 28
Supported PCI Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 28
Burst Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 28
Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 28
Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 29
Verification Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 29
Ping Reference Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 30
Synthesizable PCI Bridge Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 30
Device Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 30
Recommended Design Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 30

Synthesizable PCI Bridge Design Examples
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 31
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 31
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 33

BAR0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 33
BAR1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 34
Register File Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 34
Target FIFO Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 34
Initiator FIFO Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 34

Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 35
Core Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 35
Verification Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 35
Recommended Design Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 35
Reference Design License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 35

PCI64 PCI Prototyping Board
Nallatech Limited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 37
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 37
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 37
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 38
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 38
Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 38
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 39

HotPCI Spartan Prototyping Board
Virtual Computer Corporation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 41
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 41
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 41
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 41
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 42

Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 42
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 42

Configuration with the CCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 42
Configuration with an Xchecker cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 43



vi May, 1999

DriverWorks Windows Device Driver Development Kit Version 2.0
Compuware NuMega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 45
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 45
Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 45
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 45
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 45
Licensing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 47

VtoolsD Windows Device Driver Development Kit Version 3.0
Compuware NuMega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 49
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 49
Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 49
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 49
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 50
Licensing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 50

Synthesizable PCI Power Management Design Example
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 51
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 52
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 52

Capabilities Linked List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 52
Power Management Register Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 53
User-defined Configuration Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 54
PME Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 54

Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 54
Core Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 54

The cfg file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 54
The pcim_top/pcis_top file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 54
Web download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 54
Editing the cfg file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 55

Verification Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 55
Recommended Design Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 - 55

FPGA Products
LogiCORE PCI Supported Virtex FPGAs

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 - 1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 - 1

LogiCORE PCI32 Supported Spartan and SpartanXL FPGAs
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 - 3
Spartan Series Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 - 3
Additional SpartanXL Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 - 4
Universal PCI Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 - 4

Design Methodology
LogiCORE PCI Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 1

Core Configuration in VHDL and Verilog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2
Selectable Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2

Enable 66 MHz (Virtex PCI64 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2
Latency Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2
Base Address Register Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2
External Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2
Cap List Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2
INTA# Enable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2
User Config Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2

Core Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2
Base Address Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - 2



May, 1999 vii

PCI Compliance Checklists
Virtex PCI Compliance Checklist

Component Product Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 1
Component Electrical Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 1
5 V Signaling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 2
3.3 V Signaling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 4
Loading and Device Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 6
Timing Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 7
64-bit Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 8

XC4000XLA PCI Compliance Checklist
Component Product Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 9
Component Electrical Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 9
5 V Signaling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 10
3.3 V Signaling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 12
Loading and Device Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 14
Timing Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 15
64-bit Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 16

Spartan-XLPCI Compliance Checklist
Component Product Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 17
Component Electrical Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 17
5 V Signaling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 18
3.3 V Signaling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 20
Loading and Device Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 22
Timing Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 23
64-bit Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 24

LogiCORE PCI V3.0 Cores PCI Compliance Checklist
Component Product Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 25
Component Configuration Checklist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 26

Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 26
Device Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 28
Device Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 28
Base Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 29
VGA Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 30
General Component Protocol Checklist (Master). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 31
General Component Protocol Checklist (Target) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 33
Component Protocol Checklist for a Master Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 35

Test Scenario: 1.1. PCI Device Speed Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 35
Test Scenario: 1.2. PCI Bus Target Abort Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 36
Test Scenario: 1.3. PCI Bus Target Retry Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 38
Test Scenario: 1.4. PCI Bus Single Data Phase Disconnect Cycles . . . . . . . . . . . . . . . . . . . . . . . .  5 - 39
Test Scenario: 1.5. PCI Bus Multi-Data Phase Target Abort Cycles . . . . . . . . . . . . . . . . . . . . . . . .  5 - 40
Test Scenario: 1.6. PCI Bus Multi-Data Phase Retry Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 43
Test Scenario: 1.7. PCI Bus Multi-Data Phase Disconnect Cycles . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 44
Test Scenario: 1.8. Multi-Data Phase and TRDY# Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 45
Test Scenario: 1.9. Bus Data Parity Error Single Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 48
Test Scenario: 1.10. Bus Data Parity Error Multi-Data Phase Cycles . . . . . . . . . . . . . . . . . . . . . . .  5 - 49
Test Scenario: 1.11. Bus Master Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 50
Test Scenario: 1.12. Target Lock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 50
Test Scenario: 1.13. PCI Bus Master Parking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 51
Test Scenario: 1.14. PCI Bus Master Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 51
Test Scenario 1.x Explanations.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 51

Component Protocol Checklist for a Target Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 52
Test Scenario: 2.1. Target Reception of an Interrupt Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 52
Test Scenario: 2.2. Target Reception of a Special Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 52



viii May, 1999

Test Scenario: 2.3. Target Detection of Address and Data Parity Error for Special Cycle. . . . . . . .  5 - 52
Test Scenario: 2.4. Target Reception of I/O Cycles with Legal and Illegal Byte Enables.. . . . . . . .  5 - 52
Test Scenario: 2.5. Target Ignores Reserved Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 52
Test Scenario: 2.6. Target Receives Configuration Cycles.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 53
Test Scenario: 2.7. Target Receives I/O Cycles with Address and Data Parity Errors.. . . . . . . . . .  5 - 53
Test Scenario: 2.8. Target Configuration Cycles with Address and Data Parity Errors.  . . . . . . . . .  5 - 53
Test Scenario: 2.9. Target Receives Memory Cycles.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 53
Test Scenario: 2.10. Target Gets Memory Cycles with Address and Data Parity Errors. . . . . . . . .  5 - 54
Test Scenario: 2.11. Target Gets Fast Back to Back Cycles.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 54
Test Scenario: 2.12. Target Performs Exclusive Access Cycles.  . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 54
Test Scenario: 2.13. Target Gets Cycles with IRDY# Used for Data Stepping.  . . . . . . . . . . . . . . .  5 - 54
Test Scenario 2.x Explanations.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 - 55

Pinout and Configuration
Pinout and Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 1

Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 1
Compatibility Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 1
Pinout Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 1
Configuration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 1
Pinout for the XC4013XLA PQ208     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 2
Pinout for the XC4013XLA PQ240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 5
Pinout for the XC4028XLA HQ240         . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 8
Pinout for the XC4062XLA HQ240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 11
Pinout for the XC4062XLA BG432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 14
Pinout for the XCS20 TQ144    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 18
Pinout for the XCS30 PQ208    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 20
Pinout for the XCS30 PQ240  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 23
Pinout for the XCS40 PQ208    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 26
Pinout for the XCS40 PQ240  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 29
Pinout for the XCV300 BG432  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 - 32

Resources
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 - 1

PCI Special Interest Group (PCI-SIG) Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 - 1
PCI and FPGA XPERT Partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 - 1
Supporting PCI Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 - 2
PCI Reference Books  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 - 3
Xilinx Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 - 3
LogiCORE User's Lounge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 - 3

Waveforms
Waveforms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 1

Target Configuration Read  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 2
Target Configuration Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 4
Initiator 32-bit Single Memory Read  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 6
Initiator 32-bit Single Memory Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 8
Initiator 32-bit Burst Memory Read Multiple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 10
Initiator 32-bit Burst Memory Write  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 12
Initiator 32-bit Burst Memory Write with Disconnect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 14
Target 32-bit Single Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 16
Target 32-bit Single Memory Write  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 18
Target 32-bit Burst Memory Read Multiple  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 20
Target 32-bit Burst Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 22
Target 32-bit Burst Memory Write with Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 24
Target 32-bit Retry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 26
Target 32-bit Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 28



May, 1999 ix

Initiator 64-bit Burst Memory Read Multiple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 30
Initiator 64-bit Burst Memory Write  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 32
Initiator 64-bit Burst Memory Write with Disconnect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 34
Initiator 64-bit Memory Read of a 32-bit Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 36
Initiator 64-bit Memory Write of a 32-bit Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 38
Target 64-bit Burst Memory Read Multiple  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 40
Target 64-bit Burst Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 42
Target 64-bit Burst Memory Write with Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 44
Target 64-bit Retry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 46
Target 64-bit Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 48

Ordering Information and License Agreement
Xilinx PCI64 Design Kit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 - 1
Xilinx PCI64 Virtex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 - 2
Xilinx PCI32 Design Kit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 - 2
LogiCORE PCI32 Spartan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 - 2
Support, Updates, and Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 - 3
Product Upgrades  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 - 3
Additional PCI Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 - 4
Obsolete products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 - 4

Sales Offices, Sales Representatives, and Distributors
Headquarters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 - 1
Xilinx Sales Offices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 - 1
North American Distributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 - 2
U.S. Sales Representatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 - 2
International Sales Representatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 - 4



x May, 1999



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

11

Introduction



Introduction



May, 1999 1 - 1

Introduction
PCI (Peripheral Component Interconnect) has become one
of the most popular bus standards, not only for personal
computers, but also for industrial computers, communica-
tion switches, routers, and instrumentation. 

PCI is also a significant design challenge; the stringent
electrical, functional, and timing specifications are difficult
to meet in any technology and the standard keeps evolving
to meet the dynamic needs of our industry.

This is why you need a flexible PCI solution that will meet
both your current and future requirements, while guaran-
teeing full PCI compliance with no limitations on perfor-
mance or functionality.

Using an FPGA for PCI
By integrating a fully-compliant PCI interface with an appli-
cation-specific back-end design into one FPGA, you can
achieve higher integration, higher performance and lower
cost than other PCI solutions.

Further, the Xilinx PCI solution can be customized for a
specific application and, as a result, the highest possible
performance is achieved.

The flexibility of an FPGA makes it possible to update the
PCI board, through software alone, in development or in the
field. This significantly reduces your design risk and cuts
development time.

Using Xilinx for PCI
We provide the most cost-effective and high-performance
PCI solution in the market by leveraging the flexibility of Xil-
inx Field Programmable Gate Arrays (FPGAs). We make
PCI easy to design by providing a complete solution of
proven cores, intuitive development tools, and world-class
technical support.

Highest-Performance PCI
When we introduced the Real 64/66 PCI, we were first out
with a fully compliant, general-purpose 64-bit 66MHz PCI
solution. By using our LogiCORE PCI64 for Virtex, you can
achieve the highest possible PCI performance, 528 MB/s.

Lowest-cost PCI
With our low-cost FPGA family, Spartan and SpartanXL,
you can design your own unique PCI bridge with integrated
FIFOs, DMA, and custom logic, at a cost only half of other
available standard PCI bridge chips.

The Real-PCI from Xilinx
The Real-PCI from Xilinx is engineered to address all your
requirements on a fully compliant PCI system. It provides
you with

• Real Compliance
• Real Flexibility
• Real Performance
• Real Availability

Real Compliance
Our PCI cores have been used in over 1,000 customer
designs. They are fully verified using our industry-proven
testbench that simulates over six million unique PCI cycles.
We also characterize our PCI cores together with our
FPGAs to verify not only maximum timing, but also mini-
mum and hold timing. Then, when we know that the timing
constraints are met, we apply our unique Smart-IP technol-
ogy to ensure that you achieve the same timing and func-
tionality every time you implement the core. Thanks to our
regular FPGA architecture with segmented routing, and
because we use a modular core architecture where the
FIFOs, DMA channels, and your unique back-end logic are
de-coupled from the core, your own design will not affect
the PCI interface timing.

 

1 0 0



1 - 2 May, 1999

Real Flexibility
Our PCI cores are targeted to our standard off-the-shelf
FPGAs, which were designed to be PCI compliant. This
gives you a range of device sizes and packages to choose
from, allowing you to integrate a fully-compliant Initiator/
Target PCI interface, scalable dual-port FIFOs, customiz-
able DMA channels, and 7,000 to 1,000,000 system gates
of your own unique logic, all on a single device, for the low-
est possible cost.

Because the FPGA is programmable, you can adapt to
future needs and changes in the PCI standard by reconfig-
uring the FPGA device on your board.

Real Performance
All Xilinx PCI cores operate at maximum throughput, with 0
wait-state bursts. For example, the Xilinx Real-PCI 64/66
solution allows you to create 64-bit PCI systems that oper-
ate at up to 66MHz, delivering a sustained throughput of up
to 528 Mbytes per second - the maximum performance you
can get from PCI. Our PCI 32/33 cores supports up to 132
Mbytes per second.



May, 1999 1 - 3

*Limited CompactPCI Hot Swap Support. See Xilinx App. Note Implementing CompactPCI and Hot Swap CompactPCI with Xilinx PCI 

Real Availability
Real-PCI is here today. It includes a complete family of Log-
iCORE designs that are fully characterized for our
XC4000XLA, Spartan, SpartanXL, and Virtex FPGAs. By
using our standard, off-the-shelf manufacturing capability,
leading edge silicon processes, excellent quality and test-
ability, and lower manufacturing costs. Plus Real-PCI is not
just cores and devices, it’s also a complete system of devel-
opment tools, support, services, and third-party Xilinx-
authorized XPERTS to help you every step of the way.

Xilinx PCI Design Kits
To help you reduce your development time even further, Xil-
inx has teamed with Nallatech LTD and Virtual Computer
Corp., both providing PCI prototyping boards, NuMega
Software providing SW driver development tools, and
Memec Design Services providing PCI expertise and
design services. With our partners, we offer two complete
PCI Design Kits, PCI64-DK for 64-bit 66MHz PCI, and
PCI32-DK for 32-bit 33MHz PCI. The kits include prototyp-
ing boards, reference software drivers for Windows 95/98/
NT, full-featured SW driver development tools, and synthe-
sizable PCI bridge design examples in VHDL and Verilog.

 Xilinx PCI64 Design Kit



1 - 4 May, 1999

PCI over the Internet
As a part of our Silicon Xpresso initiative, we provide the
LogiCORE products with all design files you need over the
Internet. You will instantly have access to new versions of
the core, new features, new application notes, and refer-
ence designs. As a Xilinx PCI customer, you select your
own unique user name and password to access the core
product. To help you configure the PCI core we have an
intuitive graphical user interface (GUI) where you easily
select the settings and features that you need. The process
is simple:

1. Enter your configuration data into the GUI. 

2. Click “Download,” and our Web tool builds your unique
PCI interface with guaranteed timing, which you then
download to your local computer.

The design files include the PCI design netlist, VHDL/Ver-
ilog simulation model and instantiation wrapper, and imple-
mentation constraints files.

About this Databook
The information in this databook is also available on the Xil-
inx web-site, WebLINX at

www.xilinx.com/pci

Xilinx will use the web as primary means of delivering and
updating this information since it is so dynamic by nature.
We strongly recommend that customers consult the web for
the latest information on new product availability and
datasheet revisions. 



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

11

PCI Products



PCI Products



May, 1999 2 - 1

PCI64 Virtex Interface
Version 3.0 

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-377-3259
E-mail: Techsupport: hotline@xilinx.com

Feedback:  logicore@xilinx.com
URL: www.xilinx.com/pci

Introduction
With Xilinx LogiCORE PCI64 Virtex interface, a designer
can build a customized, 64-bit, 0-66 MHz fully PCI compli-
ant system with the highest possible sustained perfor-
mance, 528 Mbytes/sec, and up to 1 Million System Gates
in the Virtex family FPGA.

Features
• Fully 2.2 PCI compliant 64-bit, 0-66 MHz PCI Initiator/

Target Interface 
• Zero wait-state burst operation
• Programmable single-chip solution with customizable

back-end functionality
• Pre-defined implementation for predictable timing in

Xilinx Virtex Series FPGAs
• Incorporates Xilinx Smart-IP Technology
• 3.3 V Operation at 33-66 MHz
• 3.3 V and 5 V Operation at 0-33 MHz
• Master automatically handles 64-bit or 32-bit PCI

transactions without knowing the bus width of the target
• Fully verified design tested with Xilinx testbench and

hardware
• Configurable on-chip dual-port FIFOs can be added for

maximum burst speed 
• Supported Initiator functions (PCI Master only)

- Memory Read, Memory Write, Memory Read 
Multiple (MRM), Memory Read Line (MRL) 
commands

- I/O Read, I/O Write commands
- Configuration Read, Configuration Write commands
- Bus Parking
- Special Cycles, Interrupt Acknowledge
- Basic Host Bridging

R

LogiCORE ™ Facts
Core Specifics

Device Family Virtex

Slices Used1 381-403

IOBs Used 88
System Clock fmax 0-66MHz

Device Features Used Bi-directional data buses
SelectIO

Block SelectRAM+™

(optional user FIFO)
Boundary scan (optional)

Supported Devices 2/Percent Resources Used

I/O Slices
XCV300-5/6 BG4323 28% 12%

XCV1000-5/6 FG6803 17% 3%

Provided with Core
Documentation PCI Design Guide

PCI Implementation Guide
PCI Data Book

Design File Formats  Verilog/VHDL Simulation Model
Verilog/VHDL Instantiation Code

NGO Netlist

Constraint Files M1 User Constraint File (UCF)
M1 Guide files

Verification Tools Verilog/VHDL Testbench

Reference designs & 
application notes

Example designs:
PING64 Reference Design

Synthesizable PCI64 Bridge(SB07)

Design Tool Requirements
Xilinx Core Tools M1.5i SP2

Tested Entry/Verifica-
tion Tools4

For CORE instantiation:
Synopsys FPGA Express

Synopsys FPGA Compiler
Synplicity Synplify

For CORE verification:
Cadence Verilog XL

MTI ModelSim PE/Plus V4.7g
Xilinx provides technical support for this LogiCORE™ product when 
used as described in the User’s Guide and in the Application Notes. 
Xilinx cannot guarantee timing, functionality, or support of product if 
implemented in devices not listed above, or if customized beyond 
that referenced in the product documentation, or if any changes are 
made in sections of design marked as “DO NOT MODIFY”.

May, 1999 Advanced Data Sheet

 

2 0 0



PCI64 Virtex Interface Version 3.0

2 - 2 May, 1999

Features (cont.)
• Supported Target functions (PCI Master and Slave)

- Type 0 Configuration Space Header
- Up to 3 Base Address Registers (memory or I/O with 

adjustable block size from 16 Bytes to 2 GBytes,   
medium decode speed)

- Parity Generation (PAR), Parity Error Detection 
(PERR# and SERR#)

- Memory Read, Memory Write, Memory Read 
Multiple (MRM), Memory Read Line (MRL), Memory 
Write Invalidate (MWI) commands

- I/O Read, I/O Write commands
- Configuration Read, Configuration Write commands
- 64-bit data transfers and 32-bit data transfers, burst 

transfers with linear address ordering
- Target Abort, Target Retry, Target Disconnect
- Full Command/Status Registers

• Available for configuration and download on the web
- Web-based configuration tool
- Generation of proven design files
- Instant access to new releases

Applications
• Embedded applications within networking,

telecommunication and industrial systems
• PCI add-in boards such as graphic cards, video

adapters, LAN adapters and data acquisition boards
• Hot Swap CompactPCI boards
• Other applications that need PCI

General Description
The LogiCORE™ PCI64 Interfaces are pre-implemented
and fully tested modules for the Xilinx Virtex Series FPGAs.
The pinout for the device and the relative placement of the
internal Configurable Logic Blocks (CLBs) are pre-defined.
Critical paths are controlled by TimeSpecs and guide files
to ensure predictable timing. This significantly reduces
engineering time required to implement the PCI portion of
your design. Resources can instead be focused on the
unique back-end logic in the FPGA and on the system level
design. As a result, LogiCORE™ PCI products can mini-
mize your product development time.

Xilinx Virtex Series FPGAs enable designs of fully PCI-
compliant systems. The devices meet all required electrical
and timing parameters including AC output drive character-
istics, input capacitance specifications (10pF), 3 ns setup
and 0 ns hold to system clock, and 6 ns system clock to out-
put. These devices meet all specifications for both 3.3 V (0-
66 MHz) and 5 V PCI (0-33 MHz).

The PCI Compliance Checklist has detailed information
about electrical compliance. Other features that enable effi-
cient implementation of a complete PCI system in the Vir-
tex Series includes:

1. The exact number of CLBs depends on user configuration of the
core and level of resource sharing with adjacent logic. For exam-
ple, a factor that can affect the size of the design are the number
and size of the BARs.

2. Re-targeting the PCI core to an unlisted device or package will
void the guarantee of timing. See “Smart-IP Technology - guar-
anteed timing” on page 3 for details.

3. Use -6 for 0-66 MHz operation and -5 for 0-33 MHz operation.
4. See Xilinx Web Site for update on tested design tools. 

Parity
Generator/

Checker

PCI Conf igurat ion Space

Initiator
State

Machine

Interrupt
Pin and

Line
Register

Latency
Timer

Register

Vendor ID,
Rev ID,

Other User
Data

LC003

Target
State

Machine

P
C

I 
I/

O
 I

N
T

E
R

FA
C

E

U
S

E
R

 A
P

P
LI

C
A

T
IO

N

ADIO[63:0]

AD[63:0]

PAR

GNT-

PERR-

SERR-

FRAME-

IRDY-

REQ-

TRDY-

DEVSEL-

STOP-

Base
Address
Register

0

Base
Address
Register

1

Command/
Status

Register

Base
Address
Register

2

REQ64-

ACK64-

PAR64

Figure 1:   LogiCORE ™ PCI64 Interface Block Diagram 



May, 1999 2 - 3

• Block SelectRAM+™ memory: Blocks of on-chip ultra-
fast RAM with synchronous write and dual-port RAM
capabilities. Used in PCI Interfaces to implement FIFO

• Select-RAM™ memory: on-chip ultra-fast RAM with
synchronous write option and dual-port RAM option.
Used in PCI Interfaces to implement FIFO

• Individual output enable for each I/O
• Internal 3-state bus capability
• 8 global low-skew clock or signal distribution networks
• IEEE 1149.1-compatible boundary scan logic support

The Master and Slave Interface module is carefully opti-
mized for best possible performance and utilization in the
Virtex FPGA architecture. When implemented in a
XCV300, 12% of the FPGA’s slices are used.

Smart-IP Technology - guaranteed 
timing
Drawing on the architectural advantages of Xilinx FPGAs,
new Xilinx Smart-IP technology ensures highest perfor-
mance, predictability, repeatability, and flexibility in PCI
designs. The Smart-IP technology is incorporated in every
LogiCORE PCI Core.

Xilinx Smart-IP technology leverages the Xilinx architec-
tural advantages, such as look-up tables (LUTs), distrib-
uted RAM, and segmented routing, as well as floorplanning
information, such as logic mapping and relative location
constraints. This technology provides the best physical lay-
out, predictability, and performance. Additionally, these pre-
determined features allow for significantly reduced compile
times over competing architectures. 

PCI Cores made with Smart-IP technology are unique by
maintaining their performance and predictability regardless
of the device size.

To guarantee the critical setup, hold, and min. and max.
clock-to-out timing, the PCI core is delivered with Smart-IP
constraint files that are unique for a device and package
combination. These constraint files guide the implementa-
tion tools so that the critical paths always are within PCI
specification. Retargeting the PCI core to an unsupported
device will void the guarantee of timing. Contact one of the
Xilinx XPERTs partners for support of unlisted devices and
packages. See the XPERTs section in chapter 7 of the Xil-
inx PCI Data Book for contact information.

Functional Description
The LogiCORE PCI64 Master and Slave Interface is parti-
tioned into five major blocks and an user application as
shown in Figure 1. Each block is described below.

PCI Configuration Space
This block provides the first 64 Bytes of Type 0, version 2.1
Configuration Space Header (CSH) (see Table 1) to sup-
port software-driven “Plug-and Play” initialization and con-

figuration. This includes information for Command, Status,
and three Base Address Registers (BARs). These BARs
illustrate how to implement memory- or I/O-mapped
address spaces. 

Table 1: PCI Configuration Space Header

Each BAR sets the base address for the interface and
allows the system software to determine the addressable
range required by the interface. Each BAR designated as a
memory space can be made to represent a 32-bit or a 64-
bit space. 

Using a combination of Configurable Logic Block (CLB) flip-
flops for the read/write registers and CLB look-up tables for
the read-only registers results in optimized logic mapping
and placement.

The capability for extending configuration space has been
built into the backend interface. This capability, including
the ability to implement a CapPtr in configuration space,
allows the user to implement functions such as Advanced
Configuration and Power Interface (ACPI) in the backend
design. 

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header 
Type

Latency 
Timer

Cache 
Line Size

0Ch

Base Address Register 0 (BAR0) 10h

Base Address Register 1 (BAR1) 14h

Base Address Register 2 (BAR2) 18h

Base Address Register 3 (BAR3) 1Ch

Base Address Register 4 (BAR5) 20h

Base Address Register 5 (BAR5) 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved CapPtr 34h

Reserved 38h

Max_Lat Min_Gnt Interrupt 
Pin

Interrupt 
Line

3Ch

Reserved 40h-FFh

Note: 
Italicized address areas are not implemented in the LogiCORE
PCI64 Virtex Interface default configuration. These locations return
zero during configuration read accesses.



PCI64 Virtex Interface Version 3.0

2 - 4 May, 1999

PCI I/O Interface Block
The I/O interface block handles the physical connection to
the PCI bus including all signaling, input and output syn-
chronization, output three-state controls, and all request-
grant handshaking for bus mastering.

Parity Generator/Checker
This block generates/checks even parity across the AD
bus, the CBE lines, PAR and the PAR64 signal. It also
reports data parity errors via PERR- and address parity
errors via SERR-.

Target State Machine
This block controls the PCI interface for Target functions.
The states implemented are a subset of equations defined
in “Appendix B” of the PCI Local Bus Specification. The
controller is a high-performance state machine using
one-hot (state-per-bit) encoding for maximum performance.
State-per-bit encoding of the next-state logic functions facil-
itates a high performance implementation in the Xilinx
FPGA architecture.

Initiator State Machine
This block controls the PCI interface for Initiator functions.
The states implemented are a subset of equations defined
in “Appendix B” of the PCI Local Bus Specification. The Ini-
tiator Control Logic also uses state-per-bit encoding for
maximum performance.

User Application with Optional Burst FIFOs
The LogiCORE PCI64 Interface provides a simple, general-
purpose interface with a 64-bit data path and latched
address for de-multiplexing the PCI address/data bus. The
general-purpose user interface allows the rest of the device
to be used in a wide range of 64-bit and 32-bit applications.

Typically, the user application contains burst FIFOs to
increase PCI system performance. An on-chip read/write
FIFO, built from the on-chip synchronous dual-port RAM
(Block SelectRAM+™) available in Virtex Series FPGAs,
supports data transfers in excess of 66 MHz.

Several synthesizable re-usable bridge designs including
commonly used backend functions, such as doorbells and
mailboxes, are provided with the core.

Interface Configuration
The LogiCORE PCI64 Interface can easily be configured to
fit unique system requirements by using Xilinx web-based
PCI configuration tool or by changing the Verilog, VHDL, or
VIEWlogic configuration file. The following customization
options are supported by the LogiCORE product and
described in product documentation.

• Initiator or target functionality (PCI Master only)
• Base Address Register configuration (1 - 3 Registers,

size and mode)
• Configuration Space Header ROM
• Initiator and target state machine (e.g., termination

conditions, transaction types and request/transaction
arbitration)

• Burst functionality
• User Application including FIFO (back-end design)

Supported PCI Commands
Table 2 illustrates the PCI bus commands supported by the
LogiCORE™ PCI64 Interface. The PCI Compliance Check-
list has more details on supported and unsupported com-
mands.

Table 2: PCI Bus Commands

Burst Transfer
The PCI bus derives its performance from its ability to sup-
port burst transfers. The performance of any PCI applica-
tion depends largely on the size of the burst transfer. A
FIFO to support PCI burst transfer can efficiently be imple-
mented using the Virtex on-chip RAM features, both Dis-
tributed and Block SelectRAM+™. 

Each Virtex CLB supports four 16x1 RAM blocks. This
corresponds to 64 bits of single-ported RAM or 32 bits of
dual-ported RAM, with simultaneous read/write capability.
The Block SelectRAM+ can be used to create deep FIFOs.

Bandwidth
Xilinx LogiCORE PCI64 Interface supports fully compliant
zero wait-state bust operations for both sourcing and

CBE [3:0] Command
PCI

Master
PCI

Slave
0000 Interrupt Acknowledge No1 Yes

0001 Special Cycle No1 Ignore

0010 I/O Read Yes Yes

0011 I/O Write Yes Yes
0100 Reserved Ignore Ignore

0101 Reserved Ignore Ignore

0110 Memory Read Yes Yes

0111 Memory Write Yes Yes

1000 Reserved Ignore Ignore

1001 Reserved Ignore Ignore
1010 Configuration Read Yes Yes

1011 Configuration Write Yes Yes

1100 Memory Read Multiple Yes Yes

1101 Dual Address Cycle No1 Ignore

1110 Memory Read Line Yes Yes

1111 Memory Write Invalidate No1 Yes
Note:
1. The Initiator can present these commands, however, they either
require additional user-application logic to support them or have not
been thoroughly tested.



May, 1999 2 - 5

receiving data. This Interface supports a sustained band-
width of up to 528 MBytes/sec. The design can be config-
ured to take advantage of the ability of the LogiCORE
PCI64 Interface to do very long bursts. Since the FIFO is
not of fixed size, bursts can go on for as long as the chipset
arbiter will allow. Furthermore, since the FIFOs and DMA
are decoupled from the proven core, a designer can modify
these functions without affecting the critical PCI timing.

The flexible Xilinx backend, combined with support for
many different PCI features, gives users a solution that
lends itself to being used in many high-performance appli-
cations. Xilinx is able to support different depths of FIFOs
as well as dual port FIFOs, synchronous or asynchronous
FIFOs and multiple FIFOs. The user is not locked into one
DMA engine, hence, a DMA that fits a specific application
can be designed.

The theoretical maximum bandwidth of a 64-bit, 66 MHz
PCI bus is 528 MBytes/sec. Attaining this maximum band-
width will depend on several factors, including the PCI
design used, PCI chipset, the processor’s ability to keep up
with your data stream, the maximum capability of your PCI
design, and other traffic on the PCI bus. Older chipsets and
processors will tend to allow less bandwidth than newer
ones. 

No additional wait-states are inserted in response to a wait-
state from another agent on the bus. Either IRDY or TRDY
is kept asserted until the current data phase ends, as
required by the V2.2 PCI Specification.

See Table 3 for PCI bus transfer rates for various opera-
tions.

Table 3: LogiCORE PCI64 Transfer Rates    

Timing Specification
The Virtex Series FPGA devices, together with the Logi-
CORE PCI64 product enable design of fully compliant PCI
systems. The maximum speed at which your back-end is
capable of running can be affected by the size of the design
as well as by the loading of the hot signals coming directly
from the PCI bus. Table 4 shows the key timing parameters
for the LogiCORE PCI64 Interface that must be met for full
PCI compliance.

Table 4: 66 MHz Timing Parameters [ns] 

Verification Methods
Xilinx has developed a system-level testbench that allows
simulation of an open PCI environment in which a Logi-
CORE-PCI-based design may be tested by itself or with
other simulatable PCI agents. Included in these agents are
a behavioral host and target, and several “plug-in” modules,
including a PCI signal recorder and a PCI protocol monitor.
The Xilinx PCI testbench is a powerful verification tool that
is also used as the basis for verification of the PCI Logi-
CORE. The PCI LogiCORE is also tested in hardware for
electrical, functional, and timing compliance. 

Ping Reference Design
The Xilinx “PING64” Application Example, delivered in Ver-
ilog and VHDL, has been developed to provide an easy-to-
understand example which demonstrates many of the prin-
ciples and techniques required to successfully use a Logi-
CORE PCI64 Interface in a System On A Chip solution.
The PING64 design is also used as a test vehicle when ver-
ifying the PCI core.

Zero Wait-State Mode
Operation Transfer Rate

Initiator Write (PCI ← LogiCORE) 3-1-1-1

Initiator Read (PCI → LogiCORE) 4-1-1-1

Target Write (PCI→ LogiCORE) 5-1-1-1
Target Read (PCI ← LogiCORE) 6-1-1-1
***Note: Initiator Read and Target Write operations have effectively
the same bandwidth for burst transfer.

Parameter Ref. 
PCI Spec.

LogiCORE 
PCI64 

XCV300-064

Min Max Min Max
CLK Cycle Time Tcyc 15 30 151 30
CLK High Time Thigh 6 6

CLK Low Time Tlow 6 6

CLK to Bus Sig-
nals Valid3

TICKOF 2 6 22 6

CLK to REQ# and 
GNT# Valid3

TICKOF 2 6 22 6

Tri-state to Active Ton 2 22

CLK to Tri-state Toff 14 141

Bus Signal Setup 
to CLK (IOB)

TPSD 3 3

Bus Signal Setup 
to CLK (CLB)

5 51

GNT# Setup to 
CLK

TPSD 5 5

GNT# Setup to 
CLK (CLB)

TPSD 5 5

Input Hold Time 
After CLK (IOB)

TPHD 0 0

Input Hold Time 
After CLK (CLB)

0 02

RST# to Tri-state Trst-off 40 402

Notes:
1. Controlled by TIMESPECS, included in product
2. Verified by analysis and bench-testing
3. IOB configured for Fast slew rate
4. Virtex Timing will be included when silicon testing is finished.



PCI64 Virtex Interface Version 3.0

2 - 6 May, 1999

Synthesizable PCI Bridge Design
(SB07)
The synthesizable PCI bridge design, SB07, is an applica-
tion bridge for use with the LogiCORE PCI64 Interface. It is
delivered in Verilog and VHDL and has been fully tested
with various devices. This example demonstrates how to in-
terface to the PCI core and provide a modular foundation
upon which to base other designs. The reference design
can be easily modified to remove select portions of func-
tionality. 

This design is a general purpose data transfer engine to be
used with the LogiCORE PCI64 Interface. Figure 3 pre-
sents a block diagram of the SB07 design. Typically, the
user will customize the local interface to conform to a par-
ticular peripheral bus (ISA, VME, i960) or attach to a mem-
ory device. The design is modular so that unused portions
may be removed. Other bridge applications can be de-
signed using subsets of SB07. The Synthesizable PCI
Bridge Design Data Sheet lists the set of features and spe-
cifics for the SB07 design.

Device Utilization
The Target/Initiator options require a variable amount of
CLB resources for the PCI64 Interface. 

Utilization of the device can vary slightly, depending on the
configuration choices made by the designer. Factors that
can affect the size of the core are:

• Number of Base Address Registers Used. Turning off
any unused BARs will save resources. 

• Size of the BARs. Setting the BAR to a smaller size
requires more flip-flops. A smaller address space
requires more flip-flops to decode.

• Latency timer. Disabling the latency timer will save
resources. It must be enabled for bursting.

Recommended Design Experience
The LogiCORE PCI64 Interface is pre-implemented allow-
ing engineering focus at the unique back-end functions of a
PCI design. Regardless, PCI is a high-performance system
that is challenging to implement in any technology, ASIC or
FPGA. Therefore, previous experience with building high-
performance, pipelined FPGA designs using Xilinx imple-
mentation software, TIMESPECs, and guide files is recom-
mended. The challenge to implement a complete PCI
design including back-end functions varies depending on
configuration and functionality of your application. Contact
your local Xilinx representative for a closer review and esti-
mation for your specific requirements. 

Figure 1:   Block Diagram of Synthesizable Bridge Design for PCI64 LogiCORE Interface, SB07

RESOLVE

TARGET STATE

Lo
gi

C
O

R
E

 P
C

I I
nt

er
fa

ce

ADIO

S_CBE

TARGET

CONTROL

INITIATOR

CONTROL

INITIATOR

STATE

TRANSFER

TARGETFIFO

REGISTERS

BAR 1

CONTROL

FORCE_RETRY

XFER
STATUS

XFER
STATE

BAR 0

CONTROL

Target Burst
Logic
with

FIFOs

Target Register
Logic

(non-burst)

Initiator Transfer Engine with FIFOs

T
ar

ge
t C

on
tr

ol
 M

ul
tip

le
xe

r

PCIM_LC SYNTHESIZABLE BRIDGE (SB07)

IFIFO_OUT

IFIFO_IN

IADDR

ICONTROL

LDOUT

LDIN

LADDR

LWE

LRE

LINT_N

TFIFO_OUT

TFIFO_IN

TADDR

TCONTROL

PCI_TOP

PCI
BUS

x8950



May, 1999 2 - 7

PCI32 Virtex 
Version 3.0

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-377-3259
E-mail: Techsupport: hotline@xilinx.com

Feedback:  logicore@xilinx.com
URL: www.xilinx.com/pci

Introduction
With Xilinx LogiCORE PCI32 Virtex Interface, a designer
can build a customized, 32-bit, 33 MHz fully PCI compliant
system with the highest possible sustained performance,
128 Mbytes/sec, and up to 300,000 System Gates in the
Virtex family FPGA.

Features
• Fully 2.2 PCI compliant 32-bit, 33 MHz PCI 

Initiator/Target Interface 
• Zero wait-state burst operation
• Programmable single-chip solution with customizable

back-end functionality
• Pre-defined implementation for predictable timing in

Xilinx Virtex Series FPGAs
• Incorporates Xilinx Smart-IP Technology
• 3.3 V and 5 V Operation
• Fully verified design tested with Xilinx testbench and

hardware
• Configurable on-chip dual-port FIFOs can be added for

maximum burst speed 
• Supported Initiator functions

- Memory Read, Memory Write, Memory Read 
Multiple (MRM), Memory Read Line (MRL) 
commands

- I/O Read, I/O Write commands
- Configuration Read, Configuration Write commands
- Bus Parking
- Special Cycles, Interrupt Acknowledge
- Basic Host Bridging

R

LogiCORE ™ Facts
Core Specifics

Device Family Virtex

Slices Used1 381-403

IOBs Used 53
System Clock fmax 0-33MHz

Device Features 
Used

Multi-standard SelectIO
SelectMAP Configuration (optional)

Block SelectRAM+™

(optional user FIFO)
Boundary scan (optional)

Supported Devices 2/Percent Resources Used

I/O Slices
XCV300-5 BG432 17% 12%

Provided with Core
Documentation PCI Design Guide

PCI Implementation Guide
PCI Data Book

Design File Formats  Verilog/VHDL Simulation Model,
Verilog/VHDL Instantiation Code,

NGO Netlist,

Constraint Files M1 User Constraint File (UCF)
M1 Guide files

Verification Tools Verilog/VHDL Testbench

Reference designs & 
application notes

Example designs
PING Reference Design

Synthesizable PCI32 Bridge(SB08)

Design Tool Requirements
Xilinx Core Tools M1.5i SP2

Tested Entry/Verifi-
cation Tools3

For CORE instantiation:
Synopsys FPGA Express

Synopsys FPGA Compiler
Synplicity Synplify

For CORE verification:
Cadence Verilog XL

MTI ModelSim PE/Plus V4.7g
Xilinx provides technical support for this LogiCORE™ product when 
used as described in the Design and Implementation Guides and 
in the Application Notes. Xilinx cannot guarantee timing, 
functionality, or support of product if implemented in devices not 
listed above, or if customized beyond that referenced in the product 
documentation, or if any changes are made in sections of design 
marked as “DO NOT MODIFY”.

May, 1999 Advanced Data Sheet

 

2 0 0



PCI32 Virtex Version 3.0

2 - 8 May, 1999

Features (cont.)
• Supported Target functions (PCI Master and Slave)

- Type 0 Configuration Space Header
- Up to 3 Base Address Registers (memory or I/O with 

adjustable block size from 16 Bytes to 2 GBytes,   
medium decode speed)

- Parity Generation (PAR), Parity Error Detection 
(PERR# and SERR#)

- Extended Capabilities Registers (backend module)
- Memory Read, Memory Write, Memory Read 

Multiple (MRM), Memory Read Line (MRL), Memory 
Write Invalidate (MWI) commands

- I/O Read, I/O Write commands
- Configuration Read, Configuration Write commands
- Interrupt Acknowledge
- 32-bit data transfers, burst transfers with linear 

address ordering
- Target Abort, Target Retry, Target Disconnect
- Full Command/Status Registers

• Available for configuration and download on the web
- Web-based configuration tool
- Generation of proven design files
- Instant access to new releases

Applications
• Embedded applications within telecommunication, 

networking, and industrial systems
• PCI add-in boards such as graphic cards, video

adapters, LAN adapters and data acquisition boards
• Hot Swap CompactPCI boards
• Other applications that need PCI

General Description
The LogiCORE™ PCI32 Master and Slave Interface has
pre-implemented and fully tested modules for the Xilinx Vir-
tex Series FPGAs. The pinout for the device and the rela-
tive placement of the internal Configurable Logic Blocks
(CLBs) are pre-defined. Critical paths are controlled by
TimeSpecs and placement to ensure predictable timing.
This significantly reduces engineering time required to
implement the PCI portion of your design. Resources can
instead be focused on the unique back-end logic in the
FPGA and on the system level design. As a result, Logi-
CORE™ PCI products can minimize your product develop-
ment time.

Xilinx Virtex Series FPGAs enable designs of fully PCI-
compliant systems. The devices meet all required electrical
and timing parameters including AC output drive character-
istics, input capacitance specifications (10pF), 3 ns setup
and 0 ns hold to system clock, and 11 ns system clock to
output. These devices meet all specifications for both 3.3 V
and 5 V PCI.

The PCI Compliance Checklist has detailed information
about electrical compliance. Other features that enable effi-
cient implementation of a complete PCI system in the Vir-
tex Series includes:

1. The exact number of Slices depends on user configuration of the
core and level of resource sharing with adjacent logic. For
example, a factor that can affect the size of the design are the
number and size of the BARs.

2. Re-targeting the PCI core to an unlisted device or package will
void the guarantee of timing. See “Smart-IP Technology - guar-
anteed timing” on page 11. for details.

3. See Xilinx Web Site for updates on tested design tools. 

Parity
Generator/

Checker

PCI Conf igurat ion Space

Initiator
State

Machine

Interrupt
Pin and

Line
Register

Latency
Timer

Register

Vendor ID,
Rev ID,

Other User
Data

LC005

Target
State

Machine

P
C

I 
I/

O
 I

N
T

E
R

FA
C

E

U
S

E
R

 A
P

P
L

IC
A

T
IO

N

ADIO[31:0]

AD[31:0]

PAR

GNT-

PERR-

SERR-

FRAME-

IRDY-

REQ-

TRDY-

DEVSEL-

STOP-

Base
Address
Register

0

Base
Address
Register

1

Command/
Status

Register

Base
Address
Register

2

Figure 1:   LogiCORE ™ PCI32 Interface Block Diagram 



May, 1999 2 - 9

• Block SelectRAM+™ memory: Blocks of on-chip ultra-
fast RAM with synchronous write and dual-port RAM
capabilities. Used in PCI Interfaces to implement FIFO

• Select-RAM™ memory: on-chip ultra-fast RAM with
synchronous write option and dual-port RAM option.
Used in PCI Interfaces to implement FIFO

• Individual output enable for each I/O
• Internal 3-state bus capability
• 4 global low-skew clock or signal distribution networks
• IEEE 1149.1-compatible boundary scan logic support

The Master and Slave Interface module is carefully opti-
mized for best possible performance and utilization in the
Virtex FPGA architecture. When implemented in a
XCV300, 12% of the FPGA’s slices are used.

Smart-IP Technology - guaranteed 
timing
Drawing on the architectural advantages of Xilinx FPGAs,
new Xilinx Smart-IP technology ensures highest perfor-
mance, predictability, repeatability, and flexibility in PCI
designs. The Smart-IP technology is incorporated in every
LogiCORE PCI Core.

Xilinx Smart-IP technology leverages the Xilinx architec-
tural advantages, such as look-up tables (LUTs), distrib-
uted RAM, and segmented routing, as well as floorplanning
information, such as logic mapping and relative location
constraints. This technology provides the best physical lay-
out, predictability, and performance. Additionally, these pre-
determined features allow for significantly reduced compile
times over competing architectures. 

PCI Cores made with Smart-IP technology are unique by
maintaining their performance and predictability regardless
of the device size.

To guarantee the critical setup, hold, and min. and max.
clock-to-out timing, the PCI core is delivered with Smart-IP
constraint files that are unique for a device and package
combination. These constraint files guide the implementa-
tion tools so that the critical paths always are within PCI
specification. Retargeting the PCI core to an unsupported
device will void the guarantee of timing. Contact one of the
Xilinx XPERTs partners for support of unlisted devices and
packages. See the XPERTs section in chapter 7 of the Xil-
inx PCI Data Book for contact information.

Functional Description
The LogiCORE PCI32 Master and Slave Interface is parti-
tioned into five major blocks and an user application as
shown in Figure 1. Each block is described below.

PCI Configuration Space
This block provides the first 64 Bytes of Type 0, version 2.1
Configuration Space Header (CSH) (see Table 1) to sup-
port software-driven “Plug-and-Play” initialization and con-

figuration. This includes information for Command, Status,
and three Base Address Registers (BARs). These BARs
illustrate how to implement memory or I/O mapped address
spaces. 

Table 1: PCI Configuration Space Header

Each BAR sets the base address for the interface and
allows the system software to determine the addressable
range required by the interface. Each BAR designated as a
memory space can be made to represent a 32-bit space. 

Using a combination of Configurable Logic Block (CLB) flip-
flops for the read/write registers and CLB look-up tables for
the read-only registers results in optimized logic mapping
and placement.

The LogiCORE PCI32 Interface includes the ability to add
extended configuration capabilities as defined in the V2.2
PCI specification. This capability, including the ability to
implement a CapPtr in configuration space, allows the user
to implement extended functions such as Power Manage-
ment, Hot Swap CSR, and Message Based Interrupts in
the backend design.

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header 
Type

Latency 
Timer

Cache 
Line Size

0Ch

Base Address Register 0 (BAR0) 10h

Base Address Register 1 (BAR1) 14h

Base Address Register 2 (BAR2) 18h

Base Address Register 3 (BAR3) 1Ch

Base Address Register 4 (BAR5) 20h

Base Address Register 5 (BAR5) 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved CapPtr 34h

Reserved 38h

Max_Lat Min_Gnt Interrupt 
Pin

Interrupt 
Line

3Ch

Reserved 40h-FFh

Note: 
Italicized address areas are not implemented in the LogiCORE
PCI32 Virtex Interface default configuration. These locations return
zero during configuration read accesses.



PCI32 Virtex Version 3.0

2 - 10 May, 1999

PCI I/O Interface Block
The I/O interface block handles the physical connection to
the PCI bus including all signaling, input and output syn-
chronization, output three-state controls, and all request-
grant handshaking for bus mastering.

Parity Generator/Checker
This block generates/checks even parity across the AD
bus, the CBE lines, and the PAR signal. It also reports data
parity errors via PERR- and address parity errors via
SERR-.

Target State Machine
This block controls the PCI interface for Target functions.
The states implemented are a subset of equations defined
in “Appendix B” of the PCI Local Bus Specification. The
controller is a high-performance state machine using
one-hot (state-per-bit) encoding for maximum perfor-
mance. State-per-bit encoding of the next-state logic func-
tions facilitates a high performance implementation in the
Xilinx FPGA architecture.

Initiator State Machine
This block controls the PCI interface for Initiator functions.
The states implemented are a subset of equations defined
in “Appendix B” of the PCI Local Bus Specification. The Ini-
tiator Control Logic also uses state-per-bit encoding for
maximum performance.

User Application with Optional Burst FIFOs
The LogiCORE PCI32 Interface provides a simple, gen-
eral-purpose interface with a 32-bit data path and latched
address for de-multiplexing the PCI address/data bus. The
general-purpose user interface allows the rest of the device
to be used in a wide range of 32-bit applications.

Typically, the user application contains burst FIFOs to
increase PCI system performance. An on-chip read/write
FIFO, built from the on-chip synchronous dual-port RAM
(Block SelectRAM+™) available in Virtex Series FPGAs,
supports data transfers in excess of 66 MHz.

Several synthesizable re-usable bridge designs including
commonly used backend functions, such as doorbells and
mailboxes, are provided with the core.

Interface Configuration
The LogiCORE PCI32 Interface can easily be configured to
fit unique system requirements by using Xilinx web-based
PCI configuration tool or by changing the Verilog or VHDL
configuration file. The following customization options are
supported by the LogiCORE product and described in
product documentation.

• Initiator or target functionality

• Base Address Register configuration (1 - 3 Registers,
size and mode)

• Configuration Space Header ROM
• Initiator and target state machine (e.g., termination

conditions, transaction types and request/transaction
arbitration)

• Burst functionality
• User Application including FIFO (back-end design)

Supported PCI Commands
Table 2 illustrates the PCI bus commands supported by the
LogiCORE™ PCI32 Interface. The PCI Compliance Check-
list has more details on supported and unsupported com-
mands.

Table 2: PCI Bus Commands

Burst Transfer
The PCI bus derives its performance from its ability to sup-
port burst transfers. The performance of any PCI applica-
tion depends largely on the size of the burst transfer. A
FIFO to support PCI burst transfer can efficiently be imple-
mented using the Virtex on-chip RAM features, both Dis-
tributed SelectRAM and Block SelectRAM+™. 

Each Virtex CLB supports four 16x1 RAM blocks. This
corresponds to 64 bits of single-ported RAM or 32 bits of
dual-ported RAM, with simultaneous read/write capability. 

Each Virtex device has two columns of Block RAM. The
V300 device has 65,536 bits of Block SelectRAM+™ that
can be used to create deep, dual-ported FIFOs.

CBE [3:0] Command
PCI

Master
PCI

Slave
0000 Interrupt Acknowledge Yes Yes

0001 Special Cycle Yes Ignore

0010 I/O Read Yes Yes

0011 I/O Write Yes Yes

0100 Reserved No Ignore

0101 Reserved No Ignore
0110 Memory Read Yes Yes

0111 Memory Write Yes Yes

1000 Reserved No Ignore

1001 Reserved No Ignore

1010 Configuration Read Yes Yes

1011 Configuration Write Yes Yes
1100 Memory Read Multiple Yes Yes

1101 Dual Address Cycle No1 Ignore

1110 Memory Read Line Yes Yes

1111 Memory Write Invalidate No1 Yes
Note:
1. The Initiator can present these commands, however, they either
require additional user-application logic to support them or have not
been thoroughly tested.



May, 1999 2 - 11

Bandwidth
Xilinx LogiCORE PCI32 Interface supports fully compliant
zero wait-state burst operations for both sourcing and
receiving data. This Interface supports a sustained band-
width of up to 128 MBytes/sec. The design can be config-
ured to take advantage of the ability of the LogiCORE
PCI32 Interface to do very long bursts. Since the FIFO is
not of fixed size, bursts can go on for as long as the chipset
arbiter will allow. Furthermore, since the FIFOs and DMA
are decoupled from the proven core, a designer can modify
these functions without affecting the critical PCI timing.

The flexible Xilinx backend, combined with support for
many different PCI features, gives users a solution that
lends itself to being used in many high-performance appli-
cations. Xilinx is able to support different depths of FIFOs
as well as dual port FIFOs, synchronous or asynchronous
FIFOs and multiple FIFOs. The user is not locked into one
DMA engine, hence, a DMA that fits a specific application
can be designed.

The theoretical maximum bandwidth of a 32-bit, 33 MHz
PCI bus is 128 MBytes/sec. Attaining this maximum band-
width will depend on several factors, including the PCI
design used, PCI chipset, the processor’s ability to keep up
with your data stream, the maximum capability of your PCI
design, and other traffic on the PCI bus. Older chipsets and
processors will tend to allow less bandwidth than newer
ones. 

No additional wait-states are inserted in response to a wait-
state from another agent on the bus. Either IRDY or TRDY
is kept asserted until the current data phase ends, as
required by the V2.2 PCI Specification.

See Table 3 for PCI bus transfer rates for various opera-
tions.

Table 3: LogiCORE PCI32 Transfer Rates    

Timing Specification
The Virtex Series FPGA devices, together with the Logi-
CORE PCI32 product enable design of fully compliant PCI
systems. The maximum speed at which your back-end is
capable of running can be affected by the size of the design
as well as by the loading of the hot signals coming directly
from the PCI bus. Table 4 shows the key timing parameters

for the LogiCORE PCI32 Interface that must be met for full
PCI compliance.

Table 4: 33 MHz Timing Parameters [ns] 

Verification Methods
Xilinx has developed a system-level testbench that allows
simulation of an open PCI environment in which a Logi-
CORE-PCI-based design may be tested by itself or with
other simulatable PCI agents. Included in these agents are
a behavioral host and target, and several “plug-in” modules,
including a PCI signal recorder and a PCI protocol monitor.
Using these tools, the PCI developers can write microcode-
style test scripts that can be used to verify different bus-
operation scenarios, including those in the PCI Compliance
Checklist.

The Xilinx PCI testbench is a powerful verification tool that
is also used as the basis for verification of the PCI Logi-
CORE. The PCI LogiCORE is also tested in hardware for
electrical, functional, and timing compliance. 

Ping Reference Design
The Xilinx “PING” Application Example, delivered in Verilog
and VHDL, has been developed to provide an easy-to-
understand example which demonstrates many of the prin-
ciples and techniques required to successfully use a Logi-
CORE PCI32 Interface in a System On A Chip solution.
The PING design is also used as a test vehicle when veri-

Zero Wait-State Mode
Operation Transfer Rate

Initiator Write (PCI ← LogiCORE) 3-1-1-1

Initiator Read (PCI → LogiCORE) 4-1-1-1

Target Write (PCI→ LogiCORE) 5-1-1-1

Target Read (PCI ← LogiCORE) 6-1-1-1

Parameter Ref. 
PCI Spec.

LogiCORE 
PCI32 

XCV300-5
Min Max Min Max

CLK Cycle Time TCYC 30 ∞ 301 ∞
CLK High Time THIGH 11 11

CLK Low Time TLOW 11 11

CLK to Bus Sig-
nals Valid3

TICKOF 2 11 22 111

CLK to REQ# 
Valid3

TICKOF 2 12 22 121

Tri-state to Active TON 2 22

CLK to Tri-state TOFF 28 281

Bus Signal Setup 
to CLK

TPSD 7 71

GNT# Setup to 
CLK

TPSD 10 101

Input Hold Time 
After CLK

TPHD 0 02

RST# to Tri-state TRST-OFF 40 401

Notes:
1. Controlled by TIMESPECS, included in product
2. Verified by silicon characterization



PCI32 Virtex Version 3.0

2 - 12 May, 1999

Synthesizable PCI Bridge Design
(SB08)
The synthesizable PCI bridge design, SB08, is an applica-
tion bridge for use with the LogiCORE PCI32 Interface. It is
delivered in Verilog and VHDL and has been fully tested
with various devices. This example demonstrates how to in-
terface to the PCI core and provide a modular foundation
upon which to base other designs. The reference design
can be easily modified to remove select portions of func-
tionality. 

This design is a general purpose data transfer engine to be
used with the LogiCORE PCI32 Interface. Figure 1 pre-
sents a block diagram of the synthesizable PCI bridge de-
sign. Typically, the user will customize the local interface to
conform to a particular peripheral bus (ISA, VME, i960) or
attach to a memory device. The design is modular so that
unused portions may be removed. The Synthesizable PCI
Bridge Design Data Sheet lists the set of features and spe-
cifics for the SB08 design.

Figure 1:   Block Diagram of Synthesizable Bridge Design for PCI32 LogiCORE Interface

Device Utilization
The Target/Initiator options require a variable amount of
CLB resources for the PCI32 Interface. 

Utilization of the device can vary slightly, depending on the
configuration choices made by the designer. Factors that
can affect the size of the core are:

• Number of Base Address Registers Used. Turning off
any unused BARs will save resources. 

• Size of the BARs. Setting the BAR to a smaller size
requires more flip-flops. A smaller address space
requires more flip-flops to decode.

• Latency timer. Disabling the latency timer will save
resources. It must be enabled for bursting.

Recommended Design Experience
The LogiCORE PCI32 Interface is pre-implemented allow-
ing engineering focus at the unique back-end functions of a
PCI design. Regardless, PCI is a high-performance system
that is challenging to implement in any technology, ASIC or
FPGA. Therefore, previous experience with building high-
performance, pipelined FPGA designs using Xilinx imple-
mentation software, TIMESPECs, and guide files is recom-
mended. The challenge to implement a complete PCI
design including back-end functions varies depending on
configuration and functionality of your application. Contact
your local Xilinx representative for a closer review and esti-
mation for your specific requirements. 

RESOLVE

TARGET STATE

Lo
gi

C
O

R
E

 P
C

I I
nt

er
fa

ce

ADIO

S_CBE

TARGET

CONTROL

INITIATOR

CONTROL

INITIATOR

STATE

TRANSFER

TARGETFIFO

REGISTERS

BAR 1

CONTROL

FORCE_RETRY

XFER
STATUS

XFER
STATE

BAR 0

CONTROL

Target Burst
Logic
with

FIFOs

Target Register
Logic

(non-burst)

Initiator Transfer Engine with FIFOs

T
ar

ge
t C

on
tr

ol
 M

ul
tip

le
xe

r

PCIM_LC SYNTHESIZABLE BRIDGE (SB08)

IFIFO_OUT

IFIFO_IN

IADDR

ICONTROL

LDOUT

LDIN

LADDR

LWE

LRE

LINT_N

TFIFO_OUT

TFIFO_IN

TADDR

TCONTROL

PCI_TOP

PCI
BUS

x8951



May, 1999 2 - 13

PCI32 4000 XLA Interface
Version 3.0

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-377-3259
E-mail: Techsupport:hotline@xilinx.com

Feedback: logicore@xilinx.com
URL: www.xilinx.com/pci

Introduction
With Xilinx LogiCORE PCI32 4000 XLA Interfaces Version
3.0, a designer can build a customized, 32-bit, 33 MHz fully
PCI compliant system with the highest possible sustained
performance, 132 Mbytes/sec, and up to 124,000 system
gates in a XC4000XLA FPGA.

Features
• Fully 2.2 PCI compliant 32-bit, 33 MHz PCI 

Initiator/Target Interface 
• Programmable single-chip solution with customizable

back-end functionality
• Pre-defined implementation for predictable timing in

Xilinx XC4000XLA FPGAs
• Incorporates Xilinx Smart-IP Technology
• 5 V and 3.3 V operation
• Zero wait-state burst operation
• Fully verified design

- Tested with Xilinx internal testbench and in hardware 
(proven in FPGAs and HardWire devices)

• Configurable on-chip dual-port FIFOs can be added for
maximum burst speed (see Xilinx Documents section)

• Supported Initiator functions
- Memory Read, Memory Write, Memory Read 

Multiple (MRM), Memory Read Line (MRL) 
commands

- I/O Read, I/O Write commands
- Configuration Read, Configuration Write commands
- Bus Parking
- Special Cycles, Interrupt Acknowledge
- Basic Host Bridging  

R

LogiCORE ™ Facts
Core Specifics

Device Family XC4000XLA

CLBs Used1 178 - 308

IOBs Used 53
System Clock fmax 0 - 33MHz

Device Features 
Used

Bi-directional data buses
SelectRAM™ (optional user FIFO)

Boundary scan (optional)

Supported Devices 2/Resources Remaining

I/O CLB1

XC4013XLA PQ208 101 268 - 398

XC4013XLA PQ240 135 268 - 398

XC4028XLA HQ240 135 716 - 846

XC4062XLA HQ240 135 1996 - 2126

XC4062XLA BG432 295 1996 - 2126

Provided with Core
Documentation PCI Design Guide

XLT to XLA Conversion Guide
PCI Data Book

Design File Formats  Verilog/VHDL Simulation Model
Verilog/VHDL Instantiation Code

NGO Netlist
Constraint Files M1 User Constraint File (UCF)

M1 Guide files

Verification Tools VHDL\Verilog Testbench
Core Symbols VHDL, Verilog

Reference designs & 
application notes

Ping Reference Design
Synthesizable PCI Bridge Design

Design Tool Requirements
Xilinx Core Tools M1.5i

Tested Entry/Verifi-
cation Tools3

For CORE instantiation:
Synopsys FPGA Express, Compiler

Synplicity Synplify
For CORE verification:

Cadence Verilog XL
MTI ModelSim PE/Plus V4.7g

Support
Xilinx provides technical support for all LogiCORE prod-
ucts when used as described in product documentation. 
Xilinx cannot guarantee timing, functionality, or support if 
implemented in unspecified devices or customized beyond 
that referenced in product documentation, or if changes 
are made to “DO NOT MODIFY” sections of the design.

May, 1999 Data Sheet

 

2 0 0



PCI32 4000 XLA Interface Version 3.0

2 - 14 May, 1999

Features (cont.)
• Supported Target functions

- Type 0 Configuration Space Header
- Up to 3 Base Address Registers (memory or I/O with 

adjustable block size from 16 bytes to 2 GBytes, 
slow or medium decode speed)

- Parity Generation (PAR), Parity Error Detection 
(PERR# and SERR#)

- Memory Read, Memory Write, Memory Read 
Multiple (MRM), Memory Real Line (MRL), Memory 
Write, Invalidate (MWI) commands

- I/O Read, I/O Write commands
- Configuration Read, Configuration Write commands
- 32-bit data transfers, burst transfers with linear 

address ordering
- Target Abort, Target Retry, Target Disconnect
- Full Command/Status Register

• Available for configuration and download on the Web
- Web-based configuration with intuitive GUI
- Generation of proven design files

Applications
• PCI add-in boards such as graphic cards, video 

adapters, LAN adapters and data acquisition boards
• Embedded applications within networking, 

telecommunication, and industrial systems
• CompactPCI boards
• Other applications that need PCI

General Description
The LogiCORE™ PCI32 4000 XLA Interfaces V3.0 are pre-
implemented and fully tested modules for Xilinx
XC4000XLA FPGAs (see LogiCORE Facts for list of sup-
ported devices). The pin-out and the relative placement of
internal Configurable Logic Blocks (CLBs) are pre-defined.
Critical paths are controlled by TimeSpecs and guide files
to ensure that timing is always met. This significantly
reduces engineering time required to implement the PCI
portion of your design. Resources can instead be focused
on unique back-end logic in FPGA and on system level
design. Consequently, LogiCORE™ PCI products can min-
imize development time.

Xilinx XC4000XLA Series FPGAs enables designs of fully
PCI-compliant systems. The devices meet all required
electrical and timing parameters for 3.3V and 5V including
AC output drive characteristics, input capacitance specifi-
cations (10pF), 7 ns setup and 0 ns hold to system clock,
and 11 ns system clock to output. 

The XC4000XLA devices have programmable clamp
diodes as required by the PCI 3.3V electrical specification.
For more details about this see the XC4000XLA FPGA
Data Sheet. 

The PCI Compliance Checklist (See the Xilinx PCI
Databook) has additional details about electrical compli-
ance. Other features that enable efficient implementation of
a complete PCI system in the XC4000XLA include:

1. The exact number of CLBs depends on user configuration of the
core and level of resource sharing with adjacent logic. For
example, a factor that can affect the size of the design are the
number and size of the BARs.

2. Re-targeting the PCI core to an unlisted device or package will
void the guarantee of timing. See “Smart-IP Technology - guar-
anteed timing” on page 19 for details.

3. See Xilinx Web Site for update on tested design tools. 

Parity
Generator/

Checker

PCI Conf igurat ion Space

Initiator
State

Machine

Interrupt
Pin and

Line
Register

Latency
Timer

Register

Vendor ID,
Rev ID,

Other User
Data

LC005

Target
State

Machine

P
C

I 
I/

O
 I

N
T

E
R

FA
C

E

U
S

E
R

 A
P

P
L

IC
A

T
IO

N

ADIO[31:0]

AD[31:0]

PAR

GNT-

PERR-

SERR-

FRAME-

IRDY-

REQ-

TRDY-

DEVSEL-

STOP-

Base
Address
Register

0

Base
Address
Register

1

Command/
Status

Register

Base
Address
Register

2

Figure 1:   LogiCORE ™ PCI32 Interface Block Diagram 



May, 1999 2 - 15

• Select-RAM™ memory: on-chip ultra-fast RAM with
synchronous write option and dual-port RAM option
used in PCI Interfaces to implement the FIFO.

• Individual output enable for each I/O
• Internal 3-state bus capability
• 8 global low-skew clock or signal distribution networks
• IEEE 1149.1-compatible boundary scan logic support

The module is carefully optimized for best possible sus-
tained performance and utilization in the XC4000XLA
FPGA architecture. When implemented in a XC4013, more
than 50% of the FPGA’s resources remain for integrating a
unique back-end interface and other system functions into
a fully programmable one-chip solution. When imple-
mented in a XC4062, 90% of the FPGA’s resources
remain.

Smart-IP Technology - guaranteed 
timing
Drawing on the architectural advantages of Xilinx FPGAs,
new Xilinx Smart-IP technology ensures highest perfor-
mance, predictability, repeatability, and flexibility in PCI
designs. The Smart-IP technology is incorporated in every
LogiCORE PCI Core.

Xilinx Smart-IP technology leverages the Xilinx architec-
tural advantages, such as look-up tables (LUTs), distrib-
uted RAM, and segmented routing, as well as floorplanning
information, such as logic mapping and relative location
constraints. This technology provides the best physical lay-
out, predictability, and performance. Additionally, these pre-
determined features allow for significantly reduced compile
times over competing architectures. 

PCI Cores made with Smart-IP technology are unique by
maintaining their performance and predictability regardless
of the device size.

To guarantee the critical setup, hold, and min. and max.
clock-to-out timing, the PCI core is delivered with Smart-IP
constraint files that are unique for a device and package
combination. These constraint files guide the implementa-
tion tools so that the critical paths always are within PCI
specification. Retargeting the PCI core to an unsupported
device will void the guarantee of timing. Contact one of the
Xilinx XPERTs partners for support of unlisted devices and
packages. See the XPERTs section in chapter 7 of the Xil-
inx PCI Data Book for contact information.

Functional Description
The LogiCORE PCI32 4000 XLA Interfaces are partitioned
into five major blocks, and the user application as shown in
Figure 1. Each block is described below.

PCI I/O Interface Block
The I/O interface block handles physical connection to the
PCI bus including all signaling, input and output synchroni-
zation, output three-state controls, and all request-grant
handshaking for bus mastering.

Parity Generator/Checker
Generates/checks even parity across the AD bus, the CBE
lines, and the PAR signal. Reports data parity errors via
PERR- and address parity errors via SERR-.

Target State Machine
This block manages control over the PCI interface for Tar-
get functions. The states implemented are a subset of
equations defined in “Appendix B” of the PCI Local Bus
Specification. The controller is a high-performance state
machine using state-per-bit (one-hot) encoding for maxi-
mum performance. State-per-bit encoding has narrower
and shallower next-state logic functions that closely match
the Xilinx FPGA architecture.

Initiator State Machine
This block manages control over the PCI interface for Initia-
tor functions. The states implemented are a subset of equa-
tions defined in “Appendix B” of the PCI Local Bus
Specification. The Initiator Control Logic also uses state-
per-bit encoding for maximum performance.

PCI Configuration Space
This block provides the first 64 Bytes of Type 0, V 2.1, Con-
figuration Space Header (CSH) (see Table 1) to support
software-driven “Plug-and Play” initialization and configura-
tion. This includes Command, Status, and three Base
Address Registers (BARs). BAR 2 is not shown in figure 1.
These BARs illustrate how to implement memory- or I/O-
mapped address spaces. Each BAR sets base address for
the interface and allows system software to determine
addressable range required by the interface. Using a com-
bination of Configurable Logic Block (CLB) flip-flops for the
read/write registers and CLB look-up tables for the read-
only registers results in optimized packing density and lay-
out.

With this release, the hooks for extending configuration
space has been built into the backend interface. These
hooks, including the ability to implement a CapPtr in config-
uration space, allows the user to implement functions such
as Advanced Configuration and Power Interface (ACPI) in
the backend design. 



PCI32 4000 XLA Interface Version 3.0

2 - 16 May, 1999

Table 1: PCI Configuration Space Header

User Application with Optional Burst FIFOs
The LogiCORE PCI32 4000 XLA Interface is a general-pur-
pose interface with a 32-bit data path and latched address
for de-multiplexing the PCI address/data bus. The general-
purpose user interface allows the rest of the device to be
used in a wide range of applications.

Typically, the user application contains burst FIFOs to
increase PCI system performance (An Application Note is
available, please see the Xilinx Documents section). An on-
chip read/write FIFO, built from the on-chip synchronous
dual-port RAM (SelectRAM™) available in XC4000XLA
devices, supports data transfers in excess of 33 MHz.

Interface Configuration
The LogiCORE PCI32 4000 XLA Interfaces can easily be
configured to fit unique system requirements using Xilinx
web-based graphical configuration tool or changing the
VHDL or Verilog configuration file. The following customiza-

tion is supported by the LogiCORE product and described
in accompanying documentation.

• Initiator or target functionality (The core can be used as
a target-only Interface)

• Base Address Register configuration (1 - 3 Registers,
size and mode)

• Configuration Space Header ROM
• Initiator and target state machine (e.g., termination

conditions, transaction types and request/transaction
arbitration)

• Burst functionality
• User Application including FIFO (back-end design)

Supported PCI Commands
Table 2 illustrates the PCI bus commands supported by the
LogiCORE™ PCI32 4000 XLA Interfaces. The PCI Compli-
ance Checklist, found later in this data book, has more
details on supported and unsupported commands.

Table 2: PCI Bus Commands

Burst Transfer
The PCI bus derives its performance from its ability to
support burst transfers. The performance of any PCI
application depends largely on the size of the burst transfer.
A FIFO to support PCI burst transfer can efficiently be
implemented using the XC4000XLA on-chip RAM feature,
SelectRAM™. Each XC4000XLA CLB supports two 16x1
RAM blocks. This corresponds to 32 bits of single-ported
RAM or 16 bits of dual-ported RAM, with simultaneous
read/write capability. 

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header 
Type

Latency 
Timer

Cache 
Line Size

0Ch

Base Address Register 0 (BAR0) 10h

Base Address Register 1 (BAR1) 14h

Base Address Register 2 (BAR2) 18h

Base Address Register 3 (BAR3) 1Ch

Base Address Register 4 (BAR5) 20h

Base Address Register 5 (BAR5) 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved CapPtr 34h

Reserved 38h

Max_Lat Min_Gnt Interrupt 
Pin

Interrupt 
Line

3Ch

Reserved 40h-FFh

Note: 
Italicized address areas are not implemented in LogiCORE PCI32
4000 XLA Interface default configuration. These locations return
zero during configuration read accesses.

CBE [3:0] Command
PCI

Master
PCI

Slave
0000 Interrupt Acknowledge Yes Yes

0001 Special Cycle Yes Ignore
0010 I/O Read Yes Yes

0011 I/O Write Yes Yes

0100 Reserved Ignore Ignore

0101 Reserved Ignore Ignore

0110 Memory Read Yes Yes

0111 Memory Write Yes Yes
1000 Reserved Ignore Ignore

1001 Reserved Ignore Ignore

1010 Configuration Read Yes Yes

1011 Configuration Write Yes Yes

1100 Memory Read Multiple Yes Yes

1101 Dual Address Cycle No1 Ignore
1110 Memory Read Line Yes Yes

1111 Memory Write Invalidate No1 Yes
Note:
1. The Initiator can present these commands, however, they either
require additional user-application logic to support them or have not
been thoroughly tested.



May, 1999 2 - 17

Bandwidth
The Xilinx PCI32 4000 XLA Interfaces support a sustained
bandwidth of up to 132 MBytes/sec (except in the
XC4062XLA HQ240). The design can be configured to take
advantage of the ability of the LogiCORE PCI32 Interface
to do very long bursts. Since the FIFO isn’t a fixed size,
burst can go on as long as the chipset arbiter will allow. Fur-
thermore, since the FIFOs and DMA are decoupled from
the proven core, a designer can modify these functions
without effecting the critical PCI timing.

The flexible Xilinx backend, combined with support for
many different PCI features, gives users a solution that
lends itself to being used in many high-performance appli-
cations. Xilinx is able to support different depths of FIFOs
as well as dual port FIFOs, synchronous or asynchronous
FIFOs and multiple FIFOs. The user is not locked into one
DMA engine, hence, a DMA that fits a specific application
can be designed.

The theoretical maximum bandwidth of a 32 bit, 33 MHz
PCI bus is 132 MB/s. How close you get to this maximum
will depend on several factors, including the PCI design
used, PCI chipset, the processor’s ability to keep up with
your data stream, the maximum capability of your PCI
design and other traffic on the PCI bus. Older chipsets and
processors will tend to allow less bandwidth than newer
ones. 

In this version of the Interface, all devices are zero wait
state except for the XC4062XLA HQ240, which is a one
wait state design. The XC4013XLA-09, XC4028XLA-09
and XC4062XLA-09 support zero wait-state burst, equal to
a sustained bandwidth of up to 132 MBytes/sec. Only the
XC4062XLA HQ240 requires one wait-state while sourcing
data. See Table 3 for a PCI bus transfer rates for various
operations in either zero or one wait-state mode.

Table 3: LogiCORE PCI32 4000 XLA Transfer Rates    

In the Zero wait-state mode, no wait-states are inserted
either while sourcing data or receiving data. This allows a

100% burst transfer rate in both directions with full PCI
compliance. No additional wait-states are inserted in
response to a wait-state from another agent on the bus.
Either IRDY or TRDY is kept asserted until the current data
phase ends, as required by the V2.2 PCI Specification.

In one wait-state mode, the LogiCORE PCI32 4000 XLA
Interface automatically inserts a wait-state when sourcing
data (Initiator Write, Target Read) during a burst transfer. In
this mode, the LogiCORE PCI32 4000 XLA Interface can
accept data at 100% burst transfer rate and supply data at
50%. 

Timing Specification
The XC4000XLA family, together with the LogiCORE PCI32
products enables design of fully compliant PCI systems.
Backend design can affect the maximum speed your
design is capable of. Factors in your back-end designs that
can affect timing include loading of hot signals coming
directly from the PCI bus, and gate count. Table 4 shows
the key timing parameters for the LogiCORE PCI32 Inter-
faces that must be met for full PCI compliance. 

Table 4: Timing Parameters [ns] 

Zero Wait-State Mode
Operation Transfer Rate

Initiator Write (PCI ← LogiCORE) 3-1-1-1
Initiator Read (PCI → LogiCORE) 4-1-1-1

Target Write (PCI→ LogiCORE) 5-1-1-1

Target Read (PCI ← LogiCORE) 6-1-1-1

One Wait-State Mode (XC4062XLA HQ240 only)
Operation Transfer Rate

Initiator Write (PCI ← LogiCORE) 3-2-2-2
Initiator Read (PCI → LogiCORE) 4-1-1-1

Target Write (PCI→ LogiCORE) 5-1-1-1

Target Read (PCI ← LogiCORE) 6-2-2-2
Note: Initiator Read and Target Write operations have effectively
the same bandwidth for burst transfer.

Parameter Ref. 
PCI Spec.

LogiCORE 
PCI32 4000 XLA 
XC4000XLA-1 

Min Max Min Max
CLK Cycle Time 30 ∞ 301 ∞
CLK High Time 11 11

CLK Low Time 11 11

CLK to Bus Sig-
nals Valid3

TICKOF 2 11 22 8.5

CLK to REQ# 
and GNT# Valid3

TICKOF 2 12 22 11

Tri-state to Ac-
tive

2 22

CLK to Tri-state 28 281

Bus Signal Setup 
to CLK (IOB)

TPSD 7 7

Bus Signal Setup 
to CLK (CLB)

7 71

GNT# Setup to 
CLK

TPSD 10 7

GNT# Setup to 
CLK (CLB)

TPSD 10 10

Input Hold Time 
After CLK (IOB)

TPHD 0 0

Input Hold Time 
After CLK (CLB)

0 02

RST# to Tri-state 40 402

Notes:
1. Controlled by TIMESPECS, included in product
2. Verified by analysis and bench-testing
3. IOB configured for Fast slew rate



PCI32 4000 XLA Interface Version 3.0

2 - 18 May, 1999

Verification Methods
Xilinx has developed a testbench with numerous vectors to
test the Xilinx PCI design; this is included with the Logi-
CORE PCI32 4000 XLA Interfaces. A version of this test-
bench is also used internally by the Xilinx PCI team to verify
the PCI32 Interfaces. Additionally, the PCI32 Interfaces
have been tested in hardware for electrical, functional and
timing compliance.

The testbench shipped with the interface verifies the PCI
interface functions according to the test scenarios specified
in the PCI Local Bus Specification, V2.1; see Figure 2. This
testbench consists of 28 test scenarios, each designed to
test a specific PCI bus operation. Refer to the checklists
chapter in this databook for a complete list of scenarios.

Figure 2:   PCI Protocol Testbench   

Ping Reference Design
The Xilinx LogiCORE PCI “PING” Application Example,
delivered in VHDL and Verilog, has been developed to pro-
vide an easy-to-understand example which demonstrates
many of the principles and techniques required to success-
fully use a LogiCORE PCI32 4000 XLA Interface in a Sys-
tem On A Chip solution. 

Synthesizable PCI Bridge Design 
Example
Synthesizable PCI bridge design examples, delivered in
Verilog and VHDL, are available to demonstrate how to
interface to the LogiCORE PCI32 4000 XLA V3.0 Interfaces
and provides a modular foundation upon which to base
other designs. See separate data sheet for details. 

Device Utilization
Utilization can vary widely, depending on the configuration
choices made by the designer. Options that can affect the
size of the core are:

• Number of Base Address Registers Used. Turning off
any unused BARs will save on resources. The core now
includes a switch to force the entire deletion of unused
Base Address Registers. 

• Size of the BARs. Setting the BAR to a smaller size
requires more flip-flops. A smaller address space
requires more flip-flops to decode.

• Latency timer. Disabling the latency timer will save a
few resources. It must be enabled for bursting.

Recommended Design Experience
The LogiCORE PCI32 4000 XLA Interfaces are pre-imple-
mented allowing engineering focus at the unique back-end
functions of a PCI design. Regardless, PCI is a high-perfor-
mance system that is challenging to implement in any tech-
nology, ASIC or FPGA. Therefore, we recommend previous
experience with building high-performance, pipelined
FPGA designs using Xilinx implementation software,
TIMESPECs, and guide files. The challenge to implement a
complete PCI design including back-end functions varies
depending on configuration and functionality of your appli-
cation. Contact your local Xilinx representative for a closer
review and estimation for your specific requirements. 

LogiCORE
PCI

Interface

Simple
Arbiter

fakearb

pci_lc_i

Target
Functional

Mode

faketarg testbnch

pcim_tst

Initiator
Protocol
Test User

Application

X7951



May, 1999 2 - 19

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-377-3259
E-mail: Techsupport: hotline@xilinx.com

Feedback: logicore@xilinx.com
URL: www.xilinx.com/pci

Introduction
With Xilinx LogiCORE PCI32 SpartanXL Interface, a
designer can build a cost-efficient, customizable, zero wait-
state, 32-bit, 33MHz fully PCI compliant system in a Spar-
tanXL family FPGA.

Features
• Fully 2.2 PCI compliant 32-bit, 33 MHz PCI 

Initiator/Target Interface 
• Incorporates Xilinx Smart-IP Technology with pre-

defined implementation for predictable timing in Xilinx
SpartanXL FPGAs (see LogiCORE Facts for listing of
supported devices) 

• 3.3V and 5V operation with SpartanXL devices
• Zero wait-state burst operation
• Fully verified design

- Tested with Xilinx internal testbench and in hardware 
(silicon proven)

• Configurable on-chip dual-port FIFOs can be added for
maximum burst speed (see Xilinx Documents section)

• Programmable single-chip solution with customizable
back-end functionality

• Supported Initiator functions
- Memory Read, Memory Write, Memory Read 

Multiple (MRM), Memory Read Line (MRL) 
commands

- I/O Read, I/O Write commands
- Configuration Read, Configuration Write commands
- Bus Parking
- Special Cycles, Interrupt Acknowledge
- Basic Host Bridging

R

LogiCORE ™ Facts
Core Specifics

Device Family SpartanXL

CLBs Used1 152 - 268

IOBs Used 53
System Clock fmax 0 − 33MHz

Device Features 
Used

Bi-directional data buses
SelectRAM™ (optional user FIFO)

Boundary scan (optional)

Supported Devices 4/Resources Remaining

I/O CLB1

XCS20XL-4 TQ144 60 190 - 2482

XCS30XL-4 PQ208 107 308 - 424

XCS30XL-4 PQ240 141 308 - 424

XCS40XL-4 PQ208 107 516 - 632

XCS40XL-4 PQ240 141 516 - 632

Provided with Core
Documentation PCI Design Guide

SpartanXL Implementation Guide
Spartan to SpartanXL

Conversion Guide
PCI Data Book

Design File Formats VHDL & Verilog Simulation Models
NGO Netlist

Constraint Files M1 User Constraint File (UCF)
M1 Guide files

Verification Tools VHDL and Verilog Testbench

Core Symbols VHDL, Verilog

Reference designs Synthesizable PCI Bridge Design
Design Tool Requirements

Xilinx Core Tools M1.5i

Tested Entry/Verifi-
cation Tools3

For CORE instantiation:
Synopsys FPGA Express, Compiler

Synplicity Synplify
For CORE verification:

Cadence Verilog XL
MTI ModelSim PE/Plus V4.7g

Support
Xilinx provides technical support for this LogiCORE™ product when 
used as described in the Design and Implementation Guides and 
in the Application Notes. Xilinx cannot guarantee timing, 
functionality, or support of product if implemented in devices not 
listed above, or if customized beyond that referenced in the product 
documentation, or if any changes are made in sections of design 
marked as “DO NOT MODIFY”.

PCI32 SpartanXL Interface
Version 3.0

May, 1999 Data Sheet

 

2 0 0



PCI32 SpartanXL Interface Version 3.0

2 - 20 May, 1999

Features (cont.)
• Supported Target functions

- Type 0 Configuration Space Header
- Up to 2 Base Address Registers (memory or I/O with 

adjustable block size from 16 Bytes to 2 GBytes, 
slow decode speed)

- Parity Generation (PAR), Parity Error Detection 
(PERR# and SERR#)

- Extended Capabilities Registers (backend module)
- Memory Read, Memory Write, Memory Read 

Multiple (MRM), Memory Real Line (MRL), and 
Memory Write & Invalidate (MWI) commands

- I/O Read and I/O Write commands
- Configuration Read and Configuration Write 

commands
- 32-bit data transfers, burst transfers with linear 

address ordering
- Target Abort, Target Retry, Target Disconnect
- Full Command/Status Register

• Available for configuration and download on the web
- Web-based configuration tool
- Generation of proven design files

- Instant access to new releases

Applications
• PCI add-in boards such as graphic cards, video

adapters, LAN adapters, and data acquisition boards
• Embedded applications within networking,

telecommunication, and industrial systems
• CompactPCI boards
• Other applications that need PCI

General Description
The LogiCORE™ PCI32 SpartanXL Interfaces are pre-
implemented and fully tested modules for Xilinx SpartanXL
FPGAs (see LogiCORE Facts for listing of supported
devices). The pin-out and the relative placement of the
internal Configurable Logic Blocks (CLBs) are pre-defined.
Critical paths are controlled by TimeSpecs and guide files
to ensure that timing is always met. This significantly
reduces engineering time required to implement the PCI
portion of your design. Resources can instead be focused
on the unique back-end logic in the FPGA and the system
level design. As a result, LogiCORE PCI products can min-
imize development time.

Xilinx SpartanXL family FPGAs enables the design of fully
PCI compliant systems. These devices meet all specifica-
tions for 3.3 V and 5 V PCI and meet all required electrical
and timing parameters including AC output drive character-
istics, input capacitance specifications (10pF), 7 ns setup
and 0 ns hold to system clock, and 11 ns system clock to
output. 

Notes:
1. The exact number of CLBs depends on user configuration of the

core and level of resource sharing with adjacent logic. Factors
that can affect the size of the design are number and size of the
BARs, and use of the latency timer. 

2. The XCS20XL device supports up to one BAR.
3. See Xilinx Web Site for updates on tested design tools. 
4. Re-targeting the PCI core to an unlisted device or package will

void the guarantee of timing. See “Smart-IP Technology - guar-
anteed timing” on page 11. for details.

Parity
Generator/

Checker

PAR

PERR-

SERR-

PCI Configuration Space

Base
Address
Register

0

Base
Address
Register

1

Command/
Status

Register

Initiator
State

Machine

Interrupt
Pin and

Line
Register

Latency
Timer

Register

Vendor ID,
Rev ID,

Other User
Data

X7954

Target
State

Machine

P
C

I 
I/

O
 I

N
T

E
R

FA
C

E

U
S

E
R

 A
P

P
L

IC
A

T
IO

N

ADIO[31:0]

AD[31:0]

GNT-

FRAME-

IRDY-

REQ-

TRDY-

DEVSEL-

STOP-

Figure 1:   LogiCORE PCI32 SpartanXL Interface Block Diagram (one BAR only in XCS20XL)



May, 1999 2 - 21

The PCI Compliance Checklists, found in the Xilinx PCI
Databook, have additional details. Other features that
enable efficient implementation of a complete PCI system
in the SpartanXL family includes:

• Select-RAM™ memory: on-chip ultra-fast RAM with
synchronous write option and dual-port RAM option.
Used in the PCI32 SpartanXL Interface to implement
the FIFO.

• Individual output enable for each I/O
• Internal 3-state bus capability
• 8 global low-skew clock or signal distribution networks
• IEEE 1149.1-compatible boundary scan logic support

See Spartan FPGA Data Sheet for more details.

The module is carefully optimized for best possible perfor-
mance and utilization in the SpartanXL FPGA architecture.
When implemented in the XCS30, more than 50% of the
FPGA’s resources remain for integrating a unique back-end
interface and other system functions into a fully program-
mable one-chip solution. When implemented in the XCS40,
more than 65% of the FPGA’s resources remain for inte-
grating a unique back-end interface and other system func-
tions into a fully programmable one-chip solution.

Smart-IP Technology - guaranteed 
timing
Drawing on the architectural advantages of Xilinx FPGAs,
new Xilinx Smart-IP technology ensures highest perfor-
mance, predictability, repeatability, and flexibility in PCI
designs. The Smart-IP technology is incorporated in every
LogiCORE PCI Core.

Xilinx Smart-IP technology leverages the Xilinx architec-
tural advantages, such as look-up tables (LUTs), distrib-
uted RAM, and segmented routing, as well as floorplanning
information, such as logic mapping and relative location
constraints. This technology provides the best physical lay-
out, predictability, and performance. Additionally, these pre-
determined features allow for significantly reduced compile
times over competing architectures. 

PCI Cores made with Smart-IP technology are unique by
maintaining their performance and predictability regardless
of the device size.

To guarantee the critical setup, hold, and min. and max.
clock-to-out timing, the PCI core is delivered with Smart-IP
constraint files that are unique for a device and package
combination. These constraint files guide the implementa-
tion tools so that the critical paths always are within PCI
specification. Retargeting the PCI core to an unsupported
device will void the guarantee of timing. Contact one of the
Xilinx XPERTs partners for support of unlisted devices and
packages. See the XPERTs section in chapter 7 of the Xil-
inx PCI Data Book for contact information.

Functional Description
The LogiCORE PCI32 SpartanXL Interface is partitioned
into five major blocks, plus the user application, shown in
Figure 1. Each block is described below.

PCI I/O Interface Block
The I/O interface block handles the physical connection to
the PCI bus including all signaling, input and output syn-
chronization, output three-state controls, and all request-
grant handshaking for bus mastering.

Parity Generator/Checker
Generates/checks even parity across the AD bus, the CBE
lines, and the PAR signal. Reports data parity errors via
PERR- and address parity errors via SERR-.

Target State Machine
This block manages control over the PCI32 SpartanXL
Interface for Target functions. The states implemented are
a subset of equations defined in “Appendix B” of the PCI
Local Bus Specification. The controller is a high-perfor-
mance state machine using state-per-bit (one-hot) encod-
ing for maximum performance. State-per-bit encoding has
narrower and shallower next-state logic functions that
closely match the Xilinx FPGA architecture.

Initiator State Machine
This block manages control over the PCI32 SpartanXL
Interface for Initiator functions. The states implemented are
a subset of equations defined in “Appendix B” of the PCI
Local Bus Specification. The Initiator Control Logic also
uses state-per-bit encoding for maximum performance.

PCI Configuration Space
This block provides the first 64 bytes of Type 0, version 2.1,
Configuration Space Header (CSH) (see Table 1) to sup-
port software-driven “Plug-and Play” initialization and con-
figuration. This includes Command, Status, and two Base
Address Registers (BARs). These BARs illustrate how to
implement memory- or I/O-mapped address spaces. Each
BAR sets the base address for the interface and allows the
system software to determine the addressable range
required by the interface. Using a combination of Config-
urable Logic Block (CLB) flip-flops for the read/write regis-
ters and CLB look-up tables for the read-only registers
results in optimized packing density and layout.

With this release, the hooks for extending configuration
space has been built into the backend interface. Setting the
CapPtr and bit 15 of the Status Register allows the user to
implement functions such as Advanced Configuration and
Power Interface (ACPI) in the backend design.



PCI32 SpartanXL Interface Version 3.0

2 - 22 May, 1999

User Application with Optional Burst FIFOs
The LogiCORE PCI32 SpartanXL Interface provides a sim-
ple, general-purpose interface with a 32-bit data path and
latched address for de-multiplexing the PCI address/data
bus. The general-purpose user interface allows the rest of
the device to be used in a wide range of applications.

Typically, the user application contains burst FIFOs to
increase PCI system performance (An Application Note is
available, please see the Xilinx Documents section). An on-
chip read/write FIFO, built from the on-chip synchronous
dual-port RAM (SelectRAM™) available in SpartanXL
devices, supports data transfers in excess of 33 MHz.

Table 1: PCI Configuration Space Header

Interface Configuration
The LogiCORE PCI32 SpartanXL Interface can easily be
configured to fit unique system requirements using Xilinx
web-based PCI Configuration and Download Tool. The fol-

lowing customization is supported by the LogiCORE prod-
uct and described in accompanying documentation.

• Initiator and target functionality
• Base Address Register configuration (1-2 Registers in

XCS30XL and XCS40XL, 1 BAR only in XCS20XL, size
and mode of BAR)

• Configuration Space Header ROM
• Initiator and target state machine (e.g., termination

conditions, transaction types and request/transaction
arbitration)

• Burst functionality
• User Application including FIFO (back-end design)

Supported PCI Commands
Table 2 illustrates the PCI bus commands supported by the
LogiCORE PCI32 SpartanXL Interface. The compliance
checklist later in this data book have more details on sup-
ported and unsupported commands.

Table 2: PCI Bus Commands

Burst Transfer
The PCI bus derives its performance from its ability to
support burst transfers. The performance of any PCI
application depends largely on the size of the burst transfer.
A FIFO to support PCI burst transfer can efficiently be
implemented using the SpartanXL on-chip RAM feature,
SelectRAM™. Each SpartanXL CLB supports two 16x1
RAM blocks. This corresponds to 32 bits of single-ported
RAM or 16 bits of dual-ported RAM, with simultaneous
read/write capability. 

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header 
Type

Latency 
Timer

Cache 
Line Size

0Ch

Base Address Register 0 (BAR0) 10h

Base Address Register 1 (BAR1) 14h

Base Address Register 2 (BAR2) 18h

Base Address Register 3 (BAR3) 1Ch

Base Address Register 4 (BAR5) 20h

Base Address Register 5 (BAR5) 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved CapPtr 34h

Reserved 38h

Max_Lat Min_Gnt Interrupt 
Pin

Interrupt 
Line

3Ch

Reserved 40h-FFh

Note: 
Italicized address areas are not implemented in the LogiCORE
PCI32 SpartanXL Interface default configuration. These locations
return zero during configuration read accesses.

CBE [3:0] Command
PCI

Master
PCI

Slave
0000 Interrupt Acknowledge No1 Ignore

0001 Special Cycle No1 Ignore

0010 I/O Read Yes Yes

0011 I/O Write Yes Yes
0100 Reserved Ignore Ignore

0101 Reserved Ignore Ignore

0110 Memory Read Yes Yes

0111 Memory Write Yes Yes

1000 Reserved Ignore Ignore

1001 Reserved Ignore Ignore
1010 Configuration Read Yes Yes

1011 Configuration Write Yes Yes

1100 Memory Read Multiple Yes Yes

1101 Dual Address Cycle No1 Ignore

1110 Memory Read Line Yes Yes

1111 Memory Write Invalidate No1 Yes
Note:
1. The Initiator can present these commands, however, they either
require additional user-application logic to support them or have not
been thoroughly tested.



May, 1999 2 - 23

Bandwidth
The Xilinx PCI32 SpartanXL Interface supports a sustained
bandwidth of up to 132 MBytes/sec. The design can be
configured to take advantage of the ability of the LogiCORE
PCI32 Interface to do very long bursts. Since the FIFO does
not have a fixed size, a burst can go on for as long as the
chipset arbiter will allow. Furthermore, since the FIFOs and
the DMA are decoupled from the proven core, a designer
can modify these functions without affecting the critical PCI
timing.

The flexible Xilinx backend, combined with support for
many different PCI features, gives users a solution that can
be used in many high-performance applications. Xilinx is
able to support different depths of FIFOs as well as dual
port FIFOs, synchronous or asynchronous FIFOs, and mul-
tiple FIFOs. The user is not restricted to one DMA engine,
hence, a DMA that fits a specific application can be
designed.

The theoretical maximum bandwidth of a 32-bit, 33 MHz
PCI bus is 132 MBytes. How close you get to this maximum
bandwidth will depend on several factors, including the PCI
design used, PCI chipset, the processor’s ability to keep up
with your data stream, the maximum capability of your PCI
design, and other traffic on the PCI bus. Older chipsets and
processors will tend to allow less bandwidth than newer
ones. 

In the Zero wait-state mode, no wait-states are inserted
either while sourcing data or receiving data. This allows a
100% burst transfer rate in both directions with full PCI
compliance. No additional wait-states are inserted in
response to a wait-state from another agent on the bus, as
required by the PCI V 2.2 specification. Either IRDY or
TRDY is kept asserted until the current data phase ends, as
required by PCI V 2.2 Specification. 

In this version of the PCI Interface, based on the Xilinx V3.0
PCI Interface, the end of initiator transaction wait-state has
been removed.

See Table 3 for PCI bus transfer rates for various operations
in Zero wait-state mode.

Table 3: LogiCORE PCI32 SpartanXL Transfer Rates    

Timing Specification
The SpartanXL family, together with the LogiCORE PCI32
Interface enables design of fully compliant PCI systems.
Backend design can affect the maximum speed your
design is capable of. Factors in your back-end designs that
can affect timing include loading of hot signals coming
directly from the PCI bus, gate count and floor planning.
Table 4 shows the key timing parameters for the LogiCORE
PCI32 SpartanXL Interface that must be met for full PCI
compliance. 

Verification Methods
Xilinx has developed a testbench with numerous vectors to
test the Xilinx PCI design; this is included with the
LogiCORE PCI32 SpartanXL Interfaces. A version of this
testbench is also used internally by the Xilinx PCI team to
verify the PCI32 Interfaces. Additionally, the PCI32 Inter-
faces have been tested in hardware for electrical, functional
and timing compliance.

Table 4. Advanced Timing Parameters [ns]             

Zero Wait-State Mode
Operation Transfer Rate

Initiator Write (PCI ← LogiCORE) 3-1-1-1

Initiator Read (PCI → LogiCORE) 4-1-1-1

Target Write (PCI→ LogiCORE) 5-1-1-1

Target Read (PCI ← LogiCORE) 6-1-1-1
Note: Initiator Read and Target Write operations have effectively
the same bandwidth for burst transfer.

Parameter Ref. 
PCI Spec.

LogiCORE 
PCI32, 
XCSXL-4

Min Max Min Max
CLK Cycle Time 30 ∞ 301 ∞
CLK High Time 11 11

CLK Low Time 11 11

CLK to Bus Sig-
nals Valid3

TICK-

OF

2 11 22 9.6

CLK to REQ# and 
GNT# Valid3

TICK-

OF

2 12 22 9.6

Tri-state to Active 2 22

CLK to Tri-state 28 281

Bus Signal Setup 
to CLK (IOB)

TPSU 7 7

Bus Signal Setup 
to CLK (CLB)

7 71

GNT# Setup to 
CLK

TPSU 10 5.2

Input Hold Time 
After CLK (IOB)

TPH 0 0

Input Hold Time 
After CLK (CLB)

0 02

RST# to Tri-state 40 402

Notes:
1. Controlled by TIMESPECs, included in product
2. Verified by analysis and bench-testing
3. IOB configured for Fast slew rate



PCI32 SpartanXL Interface Version 3.0

2 - 24 May, 1999

The testbench shipped with the interface verifies the PCI
interface functions according to the test scenarios specified
in PCI Compliance Checklist, V 2.1; see Figure 2. This test-
bench consists of 28 test scenarios, each designed to test
a specific PCI bus operation. Refer to the checklists chapter
in this databook for a complete list of scenarios.

Figure 2. PCI Protocol Testbench    

Ping Reference Design
The Xilinx LogiCORE PCI “PING” Application Example,
delivered in VHDL and Verilog, has been developed to pro-
vide an easy-to-understand example which demonstrates
many of the principles and techniques required to success-
fully use a LogiCORE PCI32 Spartan Interface in a
System-on-a-Chip solution. 

Synthesizable PCI Bridge Design 
Example
Synthesizable PCI bridge design examples, delivered in
Verilog and VHDL, are available to demonstrate how to
interface with the LogiCORE PCI32 Spartan Interface and
provide a modular foundation upon which to base other
designs. See separate data sheet for details. 

Device Utilization
The Target-Only and Target/Initiator options require a vari-
able amount of CLB resources for the PCI32 Spartan Inter-
face. The core includes a switch to force the entire deletion
of unused Base Address Registers. 

Utilization can vary widely, depending on the configuration
choices made by the designer. Options that can affect the
size of the core are:

• Initiator vs. Target-Only. The Initiator requires about 12
CLBs more than the target (not set in the cfg file; set at
the time the core is generated).

• Number of Base Address Registers Used. Turning off
any unused BARs will save on resources. 

• Size of the BARs. Setting the BAR to a smaller size
requires more flip-flops. A smaller address space
requires more flip-flops to decode.

• Decode Speed. Medium decode requires slightly more
logic than slow decode. 

• Latency timer. Disabling the latency timer will save a
few resources. It must be enabled for bursting.

Recommended Design Experience
The LogiCORE PCI32 Spartan Interface is pre-imple-
mented allowing engineering focus at the unique back-end
functions of a PCI design. Regardless, PCI is a high-perfor-
mance system that is challenging to implement in any tech-
nology, ASIC or FPGA. Therefore, we recommend previous
experience with building high-performance, pipelined
FPGA designs using Xilinx implementation software,
TIMESPECs, and guide files. The challenge to implement a
complete PCI design including back-end functions varies
depending on configuration and functionality of your appli-
cation. Contact your local Xilinx representative for details
on your specific design requirements. 

LogiCORE
PCI

Interface

Simple
Arbiter

fakearb

pci_lc_i

Target
Functional

Mode

faketarg testbnch

pcim_tst

Initiator
Protocol
Test User

Application

X7951



May, 1999 2 - 25

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-377-3259
E-mail: Techsupport: hotline@xilinx.com

Feedback: logicore@xilinx.com
URL: www.xilinx.com

Introduction
With Xilinx LogiCORE PCI32 Spartan Master & Slave Inter-
face, a designer can build a customizable, low-cost 32-bit,
33MHz fully PCI compliant system in a Spartan-family
FPGA.

Features
• Fully 2.1 PCI compliant 32 bit, 33MHz PCI Interface 

- Master (Initiator/Target)
- Slave (Target-only)

• Pre-defined implementation for predictable timing in
Xilinx Spartan FPGAs (see LogiCORE Facts for listing
of supported devices) 

• Incorporates Xilinx Smart-IP Technology
• 5 V Operation with Spartan devices
• Zero wait-state burst operation
• Fully verified design

- Tested with the Xilinx internal testbench
- Tested in hardware (silicon proven)

• Configurable on-chip dual-port FIFOs can be added for
maximum burst speed (see Xilinx Documents section)

• Programmable single-chip solution with customizable
back-end functionality

• Supported Initiator functions
- Initiate Memory Read, Memory Write, Memory Read 

Multiple (MRM), Memory Read Line (MRL) 
commands

- Initiate I/O Read, I/O Write commands
- Initiate Configuration Read, Configuration Write 

commands
- Bus Parking

R

LogiCORE ™ Facts
Core Specifics

Device Family XCS Spartan

CLBs Used1 152 - 268

IOBs Used 53
System Clock fmax 0 − 33MHz

Device Features 
Used

Bi-directional data buses
SelectRAM™ (optional user FIFO)

Boundary scan (optional)

Supported Devices/Resources Remaining

I/O CLB1

XCS30 PQ208 107 308 - 424

XCS30 PQ240 141 308 - 424

XCS40 PQ208 107 516 - 632

XCS40 PQ240 141 516 - 632

Provided with Core
Documentation PCI32 User’s Guide

PCI Data Book
Design File Formats VHDL, Verilog Simulation Models

NGO Netlist2

Constraint Files M1 User Constraint File (UCF)
M1 Guide files

Verification Tools VHDL and Verilog Testbench

Core Symbols VHDL, Verilog

Reference designs Synthesizable PCI Bridge Design

Design Tool Requirements
Xilinx Core Tools M1.4

Entry/Verification 
Tools4

VHDL, Verilog

Support
Xilinx provides technical support for this LogiCORE prod-
uct when used as described in the User’s Guide or sup-
porting Application Notes. Xilinx cannot guarantee timing, 
functionality, or support of the product if implemented in 
devices not listed above, or customized beyond that refer-
enced in the product documentation.
Notes:
1. The exact number of CLBs depends on user configuration of the

core and level of resource sharing with adjacent logic. Factors
that can affect the size of the design are number and size of the
BARs, and medium vs. slow decode. These numbers include a
16 x 32 FIFO.

2. Available on Xilinx Home Page, in the LogiCORE PCI Lounge:
www.xilinx.com/products/logicore/pci/pci_sol.htm

3. See Xilinx Home Page for supported EDA tools

PCI32 Spartan Master & Slave 
Interface

May, 1999 Data Sheet

 

2 0 0



PCI32 Spartan Master & Slave Interface

2 - 26 May, 1999

Features (cont.)
• Supported Target functions

- Type 0 Configuration Space Header
- Up to 2 Base Address Registers (memory or I/O with 

adjustable block size from 16 bytes to 2 GBytes, 
slow decode speed)

- Parity Generation (PAR), Parity Error Detection 
(PERR# and SERR#

- ACPI Configuration Registers (backend module)
- Memory Read, Memory Write, Memory Read 

Multiple (MRM), Memory Real Line (MRL), Memory 
Write, Invalidate (MWI) commands

- I/O Read, I/O Write commands
- Configuration Read, Configuration Write commands
- 32-bit data transfers, burst transfers with linear 

address ordering
- Target Abort, Target Retry, Target Disconnect
- Full Command/Status Register

• Available for configuration and download on the web
- Web-based configuration
- Generation of proven design files

Applications
• PCI add-in boards such as graphic cards, video

adapters, LAN adapters and data acquisition boards.
• Embedded applications within telecommunication and

industrial systems.
• CompactPCI boards, 
• Other applications that need PCI

General Description
The LogiCORE™ PCI32 Spartan Master and Slave Inter-
faces are pre-implemented and fully tested modules for Xil-
inx Spartan FPGAs (see LogiCORE Facts for listing of
supported devices). The pin-out and the relative placement
of the internal Configurable Logic Blocks (CLBs) are pre-
defined. Critical paths are controlled by TimeSpecs and
guide files to ensure that timing is always met. This signifi-
cantly reduces engineering time required to implement the
PCI portion of your design. Resources can instead be
focused on the unique back-end logic in the FPGA and the
system level design. As a result, the LogiCORE PCI prod-
ucts can cut your development time by several months.

Xilinx Spartan Series FPGAs enables designs of fully PCI
compliant systems. The devices meet all required electrical
and timing parameters including AC output drive character-
istics, input capacitance specifications (10pF), 7 ns setup
and 0 ns hold to system clock, and 11 ns system clock to
output. These devices meet all specifications for 5 V PCI. 

The PCI Compliance Checklists, both device and protocol,
and waveforms for this core, can be found in 1998 Xilinx
PCI Data Book at:

www.xilinx.com/products/logicore/pci/docs/
pci_databook_5_98.pdf

 

Figure 1:   LogiCORE PCI32 Spartan Interface Block Diagram

Parity
Generator/

Checker

PAR

PERR-

SERR-

PCI Configuration Space

Base
Address
Register

0

Base
Address
Register

1

Command/
Status

Register

Initiator
State

Machine

Interrupt
Pin and

Line
Register

Latency
Timer

Register

Vendor ID,
Rev ID,

Other User
Data

X7954

Target
State

Machine

P
C

I 
I/

O
 I

N
T

E
R

FA
C

E

U
S

E
R

 A
P

P
L

IC
A

T
IO

N

ADIO[31:0]

AD[31:0]

GNT-

FRAME-

IRDY-

REQ-

TRDY-

DEVSEL-

STOP-



May, 1999 2 - 27

Other features that enable efficient implementation of a
complete PCI system in the Spartan family includes:

• Select-RAM™ memory: on-chip ultra-fast RAM with
synchronous write option and dual-port RAM option.
Used in the PCI32 Spartan Interface to implement the
FIFO.

• Individual output enable for each I/O
• Internal 3-state bus capability
• 8 global low-skew clock or signal distribution networks
• IEEE 1149.1-compatible boundary scan logic support

See Spartan FPGA Data Sheet for more details.

The module is carefully optimized for best possible perfor-
mance and utilization in the Spartan FPGA architecture.
When implemented in the XCS30, more than 50% of the
FPGA’s resources remain for integrating a unique back-end
interface and other system functions into a fully program-
mable one-chip solution. When implemented in the XCS40,
more than 65% of the FPGA’s resources remain for inte-
grating a unique back-end interface and other system func-
tions into a fully programmable one-chip solution.

Smart-IP Technology
Drawing on the architectural advantages of Xilinx FPGAs,
new Xilinx Smart-IP technology ensures highest perfor-
mance, predictability, repeatability, and flexibility in PCI
designs. The Smart-IP technology is incorporated in every
LogiCORE PCI Core.

Xilinx Smart-IP technology leverages the Xilinx architec-
tural advantages, such as look-up tables (LUTs), distrib-
uted RAM, and segmented routing, and floorplanning
information, such as logic mapping and relative location
constraints. This technology provides the best physical lay-
out, predictability, and performance. Additionally, these pre-
determined features allow for significantly reduced compile
times over competing architectures. 

The PCI32 Spartan Interface can parameterized, allowing
for design flexibility in which users can create the exact PCI
interface needed. PCI Cores made with Smart-IP technol-
ogy are unique by maintaining their performance and pre-
dictability regardless of the device size.

Functional Description
The LogiCORE PCI32 Spartan Interface is partitioned into
five major blocks, plus the user application, shown in Figure
1. Each block is described below.

PCI I/O Interface Block
The I/O interface block handles the physical connection to
the PCI bus including all signaling, input and output syn-
chronization, output three-state controls, and all request-
grant handshaking for bus mastering.

Parity Generator/Checker
Generates/checks even parity across the AD bus, the CBE
lines, and the PAR signal. Reports data parity errors via
PERR- and address parity errors via SERR-.

Target State Machine
This block manages control over the PCI32 Spartan Inter-
face for Target functions. The states implemented are a
subset of equations defined in “Appendix B” of the PCI
Local Bus Specification. The controller is a high-perfor-
mance state machine using state-per-bit (one-hot) encod-
ing for maximum performance. State-per-bit encoding has
narrower and shallower next-state logic functions that
closely match the Xilinx FPGA architecture.

Initiator State Machine
This block manages control over the PCI32 Spartan Inter-
face for Initiator functions. The states implemented are a
subset of equations defined in “Appendix B” of the PCI
Local Bus Specification. The Initiator Control Logic also
uses state-per-bit encoding for maximum performance.

PCI Configuration Space
This block provides the first 64 bytes of Type 0, version 2.1,
Configuration Space Header (CSH) (see Table 1) to sup-
port software-driven “Plug-and Play” initialization and con-
figuration. This includes Command, Status, and two Base
Address Registers (BARs). These BARs illustrate how to
implement memory- or I/O-mapped address spaces. Each
BAR sets the base address for the interface and allows the
system software to determine the addressable range
required by the interface. Using a combination of Config-
urable Logic Block (CLB) flip-flops for the read/write regis-
ters and CLB look-up tables for the read-only registers
results in optimized packing density and layout.

With this release, the hooks for extending configuration
space has been built into the backend interface. Setting the
CapPtr and bit 15 of the Status Register allows the user to
implement functions such as Advanced Configuration and
Power Interface (ACPI) in the backend design.

User Application with Optional Burst FIFOs
The LogiCORE PCI32 Spartan Interface provides a simple,
general-purpose interface with a 32-bit data path and
latched address for de-multiplexing the PCI address/data
bus. The general-purpose user interface allows the rest of
the device to be used in a wide range of applications.

Typically, the user application contains burst FIFOs to
increase PCI system performance (An Application Note is
available, please see the Xilinx Documents section). An on-
chip read/write FIFO, built from the on-chip synchronous
dual-port RAM (SelectRAM™) available in Spartan
devices, supports data transfers in excess of 33 MHz



PCI32 Spartan Master & Slave Interface

2 - 28 May, 1999

Table 1: PCI Configuration Space Header

Interface Configuration
The LogiCORE PCI32 Spartan Interface can easily be con-
figured to fit unique system requirements using Xilinx web-
based PCI Configuration and Download Tool. The following
customization is supported by the LogiCORE product and
described in accompanying documentation.

• Initiator and target functionality
• Base Address Register configuration (1 - 2 Registers,

size and mode)
• Configuration Space Header ROM
• Initiator and target state machine (e.g., termination

conditions, transaction types and request/transaction
arbitration)

• Burst functionality
• User Application including FIFO (back-end design)

Table 2: PCI Bus Commands

Supported PCI Commands
Table 2 illustrates the PCI bus commands supported by the
LogiCORE PCI32 Spartan Interface. The compliance
checklist later in this data book have more details on sup-
ported and unsupported commands.

Burst Transfer
The PCI bus derives its performance from its ability to
support burst transfers. The performance of any PCI
application depends largely on the size of the burst transfer.
A FIFO to support PCI burst transfer can efficiently be
implemented using the Spartan on-chip RAM feature,
SelectRAM™. Each Spartan CLB supports two 16x1 RAM
blocks. This corresponds to 32 bits of single-ported RAM or
16 bits of dual-ported RAM, with simultaneous read/write
capability. 

Bandwidth
The Xilinx PCI32 Spartan Interface supports a sustained
bandwidth of up to 132 MBytes/sec. See the Xilinx web for
the supported device/speed grade/wait-states mode com-
binations.The design can be configured to take advantage
of the ability of the LogiCORE PCI32 Interface to do very
long bursts. Since the FIFO isn’t a fixed size, burst can go
on as long as the chipset arbiter will allow. Furthermore,
since the FIFOs and DMA are decoupled from the proven
core, a designer can modify these functions without effect-
ing the critical PCI timing.

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Rev ID 08h

BIST Header 
Type

Latency 
Timer

Cache 
Line Size

0Ch

Base Address Register 0 (BAR0) 10h

Base Address Register 1 (BAR1) 14h

Base Address Register 2 (BAR2) 18h

Base Address Register 3 (BAR3) 1Ch

Base Address Register 4 (BAR5) 20h

Base Address Register 5 (BAR5) 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved CapPtr 34h

Reserved 38h

Max_Lat Min_Gnt Interrupt 
Pin

Interrupt 
Line

3Ch

Reserved 40h-FFh

Note: 
Italicized address areas are not implemented in the LogiCORE
PCI32 Spartan Interface default configuration. These locations
return zero during configuration read accesses.

CBE [3:0] Command
PCI

Master
PCI

Slave
0000 Interrupt Acknowledge No1 Ignore

0001 Special Cycle No1 Ignore

0010 I/O Read Yes Yes

0011 I/O Write Yes Yes
0100 Reserved Ignore Ignore

0101 Reserved Ignore Ignore

0110 Memory Read Yes Yes

0111 Memory Write Yes Yes

1000 Reserved Ignore Ignore

1001 Reserved Ignore Ignore
1010 Configuration Read Yes Yes

1011 Configuration Write Yes Yes

1100 Memory Read Multiple Yes Yes

1101 Dual Address Cycle No1 Ignore

1110 Memory Read Line Yes Yes

1111 Memory Write Invalidate No1 Yes
Note:
1. The Initiator can present these commands, however, they either
require additional user-application logic to support them or have not
been thoroughly tested.



May, 1999 2 - 29

The flexible Xilinx backend, combined with support for
many different PCI features, gives users a solution that
lends itself to being used in many high-performance appli-
cations. Xilinx is able to support different depths of FIFOs
as well as dual port FIFOs, synchronous or asynchronous
FIFOs and multiple FIFOs. The user is not locked into one
DMA engine, hence, a DMA that fits a specific application
can be designed.

The theoretical maximum bandwidth of a 32 bit, 33 MHz
PCI bus is 132 MB/s. How close you get to this maximum
will depend on several factors, including the PCI design
used, PCI chipset, the processor’s ability to keep up with
your data stream, the maximum capability of your PCI
design and other traffic on the PCI bus. Older chipsets and
processors will tend to allow less bandwidth than newer
ones. 

In the Zero wait-state mode, no wait-states are inserted
either while sourcing data or receiving data. This allows a
100% burst transfer rate in both directions with full PCI
compliance. No additional wait-states are inserted in
response to a wait-state from another agent on the bus.
Either IRDY or TRDY is kept asserted until the current data
phase ends, as required by the V2.1 PCI Specification.

In one wait-state mode, the LogiCORE PCI32 Spartan
Interface automatically inserts a wait-state when sourcing
data (Initiator Write, Target Read) during a burst transfer. In
this mode, the LogiCORE PCI32 Spartan Interface can
accept data at 100% burst transfer rate and supply data at
50%. 

See Table 3 for a PCI bus transfer rates for various opera-
tions in either zero or one wait-state mode.

Table 3: LogiCORE PCI32 Spartan Transfer Rates    

Timing Specification
The XCS family, together with the LogiCORE PCI32 Spar-
tan Interface enables design of fully compliant PCI sys-
tems. Backend design can affect the maximum speed your
design is capable of. Factors in your back-end designs that
can affect timing include loading of hot signals coming
directly from the PCI bus, gate count and floor planning.
Table 4 shows the key timing parameters for the LogiCORE
PCI32 Spartan Interface that must be met for full PCI com-
pliance. 

Verification Methods
Xilinx has developed a testbench with numerous vectors to
test the Xilinx PCI design; this is included with the Logi-
CORE PCI32 Spartan Master and Slave Interfaces A ver-
sion of this testbench is also used internally by the Xilinx
PCI team to verify the PCI32 Interfaces. Additionally, the
PCI32 Interfaces have been tested in hardware for electri-
cal, functional and timing compliance.

Table 4. Advanced Timing Parameters [ns]             

Zero Wait-State Mode
Operation Transfer Rate

Initiator Write (PCI ← LogiCORE) 3-1-1-2
Initiator Read (PCI → LogiCORE) 4-1-1-2

Target Write (PCI→ LogiCORE) 5-1-1-1

Target Read (PCI ← LogiCORE) 6-1-1-1

One Wait-State Mode
Operation Transfer Rate

Initiator Write (PCI ← LogiCORE) 3-2-2-2
Initiator Read (PCI → LogiCORE) 4-1-1-2

Target Write (PCI→ LogiCORE) 5-1-1-1

Target Read (PCI ← LogiCORE) 6-2-2-2
Note: Initiator Read and Target Write operations have effectively
the same bandwidth for burst transfer.

Parameter Ref. 
PCI Spec.

LogiCORE 
PCI32, XCS-4

Min Max Min Max
CLK Cycle Time 30 ∞ 301 ∞
CLK High Time 11 11

CLK Low Time 11 11

CLK to Bus Sig-
nals Valid3

TICK-

OF

2 11 22 9.6

CLK to REQ# and 
GNT# Valid3

TICK-

OF

2 12 22 9.6

Tri-state to Active 2 22

CLK to Tri-state 28 281

Bus Signal Setup 
to CLK (IOB)

TPSU 7 7

Bus Signal Setup 
to CLK (CLB)

7 71

GNT# Setup to 
CLK

TPSU 10 5.2

Input Hold Time 
After CLK (IOB)

TPH 0 0

Input Hold Time 
After CLK (CLB)

0 02

RST# to Tri-state 40 402

Notes:
1. Controlled by TIMESPECs, included in product
2. Verified by analysis and bench-testing
3. IOB configured for Fast slew rate



PCI32 Spartan Master & Slave Interface

2 - 30 May, 1999

The testbench shipped with the interface verifies the PCI
interface functions according to the test scenarios specified
in the PCI Local Bus Specification, V2.1; see Figure 2. This
testbench consists of 28 test scenarios, each designed to
test a specific PCI bus operation. Refer to the checklists
chapter in this databook for a complete list of scenarios.

Figure 2. PCI Protocol Testbench    

Ping Reference Design
The Xilinx LogiCORE PCI “PING” Application Example,
delivered in VHDL and Verilog, has been developed to pro-
vide an easy-to-understand example which demonstrates
many of the principles and techniques required to success-
fully use a LogiCORE PCI32 Spartan Interface in a System
On A Chip solution. 

Synthesizable PCI Bridge Design 
Example
Synthesizable PCI bridge design examples, delivered in
Verilog and VHDL, are available to demonstrate how to
interface to the LogiCORE PCI32 Spartan Interface and
provides a modular foundation upon which to base other
designs. See separate data sheet for details. 

Device Utilization
The Target-Only and Target/Initiator options require a vari-
able amount of CLB resources for the PCI32 Spartan Inter-
face. The core includes a switch to force the entire deletion
of unused Base Address Registers. 

Utilization can vary widely, depending on the configuration
choices made by the designer. Options that can affect the
size of the core are:

• Initiator vs. Target-Only. The Initiator requires about 12
CLBs more than the target (not set in the cfg file; set at
the time the core is generated).

• Number of Base Address Registers Used. Turning off
any unused BARs will save on resources. 

• Size of the BARs. Setting the BAR to a smaller size
requires more flip-flops. A smaller address space
requires more flip-flops to decode.

• Decode Speed. Medium decode requires slightly more
logic than slow decode. 

• Latency timer. Disabling the latency timer will save a
few resources. It must be enabled for bursting.

Recommended Design Experience
The LogiCORE PCI32 Spartan Interface is pre-imple-
mented allowing engineering focus at the unique back-end
functions of a PCI design. Regardless, PCI is a high-perfor-
mance system that is challenging to implement in any tech-
nology, ASIC or FPGA. Therefore, we recommend previous
experience with building high-performance, pipelined
FPGA designs using Xilinx implementation software,
TIMESPECs, and guide files. The challenge to implement a
complete PCI design including back-end functions varies
depending on configuration and functionality of your appli-
cation. Contact your local Xilinx representative for a closer
review and estimation for your specific requirements. 

LogiCORE
PCI

Interface

Simple
Arbiter

fakearb

pci_lc_i

Target
Functional

Mode

faketarg testbnch

pcim_tst

Initiator
Protocol
Test User

Application

X7951



May, 1999 2 - 31

Synthesizable PCI Bridge 
Design Examples

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-377-3259
E-mail: Techsupport: hotline@xilinx.com

Feedback: logicore@xilinx.com
URL: www.xilinx.com/pci

Introduction
This synthesizable PCI bridge designs are a set of re-us-
able Reference Designs for use with the LogiCORE PCI64
and PCI32 Interfaces. They are delivered in Verilog and
VHDL and have been tested with various devices. These
examples demonstrate how to interface to the PCI core and
provide a modular foundation upon which to base other de-
signs. The Reference Designs can be easily modified to re-
move select portions of functionality. The facts table lists
the set of features and specifics for each design.

General Description
Part of or all of the design is available at no cost to all reg-
istered LogiCORE PCI Interface customers, who can down-
load it from the LogiCORE PCI Lounges at 

www.xilinx.com/pci

See the Ordering Information chapter for details.

These designs are general purpose data transfer engines
to be used with the LogiCORE PCI Interfaces. Figure 1 pre-
sents a block diagram of the bridge design. Typically, the
user will customize the local interface to conform to a par-
ticular peripheral bus (ISA, VME, i960) or attach to a mem-
ory device. The design is modular so that unused portions
may be removed. Some versions are subsets of the com-
plete design, and do not contain parts of the target function-
ality as indicated in the facts table. 

R

RESOLVE

TARGET STATE

L
o

g
iC

O
R

E
 P

C
I I

n
te

rf
ac

e

ADIO

S_CBE

TARGET

CONTROL

INITIATOR

CONTROL

INITIATOR

STATE

TRANSFER

TARGETFIFO

REGISTERS

BAR 1

CONTROL

FORCE_RETRY

XFER
STATUS

XFER
STATE

BAR 0

CONTROL

Target Burst
Logic
with

FIFOs

Target Register
Logic

(non-burst)

Initiator Transfer Engine with FIFOs

T
ar

g
et

 C
o

n
tr

o
l M

u
lt

ip
le

xe
r

PCIM_LC VOYAGER

IFIFO_OUT

IFIFO_IN

IADDR

ICONTROL

LDOUT

LDIN

LADDR

LWE

LRE

LINT_N

TFIFO_OUT

TFIFO_IN

TADDR

TCONTROL

PCI_TOP

PCI
BUS

X8557

Figure 1:   Synthesizable PCI Bridge Block diagram

May, 1999 Data Sheet

 

2 0 0



Synthesizable PCI Bridge Design Examples

2 - 32 May, 1999

Design Example Facts
Features SB01 SB02 SB03 SB07 SB08

Initiator Functions

Separate read and write FIFOs (unidirectional) ✔ ✔ ✔ ✔ ✔

Block data transfer engine (DMA) ✔ ✔ ✔ ✔ ✔

Programmable Burst sizes fixed by transfer counter ✔ ✔ ✔ ✔ ✔

Auto data delivery (handles terminations) ✔ ✔ ✔ ✔ ✔

Discard counter to prevent deadlock ✔ ✔ ✔ ✔ ✔

Initiator address counter ✔ ✔ ✔ ✔ ✔

Target Functions
BAR 0 - Supports single data phase transfers ✔ ✔ ✔

TBD TBD

BAR 0 - Region 1 demonstrates doorbells ✔

BAR 0 - Region 2 demonstrates mailboxes ✔

BAR 0 - Region 3 demonstrates long latency accesses ✔

BAR 0 - Region 4 contains control registers for initiator ✔ ✔ ✔

BAR 1 - Separate read and write FiFOs (unidirectional) ✔

BAR 1 - Delayed completion discard after time-out ✔

BAR 1 - Generates target abort on address wrap ✔

Target address counter ✔ ✔ ✔

Target functions independent of initiator ✔ ✔ ✔

Bus Width
32 Bit ✔ ✔ ✔ ✔

64 Bit ✔

Bus Frequency
33 MHz ✔ ✔ ✔ ✔ ✔

66 MHz ✔

HDL Support
Verilog ✔ ✔ ✔ ✔ ✔

VHDL ✔ ✔ ✔

Supported Families/LogiCORE Product
SpartanXL / PCI32 V3.0 ✔

XLA / PCI32 V2.0 ✔ ✔ ✔

Virtex / PCI32 V3.0 ✔

Virtex / PCI64 V3.0 ✔

Device Features Used
Distributed RAM FIFOs ✔ ✔ ✔

Block RAM FIFOs ✔ ✔

Resource Utilization
CLBs Used1 Up to 990 Up to 530 Up to 530 TBD TBD

These Reference Designs are provided as-is under the Reference Design license agreement. See chapter 9 of the Xilinx PCI Data Book

1. The CLB count includes the full design and PCI interface. Actual count depends on the implemented feature set. The bridge design 
does not use any I/O.



May, 1999 2 - 33

Functional Description
This design example supports target functionality in two
memory spaces. Initiator functionality is controlled by writ-
ing into registers. The local bus interface signals are distinct
for each block in the design, allowing blocks to be added or
removed. Data transfer is pipelined for high clock rate. The
functional description listed here describes the entire syn-
thesizable bridge design, certain versions will contain a
subset of this functionality as listed in the facts table.

BAR0 Configuration
BAR0 is configured as a 4 kilobyte MEM space which maps
to a number of registers. This space does not support mul-
tiple data phase transfers. All accesses to this space termi-
nate with target disconnect with data.

This space is logically divided into four regions based on
functionality. The four regions, and the functions of the reg-
isters, are discussed below.

Region One: Doorbells

Register DBELL_P1 is a PCI-to-local doorbell. A PCI agent
may create an interrupt on the local side by setting any bit
of the register. A PCI agent is permitted to read back the
status of this register with no side-effects.

When the local side services the interrupt, it reads this reg-
ister to determine the cause of the interrupt, then clears the
interrupt by writing a one to that bit. The local side may read
this register without side-effects.

Similarly, DBELL_L1 is a local-to-PCI doorbell. To prevent
spurious interrupts, an interrupt may not be cleared by the
agent that requested it. The recipient of the interrupt must
clear the interrupt. To enforce this, doorbell register bits
may not be cleared from the requesting side. Before door-
bell interrupts may occur, the doorbell interrupt enable bits
in the CONTROL register must be set.

Region Two: Mailboxes

Register MBOX_P1 is a PCI-to-local mailbox. A PCI agent
may deliver mail to an empty mailbox for a local agent to
pick up. When a PCI agent writes to this register, the data
is registered and a “full” flag is set. Subsequent writes to a
full mailbox have no effect. The PCI agent may not read
back delivered mail. Reads of the mailbox from the PCI bus
side return the state of the full flag (replicated in all bits).

When the local side reads the mailbox, the “full” flag is
cleared. Subsequent reads of an empty mailbox return the
last valid data present in the mailbox.

Similarly, MBOX_L1 is a local-to-PCI mailbox. The “full” flag
may be monitored in two ways. Mailbox “full” flags are al-
ways observable in the CONTROL register, so both PCI
agents and local agents may poll the CONTROL register to
watch for new messages. Optionally, full mailboxes may
create interrupts. Interrupts are created on the recipient’s

side, and are cleared by reading the mailbox. Before mail-
box interrupts may occur, the mailbox interrupt enable bits
in the CONTROL register must be set.

Region Three: Bounded Latency Accesses

The two registers in this region are used for demonstrating
bounded latency non-burst accesses. This type of access
may be used in situations where the user application has a
short latency with a known upper bound of 16 PCI clocks
from the time the initiator asserts FRAME#. This is done by
inserting wait states until the target is capable of completing
the transaction.

Register BL_CTRL controls the initial latency of read and
write operations for itself and BL_DATA. Only the least-sig-
nificant four bits of the register are implemented, and the
register is only accessible from the PCI bus. The local side
has no access to this register, so local reads will return all
zeroes and writes have no effect.

The second register, BL_DATA, is a general purpose, read/
write register that responds according to the settings in
BL_CTRL. This data register is only accessible from the
PCI bus. The local side has no access to this register, so lo-
cal reads will return all zeroes and writes have no effect. 

Region Four: Control Registers

The first three registers in this region control the initiator
transfer engine.

Register XFER_LEN is used to indicate the length of the
data block to be transferred. The low half of the register is
not implemented. The high half is implemented as a load-
able 16-bit counter. 

This register is accessible from both the PCI bus and local
bus, and may be read at any time. Status of transfers in
progress may be obtained by reading this register. With
each successful transfer, the counter decrements.

Register XFER_PADR contains the current PCI bus ad-
dress for transfers performed by the transfer engine. De-
pending on the direction of the transfer, this address may
be a source or destination.

This register is accessible from both the PCI bus and local
bus, and may be read at any time. Status of transfers in
progress may be obtained by reading this register. With
each successful transfer, the address increments.

Register XFER_LADR contains the current local address
for transfers performed by the transfer engine. Depending
on the direction of the transfer, this address may be a
source or destination. Only the low half of this register is im-
plemented.

This register is accessible from both the PCI bus and local
bus, and may be read at any time. Status of transfers in
progress may be obtained by reading this register. With
each successful transfer, the address increments.



Synthesizable PCI Bridge Design Examples

2 - 34 May, 1999

These registers must not be written to while the initiator is
active. To ensure this does not occur, writes to these regis-
ter are disabled while the initiator is active.

BAR1 Configuration
BAR1 is configured as a 64 kilobyte MEM space which
maps to the target FIFOs. This space supports multiple
data phase transfers. Transfers beyond the end of the ad-
dress space result in target abort. For all other accesses,
this region will respond according to how it is accessed.
Consult the PCI specification regarding delayed transac-
tions. Data transfer between the local side and PCI bus is
achieved using retries and delayed transactions as needed.

Posted Writes

The target performs posted writes. On writes to an idle tar-
get, the FIFO accepts incoming data until it is full or the
write transaction has ended, whichever occurs first. In the
event of a full FIFO, the target issues a disconnect. After the
PCI transaction is complete, the target empties the FIFO by
writing the data out to the local side until the FIFO is empty.
To achieve this, the target latches the destination address
for use during write out.

On writes to a busy target (the FIFO is still busy from the
previous transaction) the target responds with retry, without
putting the request in a retry queue.

Prefetched Reads

For reads, the target may not anticipate the length of the
transaction or have the data available in time. For this rea-
son, the target puts the transaction in a retry queue and re-
sponds with a retry termination. Then the target prefetches
data to fill the FIFO. When the initiator returns to retry the
transaction, the data will be available.

If the initiator returns to retry the transaction, and does not
completely empty the FIFO, the FIFO is flushed after the
transaction is complete. If the initiator does empty the FIFO,
and attempts to read more, the target issues a disconnect.

If the initiator never retries the original transaction, dead-
lock may occur. For this reason, there exists a discard timer
that signals a waiting delayed completion should be dis-
carded. This timer times out after 32,768 PCI clocks. This
period may be shortened to allow simulation of this event in
a reasonable amount of time.

Register File Interface
The operation of this block is synchronous to the PCI clock.
This block contains all the control and status registers dis-
cussed in the functional description. The local bus access
port is defined in Table 1.

Target FIFO Interface
The operation of this block is synchronous to the PCI clock.
This block is interfaced to two FIFOs; one is the target read
(TRF) FIFO, and the other is the target write (TWF) FIFO.

The FIFOs are identical, but data flows in opposite direc-
tions. Table 2 lists the signals used in the interface.

Initiator FIFO Interface
The operation of this block is controlled by the contents of
registers in the register block. This block is interfaced to two
FIFOs, similar to the memory interface block. One is the ini-
tiator read (IRF) FIFO, and the other is the initiator write
(IWF) FIFO.

The FIFOs are identical, but data flows in opposite direc-
tions. A description of a FIFO follows in the FIFO section.
Table 3 lists the signals used in the interface.

Table 1: Local Bus Register Interface

Name Direction Function
LWE input Write enable for registers

LRE input Read enable for registers

LADDR input Address input

LDIN input Data input

LDOUT output Data output

LINT_N output Active low local interrupt

Table 2: Local Bus Target Fifo Interface

Name Direction Function
TRF_LD
TWF_ST

output
output

Data requested or available

TRF_ADDR
TWF_ADDR

output
output

Transfer starting address

TRF_AF, 
TWF_AE

output Transfer almost done flag

TRF_WR, 
TWF_RD

input FIFO write and read enable

TRF_DIN
TWF_DOUT

input
output

Data transfer ports

Table 3: Local Bus Initiator Fifo Interface

Name Direction Function
IWF_LD
IRF_ST

output
output

Data requested or available

IF_ADDR output Transfer starting address

IWF_AF, 
IRF_AE

output Transfer almost done flag

IWF_WR, 
IRF_RD

input FIFO write and read enable

IWF_DIN
IRF_DOUT

input
output

Data transfer ports



May, 1999 2 - 35

Pinout
The register file and FIFO interface pinouts are not fixed to
specific FPGA I/O pads, allowing flexibility in customization.
The PCI bus specific signals are constrained as part of the
LogiCORE PCI32 implementation.

As shipped, all of the register file and FIFO interface signals
are brought off-chip, but it is not necessary that any inter-
face signals be brought off chip at all in single FPGA de-
signs.

Core Modifications
Modifications can be done to remove the initiator function-
ality or selected portions of the target functionality. The full
design may be expanded as needed or reduced to a very
small subset of the original design. The PCI interface itself
is also configurable by the designer.

Verification Methods
This design example includes a system level testbench that
simulates a four-slot PCI system. This simulation testbench
includes a behavioral host bridge (with programmable arbi-
ter) capable of generating burst transactions and a pro-
grammable behavioral target.

Recommended Design Experience
The challenge to implement a complete PCI design varies
depending on configuration and functionality of your appli-
cation. We recommend previous experience with building
high-performance, pipelined FPGA designs using the Xilinx
implementation software and familiarity with either VHDL or
Verilog.

Reference Design License
This design is covered under the Xilinx Reference License
Agreement. You can find a copy of this license agreement
in the Xilinx PCI Data Book in chapter 9, and on-line in the
PCI Master and PCI64 Lounges. 



Synthesizable PCI Bridge Design Examples

2 - 36 May, 1999



May, 1999 2 - 37

Nallatech Limited
10-14 Market Street 
Kilsyth, Glasgow 
G65 0BD 
Scotland 
Phone: +1 44 7020 986532
Fax: +1 44 7020 986534
E-mail: info@nallatech.com
Website: www.nallatech.com

Introduction
This board allows designers to quickly evaluate the perfor-
mance of Xilinx’s 64 bit / 66 MHz PCI Core including data
throughput capabilities across the PCI bus to an on-board
SDRAM SODIMM module.

Expansion capability is provided through an interface stan-
dard known as DIME. Two DIME module sites are present
on the PCI card providing users with the ability to build cus-

tom systems from a variety of solutions provided by this
royalty free, open module standard.

Features
• Universal PCI Card
• PCI 2.2 Compliant
• Supports 3.3V and 5V VIO voltages using auto-sensing

Circuitry
• Supports 32 & 64 bit PCI in frequencies up to 66 MHz
• Requires only a 5V supply from the Host Motherboard
• Configured over SelectMap Interface from Flash

Memory via 95144XL CPLD
• Flash Memory reconfigured via Xilinx MultiLINX

Download Cable
• 50Mbytes per second configuration rate
• CPLD Flash booting source files included with board
• Direct Virtex Configuration using MultiLINX Download

Cable
• Image Processing Demonstration Bitstream
• Image Processing Demonstration Software
• PCB Design Files for PCI Interface available
• 4M x 64 (32Mbytes) SDRAM in SODIMM Socket
• LEDs showing Power Good for 5V, 3.3V, 2.5V & 1.8V
• LEDs Indicating Vio level and whether 3.3V or 5V

Bitstream has been loaded
• 2 DIME Module Sites for Customization and Expansion
• 50MHz and Programmable Oscillator

Figure 1:   Nallatech PCI64 Prototyping Board

PCI64 PCI Prototyping Board

May, 1999 Advanced Data Sheet

 

2 01 0



PCI64 PCI Prototyping Board

2 - 38 May, 1999

Options
All options are available directly from Nallatech. 

• DSP and Image Processing Core, Compliant with DIME
Distributed Image Processing Level 1 Standard

• JTAG FPGA Configuration Software (for FPGAs on
DIME Modules)

• Reprogram Bitstream in Boot Flash Via PCI Interface
(for easy field upgrades)

• Ballyvision - NTSC/PAL Video Capture and Display
DIME Module

• Ballyblue - Dual V1000 Virtex FPGA DIME Module for
over 2 Million Gates

• Ballytest - DIME Connector Breakout Module
• Ballydiff - Low Voltage Differential Signalling, LVDS,

DIME Module
• Custom DIME Module Design Service is Available 

General Description 
The Nallatech PCI64 Prototyping Card is provided with the
Xilinx PCI64/66 Design Kit, available from Xilinx. This card
allows designers to quickly evaluate the performance of the
Xilinx PCI64/66 LogiCORE design in their system. The
firmware and software provided clearly demonstrate the
capabilities of the LogiCORE design along with the perfor-
mance enhancements that the Virtex offers for DSP appli-
cations.

Further, the Nallatech PCI64 board demonstrates how to
build a universal PCI card. A universal PCI interface
requires the inclusion of diode clamps to the 3.3 V rail for a
3.3 V signaling environment, and the exclusion of these in a
5 V signaling environment. To accomplish this, the Virtex
FPGA must load different bitstreams depending on the sig-
nalling environment. This card demonstrates one way of
achieving this. 

The Xilinx PCI64 Design Kit provides the user with a com-
plete PCI design example. This includes

• Xilinx 64 bit, 66 Mhz PCI LogiCORE
• Xilinx PCI Bridge interface Core
• Xilinx SDRAM Interface Core
• An image processing demonstration design including a

Gaussian Noise Generator and 3 x 3 convolvers

The sources are available for users that have valid licenses
for the various cores.

The block diagram, seen in Figure 2, shows the basic inter-
connectivity of the various interfaces to the Virtex FPGA. 

Two pieces of software demonstrate the performance of
the PCI bus and the DSP processing capabilities of the Vir-
tex FPGA. 

The Virtex FPGA is configured at power on over its Select
Map interface from an high speed Flash memory. An
XC95144 CPLD controls the Flash and the transfer of data

to the FPGAs Select Map port. This data is transferred over
the selectmap port at 50MBytes/Sec, thus allowing the
FPGA to be configured in a few milliseconds. This is a 50x
improvement over the fast serial mode transfer rate.

Two DIME Module sites provide the user with access to an
ever growing variety of interfaces and data processing
nodes. In fact full system solutions can be developed with
just this card and one or two DIME modules. Therefore the
user often need not bother with the development of custom
PCBs for a solution to their system problem. For more
details on available DIME modules and more information
on the standard, go to the Nallatech web site, 

www.nallatech.com

Figure 2:   PCI64 Card Block Diagram

Configuration
The FPGA must be configured in less than 100 mS in order
for the PCI interface to be up and running when the PCI bus
is scanned for available devices. In order to achieve this
the Select Map configuration mode is utilized together with
an Intel Fast Flash memory. An XC95144 CPLD is used to
control the booting process.

The Flash memory can be erased and reprogrammed with
new bitstreams using the Xilinx MultiLINX Download Cable.
The CPLD, under the control of either the PCI signalling
voltage (Vio) or the MultiLINX cable, if connected, will enter
one of several modes:

Default Mode (no MultiLINX cable connected)
• Load 3.3 V PCI bitstream from Flash Memory
• Load 5 V PCI bitstream from Flash Memory

Program Mode (MultiLINX cable connected)
• Erase 3.3 V PCI bitstream
• Erase 5 V PCI bitstream
• Program 3.3 V PCI bitstream
• Program 5 V PCI bitstream
• Pass-through mode for direct programming of Virtex

Flash
Memory

Select Map I/F
Config
Control
EPLD

D
I
M
E

S
l
o
t

0

D
I
M
E

S
l
o
t

1

XCV300
VIRTEX
FPGA 4Mx64

SDRAM
SODIMM
Module

93

2420

64

68

PCI BUS 64 Bit, 66MHz
x9024

MultiLINX
Interface



May, 1999 2 - 39

The default mode demonstrates how a universal PCI card
can be built. The Program mode gives the user control over
the flash chip.

Alternatively, Nallatech have a product that can be added to
a user’s PCI interface that allows the Flash Configuration
Memory to be reprogrammed directly over the PCI inter-
face using a software Utility. This allows users of the PCI
logicore to easily integrate Firmware Field upgrades into
their products. 

Software
Two software programs are included, demonstrating the
performance of the PCI bus and the DSP processing capa-
bilities of the Virtex FPGA. 

The first program provides a GUI interface to the PCI
Bridge Design part of the PCI LogiCORE. The SDRAM is
connected to the back of this bridge and DMA transfers to
and from this memory can be performed and the transfer
rate is displayed. This interface also provides the user with
the basic operation of the Xilinx PCI Bridge Design.

Another GUI-based program allows the user to download
an image to the SDRAM memory. Noise can then be added
to the image and functions such as convolution or edge
detection can be performed on the image. The resultant
image is then stored in another part of the SDRAM for col-
lection by the GUI. The function is also performed on the
PC and the time to complete the functions is logged for
comparison. Figure 3 shows the user interface to the Image
Processing Demonstration program.

Figure 3:   PCI Bridge Design Demo



PCI64 PCI Prototyping Board

2 - 40 May, 1999

Figure 4:   GUI for Image Processing Demo



May, 1999 2 - 41

Virtual Computer Corporation
6925 Canby Ave. #103
Reseda, CA 91335 USA
Phone: +1 818-342-8294
Fax: +1 818-342-0240
E-mail: info@vcc.com
Website: www.vcc.com

Introduction
To facilitate rapid development of PCI Designs using the 
Xilinx LogiCORE PCI32 Interface, VCC has developed the 
HotPCI Spartan Prototyping Board. This allows the 
designer to quickly develop, modify, and test Xilinx Logi-
CORE PCI32 designs in-system. The HotPCI Board is pro-
vided with the Xilinx PCI32 Design Kit and should be used 
in conjunction with the LogiCORE PCI32 Spartan Interface.

Features
The Spartan HotPCI board comes standard with the follow-
ing hardware and features:

• 5 V PCI 2.1 Compliance
• Xilinx Spartan XCS40-4, reconfigurable via PCI bus or

Xchecker cable

• Xilinx XC95108-10 for reconfiguration management
• 8x128K bytes of fast SRAM organized as 

2 Independent Banks of 32-bit RAM (four 8-bit x 128K)
• Configuration Flash 128KB for initial configuration
• Configuration RAM Cache 128KB for reconfiguration
• Programmable Clock Generator (360KHz to 100 MHz)
• Mezzanine Connectors for daughter cards
• LEDs to indicate configuration finished (DONE), 5 V,

and 3.3 V
• 3 Split Power Planes & 1 Ground Plane
• 4 Signal Layers
• Xchecker/Download Cable Module
• PCI Demo bitstream
• Backend design example files for RAM interface
• PCB design files for the PCI Interface only
• Reference drivers for Windows 95 and Windows NT

Options
All options are available directly from VCC. See the Order-
ing Information chapter for more details.

• Programmable Voltage Control Module (3.3v to 1.8v)
• License for the Configuration Cache Manager
• Prototyping Daughter Card
• XC40125 Extended Logic Daughter card
• XC6264 RPU Daughter Card
• HotPCI Card with a Xilinx XC4062XL FPGA

 

Figure 1:   Spartan HotPCI Spartan Prototyping Board 

HotPCI Spartan Prototyping Board

May, 1999 Data Sheet

 

2 0 0



HotPCI Spartan Prototyping Board

2 - 42 May, 1999

Figure 2:   Spartan HotPCI Block Diagram

General Description 
The Spartan HotPCI board is a PCI bus based general pur-
pose PCI Prototyping Board, which is provided with the Xil-
inx PCI32 Design Kit (see the Ordering Information chapter
of this data book for details). When used in conjunction with
the LogiCORE PCI32 Spartan Interface, designers can
quickly modify and test their PCI designs in-system. It fea-
tures the XCS40 FPGA as the PCI bus interface chip, and a
single bank of SRAM plus a VCC proprietary reconfigura-
tion system, the Configuration Cache Manager (CCM).
The Spartan HotPCI Spartan Prototyping Board is valuable
for evaluating, customizing, and verifying the Xilinx Logi-
CORE PCI32 product line. The mezzanine daughter card
connectors offer expandability for prototyping additional
features or extending the programmable logic capabilities
of the HotPCI board. A series of daughter cards are avail-
able from VCC, including a prototyping card for wire-wrap
projects, an extended logic card with the XC40125, and a
XC6200 Reconfigurable Processing Unit (RPU) card offer-
ing microsecond dynamic partial reconfiguration. 

Software
The HotPCI Spartan Prototyping Board is supplied with
drivers made by Vireo Software, Inc. The Xilinx PCI32
Design Kit also includes driver development tools from

Vireo. Together with VCC’s HotPCI Board, Vireo’s develop-
ment tools allow easy customization and prototyping of a
complete PCI system. See the Driver::Works Windows
Device Driver Development Kit Version 2.0 and the VtoolsD
Windows Device Driver Development Kit Version 3.0 data
sheets for more details on the driver development tools.
Included with the board is also a bitstream and a Windows
‘95 application CD that allow demonstration of the card.

Functional Description
The Spartan XCS40 FPGA contains the Xilinx LogiCORE
PCI32 Interface Macro and the backend design. VCC sup-
plies a customized backend that allows users to communi-
cate with two fully independent 32-bit banks of RAM and
the Configuration Cache Manager (CCM). The CCM con-
trols the Run-Time Reconfiguration (RTR) behavior of the
system. 

The HotPCI board has two independent buses, each with
32-bit data and 24-bit address. There is a daughter board 
I/O connector for each of these two buses. 

Configuration with the CCM
At power-on the FPGA is set to slave serial mode; then the
CCM obtains the configuration data from flash and loads
the FPGA. Through the PCI bus, the user can load a new

Configration
      Cache

Power ON
Loader

To HOST                 via PCI Bus

A Bus

32-Bit Data     
24-Bit Address

Connector
A

Configuration         & Control Signals

BANK A

Xilinx LogiCore PCI Interface

Run-Time
Loader

Runtime Readback

Configration
      Flash

8

RAM
32-bit

32 32
BANK B

RAM
32-bit

Connector
B

B Bus

RAM Bank A: 512KB
RAM Bank B: 512KB
(opt.) Bank A:     2MB
(opt.) Bank B :    2MB
__________
*  HOS -VCC’s Hardware 
Operating System Interface

XCS40

XC95108

32-Bit Data     
24-Bit Address

Flash: 128KB   
Cache: 128KB
(opt.) Flash: 2MB 
(opt.) Cache: 512KB

CCM

User Programmable Logic

H.O.T. II - HOS*



May, 1999 2 - 43

configuration into the Configuration Ram Cache. The user
then writes to the CCM to start the reconfiguration of the
FPGA. During this time access to the board is disabled by
the driver. When the FPGA comes back on-line it signals
the driver, which reloads the PCI Header information into
the LogiCORE PCI Core. A 128KB Configuration Cache
RAM can hold 3 XCS40 configurations. See Figure 2 for a
block diagram of the board.

Configuration with an Xchecker cable
Configuration can also be performed through an Xchecker
cable or download cable. The supplied Xchecker module
occupies one of the daughter card I/O connectors. The PCI
bus of the host computer must be reset when this occurs. 



HotPCI Spartan Prototyping Board

2 - 44 May, 1999



May, 1999 2 - 45

DriverWorks Windows Device Driver 
Development Kit Version 2.0

Compuware NuMega
9 Townsend West
Nashua, NH 03063
Phone: 1 800-4NUMEGA (1 800 468-6342)

+1 603 578-8400
Fax: +1 603 578-8401 
E-mail: customer_service@numega.com
Technical support:
www.numega.com/support/support.shtml
Website: www.numega.com

Introduction
To facilitate rapid development of PCI Designs using the 
Xilinx LogiCORE PCI32 Interface, Vireo is providing the 
DriverWorks Windows Device Driver Development Kit. This 
kit includes an interactive GUI Wizard that runs in conjunc-
tion with the Microsoft Visual C++ 4.2 and later. Provided at 
no extra cost with the Xilinx PCI Design Kit, is a full-featured 
version of DriverWorks licensed for prototyping fully func-
tional drivers and testing them with the HotPCI board. An 
unrestricted license is available directly from Vireo. 

Support
Support for DriverWorks is provided only from Vireo. See 
Vireo’s home page for contact instructions and other 
details.

Features
• Windows NT support 
• Windows 98 support 
• DriverWizard, Vireo’s Code Generation Wizard 

Interface. The Wizard includes automated support for 
all PCI functions, including:
- PCI Configuration
- DMA
- Mapped Memory
- Interrupt handling
- IO Ports
- Application interface
- Registry interface

- Plug and Play handling
• Support for MSVC++ 4.2 and later
• C++ Class Library for NT/WDM driver development 
• Full library source code is included
• Dozens of sample drivers, with full source code
• Full Plug and Play support
• Driver Access Architecture (DAA) supports portability 

between Windows NT, Windows 95, Windows 98, and 
Win32 Driver Model (WDM)

• DriverMonitor - monitor driver activity without a 
debugger. 

• Ready-to-use examples tested on real-world hardware 
• Full technical support through Vireo
• RISC platform support 
• More than 700 pages of printed and online 

documentation

Description
DriverWorks is a next-generation environment for device 
driver development based on a powerful and flexible C++ 
class library coupled with a powerful code generation wiz-
ard. 

Over time, Windows application development has evolved 
to class libraries such as MFC and development tools such 
Microsoft’s Application Wizard. Vireo provides a similar en-
vironment for Windows NT and WDM device driver devel-
opment.

Figure 1:   DriverWizard GUI (earlier version shown)

May, 1999 Data Sheet

 

2 0 0



DriverWorks Windows Device Driver Development Kit Version 2.0

2 - 46 May, 1999

Figure 2:   DriverWizard GUI (earlier version shown)

The DriverWorks class library offers thousands of lines of 
tested code that reduce many complex tasks to simple li-
brary calls. In fact, DriverWorks offers by far the most com-
plete device driver library available.

DriverWorks also ships with complete examples that are 
designed to be used as a basis for further development.

DriverWorks also includes Vireo’s unique DriverWizard 
technology, shown in Figures 1 & 2. DriverWizard guides 

you through a series of steps that identify many character-
istics of your device. DriverWizard then generates source 
code tailored to your driver. The DriverWorks class library, 
framework, and Wizard provide access to tens of thou-
sands of lines of working, debugged code that will allow you 
to develop your device drivers quickly.

DriverWorks implements Vireo's Device Access Architec-
ture (DAA) interfaces. Using DAA, device driver source 
code can be easily ported between Windows 95, Windows 
98, and all versions of Windows NT. Drivers written with 
DAA provide optimal performance on each platform while at 
the same time offering a common set of objects and inter-
faces that provide source code portability with no limitations 
or overhead.

DriverWorks requires Microsoft Visual C++ version 4.2 or 
later, and the Microsoft NT DDK, or the Windows 98 DDK. 
DriverWorks drivers have been tested on both Alpha and 
Intel single and dual processor platforms.

DriverWorks incorporates years of class-library design ex-
perience into a clean, object-oriented system that accurate-
ly reflects the underlying system architecture while avoiding
the use of arcane C++ language features.

The DriverMonitor tool, shown in Figure 3, provides a
unique workbench for loading, testing, tracing, and unload-
ing your device driver.

Figure 3:   DriverMonitor Interface



May, 1999 2 - 47

Licensing
The version of DriverWorks included in the Xilinx PCI De-
sign Kit is fully functional and includes all libraries and soft-
ware. It is licensed for use in driver development and
prototyping only. Vireo offers Xilinx PCI customers the op-
portunity to purchase a royalty-free distribution license.
Contact Vireo for pricing and details.

Vireo provides free bug fixes available for immediate down-
load. Timely new versions provide support for a new com-
piler versions, and operating system revisions. Vireo also
provides new examples and bug fixes on a regular basis. 

Technical support on this product is available only through
Vireo Software Inc.



DriverWorks Windows Device Driver Development Kit Version 2.0

2 - 48 May, 1999



May, 1999 2 - 49

VtoolsD Windows Device Driver 
Development Kit Version 3.0

Compuware NuMega
9 Townsend West
Nashua, NH 03063
Phone: 1 800-4NUMEGA (1 800 468-6342)

+1 603 578-8400
Fax: +1 603 578-8401 
E-mail: customer_service@numega.com
Technical support:
www.numega.com/support/support.shtml
Website: www.numega.com

Introduction
To facilitate rapid development of PCI Designs using the 
Xilinx LogiCORE PCI Interface, Vireo is providing the 
VtoolsD Windows Device Driver Development Kit. This kit 
includes an interactive GUI Wizard that allows the creation 
of a drive driver framework with a few simple selection and 
mouse clicks. Both the Microsoft Visual C++ 4.2 and later 
and the Borland C++ 4.x and later compilers are supported. 
Provided at no extra cost with the Xilinx PCI Design Kit, is 
a full-featured, fully functional version of VtoolsD licensed 
for prototyping drivers and testing them with the HotPCI 
board.

Support
Support for VtoolsD is provided only from Vireo. See Vireo’s
home page for contact information and other details.

Features
• Windows 95, 98, 3.X Support
• VtoolsD Interface
• Works with MS or Borland C/C++ compilers
• More than 50 sample drivers

- Over 2 dozen example drivers written in C 
- Over 1 dozen example drivers written in C++

• Detailed on-line and printed documentation
• C and C++ system interfaces
• C Run Time Library
• C++ Class Library

• Includes complete source code for all libraries
• Thunks and wraps for every VMM/ VxD service and 

handler 
• Microsoft DDK components bundled with VtoolsD for 

Windows 95
• Debug kernel executables and symbol tables 
• WDEB386 system-level debugger for VxDs 
• More than 1900 online help topic pages
• DDK documentation and help files
• Supports Driver Access Architecture (DAA)
• QuickVxD Wizard for quick device driver framework 

development. 
• Driver Access Architecture (DAA) supports portability 

between Windows NT, Windows 95, Windows 98, and 
Win32 Driver Model (WDM)

• Complete access to over 900 interfaces from C/C++ 
• More than 60 classes designed for VxD operation 
• More than 80 ANSI-compatible C Run Time Library 

functions 
• DriverMonitor - monitor driver activity without a 

debugger. 
• QuickVxD source code generator - a VxD Wizard 
• Microsoft and Borland compiler support 
• Dynamic VxD Loader 
• VxD Viewer 

Figure 1:   VtoolsD  QuickVxD GUI

May, 1999 Data Sheet

 

2 0 0



VtoolsD Windows Device Driver Development Kit Version 3.0

2 - 50 May, 1999

Description
VtoolsD is the easiest and fastest way to build Virtual De-
vice Drivers (VxDs) for Microsoft Windows. Designed for 
both novice and experienced VxD developers, VtoolsD pro-
vides the comprehensive C or C++ solution for all VxD de-
velopment challenges. Shipping since July 1994, VtoolsD is 
a mature, professional product used by thousands of devel-
opers world wide.

VtoolsD supports all of the system interfaces that the Mi-
crosoft DDK provides, plus an additional set of services pro-
vided by the VtoolsD libraries. VtoolsD can be used to write 
any kind of VxD, and makes that easier than it would be us-
ing the DDK. 

DriverWorks implements Vireo's Device Access Architec-
ture (DAA) interfaces. Using DAA, device driver source 
code can be easily ported between Windows 95, Windows 
98, and all versions of Windows NT. Drivers written with 
DAA provide optimal performance on each platform while at 
the same time offering a common set of objects and inter-
faces that provide source code portability with no limitations 
or overhead.

The DriverMonitor tool, shown in Figure 2, provides a
unique workbench for loading, testing, tracing, and unload-
ing your device driver.

VtoolsD requires either MSVC++ 4.2 or later or the Borland
C++ 4.X and later compilers. The Microsoft DDK is not re-
quired to use VtoolsD.

Licensing
The version of VtoolsD, included in the Xilinx PCI Design
Kit, is fully functional and includes all libraries and software.
It is licensed for use in driver development and prototyping
only. Vireo offers Xilinx PCI customers the opportunity to
purchase a royalty-free distribution license. Contact Vireo
for pricing and details.

Vireo provides free bug fixes available for immediate down-
load. Timely new versions provide support for a new com-
piler versions, and operating system revisions. Vireo also
provides new examples and bug fixes on a regular basis. 

Technical support on this product is available only through
Vireo Software Inc.

Figure 2:   DriverMonitor Interface



May, 1999 (Version 1.0) 2 - 51

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-377-3259
E-mail: Techsupport: hotline@xilinx.com

Feedback: logicore@xilinx.com
URL: www.xilinx.com/pci

Introduction
The synthesizable PCI Power Management design is a
Reference Design for use with the LogiCORE PCI32 Spar-
tan/Spartan XL and PCI32 4000/4000XLA . It is delivered in
both Verilog and VHDL. This example shows how the capa-
bilities linked list structure may be implemented along with
the LogiCORE PCI32 Interface and the user backend func-
tion in the Xilinx FPGA.

This design is demonstrated as an add-on module to the
Xilinx ping design. Please refer to the PCI application note
Ping Application Example for details (available from Xilinx’s
customer-only PCI lounge).

This data sheet assumes that you are familiar with the PCI
V2.2 specification and the PCI Power Management V1.1
specification. If you are not familiar with this information,
please review the PCI Local Bus Specification, Revision 2.2
and the PCI Bus Power Management Interface Specifica-
tion, Version 1.1 available from the PCI Special Interest
Group (www.pcisig.com ).

Features
• Demonstrates how to implement the capabilities linked

list in the LogiCORE PCI32 Interfaces
• Demonstrates how to implement the user-defined

configuration space register
• Supports for up to 4 PCI function power management

states (D0-D3)
• Supports PMCSR_BSE register for PCI bridge specific

functionality
• Supports optional Data register to report state-

dependent operating data

Synthesizable PCI Power 
Management Design Example

May, 1999 (Version 1.0) Data Sheet

R
Reference Design Facts

 Design Specifics
Tested LogiCORE 
PCI Interfaces

PCI32 4000 V2.0.2
PCI32 Spartan V2.0.3
PCI32 4000XLA V3.0

PCI32 SpartanXL V3.0
Tested Devices1 XC4013XLT-1 PQ240

XC4028XLT-1 HQ240
XC4013XLA-09 PQ208

XCS30-4 PQ240
XCS30XL-4 PQ240

CLBs Used3 Up to 58
IOBs Used3 2

Tested Platforms 2

Workstation Flows Verilog XL 2.6, VSS 9802,
FPGA Compiler and A1.5iSP1

PC Flows MTI ModelSim PE/Plus V4.7h,
Foundation Express 3.1 and F1.5i

with Service Pack 1

Xilinx Core Tools M1.5isp1

Provided with the Reference Design
Documentation Synthesizable PCI Power

Management Application Note
Design File Formats VHDL, Verilog
Verification Tools VHDL\Verilog Testbench

Symbols VHDL, Verilog

Support
This Reference Design is provided as is under the Refer-
ence Design License Agreement, refer to chapter 9 in the 
Xilinx PCI Databook.
Notes:
1. Listed are the devices that Xilinx used to verify the de-
sign. Other devices may be used.
2. Listed are the design tools that Xilinx used to verify the 
design.
3. The CLB and IOB counts do not include the PCI inter-
face and the Ping application design. Actual CLB number 
depends on the core & device used.

 

8
0

0 May, 1999



Synthesizable PCI Power Management Design Example

2 - 52 May, 1999

General Description
This design implements an add-on PCI power manage-
ment module in Xilinx FPGA and is intended for use with
the LogiCORE PCI Interface V2.0 or V3.0. The power man-
agement module interfaces with the LogiCORE PCI32
interface and the backend application design (ping applica-
tion in this case). It is also compatible with Xilinx’s synthe-
sizable PCI bridge design examples.

This design contains banks of user-defined registers to
implement the PCI configuration space from address 0x40

to 0xFF. This register bank is compliant to the capabilities
linked list structure defined by both the PCI spec and the
Power Management spec. Since Vaux  pin is not supported
in this reference design, PME# event from D3cold is not sup-
ported.

This design does not define any Device-Class Power Man-
agement policy, which falls outside the scope of the Power
Management spec.

Functional Description
The Power Management spec defines a standard for four
basic power management operations: Capabilities Report-
ing, Power Status Reporting, Setting Power States, and
System Wakeup. These four operations are supported in
this reference design.

Xilinx’s LogiCORE PCI32 Interface allows user to enable
the Capabilities bit (Bit 4) in the Status register and to spec-
ify the address of the capabilities linked list in the 1-byte
Cap_Ptr field of the PCI Configuration Header. Refer to the
File Modification section for details.

Since the PCI32 Interface provides only the PCI Configura-
tion Header (Offset 0x00 to 0x3F), a User-defined Configu-
ration Register is needed to implement registers from
address offset 0x40 to 0xFF. This design implements an 8-
byte register to implement the Power Management register
block. This design also supports the RTL-level logic for the
PME generator.

Capabilities Linked List
In order for the software to determine if a specific PCI func-
tion is designed to support Capabilities Linked List, Bit 4 of
the Status register needs to be set and the first address of

Figure 3:   Synthesizable PCI Power Management Block Diagram



May, 1999 2 - 53

the linked list needs to be set to the Cap_Ptr register (Offset
0x34 for Header Type 0 & 1 devices) during design time.

This can be done during the web download of the PCI32
Interface or by editing the configuration file (cfg.v  or
cfg.vhd ). For each capabilities linked list, the first byte of
each entry contains the ID for that capability (01h for Power
Management). The next byte (Next_Item_Ptr) contains the
pointer to the absolute offset  in the function’s PCI Config-
uration Space for the next item in the list. Items must be
DWORD aligned . The last item in the list must have its
Next_Item_Ptr set to null .

Figure 4:   Capabilities Linked List

This design only implements the Power Management capa-
bilities linked list register.

Power Management Register Block
Figure 3 illustrates the PCI Power Management Register
Block definition. The first 2 bytes (Capabilities ID [offset = 0]
and Next Item Pointer [offset = 1]) are used for the linked list
infrastructure. The next 4 bytes (PMC [offset = 2], and
PMCSR registers [offset = 4]) are required for compliance
with the Power Management spec. The next byte (bridge
support PMCSR_BSE extensions [offset = 6]) is required
only for bridge functions, and the remaining byte Data reg-
ister [offset = 8] is optional for any class of function.

Figure 5:   Power Management Register Block

This design implements the complete register block with
user-defined configuration space (refer to next section).

Refer to the Power Management spec for detailed descrip-
tion of this register.

Capability ID and Next Item Pointer

Both the Cap_ID and the Next_Item_Ptr are 8-bit read-only
registers and their values are set by in the HDL code
(power_man.v  or power_man.vhd ).

PMC

This is a 16-bit read-only register which provides informa-
tion on the capabilities of the PCI function related to power
management. The information in this register is static and
known at design time. 

The register value is set in the HDL code. This design sup-
ports the optional D1 and D2 power states, PME# can be
asserted from D0, D1, D2 and D3hot , and no PCI clock is
required for the function to generate PME#.

PMCSR

This 16-bit read-write register is used to managed the PCI
function’s power management state as well as to enable/
monitor PMEs. 

PMCSR_BSE

This is an 8-bit read-only register implement in this design
to support PCI bridge functionality in PCI-to-PCI bridges.
The value is set to C0h in the HDL code. System designer
can modify PMCSR_BSE[7:6] for the specific bridge sup-
port or remove this register from the HDL code if the PCI
function is not a PCI-to-PCI bridge.

Data

This is an optional 8-bit read-only register that provides a
mechanism for the PCI function to report state dependent
operating data such as power consumed or heat dissipa-
tion. Typically the data returned through the Data register is
a static copy of the PCI function’s worst case “DC charac-
teristics” data sheet. This data, when made available to the
system software, could then be used to intelligently make
decisions about power budgeting, cooling requirements,
etc.

Bits Read/Write Description
15 Read/Write-Clear PME_Status

14:13 Read Only Data_Scale

12:9 Read/Write Data_Select

8 Read/Write PME_En

7:2 Read Only Reserved

1:0 Read/Write PowerState

Bits Description

7 BPCC_En (Bus Powered/Clock Control Enable)
6 B2_B3# (B2/B3 support for D3hot)

5:0 Reserved



Synthesizable PCI Power Management Design Example

2 - 54 May, 1999

If Data register is implemented, then the Data_Select  and
Data_Scale  fields of the PMCSR register must also be
implemented.

This register is implemented as a 16x8 ROM in the HDL
code and its value can be modified by user.

User-defined Configuration Space
The PCI spec defines a 256-byte configuration space and
Xilinx’s LogiCORE PCI32 Interface implements only the
PCI Configuration Header (first 40 bytes, offset 0x00 to
0x3F). Configuration space with address offset 0x40 to
0xFF can be added by the user. Please refer to the User
Definable Configuration Space section in the Configuration
Transfers chapter of the PCI32 User’s Guide.

The Power Management register block is implemented
using this user-defined configuration space (address 0x50
in this design, can be changed by user). Access to this
region is controlled by the “User Config Space Enable”
switch in the configuration file. This switch can be enabled
during the web download or by editing the configuration file.

This design allows different configuration data phase con-
trol conditions between the Power Management register
block and the backend design (ping example design in this
case). Output signals C_TERM and C_READY from the
backend design will go to the power_man instead of driving
the PCI interface, as is normally the case in the ping design
example. These two signals are named in the top-level
wrapper file as C_TERM_INT and C_READY_INT respec-
tively). Since this design will disconnect with data on the
first data phase during configuration cycles, it will drive
these two signals HIGH all the time. The Configuration
Phase Termination Control Multiplexer will multiplex
between these signals from ping and power_man with con-
trol signal c_switch . The multiplexer output will then drive
the C_TERM and C_READY of the PCI32 interface. 

Writing to a read-only register or unimplemented address in
the upper configuration space will be ignored but the trans-
action will be completed gracefully. Reading unimple-
mented address in the upper configuration space will return
zeros.

PME Generation
This optional PME# is an asynchronous signal. Two pins
(PME_N and WAKEUP_N) are added to implement this cir-
cuit. When the PCI function is programmed into a lower
power consumption state, it can request a change in its cur-
rent power management state and/or to indicate that a
PME (power management event) has occurred. The PME
in this design is the WAKEUP_N signal assertion by the
testbench.

Once PME# is asserted, this design will continue to drive
the signal low until software explicitly clears the PME_En bit
or clears the PME_Status bit. Since 3.3Vaux  pin is not sup-
port in this design, PME# cannot be asserted from D3cold

state and it will be system software’s responsibility to bring
it back to D0 uninitialized state.

Pinout
The new PME_N and WAKEUP_N pins are not fixed to
specific FPGA I/O pads. The PCI bus specific signals are
constrained as part of the LogiCORE PCI32 implementa-
tion.

Core Modifications
This design is released with all the RTL source codes and
run scripts for simulation and M1 implementation. It does
not include any PCI32 core related files (e.g. PCI32 core
netlist, ucf files, guide files, etc.) that are located in the src
directory of the PCI32 download.

Although this design is released with all the Ping backend
design, files are different from those in the Ping example.
Under the /example/source directory, a new file
(power_man ) is added and modifications are made to
ping_tb , pcim_lc/pcis_lc , cfg  and stimulus  files.

To run the Power Management reference design, download
the design from Xilinx’s PCI32 lounge. Unzipping the down-
load creates the example_pm directory. Move the
example_pm directory under the same directory where
example directory is located. The example_pm directory
contains all the design files and run scripts for this refer-
ence design.

Below is a description of the file differences.

The cfg file
• The Cap List Enable and the User Config Space Enable

switches are enabled 
• Capability List Pointer address is programmed to 0x50

(this address can be set to 0x40 to 0xFF by user)

The pcim_top/pcis_top file
• Add PME_N and WAKEUP_N ports
• Instantiate of the power_man module
• Reconnect the C_READY and C_TERM ports (refer to

Figure 1). Signals from backend design which used to
drive C_READY & C_TERM will connect to power_man
and power_man will drive C_READY & C_TERM in the
PCI32 interface

• Instantiate IBUF and OBUF for WAKEUP_N and
PME_N respectively for the Express flows

Users can enable the Power Management capabilities
linked list in their own designs during web download or by
editing the cfg  file under the src/xpci directory. Then
include the power_man  module and modify the
pcim_top/pcis_top  file.

Web download
• Enable the Cap List Enable box (note that the User



May, 1999 2 - 55

Config Space box will also be enabled)
• Double click on the Cap List Ptr field (address 34h) and

enter the Cap List Ptr address

Editing the cfg file
• Enable the Capability List Enable switch and the User

Config Space Enable switch
• Enter the Capability List Pointer address

Verification Methods
A simulation testbench is provided in both Verilog and
VHDL. This testbench first configures this design, then it

generates PCI transactions to test the Power Management
capabilities linked list, the I/O and memory registers.

Recommended Design Experience
Previous experience with Xilinx’s PCI design flow, Verilog
and VHDL is recommended to user of this reference
design.



Synthesizable PCI Power Management Design Example

2 - 56 May, 1999



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

11

FPGA Products



FPGA Products



May, 1999 3 - 1

Features
• Fast, high-density Field-Programmable Gate Arrays

- Densities from 50k to 1M system gates
- System performance up to 200 MHz
- 66-MHz PCI Compliant
- Hot-swappable for Compact PCI

• Multi-standard SelectIO™ interfaces
- 16 high-performance interface standards
- Connects directly to ZBTRAM devices

• Built-in clock-management circuitry
- Four dedicated delay-locked loops (DLLs) for 

advanced clock control
- Four primary low-skew global clock distribution nets, 

plus 24 secondary global nets 
• Hierarchical memory system

- LUTs configurable as 16-bit RAM, 32-bit RAM, 16-bit 
dual-ported RAM, or 16-bit Shift Register

- Configurable synchronous dual-ported 4k-bit RAMs
- Fast interfaces to external high-performance RAMs

• Flexible architecture that balances speed and density
- Dedicated carry logic for high-speed arithmetic
- Dedicated multiplier support
- Cascade chain for wide-input functions
- Abundant registers/latches with clock enable, and 

dual synchronous/asynchronous set and reset
- Internal 3-state bussing
- IEEE 1149.1 boundary-scan logic
- Die-temperature sensing device

• Supported by FPGA Foundation™ and Alliance
Development Systems
- Complete support for Unified Libraries, Relationally 

Placed Macros, and Design Manager
- Wide selection of PC and workstation platforms

• SRAM-based in-system configuration
- Unlimited reprogrammability
- Four programming modes

• 0.22-µm five-layer metal process
• 100% factory tested

Description
The Virtex FPGA family delivers high-performance, high-
capacity programmable logic solutions. Dramatic increases
in silicon efficiency result from optimizing the new architec-
ture for place-and-route efficiency and exploiting an
aggressive 5-layer-metal 0.22-µm CMOS process. These
advances make Virtex FPGAs powerful and flexible alter-
natives to mask-programmed gate arrays. The Virtex family
comprises the nine members shown in Table 1.

Building on experience gained from previous generations
of FPGAs, the Virtex family represents a revolutionary step
forward in programmable logic design. Combining a wide
variety of programmable system features, a rich hierarchy
of fast, flexible interconnect resources, and advanced pro-
cess technology, the Virtex family delivers a high-speed
and high-capacity programmable logic solution that
enhances design flexibility while reducing time-to-market.

1. Verified by Xilinx for PCI64/66, PCI64/33, and PCI32/33
2. Verified by Xilinx for PCI64/66 and PCI64/33
See the Xilinx PCI Retargeting Guide for 33 MHz PCI support of other devices listed here.

0

LogiCORE PCI Supported 
Virtex FPGAs

May, 1999 0 3 Product Overview

Table 1: Virtex Field-Programmable Gate Array Family Members.

Device
System 
Gates

CLB Array Logic Cells
Maximum 

Available I/O
BlockRAM Bits

Max Select 
RAM Bits

XCV50 57,906 16x24 1,728 180 32,768 24,576

XCV100 108,904 20x30 2,700 180 40,960 38,400

XCV150 164,674 24x36 3,888 260 49,152 55,296

XCV200 236,666 28x42 5,292 284 57,344 75,264

XCV3001 322,970 32x48 6,912 316 65,536 98,304

XCV400 468,252 40x60 10,800 404 81,920 153,600

XCV600 661,111 48x72 15,552 500 98,304 221,184

XCV800 888,439 56x84 21,168 514 114,688 301,056

XCV10002 1,124,022 64x96 27,648 514 131,072 393,216

For the complete Virtex Product Specification, see www.xilinx.com



LogiCORE PCI Supported Virtex FPGAs

3 - 2 May, 1999



May, 1999 3 - 3

Introduction
The SpartanTM Series is the first high-volume production
FPGA solution to deliver all the key requirements for ASIC
replacement up to 40,000 gates. These requirements
include high performance, on-chip RAM, Core Solutions
and prices that, in high volume, approach, and in many
cases are equivalent to mask programmed ASIC devices.

The Xilinx Spartan series is the result of more than thirteen
years of FPGA design experience and feedback from thou-
sands of customers. By streamlining the Spartan feature
set, leveraging advanced hybrid process technologies and
focusing on total cost management, the Spartan series
delivers the key features required by ASIC and other high
volume logic users while avoiding the initial cost, long
development cycles, and inherent risk of conventional
ASICs. The Spartan Series currently has 10 members; only
the devices supported by PCI are shown in Figure 1.

Spartan Series Features
Note: The Spartan Series devices described in this product
overview include the 5V SpartanTM family of devices and
the 3.3V SpartanXLTM family of devices.

• Next generation ASIC replacement technology
- First ASIC replacement FPGA for high-volume 

production with on-chip RAM
- Advanced process technology
- Density up to 1862 logic cells or 40,000 system 

gates
- Streamlined feature set based on XC4000 

architecture

- System performance beyond 80 MHz
- Broad set of AllianceCOREΤΜ and LogiCOREΤΜ 

pre-defined solutions available
- Unlimited reprogrammability
- Low cost

• System level features
- Fully 3.3 V and 5 V PCI compliant
- Available in both 5.0 Volt and 3.3 Volt versions
- On-chip SelectRAMTM memory
- Low power segmented routing architecture
- Full readback capability for program verification and 

internal node observability
- Dedicated high-speed carry logic
- Internal 3-state bus capability
- 8 global low-skew clock or signal distribution 

networks
- IEEE 1149.1-compatible boundary scan logic

• Versatile I/O and packaging
- Low cost plastic packages available in all densities
- Footprint compatibility in common packages
- Individually programmable output slew-rate control 

maximizes performance and reduces noise
- Zero input register hold time simplifies system timing

• Fully supported by powerful Xilinx development system
- Foundation series: Fully integrated, shrink-wrap 

software
- Alliance series: Over 100 PC and engineering 

workstation third-party development systems 
supported

- Fully automatic mapping, placement, and routing
- Interactive design editor for design optimization

0

LogiCORE PCI32 Supported
Spartan and SpartanXL FPGAs

May, 1999 0 33 Product Overview

Table 1: LogiCORE PCI32 supported Spartan and SpartanXL Series Field Programmable Gate Arrays

Device
Logic
Cells

Max 
System 
Gates

Typical 
Gate Range

(Logic and RAM)*
CLB

Matrix
Total
CLBs

Number
of 

Flip-Flops
Max.

User I/O
XCS20XL 950 20,000 7,000 - 20,000 20 x 20 400 1,120 160

XCS30 & XCS30XL 1368 30,000 10,000 - 30,000 24 x 24 576 1,536 192
XCS40 & XCS40XL 1862 40,000 13,000 - 40,000 28 x 28 784 2,016 224

* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

For the complete Spartan and SpartanXL Product Specification, see www.xilinx.com



LogiCORE PCI32 Supported Spartan and SpartanXL FPGAs

3 - 4 May, 1999

Additional SpartanXL Features
• 3.3V supply for low power with 5V tolerant I/Os
• Power down input 
• Higher performance
• Faster carry logic
• More flexible high-speed clock network
• Universal PCI Interface capability in SpartanXL
• Latch capability in Configurable Logic Blocks
• Input fast capture latch
• Optional mux or 2-input function generator on outputs
• 12 mA or 24 mA output drive
• 5V/3.3V PCI compliant
• Enhanced Boundary Scan
• Express Mode configuration

Universal PCI Interfaces
A Universal PCI Interface is one capable of being plugged
into both a 3.3 V and 5 V PCI bus. Implementing a universal
PCI interface in SpartanXL devices requires loading of dif-
ferent bitstreams to change I/O characteristics. For 3.3 V
PCI electrical compliance, the 5 V drive strength must be
turned off and the 3.3 V clamp diodes enabled. These
changes are done in the bitstream. See the SpartanXL
Implementation Guide for details on generating these bit-
streams. It is the designer’s responsibility to monitor Vio
and load the appropriate bitstream depending on Vio. 

When the 3.3 V PCI clamp diodes are enabled, the Spar-
tanXL device loses 5 V tolerance. This is due to the 3.3 V
clamp diode being tied to the 3.3 V supply in the device.
The designer must insure that a full 5 V is not applied when
these clamp diodes are enabled.



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

4

Design Methodology



Design Methodology



May, 1999 4 - 1

 

4
0

0 May, 1999

Design Methodology
The LogiCORE PCI Interfaces are highly optimized for the
Virtex, XC4000XLA, and SpartanXL FPGAs. Easy to use
tools provide easy implementation of the PCI interface. Pre-
placed and pre-routed guide files along with .ucf files guar-
antee timing performance on critical control signals like
IRDY#, TRDY#, and FRAME#. 

The user connects the LogiCORE PCI Interface to other
modules to complete the design. For example, to complete
a PCI adapter card interface using the XC4013XLA, a
designer first configures the PCI core using the intuitive
graphical user interface on the Xilinx web site, and down-
loads proven PCI design. See Figure 2 for the GUI. A
designer would then create either a VHDL or a Verilog
description, using the LogiCORE PCI32 Interface compo-
nent together with the required user application. The user
can then simulate the core with the customer design using

provided VHDL and Verilog simulation models. Next, the
user compiles the design using Xilinx Alliance or Founda-
tion Series software for the targeted FPGA. At this point the
design can be resimulated or downloaded to the target
device. See Figure 1 for a complete design flow.

LogiCORE PCI Configuration
To support multiple design environments, the LogiCORE
PCI interface can be configured and downloaded from the
web complete with a netlist, constraints, simulation model,
and testbench in VHDL or Verilog. This methodology is
described in our on-line documentation. For more details
see the Xilinx PCI Design Guide. 

Figure 1:   PCI32 Interface Design and Simulation Methodology

User Design
HDL or Schematic

Functional
Simulation

Netlist

Place &
Route

Symbol

Sim.Model

Netlist

Design EntryCORE Configuration

Timing
Simulation

Constraints

Design Verification

Synthesis
User design only

Netlist

CORE Design
zip or tar

Design
Implementation

CORE
Download



Design Methodology

4 - 2 May, 1999

This LogiCORE PCI configuration methodology allows HDL
users to modify some attributes of the PCI macro. After
configuring the macro, the user can download the design
files in a PC or UNIX format. Using the macro in a HDL flow
is described in either the LogiCORE PCI Virtex, XLA, or
SpartanXL Implementation Guide.

For users that cannot access the configuration tool on the
web, the core can be configured locally by editing a single
VHDL or Verilog file.

Core Configuration in VHDL and Verilog
Since the core is a blackbox instantiation, the configuration
file applies the user’s configuration information to the simu-
lation model and implementation netlist. If using an VHDL
or Verilog synthesis tool, two configuration options are
available. The LogiCORE PCI interface can be configured
and downloaded from the web or the user can simply edit
the configuration file. To modify the design for either imple-
mentation or simulation in Verilog, edit the cfg.v file. If using
VHDL, edit the cfg.vhd file included with the design files.
This file supplies the configuration information to both the
implementation black box, which is instantiated in your
design, and the functional simulation model. The Logi-
CORE PCI Design Guide has more details on the contents
of the cfg file and how to edit this file.

Selectable Options

Enable 66 MHz (Virtex PCI64 only)
The Enable 66 MHz Checkbox allows the user to set the
value of the 66 MHz capable bit in the Status register. This
option should be checked for all 66 MHz designs. 

Latency Timer
The Latency Timer Checkbox allows the user to enable or
disable the Latency Timer and its associated register in
configuration space. If the latency timer register is enabled,
the PCI bus host will write a value to this register at system
initialization. The value written to this register determines
the minimum number of clocks guaranteed to the initiator
during bus transactions. See the LogiCORE PCI Design
Guide for more information. 

Base Address Register Enable
The Base Address Register Enable Checkboxes allow the
user to enable or disable any of the three base address reg-
isters. The user should enable at least one base address
register. Each enabled base address register may then be
configured by the user to allocate memory space or I/O
space. 

External Subsystem
The External Subsystem Checkbox allows the user to dis-
able the Subsystem ID and Subsystem Vendor ID fields.

Subsystem ID and Subsystem Vendor ID uniquely identify
the add-in board or subsystem containing the PCI device.
The option to disable the Subsystem ID and Subsystem
Vendor ID fields is provided to enable the user to design an
application which dynamically provides this information to
the LogiCORE PCI64 interface, rather than have it defined
in the configuration file. When this option is enabled, the
Subsystem ID and Subsystem Vendor ID must be supplied
to the interface using the SUB_DATA[31:0]  bus.

Cap List Enable
The Cap List Enable Checkbox allows the user to enable
the Capabilities List Pointer located at address 34h in con-
figuration space. This pointer provides an offset into user
configuration space for the location of the first item in a
capabilities list. Enabling this feature also sets the capabili-
ties bit in the Status register and enables User Configura-
tion Space. 

INTA# Enable
The INTA# Enable Checkbox enables the Interrupt Pin field
and the Interrupt Line register. If the user chooses to
enable this feature, these allow the device driver and oper-
ating system to recognize that the device is connected to
the INTA# interrupt pin. 

User Config Space
The User Config Space Checkbox enables the user to
define and control configuration space addresses 40h
through FCh. This checkbox is also selected when the Cap
List Enable checkbox is checked because the Capabilities
List must reside in the 40h - FCh address range of configu-
ration space. However, the user may enable this option by
itself in order to allocate space for internal configuration
registers. The responsibility for managing data transfer to
and from this space belongs to the user once the this fea-
ture is enabled. The LogiCORE PCI Design Guide contains
examples of interfacing to user configuration space. 

Core Features

Base Address Registers
The LogiCORE interface supports up to three BARs. The
user is free to use any combination of BAR desired. Use of
BAR 0 is recommend since some PCs will not recognize a
interface that doesn’t have a BAR 0. The user may enable
or disable the BAR settings using the configuration tool on
the web or by editing the cfg file. Each BAR has several
attributes that can be changed. Refer to the LogiCORE PCI
Design Guide for more details. 



May, 1999 4 - 3

Figure 2:   PCI Configuration and Download GUI (Demo available at www.xilinx.com/pci)



Design Methodology

4 - 4 May, 1999



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

11

PCI Compliance Checklists



PCI Compliance Checklists



May, 1999 5 - 1

Component Product Information 

 

Date May, 1999

Vendor Name Xilinx, Inc.

Vendor Street Address 2100 Logic Drive

Vendor City, State, Zip San Jose, CA 95124
U.S.A

Vendor Phone Number +1 408-559-7778

Vendor Contact, Title Per Holmberg
LogiCORE Marketing Manager

Product Name Virtex

Product Model Number XCVxxx

Product Revision Level

Component Electrical Checklist

This checklist applies to the following Component/Manufacturer:  Virtex/ Xilinx, Inc.

All items were verified over the following range of junction temperatures: ____min ____max

OR

All items were verified over the following range of CASE temperatures: - 5 o C min 85 o C max

Virtex 
PCI Compliance Checklist

May, 1999 Data Sheet

 

5 0 0



Virtex PCI Compliance Checklist

5 - 2 May, 1999

5 V Signaling

Type Description Yes or N/A

CE1. Component supports 5V signaling environment? yes ✓ 
na      

 if “na”, skip to section “3.3V Signaling” below.

CE2. Component operates over voltage range 5V +/- 5%? na       
yes ✓ 

no      

 “na” allowed for components that support 5V signaling, but draw power from a 
supply other than Vcc 5V.

CE3. Voltages between 2.0V and Vcc+0.5V are recognized as logic high? yes ✓ 

no___

CE4. Voltages between -0.5V and 0.8V are recognized as logic low? yes ✓ 

no___

CE5. All inputs sink less than 70uA when pulled to 2.7V DC? yes ✓ 

no___

CE6. All inputs source less than 70uA when pulled to 0.5V DC? yes ✓ 

no___

CE7. All outputs drive to 2.4V (min) in the high state while sourcing 2mA? yes ✓ 

no___

CE8. All outputs drive to 0.55V (max) in the low state, sinking 3 or 6*mA? yes ✓ 

no___

CE9. Outputs source at least 44mA at 1.4V in the high state?
proven at: 3.0 Vcc= min, ___process=worst/slow, ___ junction temp= 85 o C(max) 
by: ___ SPICE simulation, ✓  device characterization, ___ other:                          

yes ✓  
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE10. Outputs source no more than 142mA at 3.1V in the high state?
proven at: 3.6 Vcc=max, ___ process=best/fast, ___ junction temp= -5o C(min)
by: ___ SPICE simulation, ✓  device characterization, ___ other:____________

yes ✓  
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE11. Outputs sink at least 95mA at 2.2V in the low state?
proven at: 3.6 Vcc=max,      process=worst/slow,         junctiontemp= 85 o C(max) 
by: ___ SPICE simulation, ✓  device characterization, ___ other:                        

yes ✓  
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE12. Outputs sink no more than 206mA at 0.71V in the low state?
proven at: 3.6 Vcc=max, ___ process=best/fast, ___ junction temp= -5 o C(min) 
by: ___ SPICE simulation, ___ device characterization, ___ other:                      

yes ✓  
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

 



May, 1999 5 - 3

CE13. REQ#, GNT# outputs source at least 22mA at 1.4V in the high state?
proven at: 3.6 Vcc=max, ___ process=worst/slow, ___ junction temp= 85 o C 
(max) by: ___ SPICE simulation,✓  device characterization, ___ other:                          

yes ✓  
no___

CE14. REQ#, GNT# outputs sink at least 47mA at 2.2V in the low state?
proven at: 3.0 Vcc=min, ___ process=worst/slow, ___ junction temp=85 o C (max) 
by: ___ SPICE simulation, ✓  device characterization, ___ other:____________

na ___ 
yes ✓  
no___

CE15. Clamps on all signals source at least 25mA at -1V, and 91mA at -2V?
proven by: __ SPICE simulation, ✓  device characterization, other:___________

na ___ 
yes ✓  
no___

CE16. Unloaded rise times are no lower than 1 V/nS between 0.4 and 2.4V? 
The unloaded maximum rise time is:  2 V/nS (measured at pin)

yes ✓  
no___

CE17. Unloaded fall times are no lower than 1 V/nS between 2.4 and 0.4V? 
The unloaded maximum fall time is: 2.5 V/nS (measured at pin)

yes ✓  
no___

Type Description Yes or N/A



Virtex PCI Compliance Checklist

5 - 4 May, 1999

3.3 V Signaling  

Type Description Pass/NA

CE18. Component supports 3.3V signaling environment? yes ✓ 
na___

if “na”, skip to section “Loading and Device Protection” below.

CE19. Component operates over voltage range 3.3V +/- 0.3V? yes ✓ 
no___

CE20. Voltages between 0. 5Vcc and Vcc+0.5V are recognized as logic high? yes ✓ 
no___

CE21. Voltages between -0.5V and 0.3Vcc are recognized as logic low? yes ✓ 
no___

CE22. All inputs sink/source less than 10 uA at any voltage from 0V to Vcc? yes ✓ 
no___

CE23. All outputs drive to 0.9Vcc (min) in the high state while sourcing 500uA? yes ✓ 
no___

CE24. All outputs drive to 0.1Vcc (max) in the low state, sinking 1500uA? yes ✓ 
no___

CE25. Outputs source at least 36mA at 0.9V in the high state? 
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp= 75 o C (max) 
by: ___ SPICE simulation, ✓ device characterization, other: ________________

yes ✓ 
no___

 NOTE: applies to all outputs except REQ#, GNT#, CLK, RST#, and SERR#

CE26. Outputs source no more than 115mA at 2.5V in the high state? 
proven at: ✓ Vcc=3.6V, ___ process=best/fast, ___ junction temp= 25 o C (min) 
by: ___ SPICE simulation, ✓ device characterization, other: ________________ 

yes ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, RST#, and SERR#

CE27. Outputs sink at least 48mA at 1.8V in the low state?
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp= 75 o C (max) 
by: ___ SPICE simulation, ✓ device characterization, other: ___________ 

yes ✓
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE28. Outputs sink no more than 137mA at 0.65V in the low state?
proven at: ✓ Vcc=3.6V, ___ process=best/fast, ✓  junction temp= 25 o C (min) by: 
___ SPICE simulation,✓ device characterization, other: ________________

yes ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE29. REQ#, GNT# outputs source at least 18mA at 0.9V in the high state?
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp= 75 o C (max) 
by: ___ SPICE simulation, ✓ device characterization, other: ___________

yes ✓ 
no___

CE30. REQ#, GNT# outputs sink at least 24mA at 1.8V in the low state?
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp= 75 o C (max) 
by: ___ SPICE simulation, ✓ device characterization, other: ___________

yes ✓ 
no __

CE31. Clamps on all signals source at least 25mA at -1V, and 91mA at -2V?
proven by: ___ SPICE simulation, ✓ device characterization, other:___________

yes ✓ 
no___

CE32. Clamps on all signals sink at least 25mA at Vcc+1V, and 91mA at Vcc+2V?
proven by: ___ SPICE simulation, ✓ device characterization, other:___________

na ___
yes ✓ 
no___



May, 1999 5 - 5

CE33. Unloaded rise times are no lower than 1 V/nS between 0.2Vcc and 0.6Vcc? 
The unloaded maximum rise time is: 1.54 V/nS (measured at pin)

na ___
yes ✓ 
no___

CE34. Unloaded fall times are no lower than 1 V/nS between 0.6Vcc and 0.2Vcc? 
The unloaded maximum fall time is: 3.3 V/nS (measured at pin)

yes ✓ 
no___

Type Description Pass/NA



Virtex PCI Compliance Checklist

5 - 6 May, 1999

Loading and Device Protection  

Type Description Yes/No

CE35. Capacitance on all PCI signals (except CLK, IDSEL) is less than or equal to 10 
pF?

yes ✓ 
no___

CE36. Capacitance on CLK signal is between 5 and 12 pF? yes ✓ 
no___

CE37. Capacitance on IDSEL signal is less than 8 pF?
capacitance guaranteed by: device characterization ✓
other _______________. The maximum inductance on any PCI pin is: 15.9 nH.

yes ✓ 
no ___

CE38. Read, understand section “Maximum AC Ratings and Device Protection”?
✓ believe to be non-issue given technology used proven robustness when ex-
posed to prescribed test condition.

yes ✓ 
no___ 



May, 1999 5 - 7

Timing Specification 

Type Description Pass / N/A

CE39. Component is operational at any frequency between DC and 33 MHz? yes ✓
na___

Notes: “na” implies component intended for motherboard use only. To satisfy this 
requirement, designs are allowed to require software to place the component in 
the proper state before stopping the clock and return it to an operational state af-
ter restarting the clock. 

CE40. Component is operational with a CLK High Time of 11 nS for 33 Mhz PCI, 6 ns 
for 66 Mhz PCI? 

na ___ 
yes ✓ 
no___

CE41. Component is operational with a CLK Low Time of 11 nS for 33 Mhz PCI, 6 ns for 
66 Mhz PCI? 

na ___ 
yes ✓ 
no___

CE42. All bussed signals are driven valid between 2 and 11 nS after CLK for 33 Mhz 
PCI, between 2 and 6 ns for 66 Mhz PCI? 

yes ✓ 
no___

CE43. REQ# and GNT# signals are driven valid between 2 and 12 nS after CLK for 33 
Mhz PCI, between 2 and 6 ns for 66 Mhz PCI?

yes ✓ 
no___

CE44. All Tri-state signals become active no earlier than 2 nS after CLK? yes ✓ 
no___

CE45. All Tri-state signals float no later than 28 nS after CLK for 33 Mhz PCI, no later 
than 14 nS for 66 Mhz PCI?

yes ✓ 
no___

CE46. All bussed inputs require no more than 7 nS setup to CLK for 33 Mhz PCI, no 
more than 3 nS for 66 Mhz PCI?

yes ✓ 
no___

CE47. REQ# requires no more than 12 nS setup to CLK for 33 Mhz PCI, no more than 
5 nS for 66 Mhz PCI?

 na ___ 
yes ✓ 
no___

CE48. GNT# requires no more than 10 nS setup to CLK for 33 Mhz PCI, no more than 
5 nS for 66 Mhz PCI?

 na ___ 
yes ✓ 
no___

CE49. All inputs require no more than 0 nS of hold time after CLK? yes ✓ 
no___

CE50. All outputs are Tri-stated within 40 nS after RST# goes low?
all timings (CE39 through CE50 verified by (check all that apply)
____ static timing design tools (MOTIVE, QTV, QuickPath, Veritime...)
____ dynamic timing design tools (Verilog, Qsim, Quicksim, ViewSim, VHDL, ...)
✓ silicon AC testing
____other____________________________________ 

yes ✓
no___

NOTE: Maximum and minimum timings assume different output loadings for both 
5.0V and 3.3V parts. See PCI Spec Rev 2.1 page 134 note #2.



Virtex PCI Compliance Checklist

5 - 8 May, 1999

64-bit Components

 

Type Description Pass or N/A

Component is 32-bit only, this section is NA__

CE51. Component senses, during RST# active, its connection to 64-bit wires? yes ✓ 
no___

CE52. 64-bit input signals will be stable when not connected? yes ✓ 
no__

Explanations:

CE51: The Virtex device must be configured prior to the deassertion of RST#.

CE52: The user must follow recommendations explained in the documentation.

This section should be used to clarify any answers on checklist items above. Please key explanation to item 
number.



May, 1999 5 - 9

Component Product Information 

 

Date May, 1999

Vendor Name Xilinx, Inc.

Vendor Street Address 2100 Logic Drive

Vendor City, State, Zip San Jose, CA 95124
U.S.A

Vendor Phone Number +1 408-559-7778

Vendor Contact, Title Per Holmberg
LogiCORE Marketing Manager

Product Name XC4000XLA

Product Model Number XC4xxxXLA

Product Revision Level

Component Electrical Checklist

This checklist applies to the following Component/Manufacturer: XC4000XLA / Xilinx, Inc.

All items were verified over the following range of junction temperatures: ____min ____max

OR

All items were verified over the following range of CASE temperatures: -10 oC min 125 oC max

XC4000XLA
PCI Compliance Checklist

May, 1999 Data Sheet

 

5 0 0



XC4000XLA PCI Compliance Checklist

5 - 10 May, 1999

5 V Signaling

Type Description Yes or N/A

CE1. Component supports 5V signaling environment? yes✓

na__

 if “na”, skip to section “3.3V Signaling” below.

CE2. Component operates over voltage range 5V +/- 5%? na ✓

yes ___
no___ 

 “na” allowed for components that support 5V signaling, but draw power from a 
supply other than Vcc 5V.

CE3. Voltages between 2.0V and Vcc+0.5V are recognized as logic high? yes  ✓
no___

CE4. Voltages between -0.5V and 0.8V are recognized as logic low? yes  ✓ 
no___

CE5. All inputs sink less than 70uA when pulled to 2.7V DC? yes  ✓ 
no___

CE6. All inputs source less than 70uA when pulled to 0.5V DC? yes  ✓ 
no___

CE7. All outputs drive to 2.4V (min) in the high state while sourcing 2mA? yes  ✓ 
no___

CE8. All outputs drive to 0.55V (max) in the low state, sinking 3 or 6*mA? yes  ✓ 
no___

CE9. Outputs source at least 44mA at 1.4V in the high state?
proven at: 3.0 Vcc= min, ___ process=worst/slow, ___ junction temp=125 oC 
____ (max) by: ___ SPICE simulation,  ✓ device characterization, ___ oth-
er:________________

yes  ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE10. Outputs source no more than 142mA at 3.1V in the high state?
proven at: 3.6 Vcc=max, ___ process=best/fast, ___ junction temp= -10 oC 
min)by: ___ SPICE simulation,  ✓ device characterization, ___ oth-
er:____________ 

yes  ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE11. Outputs sink at least 95mA at 2.2V in the low state?
proven at: 3.6 Vcc=max, ___ process=worst/slow, ___ junction temp=125 oC 
(max) by: ___ SPICE simulation, ___ device characterization, ___ other: 
_______________

yes   ✓  
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE12. Outputs sink no more than 206mA at 0.71V in the low state?
proven at: 3.6 Vcc=max, ___ process=best/fast, ___ junction temp=-10 oC (min) 
by: ___ SPICE simulation,  ✓ device characterization, ___ other: 
_______________

yes  ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

 



May, 1999 5 - 11

CE13. REQ#, GNT# outputs source at least 22mA at 1.4V in the high state?
proven at: 3.6 Vcc=max, ___ process=worst/slow, ___ junction temp=125 oC 
(max) by: ___ SPICE simulation, __ device characterization, ___ oth-
er:_______________

yes  ✓ 
no___

CE14. REQ#, GNT# outputs sink at least 47mA at 2.2V in the low state?
proven at: 3.0 Vcc=min, ___ process=worst/slow, ___ junction temp=125 oC 
(max) by: ___ SPICE simulation, __ device characterization, ___ oth-
er:________________

na ___ 
yes  ✓ 
no___

CE15. Clamps on all signals source at least 25mA at -1V, and 91mA at -2V?
proven by: __ SPICE simulation,  ✓ device characterization, oth-
er:_____________

na ___ 
yes  ✓ 
no___

CE16. Unloaded rise times are no lower than 1 V/nS between 0.4 and 2.4V? 
The unloaded maximum rise time is: 2.3V/nS (measured at pin)

yes  ✓ 
no___

CE17. Unloaded fall times are no lower than 1 V/nS between 2.4 and 0.4V? 
The unloaded maximum fall time is: 2.1V/nS (measured at pin)

yes  ✓ 
no___

Type Description Yes or N/A



XC4000XLA PCI Compliance Checklist

5 - 12 May, 1999

3.3 V Signaling  

Type Description Pass/NA

CE18. Component supports 3.3V signaling environment? yes ✓ 
na___

if “na”, skip to section “Loading and Device Protection” below.

CE19. Component operates over voltage range 3.3V +/- 0.3V? yes ✓ 
no___

CE20. Voltages between 0. 5Vcc and Vcc+0.5V are recognized as logic high? yes ✓ 
no___

CE21. Voltages between -0.5V and 0.3Vcc are recognized as logic low? yes ✓ 
no___

CE22. All inputs sink/source less than 10 uA at any voltage from 0V to Vcc? yes ✓ 
no___

CE23. All outputs drive to 0.9Vcc (min) in the high state while sourcing 500uA? yes ✓ 
no___

CE24. All outputs drive to 0.1Vcc (max) in the low state, sinking 1500uA? yes ✓ 
no___

CE25. Outputs source at least 36mA at 0.9V in the high state? 
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓   junction temp= 85 o C (max) 
by: ___ SPICE simulation, ✓ device characterization, other: ________________

yes ✓ 
no___

 NOTE: applies to all outputs except REQ#, GNT#, CLK, RST#, and SERR#

CE26. Outputs source no more than 115mA at 2.5V in the high state? 
proven at: ✓ Vcc=3.6V, ___ process=best/fast, ✓  junction temp= 25 o C (min) by: 
___ SPICE simulation, ✓ device characterization, other: ________________ 

yes ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, RST#, and SERR#

CE27. Outputs sink at least 48mA at 1.8V in the low state?
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp= 85 o C (max) 
by: ___ SPICE simulation, ✓ device characterization, other: ___________ 

yes ✓
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE28. Outputs sink no more than 137mA at 0.65V in the low state?
proven at: ✓ Vcc=3.6V, ___ process=best/fast, ✓  junction temp= 25 o C (min) by: 
___ SPICE simulation,✓ device characterization, other: ________________

yes ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE29. REQ#, GNT# outputs source at least 18mA at 0.9V in the high state?
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp= 85 o C (max) 
by: ___ SPICE simulation, ✓ device characterization, other: ___________

yes ✓ 
no___

CE30. REQ#, GNT# outputs sink at least 24mA at 1.8V in the low state?
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp= 85 o C (max) 
by: ___ SPICE simulation, ✓ device characterization, other: ___________

yes ✓ 
no __

CE31. Clamps on all signals source at least 25mA at -1V, and 91mA at -2V?
proven by: ___ SPICE simulation, ✓ device characterization, other:___________

yes ✓ 
no___

CE32. Clamps on all signals sink at least 25mA at Vcc+1V, and 91mA at Vcc+2V?
proven by: ___ SPICE simulation, ✓ device characterization, other:___________

na ___
yes ✓ 
no___



May, 1999 5 - 13

CE33. Unloaded rise times are no lower than 1 V/nS between 0.2Vcc and 0.6Vcc? 
The unloaded maximum rise time is: 1.55 V/nS (measured at pin)

na ___
yes ✓ 
no___

CE34. Unloaded fall times are no lower than 1 V/nS between 0.6Vcc and 0.2Vcc? 
The unloaded maximum fall time is: 1.43 V/nS (measured at pin)

yes ✓ 
no___

Type Description Pass/NA



XC4000XLA PCI Compliance Checklist

5 - 14 May, 1999

Loading and Device Protection  

Type Description Yes/No

CE35. Capacitance on all PCI signals (except CLK, IDSEL) is less than or equal to 10 
pF?

yes ✓ 
no___

CE36. Capacitance on CLK signal is between 5 and 12 pF? yes ✓ 
no___

CE37. Capacitance on IDSEL signal is less than 8 pF?
capacitance guaranteed by: device characterization ✓
other _______________. The maximum inductance on any PCI pin is: 15.9 nH.

yes ✓ 
no ___

CE38. Read, understand section “Maximum AC Ratings and Device Protection”?
✓ believe to be non-issue given technology used proven robustness when ex-
posed to prescribed test condition.

yes ✓ 
no___ 



May, 1999 5 - 15

Timing Specification 

Type Description Pass / N/A

CE39. Component is operational at any frequency between DC and 33 MHz? yes ✓
na___

Notes: “na” implies component intended for motherboard use only. To satisfy this 
requirement, designs are allowed to require software to place the component in 
the proper state before stopping the clock and return it to an operational state af-
ter restarting the clock. 

CE40. Component is operational with a CLK High Time of 11 nS for 33 Mhz PCI, 6 ns 
for 66 Mhz PCI? 

na ___ 
yes ✓ 
no___

CE41. Component is operational with a CLK Low Time of 11 nS for 33 Mhz PCI, 6 ns for 
66 Mhz PCI? 

na ___ 
yes ✓ 
no___

CE42. All bussed signals are driven valid between 2 and 11 nS after CLK for 33 Mhz 
PCI, between 2 and 6 ns for 66 Mhz PCI? 

yes ✓ 
no___

CE43. REQ# and GNT# signals are driven valid between 2 and 12 nS after CLK for 33 
Mhz PCI, between 2 and 6 ns for 66 Mhz PCI?

yes ✓ 
no___

CE44. All Tri-state signals become active no earlier than 2 nS after CLK? yes ✓ 
no___

CE45. All Tri-state signals float no later than 28 nS after CLK for 33 Mhz PCI, no later 
than 14 nS for 66 Mhz PCI?

yes ✓ 
no___

CE46. All bussed inputs require no more than 7 nS setup to CLK for 33 Mhz PCI, no 
more than 3 nS for 66 Mhz PCI?

yes ✓ 
no___

CE47. REQ# requires no more than 12 nS setup to CLK for 33 Mhz PCI, no more than 
5 nS for 66 Mhz PCI?

 na ___ 
yes ✓ 
no___

CE48. GNT# requires no more than 10 nS setup to CLK for 33 Mhz PCI, no more than 
5 nS for 66 Mhz PCI?

 na ___ 
yes ✓ 
no___

CE49. All inputs require no more than 0 nS of hold time after CLK? yes ✓ 
no___

CE50. All outputs are Tri-stated within 40 nS after RST# goes low?
all timings (CE39 through CE50 verified by (check all that apply)
____ static timing design tools (MOTIVE, QTV, QuickPath, Veritime...)
____ dynamic timing design tools (Verilog, Qsim, Quicksim, ViewSim, VHDL, ...)
✓ silicon AC testing
____other____________________________________ 

yes ✓
no___

NOTE: Maximum and minimum timings assume different output loadings for both 
5.0V and 3.3V parts. See PCI Spec Rev 2.1 page 134 note #2.



XC4000XLA PCI Compliance Checklist

5 - 16 May, 1999

64-bit Components

 

Type Description Pass or N/A

Component is 32-bit only, this section is NA ✓

CE51. Component senses, during RST# active, its connection to 64-bit wires? yes ___ 
no___

CE52. 64-bit input signals will be stable when not connected? yes ___ 
no__

Explanations:

This section should be used to clarify any answers on checklist items above. Please key explanation to item 
number.



May, 1999 5 - 17

Component Product Information 

 

Date May, 1999

Vendor Name Xilinx, Inc.

Vendor Street Address 2100 Logic Drive

Vendor City, State, Zip San Jose, CA 95124
U.S.A

Vendor Phone Number +1 408-559-7778

Vendor Contact, Title Per Holmberg
LogiCORE Marketing Manager

Product Name SpartanXL

Product Model Number XCSxxxXL

Product Revision Level

Component Electrical Checklist

This checklist applies to the following Component/Manufacturer: Spartan-XL / Xilinx, Inc.

All items were verified over the following range of junction temperatures: ____min ____max

OR

All items were verified over the following range of CASE temperatures: -10 o C min +125 o C max

Spartan-XL  
PCI Compliance Checklist

May, 1999 Data Sheet

 

5 0 0



Spartan-XL PCI Compliance Checklist

5 - 18 May, 1999

5 V Signaling

Type Description Yes or N/A

CE1. Component supports 5V signaling environment? yes ✓
na __

 if “na”, skip to section “3.3V Signaling” below.

CE2. Component operates over voltage range 5V +/- 5%? na___ 
yes ✓
no___ 

 “na” allowed for components that support 5V signaling, but draw power from a 
supply other than Vcc 5V.

CE3. Voltages between 2.0V and Vcc+0.5V are recognized as logic high? yes ✓ 
no___

CE4. Voltages between -0.5V and 0.8V are recognized as logic low? yes ✓ 
no___

CE5. All inputs sink less than 70uA when pulled to 2.7V DC? yes ✓ 
no___

CE6. All inputs source less than 70uA when pulled to 0.5V DC? yes ✓ 
no___

CE7. All outputs drive to 2.4V (min) in the high state while sourcing 2mA? yes ✓
no___

CE8. All outputs drive to 0.55V (max) in the low state, sinking 3 or 6*mA? yes ✓ 
no___

CE9. Outputs source at least 44mA at 1.4V in the high state?
proven at: 3.0 Vcc= min, ___ process=worst/slow, ✓  junction temp= 85 °C 
max) by: ___ SPICE simulation, ✓device characterization, other:_____________

yes ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE10. Outputs source no more than 142mA at 3.1V in the high state?
proven at: 3.6 Vcc=max, ___ process=best/fast, ✓  junction temp= -5 °C 
 (min)by: ___ SPICE simulation, ✓ device characterization, ___ other:________

yes ✓
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE11. Outputs sink at least 95mA at 2.2V in the low state?
proven at: 3.6 Vcc=max, ___ process=worst/slow, ✓ junction temp = 85 °C  (max) 
by: ___ SPICE simulation,✓ device characterization, ___ other: ____________

yes ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE12. Outputs sink no more than 206mA at 0.71V in the low state?
proven at: 3.6 Vcc=max, ___ process=best/fast,✓ junction temp = -5 °C  (min) by: 
___ SPICE simulation, ✓ device characterization, ___ other: ____________

yes ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE13. REQ#, GNT# outputs source at least 22mA at 1.4V in the high state?
proven at: 3.6 Vcc=max, ___ process=worst/slow, ✓ junction temp = 85 °C (max) 
by: ___ SPICE simulation, ✓ device characterization, ___ other________

yes ✓ 
no___

CE14. REQ#, GNT# outputs sink at least 47mA at 2.2V in the low state?
proven at: 3.0 Vcc=min, ___ process=worst/slow, ✓  junction temp= 85 °C (max) 
by: ___ SPICE simulation, ✓ device characterization, ___ other_______

na ___ 
yes ✓ 
no___



May, 1999 5 - 19

CE15. Clamps on all signals source at least 25mA at -1V, and 91mA at -2V?
proven by: __ SPICE simulation, ✓ device characterization, other:____________

na ___ 
yes ✓ 
no___

CE16. Unloaded rise times are no lower than 1 V/nS between 0.4 and 2.4V? 
The unloaded maximum rise time is: 22 V/nS (measured at pin)

yes ✓ 
no___

CE17. Unloaded fall times are no lower than 1 V/nS between 2.4 and 0.4V? 
The unloaded maximum fall time is: 2.3 V/nS (measured at pin)

yes ✓
no___

Type Description Yes or N/A



Spartan-XL PCI Compliance Checklist

5 - 20 May, 1999

3.3 V Signaling  

Type Description Pass/NA

CE18. Component supports 3.3V signaling environment? yes ✓ 
na___

if “na”, skip to section “Loading and Device Protection” below.

CE19. Component operates over voltage range 3.3V +/- 0.3V? yes ✓ 
no___

CE20. Voltages between 0. 5Vcc and Vcc+0.5V are recognized as logic high? yes ✓ 
no___

CE21. Voltages between -0.5V and 0.3Vcc are recognized as logic low? yes ✓ 
no___

CE22. All inputs sink/source less than 10 uA at any voltage from 0V to Vcc? yes ✓ 
no___

CE23. All outputs drive to 0.9Vcc (min) in the high state while sourcing 500uA? yes ✓ 
no___

CE24. All outputs drive to 0.1Vcc (max) in the low state, sinking 1500uA? yes ✓ 
no___

CE25. Outputs source at least 36mA at 0.9V in the high state? 
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp= 75 °C  max) 
by: ___ SPICE simulation, ✓ device characterization, other: ________________

yes ✓ 
no___

 NOTE: applies to all outputs except REQ#, GNT#, CLK, RST#, and SERR#

CE26. Outputs source no more than 115mA at 2.5V in the high state? 
proven at: ✓ Vcc=3.6V, ___ process=best/fast, ✓  junction temp = 25 °C  (min) 
by: ___ SPICE simulation, ✓ device characterization, other: ________________ 

yes ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, RST#, and SERR#

CE27. Outputs sink at least 48mA at 1.8V in the low state?
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp = 75 °C (max) 
by: ___ SPICE simulation, ✓ device characterization, other: ___________ 

yes ✓
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE28. Outputs sink no more than 137mA at 0.65V in the low state?
proven at: ✓ Vcc=3.6V, ✓ process=best/fast, ___ junction temp= 25 °C (min) by: 
___ SPICE simulation,✓ device characterization, other: ________________

yes ✓ 
no___

NOTE: applies to all outputs except REQ#, GNT#, CLK, and RST#

CE29. REQ#, GNT# outputs source at least 18mA at 0.9V in the high state?
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp= 75 °C (max) 
by: ___ SPICE simulation, ✓ device characterization, other: ___________

yes ✓ 
no___

CE30. REQ#, GNT# outputs sink at least 24mA at 1.8V in the low state?
proven at: ✓ Vcc=3.0V, ___ process=worst/slow, ✓  junction temp= 75 °C(max) 
by: ___ SPICE simulation, ✓ device characterization, other: ___________

yes ✓ 
no __

CE31. Clamps on all signals source at least 25mA at -1V, and 91mA at -2V?
proven by: ___ SPICE simulation, ✓ device characterization, other:___________

yes ✓ 
no___

CE32. Clamps on all signals sink at least 25mA at Vcc+1V, and 91mA at Vcc+2V?
proven by: ___ SPICE simulation, ✓ device characterization, other:___________

na ___
yes ✓ 
no___



May, 1999 5 - 21

CE33. Unloaded rise times are no lower than 1 V/nS between 0.2Vcc and 0.6Vcc? 
The unloaded maximum rise time is: 1.47 V/nS (measured at pin)

na ___
yes ✓ 
no___

CE34. Unloaded fall times are no lower than 1 V/nS between 0.6Vcc and 0.2Vcc? 
The unloaded maximum fall time is: 1.5 V/nS (measured at pin)

yes ✓ 
no___

Type Description Pass/NA



Spartan-XL PCI Compliance Checklist

5 - 22 May, 1999

Loading and Device Protection  

Type Description Yes/No

CE35. Capacitance on all PCI signals (except CLK, IDSEL) is less than or equal to 10 
pF?

yes ✓ 
no___

CE36. Capacitance on CLK signal is between 5 and 12 pF? yes ✓ 
no___

CE37. Capacitance on IDSEL signal is less than 8 pF?
capacitance guaranteed by: device characterization ✓
other _______________. The maximum inductance on any PCI pin is: 15.9 nH.

yes ✓ 
no ___

CE38. Read, understand section “Maximum AC Ratings and Device Protection”?
✓ believe to be non-issue given technology used proven robustness when ex-
posed to prescribed test condition.

yes ✓ 
no___ 



May, 1999 5 - 23

Timing Specification 

Type Description Pass / N/A

CE39. Component is operational at any frequency between DC and 33 MHz? yes ✓
na___

Notes: “na” implies component intended for motherboard use only. To satisfy this 
requirement, designs are allowed to require software to place the component in 
the proper state before stopping the clock and return it to an operational state af-
ter restarting the clock. 

CE40. Component is operational with a CLK High Time of 11 nS for 33 Mhz PCI, 6 ns 
for 66 Mhz PCI? 

na ___ 
yes ✓ 
no___

CE41. Component is operational with a CLK Low Time of 11 nS for 33 Mhz PCI, 6 ns for 
66 Mhz PCI? 

na ___ 
yes ✓ 
no___

CE42. All bussed signals are driven valid between 2 and 11 nS after CLK for 33 Mhz 
PCI, between 2 and 6 ns for 66 Mhz PCI? 

yes ✓ 
no___

CE43. REQ# and GNT# signals are driven valid between 2 and 12 nS after CLK for 33 
Mhz PCI, between 2 and 6 ns for 66 Mhz PCI?

yes ✓ 
no___

CE44. All Tri-state signals become active no earlier than 2 nS after CLK? yes ✓ 
no___

CE45. All Tri-state signals float no later than 28 nS after CLK for 33 Mhz PCI, no later 
than 14 nS for 66 Mhz PCI?

yes ✓ 
no___

CE46. All bussed inputs require no more than 7 nS setup to CLK for 33 Mhz PCI, no 
more than 3 nS for 66 Mhz PCI?

yes ✓ 
no___

CE47. REQ# requires no more than 12 nS setup to CLK for 33 Mhz PCI, no more than 
5 nS for 66 Mhz PCI?

 na ___ 
yes ✓ 
no___

CE48. GNT# requires no more than 10 nS setup to CLK for 33 Mhz PCI, no more than 
5 nS for 66 Mhz PCI?

 na ___ 
yes ✓ 
no___

CE49. All inputs require no more than 0 nS of hold time after CLK? yes ✓ 
no___

CE50. All outputs are Tri-stated within 40 nS after RST# goes low?
all timings (CE39 through CE50 verified by (check all that apply)
____ static timing design tools (MOTIVE, QTV, QuickPath, Veritime...)
____ dynamic timing design tools (Verilog, Qsim, Quicksim, ViewSim, VHDL, ...)
✓ silicon AC testing
____other____________________________________ 

yes ✓
no___

NOTE: Maximum and minimum timings assume different output loadings for both 
5.0V and 3.3V parts. See PCI Spec Rev 2.1 page 134 note #2.



Spartan-XL PCI Compliance Checklist

5 - 24 May, 1999

64-bit Components

 

Type Description Pass or N/A

Component is 32-bit only, this section is NA ✓

CE51. Component senses, during RST# active, its connection to 64-bit wires? yes ___ 
no     

CE52. 64-bit input signals will be stable when not connected? yes      
no     

Explanations:

This section should be used to clarify any answers on checklist items above. Please key explanation to item 
number.



May, 1999 5 - 25

LogiCORE PCI V3.0 Cores
PCI Compliance Checklist

Component Product Information 

Date May, 1999

Vendor Name Xilinx, Inc.

Vendor Street Address 2100 Logic Drive

Note Vendor City, State, Zip San Jose, CA 95124
U.S.A

Vendor Phone Number +1 408-559-7778

Vendor Contact, Title Per Holmberg
LogiCORE Marketing Manager

Product Name LogiCORE PCI32 and PCI64 Interfaces

Product Model Number DO-DI-PCI64,
DO-DI-PCI32

XC4000XLA FPGA
Spartan-XL FPGA

Product Revision Level All cores based on V3.0

May, 1999 Data Sheet

 

5 0 0



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 26 May, 1999

Component Configuration Checklist

Organization  

Type Description Yes or No

CO1. Does each PCI resource have a configuration space based on the 256 byte tem-
plate defined in section 6.1, with a predefined 64 byte header and a 192 byte de-
vice specific region?

yes ✓ 
no___

CO2. Do all functions in the device support the Vendor ID, Device ID, Command, Sta-
tus, Header Type and Class Code fields in the header? See figure 6-1.

yes ✓
no___

CO3. Is the configuration space available for access at all times? yes ✓ 
no___

CO4. Are writes to reserved registers or read only bits completed normally and the data 
discarded?

yes ✓ 
no___

CO5. Are reads to reserved or unimplemented registers, or bits, completed normally 
and a data value of 0 returned?

yes ✓
no___

CO6. Is the vendor ID a number allocated by the PCI SIG?
End users must use their own Vendor ID.

yes ✓ 
no___

CO7. Does the Header Type field have a valid encoding? yes ✓ 
no___

CO8. Do multi-byte transactions access the appropriate registers and are the registers 
in “little endian” order?

yes ✓ 
no___

CO9. Are all READ ONLY register values within legal ranges? For example, the Inter-
rupt Pin register must only contain values 0-4.

yes ✓ 
no___

CO10. Is the class code in compliance with the definition in Appendix D? yes ✓ 
no___

CO11. Is the predefined header portion of configuration space accessible as bytes, 
words, and dwords? 

yes ✓ 
no___

CO12. Is the device a multifunction device? yes __ 
no ✓

CO13. If the device is multifunction, are config space accesses to unimplemented func-
tions ignored?

yes ___ 
no___ 
N/A_✓



May, 1999 5 - 27

Indicate either N/A (Not Applicable) or Implemented by placing a check in the appropriate box. Grayed areas indicate invalid
selections. This table should be completed for each function in a multifunction device.  

Location Name Required/Optional N/A Implemented

00h-01h Vendor ID Required ✓

02h-03h Device ID Required ✓

04h-05h Command Required ✓

06h-07h Status Required ✓

08h Revision ID Required ✓

09h-0Bh Class Code Required ✓

0Ch Cache Line Size Required by master devices/functions 
that can generate Memory Write and 
Invalidate

✓

0Dh Latency Timer Required by master devices/functions 
that can burst more than two data 
phases

✓

0Eh Header Type If the device is multi-functional, then bit 
7 must be set to a 1. The remaining 
bits are required to have a defined val-
ue.

✓

0Fh BIST Optional ✓

10h-27h Base Address Registers 1 or more required for any address al-
location.

✓

28h-2Bh Cardbus CIS Pointer Optional ✓

2CH=2Dh Subsystem Vendor ID Optional ✓

2Eh-2Fh Subsystem ID Optional ✓

30h-2Fh Expansion ROM Base 
Address

Required for devices/functions that 
have expansion ROM.

✓

34h-3Bh Reserved ✓

3Ch Interrupt Line Required by devices/functions that 
use an interrupt pin.

✓

3Dh Interrupt Pin Required by devices/functions that 
use an interrupt pin.

✓

3Eh Min_Gnt Optional ✓

3Fh Max_Lat Optional ✓



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 28 May, 1999

Device Control
This section should be completed individually for all functions in a multifunction device.

In the following tables for Command and Status Registers, an “✓” in the “Target” or “Master” columns, indicates that applying
the bit is appropriate. “N/A” indicates that applying the bit is not applicable, but must return a 0 when read. 

Device Status
This section should be completed individually for all functions in a multifunction device.

Type Description Yes/No

DC1. When the command register is loaded with a 0000h is the device/function logical-
ly disconnected from the PCI, with the exception of configuration accesses? (De-
vices in BOOT code path are exempt).

yes ✓ 
no___

DC2. Is the device/function disabled after the assertion of PCI RST#? (Devices in 
BOOT code path are exempt).

yes ✓ 
no___

Bit Name Required/Optional Target Master

0 I/O Space Required if device/function has registers mapped 
into I/O space.

✓ N/A

1 Memory Space Required if device/function responds to memory 
space accesses.

✓ N/A

2 Bus Master Required N/A ✓

3 Special Cycles Required for devices/functions that can respond to 
Special Cycles.

N/A N/A

4 Memory Write and Invalidate 
Enable

Required for devices/functions that generate 
Memory Write and Invalidate cycles.

N/A N/A

5 VGA Palette snoop Required for VGA or graphical devices/functions 
that snoop VGA color palette.

N/A N/A

6 Parity Error Response Required unless exempted per section 3.7.2. ✓ ✓

7 Wait cycle control Optional N/A N/A

8 SERR# enable Required if device/function has SERR# pin. ✓ N/A

9 Fast Back-to-Back Enable Required if Master device/function can support 
fast back-to-back cycles among different targets.

N/A N/A

10-15 Reserved ✓ ✓

Device Status Questions 

Type Description Yes/No

DS1. Do all implemented read/write bits in the Status reset to 0? yes ✓
no___

DS2. Are read/write bits set to a 1 exclusively by the device/function? yes ✓
no___

DS3. Are read/write bits reset to a 0 when PCIRST# is asserted? yes ✓
no___

DS4. Are read/write bits reset to a 0 by writing a 1 to the bit? yes ✓
no___



May, 1999 5 - 29

Base Addresses
This section should be completed individually for all functions in a multifunction device 

Bit Name Required/Optional Target Master

0-4 Reserved Required ✓ ✓ 

5 66 Mhz Capable Required for 66Mhz capable devices ✓ ✓ 

6 UDF Supported Optional N/A N/A

7 Fast Back-to-Back Capa-
ble

Optional N/A N/A

 8 Data Parity Detected Required N/A ✓ 

9-10 DEVSEL Timing Required ✓ N/A

11 Signaled Target Abort Required for devices/functions that are capable of 
signaling target abort

✓ N/A

12 Received Target Abort Required N/A ✓ 

13 Received Master Abort Required N/A ✓ 

14 Signaled System Error Required for devices/functions that are capable of 
asserting SERR#

✓ ✓

15 Detected Parity Error Required unless exempted per section 3.7.2 ✓ ✓

Type Description Yes/No

BA1. If the device/function uses expansion ROM, does it implement the Expansion 
ROM Base Address Register? The expansion ROM base address is not sup-
ported.

yes ___ 
no ✓

BA2. Do all Base Address registers asking for IO space request 256 bytes or less? yes ✓ 
no ___

BA3. If the device/function has an Expansion ROM Base Address register, does the 
memory enable bit in the Command register have precedence over the enable bit 
in the Expansion ROM base Address register? The expansion ROM base ad-
dress is not supported.

yes ___
no ✓

BA4. Does the device/function use any address space (memory or IO) other than that 
assigned using Base Address registers? (i.e.; Does the device/function hard-de-
code any addresses?) Note: If the answer is yes, you must list decoded address-
es as explanations at the end of this section.

yes ___ 
no ✓

BA5. Does the device/function decode all 32-bits of IO space? yes ✓ 
no ___

BA6. If the device/function has an Expansion ROM Base Address register, is the size 
of the memory space requested 16MB or smaller?

yes ___ 
no___



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 30 May, 1999

VGA Devices  
VGA Devices (fill in this section only if component is VGA device)

Type Description Yes/No

VG1. Is palette snoop implemented, including bit in Command register? yes ___
no___

VG2. Is Expansion ROM Base Address register implemented and provide full relocat-
ability of the expansion ROM? (The device must NOT do a hard decode of 
0C0000h).

yes ___ 
no ___

VG3. Does the device come up disabled? (Bottom three bits of Command register must 
be initialized to zero on power-up and PCIRST#).

yes ___ 
no ___

VG4. Does Class Code field indicate VGA device? (value of 030000h). yes ___ 
no___

VG5. Does the device hard-decode only standard ISA VGA addresses and their alias-
es? (IO addresses 3B0h through 3BBh, 3C0h through 3DFh, Memory addresses 
0A0000h through 0BFFFFh)

yes ___ 
no___

VG6. Does the device use Base Address Registers to allocate needed space other 
than standard ISA VGA Addresses? (e.g. for a linear FRAME buffer)

yes ___ 
no___



May, 1999 5 - 31

General Component Protocol Checklist (Master)
The following checklist is to filled out as a general verification of the IUT's protocol compliance. This checklist applies to all
master operations.  

Test # Description Yes or No

MP1. All Sustained Tri-State signals are driven high for one clock before being Tri-
Stated. (2.1)

yes ✓
no___

MP2. IUT always asserts all byte enables during each data phase of a Memory Write 
Invalidate cycle. (3.1.1) Memory Write and Invalidate command not supported

yes ___ 
no ✓

MP3. IUT always uses Linear Burst Ordering for Memory Write Invalidate cycles. (3.1.1) 
Memory Write and Invalidate command not supported.

yes ___ 
no ✓

MP4. IUT always drives IRDY# when data is valid during a write transaction. (3.2.1) yes ✓ 
no ___

MP5. IUT only transfers data when both IRDY# and TRDY# are asserted on the same 
rising clock edge. (3.2.1)

yes ✓
no ___

MP6. Once the IUT asserts IRDY# it never changes FRAME# until the current data 
phase completes. (3.2.1)

yes ✓ 
no___ 

MP7. Once the IUT asserts IRDY# it never changes IRDY# until the current data phase 
completes. (3.2.1)

yes ✓ 
no ___

MP8. IUT never uses reserved burst ordering (AD[1::0] = “01”. (3.2.2) Value driven 
onto AD bus is controlled by the user application.

yes ✓ 
no __

MP9. IUT never uses reserved burst ordering (AD[1::0] = “11”. (3.2.2) Value driven 
onto AD bust is controlled by the user application.

yes ✓ 
no __

MP10. IUT always ignores configuration command unless IDSEL is asserted and 
AD[1::0] are “00”. (3.2.2)

yes ✓ 
no ____

MP11. The IUT's AD lines are driven to stable values during every address and data 
phase. (3.2.4)

yes ✓ 
no ___

MP12. The IUT's C/BE# output buffers remain enabled from the first clock of the data 
phase through the end of the transaction. (3.3.1) 

yes ✓ 
no ___

MP13. The IUT's C/BE# lines contain valid Byte Enable information during the entire data 
phase. (3.3.1) The values on the C/BE# pins are driven by the user applica-
tion.

yes ✓ 
no ___

MP14. IUT never deasserts FRAME# unless IRDY# is asserted or will be asserted 
(3.3.3.1)

yes ✓ 
no ___

MP15. IUT never deasserts IRDY# until at least one clock after FRAME# is deasserted. 
(3.3.3.1)

yes ✓ 
no ___

MP16. Once the IUT deasserts FRAME# it never reasserts FRAME# during the same 
transaction. (3.3.3.1)

yes ✓ 
no ___

MP17. IUT never terminates with master abort once target has asserted DEVSEL#. 
(3.3.3.1) 

yes ✓ 
no ___

MP18. IUT never signals master abort earlier than 5 clocks after FRAME# was first sam-
pled asserted. (3.3.3.1)

yes ✓
no ___

MP19. IUT always repeats an access exactly as the original when terminated by retry. 
(3.3.3.2.2) The retry process is controlled by logic in the user’s application. 
The user application must repeat the transaction to meet this requirement.

yes ✓ 
no ___



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 32 May, 1999

MP20. IUT never starts cycle unless GNT# is asserted. (3.4.1) yes ✓ 
no ___

MP21. IUT always Tri-States C/BE# and AD within one clock after GNT# negation when 
bus is idle and FRAME# is negated. (3.4.3)

yes ✓ 
no___

MP22. IUT always drives C/BE# and AD within eight clocks of GNT# assertion when bus 
is idle. (3.4.3)

yes ✓ 
no___

MP23. IUT always asserts IRDY# within eight clocks on all data phases. (3.5.2) The user 
application must assert M_READY appropriately to meet this requirement.

yes ✓ 
no ___

MP24. IUT always begins lock operation with a read transaction. (3.6) LOCK# function 
not supported.

yes ___ 
no ✓

MP25. IUT always releases LOCK# when access is terminated by target-abort or master-
abort. (3.6) LOCK# function not supported.

yes ___ 
no ✓

MP26. IUT always deasserts LOCK# for minimum of one idle cycle between consecutive 
lock operations. (3.6) LOCK# function not supported.

yes ___
no✓

MP27. IUT always uses Linear Burst Ordering for configuration cycles. (3.7.4) yes ✓ 
no ___

MP28. IUT always drives PAR within one clock of C/BE# and AD being driven. (3.8.1) yes ✓ 
no ___

MP29. IUT always drives PAR such that the number of “1”s on AD[31::0],C/BE[3:0], and 
PAR equals an even number. (3.8.1)

yes ✓ 
no ___

MP30. IUT always drives PERR# (when enabled) active two clocks after data when data 
parity error is detected. (3.8.2.1)

yes ✓ 
no ___

MP31. IUT always drives PERR (when enabled) for a minimum of 1 clock for each data 
phase that a parity error is detected. (3.8.2.1) 

yes ✓ 
no ___

MP32. IUT always holds FRAME# asserted for cycle following DUAL command. (3.10.1) 
Dual Address command not supported.

yes ___ 
no ✓

MP33. IUT never generates DUAL cycle when upper 32-bits of address are zero. (3.10.1) yes ___ 
no ✓

Test # Description Yes or No



May, 1999 5 - 33

General Component Protocol Checklist (Target)
The following checklist is to filled out as a general verification of the IUT's protocol compliance. This checklist applies to all
target operations.

General Component Protocol Checklist (Target) 

Test # Description Pass or N/A

TP1. All Sustained Tri-State signals are driven high for one clock before being Tri-Stat-
ed.

yes ✓ 
no ___

TP2. IUT never reports PERR# until it has claimed the cycle and completed a data 
phase. (2.2.5)

yes ✓ 
no ___

TP3. IUT never aliases reserved commands with other commands. (3.1.1) yes ✓ 
no ___

TP4. 32-bit addressable IUT treats DUAL command as reserved. (3.1.1) yes ✓ 
no ___

TP5. Once IUT has asserted TRDY# it never changes TRDY# until the data phase 
completes. (3.2.1)

yes ✓ 
no ___ 

TP6. Once IUT has asserted TRDY# it never changes DEVSEL# until the data phase 
completes. (3.2.1)

yes ✓ 
no ___

TP7. Once IUT has asserted TRDY# it never changes STOP# until the data phase 
completes. (3.2.1)

yes ✓ 
no___ 

TP8. Once IUT has asserted STOP# it never changes STOP# until the data phase 
completes. (3.2.1)

yes ✓ 
no ___ 

TP9. Once IUT has asserted STOP# it never changes TRDY# until the data phase 
completes. (3.2.1)

yes ✓ 
no ___

TP10. Once IUT has asserted STOP# it never changes DEVSEL# until the data phase 
completes. (3.2.1)

yes ✓ 
no ___

TP11. IUT only transfers data when both IRDY# and TRDY# are asserted on the same 
rising clock edge. (3.2.1)

yes ✓ 
no ___

TP12. IUT always asserts TRDY# when data is valid on a read cycle. (3.2.1) yes ✓ 
no ___ 

TP13. IUT always signals target-abort when unable to complete the entire IO access as 
defined by the byte enables. (3.2.2) This function is implemented in the user 
application. Only the user application could determine if the byte enables 
were valid for the selected I/O devices.

yes ✓
no ___

TP14. IUT never responds to reserved encodings. (3.2.2) yes ✓ 
no ___

TP15. IUT always ignores configuration command unless IDSEL is asserted and 
AD[1::0] are “00”. (3.2.2)

yes ✓ 
no ___

TP16. IUT always disconnects after the first data phase when reserved burst mode is 
detected. (3.2.2)

yes ✓ 
no ___

TP17. The IUT's AD lines are driven to stable values during every address and data 
phase. (3.2.4)

yes ✓ 
no ___

TP18. The IUT's C/BE# output buffers remain enabled from the first clock of the data 
phase through the end of the transaction. (3.3.1)

yes ✓ 
no ___

TP19. IUT never asserts TRDY# during turnaround cycle on a read. (3.3.1) yes ✓ 
no ___



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 34 May, 1999

TP20. IUT always deasserts TRDY#,STOP#, and DEVSEL# the clock following the 
completion of the last data phase. (3.3.3.2)

yes ✓ 
no ___

TP21. IUT always signals disconnect when burst crosses resource boundary. (3.3.3.2) 
This function would be implemented in the user application.

yes ✓ 
no __

TP22. IUT always deasserts STOP# the cycle immediately following FRAME# being 
deasserted. (3.3.3.2.1)

yes ✓ 
no ___

TP23. Once the IUT has asserted STOP# it never deasserts STOP# until FRAME# is 
negated. (3.3.3.2.1)

yes ✓ 
no ___

TP24. IUT always deasserts TRDY# before signaling target-abort. (3.3.3.2.1) yes ✓ 
no ___

TP25. IUT never deasserts STOP# and continues the transaction. (3.3.3.2.1) yes ✓ 
no ___

TP26. IUT always completes initial data phase within 16 clocks. (3.5.1.1) yes ✓ 
no ___

TP27. IUT always locks minimum of 16 bytes. (3.6) LOCK# function not supported. yes ___ 
no ✓

TP28. IUT always issues DEVSEL# before any other response. (3.7.1) yes ✓ 
no ___

TP29. Once IUT has asserted DEVSEL# it never deasserts DEVSEL# until the last data 
phase has competed except to signal target-abort. (3.7.1)

yes ✓ 
no ___

TP30. IUT never responds to special cycles. (3.7.2) yes ✓ 
no ___

TP31. IUT always drives PAR within one clock of C/BE# and AD being driven. (3.8.1) yes ✓ 
no ___

TP32. IUT always drives PAR such that the number of “1”s on AD[31::0],C/BE[3:0], and 
PAR equals an even number. (3.8.1)

yes ✓ 
no ___

General Component Protocol Checklist (Target)  (Continued)

Test # Description Pass or N/A



May, 1999 5 - 35

Component Protocol Checklist for a Master Device
Definition: IUT is an acronym for “Implementation Under Test”.

Test Scenario: 1.1. PCI Device Speed Tests
Memory Transactions

I/O Transactions

Configuration Transactions:

Test # Description Pass N/A

If IUT does not implement memory transactions mark 1 through 10 N/A.

1 Data transfer after write to fast memory slave. ✓

2 Data transfer after read from fast memory slave. ✓

3 Data transfer after write to medium memory slave. ✓

4 Data transfer after read from medium memory slave. ✓

5 Data transfer after write to slow memory slave. ✓

6 Data transfer after read from slow memory slave. ✓

7 Data transfer after write to subtractive memory slave. ✓

8 Data transfer after read from subtractive memory slave. ✓

9 Master abort bit set after write to slower than subtractive memory slave. ✓

10 Master abort bit set after read from slower than subtractive memory 
slave.

✓

Test # Description Pass N/A

If IUT does not implement I/O transactions mark 11 through 20 N/A.

11 Data transfer after write to fast I/O slave. ✓

12 Data transfer after read from fast I/O slave. ✓

13 Data transfer after write to medium I/O slave. ✓

14 Data transfer after read from medium I/O slave. ✓

15 Data transfer after write to slow I/O slave. ✓

16 Data transfer after read from slow I/O slave. ✓

17 Data transfer after write to subtractive I/O slave. ✓

18 Data transfer after read from subtractive I/O slave. ✓

19 Master abort bit set after write to slower than subtractive I/O slave. ✓

20 Master abort bit set after read from slower than subtractive I/O slave. ✓

Test # Description Pass N/A

If IUT does not implement configuration transactions mark 21 through 30 N/A.

21 Data transfer after write to fast config slave. ✓

22 Data transfer after read from fast config slave. ✓

23 Data transfer after write to medium config slave. ✓

24 Data transfer after read from medium config slave. ✓

25 Data transfer after write to slow config slave. ✓



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 36 May, 1999

Interrupt Acknowledge Transactions:

Special Cycle Transactions:

Test Scenario: 1.2. PCI Bus Target Abort Cycles
Memory Transactions:

26 Data transfer after read from slow config slave. ✓

27 Data transfer after write to subtractive config slave. ✓

28 Data transfer after read from subtractive config slave. ✓

29 Master abort bit set after write to slower than subtractive config slave. ✓

30 Master abort bit set after read from slower than subtractive config slave. ✓

Test # Description Pass N/A

If IUT does not implement interrupt transactions mark 31 through 35 N/A.

31 Data transfer after interrupt from fast memory slave. ✓

32 Data transfer after interrupt from medium memory slave. ✓

33 Data transfer after interrupt from slow memory slave. ✓

34 Data transfer after interrupt from subtractive memory slave. ✓

35 Master abort bit set for interrupt from slower than subtractive memory 
slave.

✓

Test # Description Pass N/A

If IUT does not implement special cycle transactions mark 36 through 37 N/A.

36 Data transfer after special transaction to slave. ✓

37 Master abort bit is not set after special transaction. ✓

Test # Description Pass N/A

Test # Description Pass N/A

If IUT does not implement memory transactions mark 1 through 16 N/A.

1 Target Abort bit set after write to fast memory slave. ✓

2 IUT does not repeat the write transaction. ✓

3 IUT's Target Abort bit set after read from fast memory slave. ✓

4 IUT does not repeat the read transaction. ✓

5 Target Abort bit set after write to medium memory slave. ✓

6 IUT does not repeat the write transaction. ✓

7 IUT's Target Abort bit set after read from medium memory slave. ✓

8 IUT does not repeat the read transaction. ✓

9 Target Abort bit set after write to slow memory slave. ✓

10 IUT does not repeat the write transaction. ✓

11 IUT's Target Abort bit set after read from slow memory slave. ✓

12 IUT does not repeat the read transaction. ✓

13 Target Abort bit set after write to subtractive memory slave. ✓

14 IUT does not repeat the write transaction. ✓



May, 1999 5 - 37

I/O Transactions:

Configuration Transactions:

15 IUT's Target Abort bit set after read from subtractive memory slave. ✓

16 IUT does not repeat the read transaction. ✓

Test # Description Pass N/A

If IUT does not implement I/O transactions mark 17 through 32 N/A.

17 Target Abort bit set after write to fast I/O slave. ✓

18 IUT does not repeat the write transaction. ✓

19 IUT's Target Abort bit set after read from fast I/O slave. ✓

20 IUT does not repeat the read transaction. ✓

21 Target Abort bit set after write to medium I/O slave. ✓

22 IUT does not repeat the write transaction. ✓

23 IUT's Target Abort bit set after read from medium I/O slave. ✓

24 IUT does not repeat the read transaction. ✓

25 Target Abort bit set after write to slow I/O slave. ✓

26 IUT does not repeat the write transaction. ✓

27 IUT's Target Abort bit set after read from slow I/O slave. ✓

28 IUT does not repeat the read transaction. ✓

29 Target Abort bit set after write to subtractive I/O slave. ✓

30 IUT does not repeat the write transaction. ✓

31 IUT's Target Abort bit set after read from subtractive I/O slave. ✓

32 IUT does not repeat the read transaction. ✓

Test # Description Pass N/A

If IUT does not implement configuration transactions mark 33 through 48 N/A.

33 Target Abort bit set after write to fast config slave ✓

34 IUT does not repeat the write transaction. ✓

35 IUT's Target Abort bit set after read from fast config slave. ✓

36 IUT does not repeat the read transaction. ✓

37 Target Abort bit set after write to medium config slave. ✓

38 IUT does not repeat the write transaction. ✓

39 IUT's Target Abort bit set after read from medium config slave. ✓

40 IUT does not repeat the read transaction. ✓

41 Target Abort bit set after write to slow config slave. ✓

42 IUT does not repeat the write transaction. ✓

43 IUT's Target Abort bit set after read from slow config slave. ✓

44 IUT does not repeat the read transaction. ✓

45 Target Abort bit set after write to subtractive config slave. ✓

46 IUT does not repeat the write transaction. ✓

Test # Description Pass N/A



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 38 May, 1999

Interrupt Acknowledge Transactions: 

Test Scenario: 1.3. PCI Bus Target Retry Cycles
Memory Transactions:

I/O Transactions:

47 IUT's Target Abort bit set after read from subtractive config slave. ✓

48 IUT does not repeat the read transaction. ✓

Test # Description Pass N/A

If IUT does not implement interrupt transactions mark 49 through 56 N/A.

49 IUT's Target Abort bit set after interrupt acknowledge from fast slave. ✓

50 IUT does not repeat the interrupt acknowledge transaction. ✓

51 IUT's Target Abort bit set after interrupt acknowledge from medium slave. ✓

52 IUT does not repeat the interrupt acknowledge transaction. ✓

53 IUT's Target Abort bit set after interrupt acknowledge from slow slave. ✓

54 IUT does not repeat the interrupt acknowledge transaction. ✓

55 IUT's Target Abort bit set after interrupt acknowledge from subtractive 
slave.

✓

56 IUT does not repeat the interrupt acknowledge transaction. ✓

Test # Description Pass N/A

Test # Description Pass N/A

If IUT does not implement memory transactions mark 1 through 8 N/A.

1 Data transfer after write to fast memory slave. ✓

2 Data transfer after read from fast memory slave. ✓

3 Data transfer after write to medium memory slave. ✓

4 Data transfer after read from medium memory slave. ✓

5 Data transfer after write to slow memory slave. ✓

6 Data transfer after read from slow memory slave. ✓

7 Data transfer after write to subtractive memory slave. ✓

8 Data transfer after read from subtractive memory slave. ✓

Test # Description Pass N/A

If IUT does not implement I/O transactions mark 9 through 16 N/A.

9 Data transfer after write to fast I/O slave. ✓

10 Data transfer after read from fast I/O slave. ✓

11 Data transfer after write to medium I/O slave. ✓

12 Data transfer after read from medium I/O slave. ✓

13 Data transfer after write to slow I/O slave. ✓

14 Data transfer after read from slow I/O slave. ✓

15 Data transfer after write to subtractive I/O slave. ✓

16 Data transfer after read from subtractive I/O slave. ✓



May, 1999 5 - 39

Configuration Transactions:

Interrupt Acknowledge Transactions:

Test Scenario: 1.4. PCI Bus Single Data Phase Disconnect Cycles
Memory Transactions:

I/O Transactions:

Test # Description Pass N/A

If IUT does not implement configuration transactions mark 17 through 24 N/A.

17 Data transfer after write to fast config slave. ✓

18 Data transfer after read from fast config slave. ✓

19 Data transfer after write to medium config slave. ✓

20 Data transfer after read from medium config slave. ✓

21 Data transfer after write to slow config slave. ✓

22 Data transfer after read from slow config slave. ✓

23 Data transfer after write to subtractive config slave. ✓

24 Data transfer after read from subtractive config slave. ✓

Test # Description Pass N/A

If IUT does not implement interrupt transactions mark 25 through 28 N/A.

25 Data transfer after interrupt acknowledge from fast slave. ✓

26 Data transfer after interrupt acknowledge from medium slave. ✓

27 Data transfer after interrupt acknowledge from slow slave. ✓

28 Data transfer after interrupt acknowledge from subtractive slave. ✓

Test # Description Pass N/A

If IUT does not implement memory transactions mark 1 through 8 N/A.

1 Data transfer after write to fast memory slave. ✓

2 Data transfer after read from fast memory slave. ✓

3 Data transfer after write to medium memory slave. ✓

4 Data transfer after read from medium memory slave. ✓

5 Data transfer after write to slow memory slave. ✓

6 Data transfer after read from slow memory slave. ✓

7 Data transfer after write to subtractive memory slave. ✓

8 Data transfer after read from subtractive memory slave. ✓

Test Description Pass N/A

If IUT does not implement I/O transactions mark 9 through 16 N/A.

9 Data transfer after write to fast I/O slave. ✓

10 Data transfer after read from fast I/O slave. ✓

11 Data transfer after write to medium I/O slave. ✓

12 Data transfer after read from medium I/O slave. ✓

13 Data transfer after write to slow I/O slave. ✓



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 40 May, 1999

Configuration Transactions:

Interrupt Acknowledge Transactions:

Test Scenario: 1.5. PCI Bus Multi-Data Phase Target Abort Cycles
Memory Transactions:

14 Data transfer after read from slow I/O slave. ✓

15 Data transfer after write to subtractive I/O slave. ✓

16 Data transfer after read from subtractive I/O slave. ✓

Test # Description Pass N/A

If IUT does not implement configuration transactions mark 17 through 24 N/A.

17 Data transfer after write to fast config slave. ✓

18 Data transfer after read from fast config slave. ✓

19 Data transfer after write to medium config slave. ✓

20 Data transfer after read from medium config slave. ✓

21 Data transfer after write to slow config slave. ✓

22 Data transfer after read from slow config slave. ✓

23 Data transfer after write to subtractive config slave. ✓

24 Data transfer after read from subtractive config slave. ✓

Test # Description Pass N/A

If IUT does not implement interrupt transactions mark 25 through 28 N/A.

25 Data transfer after interrupt acknowledge from fast slave. ✓

26 Data transfer after interrupt acknowledge from medium slave. ✓

27 Data transfer after interrupt acknowledge from slow slave. ✓

28 Data transfer after interrupt acknowledge from subtractive slave. ✓

Test # Description Pass N/A

If IUT does not implement memory transactions mark 1 through 16 N/A.

1 Target Abort bit set after write to fast memory slave. ✓

2 IUT does not repeat the write transaction. ✓

3 IUT's Target Abort bit set after read from fast memory slave. ✓

4 IUT does not repeat the read transaction. ✓

5 Target Abort bit set after write to medium memory slave. ✓

6 IUT does not repeat the write transaction. ✓

7 IUT's Target Abort bit set after read from medium memory slave. ✓

8 IUT does not repeat the read transaction. ✓

9 Target Abort bit set after write to slow memory slave. ✓

10 IUT does not repeat the write transaction. ✓

11 IUT's Target Abort bit set after read from slow memory slave. ✓

12 IUT does not repeat the read transaction. ✓

Test Description Pass N/A



May, 1999 5 - 41

Dual Address Cycle Transactions:

Configuration Transactions:

13 Target Abort bit set after write to subtractive memory slave. ✓

14 IUT does not repeat the write transaction. ✓

15 IUT's Target Abort bit set after read from subtractive memory slave. ✓

16 IUT does not repeat the read transaction. ✓

Test # Description Pass N/A

If IUT does not implement dual address transactions mark 17 through 32 N/A.

17 Target Abort bit set after write to fast memory slave. ✓

18 IUT does not repeat the write transaction. ✓

19 IUT's Target Abort bit set after read from fast memory slave. ✓

20 IUT does not repeat the read transaction. ✓

21 Target Abort bit set after write to medium memory slave. ✓

22 IUT does not repeat the write transaction. ✓

23 IUT's Target Abort bit set after read from medium memory slave. ✓

24 IUT does not repeat the read transaction. ✓

25 Target Abort bit set after write to slow memory slave. ✓

26 IUT does not repeat the write transaction. ✓

27 IUT's Target Abort bit set after read from slow memory slave. ✓

28 IUT does not repeat the read transaction. ✓

29 Target Abort bit set after write to subtractive memory slave. ✓

30 IUT does not repeat the write transaction. ✓

31 IUT's Target Abort bit set after read from subtractive memory slave. ✓

32 IUT does not repeat the read transaction. ✓

Test # Description Pass N/A

If IUT does not implement configuration transactions mark 33 through 48 N/A.

33 Target Abort bit set after write to fast config. slave. ✓

34 IUT does not repeat the write transaction. ✓

35 IUT's Target Abort bit set after read from fast config. slave. ✓

36 IUT does not repeat the read transaction. ✓

37 Target Abort bit set after write to medium config. slave. ✓

38 IUT does not repeat the write transaction. ✓

39 IUT's Target Abort bit set after read from medium config. slave. ✓

40 IUT does not repeat the read transaction. ✓

41 Target Abort bit set after write to slow config. slave. ✓

42 IUT does not repeat the write transaction. ✓

43 IUT's Target Abort bit set after read from slow config. slave. ✓

44 IUT does not repeat the read transaction. ✓

Test # Description Pass N/A



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 42 May, 1999

Memory Read Multiple Transactions:

Memory Read Line Transactions:

Memory Write and Invalidate Transactions:

45 Target Abort bit set after write to subtractive config. slave. ✓

46 IUT does not repeat the write transaction. ✓

47 IUT's Target Abort bit set after read from subtractive config. slave. ✓

48 IUT does not repeat the read transaction. ✓

Test # Description Pass N/A

If IUT does not implement memory read multiple transactions mark 49 through 56 N/A.

49 IUT's Target Abort bit set after read from fast memory slave. ✓

50 IUT does not repeat the read transaction. ✓

51 IUT's Target Abort bit set after read from medium memory slave. ✓

52 IUT does not repeat the read transaction. ✓

53 IUT's Target Abort bit set after read from slow memory slave. ✓

54 IUT does not repeat the read transaction. ✓

55 IUT's Target Abort bit set after read from subtractive memory slave. ✓

56 IUT does not repeat the read transaction. ✓

Test # Description Pass N/A

If IUT does not implement memory read line transactions mark 57 through 64 N/A.

57 IUT's Target Abort bit set after read from fast memory slave. ✓

58 IUT does not repeat the read transaction. ✓

59 IUT's Target Abort bit set after read from medium memory slave. ✓

60 IUT does not repeat the read transaction. ✓

61 IUT's Target Abort bit set after read from slow memory slave. ✓

62 IUT does not repeat the read transaction. ✓

63 IUT's Target Abort bit set after read from subtractive memory slave. ✓

64 IUT does not repeat the read transaction. ✓

Test # Description Pass N/A

If IUT does not implement memory write and invalidate transactions mark 65 through 72 N/A.

65 Target Abort bit set after write to fast memory slave. ✓

66 IUT does not repeat the write transaction. ✓

67 Target Abort bit set after write to medium memory slave. ✓

68 IUT does not repeat the write transaction. ✓

69 Target Abort bit set after write to slow memory slave. ✓

70 IUT does not repeat the write transaction. ✓

71 IUT's Target Abort bit set after read from slow memory slave. ✓

72 IUT does not repeat the write transaction. ✓

Test # Description Pass N/A



May, 1999 5 - 43

Test Scenario: 1.6. PCI Bus Multi-Data Phase Retry Cycles
Memory Transactions:

I/O Transactions:

Configuration Transactions:

Memory Read Multiple Transactions:

Test # Description Pass N/A

If IUT does not implement memory transactions mark 1 through 8 N/A.

1 Data transfer after write to fast memory slave. ✓

2 Data transfer after read from fast memory slave. ✓

3 Data transfer after write to medium memory slave. ✓

4 Data transfer after read from medium memory slave. ✓

5 Data transfer after write to slow memory slave. ✓

6 Data transfer after read from slow memory slave. ✓

7 Data transfer after write to subtractive memory slave. ✓

8 Data transfer after read from subtractive memory slave. ✓

Test # Description Pass N/A

If IUT does not implement I/O transactions mark 9 through 16 N/A.

9 Data transfer after write to fast I/O slave. ✓

10 Data transfer after read from fast I/O slave. ✓

11 Data transfer after write to medium I/O slave. ✓

12 Data transfer after read from medium I/O slave. ✓

13 Data transfer after write to slow I/O slave. ✓

14 Data transfer after read from slow I/O slave. ✓

15 Data transfer after write to subtractive I/O slave. ✓

16 Data transfer after read from subtractive I/O slave. ✓

Test # Description Pass N/A

If IUT does not implement configuration transactions mark 17 through 24 N/A.

17 Data transfer after write to fast config. slave. ✓

18 Data transfer after read from fast config. slave. ✓

19 Data transfer after write to medium config. slave. ✓

20 Data transfer after read from medium config. slave. ✓

21 Data transfer after write to slow config. slave. ✓

22 Data transfer after read from slow config. slave. ✓

23 Data transfer after write to subtractive config. slave. ✓

24 Data transfer after read from subtractive config. slave. ✓

Test # Description Pass N/A

If IUT does not implement memory read multiple transactions mark 25 through 28 N/A.

25 Data transfer after memory read multiple from fast slave. ✓



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 44 May, 1999

Memory Read Line Transactions:

Memory Write and Invalidate Transactions: 

Test Scenario: 1.7. PCI Bus Multi-Data Phase Disconnect Cycles
Memory Transactions:

I/O Transactions:

26 Data transfer after memory read multiple from medium slave. ✓

27 Data transfer after memory read multiple from slow slave. ✓

28 Data transfer after memory read multiple from subtractive slave. ✓

Test # Description Pass N/A

If IUT does not implement memory read line transactions mark 29 through 32 N/A.

29 Data transfer after memory read line from fast slave. ✓

30 Data transfer after memory read line from medium slave. ✓

31 Data transfer after memory read line from slow slave. ✓

32 Data transfer after memory read line from subtractive slave. ✓

Test # Description Pass N/A

If IUT does not implement memory write and invalidate transactions mark 33 through 36 N/A.

33 Data transfer after memory write and invalidate to fast slave. ✓

34 Data transfer after memory write and invalidate to medium slave. ✓

35 Data transfer after memory write and invalidate to slow slave. ✓

36 Data transfer after memory write and invalidate to subtractive slave. ✓

Test # Description Pass N/A

If IUT does not implement memory transactions mark 1 through 8 N/A.

1 Data transfer after write to fast memory slave. ✓

2 Data transfer after read from fast memory slave. ✓

3 Data transfer after write to medium memory slave. ✓

4 Data transfer after read from medium memory slave. ✓

5 Data transfer after write to slow memory slave. ✓

6 Data transfer after read from slow memory slave. ✓

7 Data transfer after write to subtractive memory slave. ✓

8 Data transfer after read from subtractive memory slave. ✓

Test # Description Pass N/A

If IUT does not implement I/O transactions mark 9 through 16 N/A.

9 Data transfer after write to fast I/O slave. ✓

10 Data transfer after read from fast I/O slave. ✓

11 Data transfer after write to medium I/O slave. ✓

12 Data transfer after read from medium I/O slave. ✓

13 Data transfer after write to slow I/O slave. ✓

Test # Description Pass N/A



May, 1999 5 - 45

Configuration Transactions:

Memory Read Multiple Transactions:

Memory Read Line Transactions:

Memory Write and Invalidate Transactions: 

Test Scenario: 1.8. Multi-Data Phase and TRDY# Cycles

14 Data transfer after read from slow I/O slave. ✓

15 Data transfer after write to subtractive I/O slave. ✓

16 Data transfer after read from subtractive I/O slave. ✓

Test # Description Pass N/A

If IUT does not implement configuration transactions mark 17 through 24 N/A.

17 Data transfer after write to fast config. slave. ✓

18 Data transfer after read from fast config. slave. ✓

19 Data transfer after write to medium config. slave. ✓

20 Data transfer after read from medium config. slave. ✓

21 Data transfer after write to slow config. slave. ✓

22 Data transfer after read from slow config. slave. ✓

23 Data transfer after write to subtractive config. slave. ✓

24 Data transfer after read from subtractive config. slave. ✓

Test # Description Pass N/A

If IUT does not implement memory read multiple transactions mark 25 through 28 N/A.

25 Data transfer after memory read multiple from fast slave. ✓

26 Data transfer after memory read multiple from medium slave. ✓

27 Data transfer after memory read multiple from slow slave. ✓

28 Data transfer after memory read multiple from subtractive slave. ✓

Test # Description Pass N/A

If IUT does not implement memory read line transactions mark 29 through 32 N/A.

29 Data transfer after memory read line from fast slave. ✓

30 Data transfer after memory read line from medium slave. ✓

31 Data transfer after memory read line from slow slave. ✓

32 Data transfer after memory read line from subtractive slave. ✓

Test # Description Pass N/A

If IUT does not implement memory write and invalidate transactions mark 33 through 36 N/A.

33 Data transfer after memory write and invalidate to fast slave. ✓

34 Data transfer after memory write and invalidate to medium slave. ✓

35 Data transfer after memory write and invalidate to slow slave. ✓

36 Data transfer after memory write and invalidate to subtractive slave. ✓

Test # Description Pass N/A



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 46 May, 1999

Memory Transactions:

Dual Address Cycle Transactions:

Test # Description Pass N/A

If IUT does not implement multi-data phase memory transactions mark 1 through 12 N/A.

1 Verify that data is written to primary target when TRDY# is released after 
2nd rising clock edge and asserted on 3rd rising clock edge after 
FRAME#

✓

2 Verify that data is read from primary target when TRDY# is released after 
2nd rising clock edge and asserted on 3rd rising clock edge after 
FRAME#

✓

3 Verify that data is written to primary target when TRDY# is released after 
3rd rising clock edge and asserted on 4th rising clock edge after FRAME#

✓

4 Verify that data is read from primary target when TRDY# is released after 
3rd rising clock edge and asserted on 4th rising clock edge after FRAME#

✓

5 Verify that data is written to primary target when TRDY# is released after 
3rd rising clock edge and asserted on 5th rising clock edge after FRAME#

✓

6 Verify that data is read from primary target when TRDY# is released after 
3rd rising clock edge and asserted on 5th rising clock edge after FRAME#

✓

7 Verify that data is written to primary target when TRDY# is released after 
4th rising clock edge and asserted on 6th rising clock edge after FRAME#

✓

8 Verify that data is read from primary target when TRDY# is released after 
4th rising clock edge and asserted on 6th rising clock edge after FRAME#

✓

9 Verify that data is written to primary target when TRDY# alternately re-
leased for one clock cycle and asserted for one clock cycle after FRAME#

✓

10 Verify that data is read from primary target when TRDY# alternately re-
leased for one clock cycle and asserted for one clock cycle after FRAME#

✓

11 Verify that data is written to primary target when TRDY# alternately re-
leased for two clock cycles and asserted for two clock cycles after 
FRAME#

✓

12 Verify that data is read from primary target when TRDY# alternately re-
leased for two clock cycles and asserted for two clock cycles after 
FRAME#

✓

Test # Description Pass N/A

If IUT does not implement dual address cycle transactions mark 13 through 24 N/A.

13 Verify that data is written to primary target when TRDY# released after 
3rd rising clock edge and asserted on 4th rising clock edge after FRAME#

✓

14 Verify that data is read from primary target when TRDY# released after 
3rd rising clock edge and asserted on 4th rising clock edge after FRAME#

✓

15 Verify that data is written to primary target when TRDY# released after 
4th rising clock edge and asserted on 5th rising clock edge after FRAME#

✓

16 Verify that data is read from primary target when TRDY# released after 
4th rising clock edge and asserted on 5th rising clock edge after FRAME#

✓

17 Verify that data is written to primary target when TRDY# released after 
4th rising clock edge and asserted on 6th rising clock edge after FRAME#

✓

18 Verify that data is read from primary target when TRDY# released after 
4th rising clock edge and asserted on 6th rising clock edge after FRAME#

✓



May, 1999 5 - 47

Memory Read Multiple Transactions:

Memory Read Line Transactions:

19 Verify that data is written to primary target when TRDY# released after 
5th rising clock edge and asserted on 7th rising clock edge after FRAME#

✓

20 Verify that data is read from primary target when TRDY# released after 
5th rising clock edge and asserted on 7th rising clock edge after FRAME#

✓

21 Verify that data is written to primary target when TRDY# alternately re-
leased for one clock cycle and asserted for one clock cycle after FRAME#

✓

22 Verify that data is read from primary target when TRDY# alternately re-
leased for one clock cycle and asserted for one clock cycle after FRAME#

✓

23 Verify that data is written to primary target when TRDY# alternately re-
leased for two clock cycles and asserted for two clock cycles after 
FRAME#

✓

24 Verify that data is read from primary target when TRDY# alternately re-
leased for two clock cycles and asserted for two clock cycles after 
FRAME#

✓

Test # Description Pass N/A

If IUT does not implement memory read multiple transactions mark 25 through 30 N/A.

25 Verify that data is read from primary target when TRDY# released after 
2nd rising clock edge and asserted on 3rd rising clock edge after 
FRAME#

✓

26 Verify that data is read from primary target when TRDY# released after 
3rd rising clock edge and asserted on 4th rising clock edge after FRAME#

✓

27 Verify that data is read from primary target when TRDY# released after 
3rd rising clock edge and asserted on 5th rising clock edge after FRAME#

✓

28 Verify that data is read from primary target when TRDY# released after 
4th rising clock edge and asserted on 6th rising clock edge after FRAME#

✓

29 Verify that data is read from primary target when TRDY# alternately re-
leased for one clock cycle and asserted for one clock cycle after FRAME#

✓

30 Verify that data is read from primary target when TRDY# alternately re-
leased for two clock cycles and asserted for two clock cycles after 
FRAME#

✓

Test # Description Pass N/A

If IUT does not implement memory read line transactions mark 31 through 36 N/A.

31 Verify that data is read from primary target when TRDY# released after 
2nd rising clock edge and asserted on 3rd rising clock edge after 
FRAME#

✓

32 Verify that data is read from primary target when TRDY# released after 
3rd rising clock edge and asserted on 4th rising clock edge after FRAME#

✓

33 Verify that data is read from primary target when TRDY# released after 
3rd rising clock edge and asserted on 5th rising clock edge after FRAME#

✓

34 Verify that data is read from primary target when TRDY# released after 
4th rising clock edge and asserted on 6th rising clock edge after FRAME#

✓

Test # Description Pass N/A



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 48 May, 1999

Memory Write and Invalidate Transactions:

Test Scenario: 1.9. Bus Data Parity Error Single Cycles
Memory Transactions:

I/O Transactions:

35 Verify that data is read from primary target when TRDY# alternately re-
leased for one clock cycle and asserted for one clock cycle after FRAME#

✓

36 Verify that data is read from primary target when TRDY# alternately re-
leased for two clock cycles and asserted for two clock cycles after 
FRAME#

✓

Test # Description Pass N/A

If IUT does not implement memory write and invalidate transactions mark 37 through 42 N/A.

37 Verify that data is written to primary target when TRDY# released after 
2nd rising clock edge and asserted on 3rd rising clock edge after 
FRAME#

✓

38 Verify that data is written to primary target when TRDY# released after 
3rd rising clock edge and asserted on 4th rising clock edge after FRAME#

✓

39 Verify that data is written to primary target when TRDY# released after 
3rd rising clock edge and asserted on 5th rising clock edge after FRAME#

✓

40 Verify that data is written to primary target when TRDY# released after 
4th rising clock edge and asserted on 6th rising clock edge after FRAME#

✓

41 Verify that data is written to primary target when TRDY# alternately re-
leased for one clock cycle and asserted for one clock cycle after FRAME#

✓

42 Verify that data is written to primary target when TRDY# alternately re-
leased for two clock cycles and asserted for two clock cycles after 
FRAME#

✓

Test # Description Pass N/A

If IUT does not implement memory transactions mark 1 through 3 N/A.

1 Verify the IUT sets Data Parity Error Detected bit when Primary Target 
asserts PERR# on IUT memory write

✓

2 Verify that PERR# is active two clocks after the first data phase (which 
had odd parity) on IUT memory read

✓

3 Verify the IUT sets Parity Error Detected bit when odd parity is detected 
on IUT memory read

✓

Test # Description Pass N/A

If IUT does not implement I/O transactions mark 4 through 6 N/A.

4 Verify the IUT sets Parity Error Detected bit when Primary Target asserts 
PERR# on IUT I/O write

✓

5 Verify that PERR# is active two clocks after the first data phase (which 
had odd parity) on IUT I/O read

✓

6 Verify the IUT sets Parity Error Detected bit when odd parity is detected 
on IUT I/O read

✓

Test # Description Pass N/A



May, 1999 5 - 49

Configuration Transactions:

Test Scenario: 1.10. Bus Data Parity Error Multi-Data Phase Cycles
Memory Transactions:

Dual Address Cycle Transactions:

Configuration Transactions:

Test # Description Pass N/A

If IUT does not implement configuration transactions mark 7 through 9 N/A.

7 Verify the IUT sets Parity Error Detected bit when Primary Target asserts 
PERR# on IUT config write

✓

8 Verify that PERR# is active two clocks after the first data phase (which 
had odd parity) on IUT config read

✓

9 Verify the IUT sets Parity Error Detected bit when odd parity is detected 
on IUT config read

✓

Test # Description Pass N/A

If IUT does not implement memory transactions mark 1 through 3 N/A.

1 Verify the IUT sets Parity Error Detected bit when Primary Target asserts 
PERR# on IUT multi data phase memory write

✓

2 Verify that PERR# is active two clocks after the first data phase (which 
had odd parity) on IUT multi data phase memory read

✓

3 Verify the IUT sets Parity Error Detected bit when odd parity is detected 
on IUT Memory multi data phase read

✓

Test # Description Pass N/A

If IUT does not implement dual address transactions mark 4 through 6 N/A.

4 Verify the IUT sets Parity Error Detected bit when Primary Target asserts 
PERR# on IUT dual address multi data phase write

✓

5 Verify that PERR# is active two clocks after the first data phase (which 
had odd parity) on IUT dual address multi data phase read

✓

6 Verify the IUT sets Parity Error Detected bit when odd parity is detected 
on IUT dual address multi data phase read

✓

Test # Description Pass N/A

If IUT does not implement configuration transactions mark 7 through 9 N/A.

7 Verify the IUT sets Parity Error Detected bit when Primary Target asserts 
PERR# on IUT config multi-data phase write

✓

8 Verify that PERR# is active two clocks after the first data phase (which 
had odd parity) on IUT config multi-data phase read

✓

9 Verify the IUT sets Parity Error Detected bit when odd parity is detected 
on IUT config multi-data phase read

✓



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 50 May, 1999

Memory Read Multiple:

Memory Read Line:

Memory Write and Invalidate:

Test Scenario: 1.11. Bus Master Timeout

Test Scenario: 1.12. Target Lock

Test # Description Pass N/A

If IUT does not implement memory read multiple transactions mark 10 through 11 N/A.

10 Verify that PERR# is active two clocks after the first data phase (which 
had odd parity) on IUT memory read multiple data phase.

✓

11 Verify the IUT sets Parity Error Detected bit when odd parity is detected 
on IUT memory read multiple data phase.

✓

Test # Description Pass N/A

If IUT does not implement memory read line transactions mark 12 through 13 N/A.

12 Verify that PERR# is active two clocks after the first data phase (which 
had odd parity) on IUT memory read line data phase.

✓

13 Verify the IUT sets Parity Error Detected bit when odd parity is detected 
on IUT memory read line data phase.

✓

Test # Description Pass N/A

If IUT does not implement memory write and invalidate transactions mark 14 N/A.

14 Verify the IUT sets Parity Error Detected bit when Primary Target asserts 
PERR# on IUT memory write and invalidate data phase.

✓

Test # Description Pass N/A

1 Memory write transaction terminates before 4 data phases completed ✓

2 Memory read transaction terminates before 4 data phases completed ✓

3 Config write transaction terminates before 4 data phases completed ✓

4 Config read transaction terminates before 4 data phases completed ✓

5 Memory read multiple transaction terminates before 4 data phases ✓

6 Memory read line transaction terminates before 4 data phases ✓

7 Dual Address write transaction terminates before 4 data phases complete ✓

8 Dual Address read transaction terminates before 4 data phases complete ✓

If IUT does not support cache coherent transactions mark 9 N/A.

9 Memory write invalidate terminates on line boundary ✓

Test # Description Pass N/A

If IUT does not support locked transactions mark 1 through 5 N/A.

1 IUT does not perform bus transaction (read lock) on locked resource ✓

2 IUT does establish lock after lock is released ✓

3 IUT does release lock after write to primary target ✓

4 IUT does not establish lock when it detects retry ✓

5 IUT does not establish lock when it detects target abort ✓



May, 1999 5 - 51

Test Scenario: 1.13. PCI Bus Master Parking

Test Scenario: 1.14. PCI Bus Master Arbitration

Test Scenario 1.x Explanations.

Test # Description Pass N/A

Verify that the IUT is able to drive PCI bus to stable conditions if it is idle and GNT# is asserted.

1 IUT drives AD[31::00] to stable values within eight PCI Clocks of GNT#. ✓

2 IUT drives C/BE[3::0]# to stable values within eight PCI Clocks of GNT#. ✓

3 IUT drives PAR one clock cycle after IUT drives AD[31::0] ✓

Verify that the IUT will tri-state the bus when GNT# is not asserted.

4 IUT Tri-states AD[31::00] and C/BE[3::0] and PAR when GNT# is re-
leased.

✓

Test # Description Pass N/A

Verify that the IUT is able to complete bus transaction when GNT# is deasserted coincident with FRAME# as-
serted.

1 IUT completes transaction when de-asserting GNT# is coincident with as-
serting FRAME#.

✓

Explanations

Scenario 1.1: The LogiCORE initiator detects and reports a master abort. However, the initiator deasserts 
FRAME# and IRDY# one cycle later than specified in the PCI Local Bus Specification. Otherwise, the initiator 
treats master abort as required. A one cycle latency should not adversely affect most designs.

Scenario 1.2: The LogiCORE initiator will not retry the transaction unless directed to do so by the user applica-
tion. It is the responsibility of the user application to monitor for target aborts and act appropriately.

Scenario 1.3: The LogiCORE initiator will retry the transaction if directed to do so by the user application. It is 
the responsibility of the user application to monitor for retries and act appropriately.

Scenario 1.5: The LogiCORE initiator will not retry the transaction unless directed to do so by the user applica-
tion. It is the responsibility of the user application to monitor for target aborts and act appropriately.

Scenario 1.6: The LogiCORE initiator will retry the transaction if directed to do so by the user application. It is 
the responsibility of the user application to monitor for retries and act appropriately.

Scenario 1.7: The core will always issue a disconnect with data on the first data phase of a configuration trans-
action. For extended configuration space transactions, the user application must perform a disconnect with data 
on the first data phase. Multi-data phase configuration transactions are not supported.

Scenario 1.14: The LogiCORE initiator will not begin a transaction if GNT# is asserted for a single cycle and then 
deasserted. In this case, the initiator will request the bus again. This behavior is transparent to the user applica-
tion.

This section should be used to clarify any answers on checklist items above. Please key explanation to item 
number.



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 52 May, 1999

Component Protocol Checklist for a Target Device
Definition: IUT is an acronym for “Implementation Under Test”.

Test Scenario: 2.1. Target Reception of an Interrupt Cycle.

Test Scenario: 2.2. Target Reception of a Special Cycle.

Test Scenario: 2.3. Target Detection of Address and Data Parity Error for Special Cycle.

Test Scenario: 2.4. Target Reception of I/O Cycles with Legal and Illegal Byte Enables.

Test Scenario: 2.5. Target Ignores Reserved Commands.

Test # Description Pass N/A

If IUT does not respond to Interrupt Acknowledge bus transactions mark 1 through 2 N/A

1 IUT generates interrupts when programmed ✓

2 IUT clears interrupts when serviced (may include driver specific actions) ✓

Test # Description Pass N/A

If IUT does not implement Special Cycles mark 1 through 2 N/A

1 No DEVSEL# assertion by IUT after Special Cycle ✓

2 IUT receives encoded special cycle ✓

Test # Description Pass N/A

1 IUT reports address parity error via SERR# ✓

2 IUT reports data parity error via SERR# ✓

3 IUT keeps SERR# active for at least one clock ✓

Test # Description Pass N/A

If IUT does not support I/O cycles mark 1 through 4 N/A or
if IUT claims all 32 bits during an I/O cycle mark 1 and 2 N/A

1 IUT asserts TRDY# following 2nd rising edge from FRAME# on all legal 
BE’s

✓

2 IUT terminates with target abort for each illegal BE ✓

If IUT supports target disconnect check the following

3 IUT asserts STOP# ✓

4 IUT deasserts STOP# after FRAME# deassertion ✓

Test # Description Pass N/A

1 IUT does not respond to reserved commands ✓

2 Initiator detects master abort for each transfer ✓

For 32-bit targets

3 IUT does not respond to 64bit cycle (dual address) ✓



May, 1999 5 - 53

Test Scenario: 2.6. Target Receives Configuration Cycles.

Test Scenario: 2.7. Target Receives I/O Cycles with Address and Data Parity Errors.

Test Scenario: 2.8. Target Configuration Cycles with Address and Data Parity Errors.

Test Scenario: 2.9. Target Receives Memory Cycles.

Test # Description Pass N/A

1 IUT responds to all type 0 configuration read/write cycles appropriately ✓

2 IUT does not respond to type 0 configuration cycles with IDSEL inactive ✓

If IUT does not support type 1 configuration cycles mark 3 through 5 N/A

Test # Description Pass N/A

3 IUT responds to all type 1 configuration read/write cycles appropriately ✓

4 IUT responds to all type 0 configuration read/write cycles appropriately ✓

5 IUT does not respond (master abort) on illegal configuration cycle types ✓

Test # Description Pass N/A

If IUT does not support I/O cycles mark all N/A

1 IUT reports address parity error via SERR# during I/O read/write cycles ✓

2 IUT reports data parity error via PERR# during I/O write cycles ✓

Test # Description Pass N/A

1 IUT reports address parity error via SERR# during configuration read/
write cycles

✓

2 IUT reports data parity error via PERR# during configuration write cycles ✓

Test # Description Pass N/A

If IUT does not interface to a memory subsystem mark all N/A 

1 IUT completes single memory read and write cycles appropriately ✓

If IUT does not interface to main system memory or memory is not cacheable mark 2 to 4 N/A

2 IUT completes memory read line cycles appropriately ✓

3 IUT completes memory read multiple cycles appropriately ✓

4 IUT completes memory write and invalidate cycles appropriately ✓

5 IUT disconnects after one cycle on reserved memory operations ✓

6 IUT disconnects on burst transactions that cross address boundaries ✓



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 54 May, 1999

Test Scenario: 2.10. Target Gets Memory Cycles with Address and Data Parity Errors. 

Test Scenario: 2.11. Target Gets Fast Back to Back Cycles.

Test Scenario: 2.12. Target Performs Exclusive Access Cycles.

Test Scenario: 2.13. Target Gets Cycles with IRDY# Used for Data Stepping. 

Test # Description Pass N/A

If IUT does not interface to a memory subsystem mark 1 to 2 N/A

1 IUT reports address parity error via SERR# during all memory read and 
write cycles

✓

2 IUT reports data parity error via PERR# during all memory write cycles ✓

Test # Description Pass N/A

1 IUT responds to back to back memory writes appropriately ✓

2 IUT responds to memory write followed by memory read appropriately ✓

If IUT does not implement the “Fast Back-to-Back Bit” then mark 3 and 4 N/A

3 IUT responds to back to back memory writes with 2nd write selecting IUT ✓

4 IUT responds to memory write followed by memory read with read select-
ing IUT

✓

Test # Description Pass N/A

If the IUT does not implement LOCK# mark all N/A

1 IUT responds to exclusive access by initiator and accepts LOCK# ✓

2 IUT responds with retry when second initiator attempts an access ✓

3 IUT responds to access releasing LOCK# by initiator ✓

4 IUT responds to access by second initiator ✓

Test # Description Pass N/A

1 IUT responds appropriately with a wait state inserted on phase 1 of 3 data 
phases

✓

2 IUT responds appropriately with a wait state inserted on phase 2 of 3 data 
phases

✓

3 IUT responds appropriately with a wait state inserted on phase 3 of 3 data 
phases

✓

4 IUT responds appropriately with a wait state inserted on all of 3 data 
phases

✓



May, 1999 5 - 55

Test Scenario 2.x Explanations.

Explanations

Scenario 2.4: The LogiCORE target does not automatically generate target abort or disconnect during illegal 
transfers. However, this behavior can be implemented in the user application.

Scenario 2.6: The LogiCORE target does not support burst transfers in or out of its configuration space.

Scenario 2.9: The LogiCORE target does not automatically generate target abort when a burst transaction cross-
es an address boundary. However, this behavior can be implemented in the user application.

This section should be used to clarify any answers on checklist items above. Please key explanation to item 
number.



LogiCORE PCI V3.0 Cores PCI Compliance Checklist

5 - 56 May, 1999



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

11

Pinout and Configuration



Pinout and Configuration



May, 1999 6 - 1

Pinout and Configuration

Layout Considerations
The PQ pinouts Xilinx supplies follow the PCI-SIG sug-
gested pinout and aligns the PCI data path (ADIO[31:0])
along the horizontal long lines in the FPGA. The horizontal
Long-lines support internal 3-state busses. Various regis-
ters, such as the Base Address Registers, are aligned ver-
tically, in columns.

Since the BG432 package used by the XC4062XLA is cav-
ity down, the LogiCORE PCI Interface is placed on the
other side of the die. 

Compatibility Considerations
Here are a few issues to consider in design your PCB. 

• If you are migrating from an XC4000XLT to an
XC4000XLA device, all pinouts are identical except the
Vtt pins become regular I/Os. 

• Spartan and SpartanXL pinouts are identical for the
same packages. 

• Spartan/SpartanXL PQ208 and XC4000XLA PQ208
PCI pinouts do not match, due to a different bondout on
the Spartan/SpartanXL PQ208. 

• The SpartanXL PQ240 and the XC4000XLA PQ/
HQ240 PCI pinouts match.

Pinout Tables
The following pinout tables list the PCI pin assignment for
these supported packages:

• Table 1 XC4013XLAPQ208
• Table 2 XC4013XLAPQ240
• Table 3 XC4028XLAPQ240
• Table 4 XC4062XLAPQ240
• Table 5 XC4062XLABG432
• Table 6 XCS20TQ144
• Table 7 XCS30PQ208
• Table 8 XCS30PQ240
• Table 9 XCS40PQ208
• Table 10  XCS40PQ240
• Table 10 XCV300BG432 (64 bit)

For each pin, both the PCI function and the fundamental
device pin function are listed. Those shown in bold italics
are dedicated pins for configuring the FPGA device using

one of the serial configuration modes. Pins without a PCI
function listed are available as additional user I/O. 

Note:  If there are conflicts between these tables and the 
constraints file, the constraints file has 
precedence.

Due to the complexity of the Virtex I/O, the V300 pinout
table will only list the PCI specific pins. Refer to the Virtex
data sheet for details on the remaining pins.

Configuration Mode
The LogiCORE PCI Interface is designed to use Serial
Master Mode or Slave Mode for configuring the device. An
external serial configuration device, such as the Xchecker
cable or an embedded processor is required for Serial
Slave Mode.

Use of the XC4000XLA or SpartanXL fast configuration
mode is recommended to minimize the FPGA power-up
configuration time. The fast mode is set as part of the
MakeBits options in the XDM profile read in during the
design compilation phase.

Please refer to the Xilinx Programmable Logic Data Book
for additional information.

The Xchecker is useful during debugging. However, the PCI
system needs to be held reset while the FPGA's bit-stream
is loaded. If using an embedded processor, the user needs
to insure that configuration will not be delayed by interrupts
to the processor, and that it is capable of configuring it prior
to the assertion of IDSEL. Currently the v2.1 PCI Specifica-
tion does not specify a time requirement for the initial
asserting of IDSEL after power-on. Currently, there is a pro-
posal for the v2.2 PCI Specification to require 2^25 clocks
before configuring the PCI bus after power-on. Until this is
required in the PCI Specification, Xilinx recommends use of
the Master Serial fast mode to assure the FPGA is config-
ured at the time of IDSEL assertion. 

 

6
0

0 May, 1999



Pinout and Configuration

6 - 2 May, 1999

Pinout for the XC4013XLA PQ208     
Table 1: Pinout for the XC4013XLA PQ208

 Pin Function PCI Function PQ208
N.C. N.C. P1

GND GND P2

N.C. N.C. P3

I/O, GCK1 (A16) PCLK P4
I/O (A17) AD23 P5

I/O AD22 P6

I/O AD21 P7

I/O, TDI TDI P8

I/O, TCK TCK P9

I/O AD20 P10
I/O AD19 P11

I/O AD18 P12

I/O AD17 P13

GND GND P14

I/O AD16 P15

I/O CBE2 P16
I/O, TMS TMS P17

I/O P18

I/O GNT- P19

I/O FRAME- P20

I/O IRDY- P21

I/O TRDY- P22
I/O DEVSEL- P23

I/O STOP- P24

GND GND P25

VCC VCC P26

I/O PERR- P27

I/O SERR- P28
I/O PAR P29

I/O REQ- P30

I/O P31

I/O P32

I/O P33

I/O P34
I/O CBE1 P35

I/O AD15 P36

GND GND P37

I/O AD14 P38

I/O AD13 P39

I/O AD12 P40

I/O AD11 P41
I/O AD10 P42

I/O AD9 P43

I/O AD8 P44

I/O P45

I/O P46

I/O, GCK2 P47
O (M1) M1 P48
GND GND P49

I (M0) M0 P50
N.C. N.C. P51

N.C. N.C. P52

N.C. N.C. P53
N.C. N.C. P54

VCC VCC P55

I (M2) M2 P56
I/O, GCK3 P57

I/O (HDC) HDC P58
I/O CBE0 P59
I/O AD7 P60

I/O AD6 P61

I/O (LDC-) LDC- P62
I/O AD5 P63

I/O AD4 P64

I/O AD3 P65
I/O AD2 P66

GND GND P67

I/O AD1 P68

I/O P69

I/O AD0 P70

I/O P71
I/O P72

I/O P73

I/O P74

I/O P75

I/O P76

I/O (INIT-) INIT- P77
VCC VCC P78

GND GND P79

I/O P80

I/O P81

I/O P82

I/O P83
I/O P84

I/O P85

I/O P86

I/O P87

I/O P88

I/O P89

GND GND P90
I/O P91

Table 1: Pinout for the XC4013XLA PQ208 (Continued)

 Pin Function PCI Function PQ208



May, 1999 6 - 3

I/O P92

I/O P93
I/O P94

I/O P95

I/O P96

I/O P97

I/O P98

I/O P99
I/O, GCK4 P100

GND GND P101

N.C. N.C. P102

DONE DONE P103
N.C. N.C. P104

N.C. N.C. P105
VCC VCC P106

N.C. N.C. P107

PROGRAM- PROGRAM- P108
I/O (D7) RST- P109

I/O, GCK5 P110

I/O P111
I/O P112

I/O (D6) P113

I/O P114

I/O P115

I/O P116

I/O P117
I/O P118

GND GND P119

I/O P120

I/O P121

I/O (D5) P122

I/O (CS0-) P123
I/O P124

I/O P125

I/O P126

I/O P127

I/O (D4) P128

I/O P129
VCC VCC P130

GND GND P131

I/O (D3) P132

I/O (RS-) P133

I/O P134

I/O P135

I/O P136
I/O P137

Table 1: Pinout for the XC4013XLA PQ208 (Continued)

 Pin Function PCI Function PQ208
I/O (D2) P138

I/O P139
I/O P140

I/O P141

GND GND P142

I/O P143

I/O P144

I/O P145
I/O P146

I/O (D1) P147

I/O (RCLK, RDY/
BUSY)

P148

I/O P149

I/O P150

I/O (D0, DIN) DIN P151
I/O, GCK6 

(DOUT)
DOUT P152

CCLK CCLK P153

VCC VCC P154

N.C. N.C. P155
N.C. N.C. P156

N.C. N.C. P157

N.C. N.C. P158

O, TDO TDO P159

GND GND P160

I/O (A0, WS-) P161
I/O, GCK7 (A1) P162

I/O P163

I/O P164

I/O (CS1, A2) P165

I/O (A3) P166

I/O P167
I/O P168

I/O P169

I/O P170

GND GND P171

I/O P172

I/O P173
I/O (A4) P174

I/O (A5) P175

I/O P176

I/O P177

I/O(A21) P178

I/O(A20) P179

I/O (A6) P180
I/O (A7) P181

GND GND P182

Table 1: Pinout for the XC4013XLA PQ208 (Continued)

 Pin Function PCI Function PQ208



Pinout and Configuration

6 - 4 May, 1999

VCC VCC P183

I/O (A8) P184
I/O (A9) P185

I/O (A19) P186

I/O (A18) P187

I/O P188

I/O P189

I/O (A10) P190
I/O (A11) AD31 P191

I/O P192

I/O AD30 P193

GND GND P194

I/O AD29 P195

I/O AD28 P196
I/O AD27 P197

I/O AD26 P198

I/O (A12) AD25 P199

I/O (A13) AD24 P200

I/O CBE3 P201

I/O IDSEL P202
I/O (A14) P203

I/O, GCK8 (A15) P204

VCC VCC P205

N.C. N.C. P206

N.C. N.C. P207

N.C. N.C. P208

Table 1: Pinout for the XC4013XLA PQ208 (Continued)

 Pin Function PCI Function PQ208



May, 1999 6 - 5

Pinout for the XC4013XLA PQ240  
Table 2: Pinout for the XC4013XLA PQ240

 Pin Function PCI Function PQ240
GND GND P1

I/O, GCK1 (A16) PCLK P2

I/O (A17) AD23 P3

I/O P4
I/O AD22 P5

I/O, TDI TDI P6

I/O, TCK TCK P7

I/O AD21 P8

I/O AD20 P9

I/O AD19 P10
I/O AD18 P11

I/O P12

I/O P13

GND GND P14

I/O AD17 P15

I/O P16
I/O, TMS TMS P17

I/O P18

VCC P19

I/O AD16 P20

I/O CBE2 P21

GND‡ GND P22
I/O GNT- P23

I/O FRAME- P24

I/O IRDY- P25

I/O TRDY- P26

I/O DEVSEL- P27

I/O STOP- P28
GND GND P29

VCC VCC P30

I/O PERR- P31

I/O SERR- P32

I/O PAR P33

I/O REQ- P34
I/O P35

I/O P36

GND‡ GND P37

I/O P38

I/O P39

VCC VCC P40

I/O P41
I/O P42

I/O CBE1 P43

I/O AD15 P44

GND GND P45

I/O P46

I/O P47
I/O AD14 P48

I/O AD13 P49

I/O AD12 P50

I/O AD11 P51

I/O AD10 P52

I/O AD9 P53
I/O AD8 P54

I/O P55

I/O P56

I/O, GCK2 P57

O (M1) M1 P58
GND GND P59
I (M0) M0 P60
VCC VCC P61

I (M2) M2 P62
I/O, GCK3 P63

I/O (HDC) HDC P64
I/O CBE0 P65
I/O AD7 P66

I/O AD6 P67

I/O (LDC-) LDC- P68
I/O AD5 P69

I/O AD4 P70

I/O AD3 P71
I/O AD2 P72

I/O P73

I/O P74

GND GND P75

I/O AD1 P76

I/O P77
I/O AD0 P78

I/O P79

VCC VCC P80

I/O P81

I/O P82

GND‡ GND P83
I/O P84

I/O P85

I/O P86

I/O P87

I/O P88

I/O (INIT-) INIT- P89
VCC VCC P90
GND GND P91

Table 2: Pinout for the XC4013XLA PQ240 (Continued)

 Pin Function PCI Function PQ240



Pinout and Configuration

6 - 6 May, 1999

I/O P92

I/O P93
I/O P94

I/O P95

I/O P96

I/O P97

GND‡ GND P98

I/O P99
I/O P100

VCC VCC P101

I/O P102

I/O P103

I/O P104

I/O P105
GND GND P106

I/O P107

I/O P108

I/O P109

I/O P110

I/O P111
I/O P112

I/O P113

I/O P114

I/O P115

I/O P116

I/O P117
I/O, GCK4 P118

GND GND P119

DONE DONE P120
VCC VCC P121

PROGRAM- PROGRAM- P122
I/O (D7) RST- P123

I/O, GCK5 P124

I/O P125

I/O P126

I/O P127

I/O P128

I/O (D6) P129
I/O P130

I/O P131

I/O P132

I/O P133

I/O P134

GND GND P135

I/O P136
I/O P137

Table 2: Pinout for the XC4013XLA PQ240 (Continued)

 Pin Function PCI Function PQ240
I/O P138

I/O P139
VCC VCC P140

I/O (D5) P141

I/O (CS0-) P142

GND‡ GND P143

I/O P144

I/O P145
I/O P146

I/O P147

I/O (D4) P148

I/O P149

VCC VCC P150

GND GND P151
I/O (D3) P152

I/O (RS-) P153

I/O P154

I/O P155

I/O P156

I/O P157
GND‡ GND P158

I/O (D2) P159

I/O P160

VCC VCC P161

I/O P162

I/O P163
I/O P164

I/O P165

GND GND P166

I/O P167

I/O P168

I/O P169
I/O P170

I/O P171

I/O P172

I/O (D1) P173

I/O (RCLK, RDY/
BUSY)

P174

I/O P175

I/O P176

I/O (D0, DIN) DIN P177
I/O, GCK6 

(DOUT)
DOUT P178

CCLK CCLK P179

VCC VCC P180
O, TDO TDO P181

GND GND P182

Table 2: Pinout for the XC4013XLA PQ240 (Continued)

 Pin Function PCI Function PQ240



May, 1999 6 - 7

‡ Pins marked with this symbol are used for Ground connections on 
some revisions of the device. These pins may not physically connect 
to anything on the current device revision. However, they should be 
externally connected to Ground, if possible.

I/O (A0, WS-) P183

I/O, GCK7 (A1) P184
I/O P185

I/O P186

I/O (CS1, A2) P187

I/O (A3) P188

I/O P189

I/O P190
I/O P191

I/O P192

I/O P193

I/O P194

N.C. N.C. P195

GND GND P196
I/O P197

I/O P198

I/O P199

I/O P200

VCC VCC P201

I/O (A4) P202
I/O (A5) P203

GND‡ GND P204

I/O P205

I/O P206

I/O (A21) P207

I/O (A20) P208
I/O (A6) P209

I/O (A7) P210

GND GND P211

VCC VCC P212

I/O (A8) P213

Table 2: Pinout for the XC4013XLA PQ240 (Continued)

 Pin Function PCI Function PQ240
I/O (A9) P214

I/O (A19) P215
I/O (A18) P216

I/O P217

I/O P218

GND‡ GND P219

I/O (A10) P220

I/O (A11) P221
VCC VCC P222

I/O P223

I/O AD31 P224

I/O P225

I/O AD30 P226

GND GND P227
I/O AD29 P228

I/O AD28 P229

I/O AD27 P230

I/O AD26 P231

I/O (A12) AD25 P232

I/O (A13) AD24 P233
I/O P234

I/O P235

I/O CBE3 P236

I/O IDSEL P237

I/O (A14) P238

I/O, GCK8 (A15) P239
VCC VCC P240

Table 2: Pinout for the XC4013XLA PQ240 (Continued)

 Pin Function PCI Function PQ240



Pinout and Configuration

6 - 8 May, 1999

Pinout for the XC4028XLA HQ240         
Table 3: Pinout for the XC4028XLA HQ240

 Pin Function PCI Function HQ240
GND GND P1

I/O, GCK1 (A16) PCLK P2

I/O (A17) AD23 P3

I/O P4
I/O AD22 P5

I/O, TDI TDI P6

I/O, TCK TCK P7

I/O AD21 P8

I/O AD20 P9

I/O AD19 P10
I/O AD18 P11

I/O P12

I/O P13

GND GND P14

I/O AD17 P15

I/O P16
I/O, TMS TMS P17

I/O P18

VCC P19

I/O AD16 P20

I/O CBE2 P21

GND GND P22
I/O GNT- P23

I/O FRAME- P24

I/O IRDY- P25

I/O TRDY- P26

I/O DEVSEL- P27

I/O STOP- P28
GND GND P29

VCC VCC P30

I/O PERR- P31

I/O SERR- P32

I/O PAR P33

I/O REQ- P34
I/O P35

I/O P36

GND GND P37

I/O P38

I/O P39

VCC VCC P40

I/O P41
I/O P42

I/O CBE1 P43

I/O AD15 P44

GND GND P45

I/O P46

I/O P47
I/O AD14 P48

I/O AD13 P49

I/O AD12 P50

I/O AD11 P51

I/O AD10 P52

I/O AD9 P53
I/O AD8 P54

I/O P55

I/O P56

I/O, GCK2 P57

O (M1) M1 P58
GND GND P59
I (M0) M0 P60
VCC VCC P61

I (M2) M2 P62
I/O, GCK3 P63

I/O (HDC) HDC P64
I/O CBE0 P65
I/O AD7 P66

I/O AD6 P67

I/O (LDC-) LDC- P68
I/O AD5 P69

I/O AD4 P70

I/O AD3 P71
I/O AD2 P72

I/O P73

I/O P74

GND GND P75

I/O AD1 P76

I/O P77
I/O AD0 P78

I/O P79

VCC VCC P80

I/O P81

I/O P82

GND GND P83
I/O P84

I/O P85

I/O P86

I/O P87

I/O P88

I/O (INIT-) INIT- P89
VCC VCC P90
GND GND P91

Table 3: Pinout for the XC4028XLA HQ240 (Continued)

 Pin Function PCI Function HQ240



May, 1999 6 - 9

I/O P92

I/O P93
I/O P94

I/O P95

I/O P96

I/O P97

GND GND P98

I/O P99
I/O P100

VCC VCC P101

I/O P102

I/O P103

I/O P104

I/O P105
GND GND P106

I/O P107

I/O P108

I/O P109

I/O P110

I/O P111
I/O P112

I/O P113

I/O P114

I/O P115

I/O P116

I/O P117
I/O, GCK4 P118

GND GND P119

DONE DONE P120
VCC VCC P121

PROGRAM- PROGRAM- P122
I/O (D7) RST- P123

I/O, GCK5 P124

I/O P125

I/O P126

I/O P127

I/O P128

I/O (D6) P129
I/O P130

I/O P131

I/O P132

I/O P133

I/O P134

GND GND P135

I/O P136
I/O P137

Table 3: Pinout for the XC4028XLA HQ240 (Continued)

 Pin Function PCI Function HQ240
I/O P138

I/O P139
VCC VCC P140

I/O (D5) P141

I/O (CS0-) P142

GND GND P143

I/O P144

I/O P145
I/O P146

I/O P147

I/O (D4) P148

I/O P149

VCC VCC P150

GND GND P151
I/O (D3) P152

I/O (RS-) P153

I/O P154

I/O P155

I/O P156

I/O P157
GND GND P158

I/O (D2) P159

I/O P160

VCC VCC P161

I/O P162

I/O P163
I/O P164

I/O P165

GND GND P166

I/O P167

I/O P168

I/O P169
I/O P170

I/O P171

I/O P172

I/O (D1) P173

I/O (RCLK, RDY/
BUSY)

P174

I/O P175

I/O P176

I/O (D0, DIN) DIN P177
I/O, GCK6 

(DOUT)
DOUT P178

CCLK CCLK P179

VCC VCC P180
O, TDO TDO P181

GND GND P182

Table 3: Pinout for the XC4028XLA HQ240 (Continued)

 Pin Function PCI Function HQ240



Pinout and Configuration

6 - 10 May, 1999

I/O (A0, WS-) P183

I/O, GCK7 (A1) P184
I/O P185

I/O P186

I/O (CS1, A2) P187

I/O (A3) P188

I/O P189

I/O P190
I/O P191

I/O P192

I/O P193

I/O P194

I/O P195

GND GND P196
I/O P197

I/O P198

I/O P199

I/O P200

VCC VCC P201

I/O (A4) P202
I/O (A5) P203

GND‡ GND P204

I/O P205

I/O P206

I/O (A21) P207

I/O (A20) P208
I/O (A6) P209

I/O (A7) P210

GND GND P211

VCC VCC P212

I/O (A8) P213

I/O (A9) P214
I/O (A19) P215

I/O (A18) P216

I/O P217

I/O P218

GND‡ GND P219

I/O (A10) P220
I/O (A11) P221

VCC VCC P222

I/O P223

I/O AD31 P224

I/O P225

I/O AD30 P226

GND GND P227
I/O AD29 P228

Table 3: Pinout for the XC4028XLA HQ240 (Continued)

 Pin Function PCI Function HQ240
I/O AD28 P229

I/O AD27 P230
I/O AD26 P231

I/O (A12) AD25 P232

I/O (A13) AD24 P233

I/O P234

I/O P235

I/O CBE3 P236
I/O IDSEL P237

I/O (A14) P238

I/O, GCK8 (A15) P239

VCC VCC P240

Table 3: Pinout for the XC4028XLA HQ240 (Continued)

 Pin Function PCI Function HQ240



May, 1999 6 - 11

Pinout for the XC4062XLA HQ240  
Table 4: Pinout for the XC4062XLA HQ240

 Pin Function PCI Function HQ240
GND GND P1

I/O, GCK1 (A16) PCLK P2

I/O (A17) AD23 P3

I/O P4
I/O AD22 P5

I/O, TDI TDI P6

I/O, TCK TCK P7

I/O AD21 P8

I/O AD20 P9

I/O AD19 P10
I/O AD18 P11

I/O P12

I/O P13

GND GND P14

I/O AD17 P15

I/O P16
I/O, TMS TMS P17

I/O P18

VCC P19

I/O AD16 P20

I/O CBE2 P21

GND GND P22
I/O GNT- P23

I/O FRAME- P24

I/O IRDY- P25

I/O TRDY- P26

I/O DEVSEL- P27

I/O STOP- P28
GND GND P29

VCC VCC P30

I/O PERR- P31

I/O SERR- P32

I/O PAR P33

I/O REQ- P34
I/O P35

I/O P36

GND GND P37

I/O P38

I/O P39

VCC VCC P40

I/O P41
I/O P42

I/O CBE1 P43

I/O AD15 P44

GND GND P45

I/O P46

I/O P47
I/O AD14 P48

I/O AD13 P49

I/O AD12 P50

I/O AD11 P51

I/O AD10 P52

I/O AD9 P53
I/O AD8 P54

I/O P55

I/O P56

I/O, GCK2 P57

O (M1) M1 P58
GND GND P59
I (M0) M0 P60
VCC VCC P61

I (M2) M2 P62
I/O, GCK3 P63

I/O (HDC) HDC P64
I/O CBE0 P65
I/O AD7 P66

I/O AD6 P67

I/O (LDC-) LDC- P68
I/O AD5 P69

I/O AD4 P70

I/O AD3 P71
I/O AD2 P72

I/O P73

I/O P74

GND GND P75

I/O AD1 P76

I/O P77
I/O AD0 P78

I/O P79

VCC VCC P80

I/O P81

I/O P82

GND GND P83
I/O P84

I/O P85

I/O P86

I/O P87

I/O P88

I/O (INIT-) INIT- P89
VCC VCC P90
GND GND P91

Table 4: Pinout for the XC4062XLA HQ240 (Continued)

 Pin Function PCI Function HQ240



Pinout and Configuration

6 - 12 May, 1999

I/O P92

I/O P93
I/O P94

I/O P95

I/O P96

I/O P97

GND GND P98

I/O P99
I/O P100

VCC VCC P101

I/O P102

I/O P103

I/O P104

I/O P105
GND GND P106

I/O P107

I/O P108

I/O P109

I/O P110

I/O P111
I/O P112

I/O P113

I/O P114

I/O P115

I/O P116

I/O P117
I/O, GCK4 P118

GND GND P119

DONE DONE P120
VCC VCC P121

PROGRAM- PROGRAM- P122
I/O (D7) RST- P123

I/O, GCK5 P124

I/O P125

I/O P126

I/O P127

I/O P128

I/O (D6) P129
I/O P130

I/O P131

I/O P132

I/O P133

I/O P134

GND GND P135

I/O P136
I/O P137

Table 4: Pinout for the XC4062XLA HQ240 (Continued)

 Pin Function PCI Function HQ240
I/O P138

I/O P139
VCC VCC P140

I/O (D5) P141

I/O (CS0-) P142

GND GND P143

I/O P144

I/O P145
I/O P146

I/O P147

I/O (D4) P148

I/O P149

VCC VCC P150

GND GND P151
I/O (D3) P152

I/O (RS-) P153

I/O P154

I/O P155

I/O P156

I/O P157
GND GND P158

I/O (D2) P159

I/O P160

VCC VCC P161

I/O P162

I/O P163
I/O P164

I/O P165

GND GND P166

I/O P167

I/O P168

I/O P169
I/O P170

I/O P171

I/O P172

I/O (D1) P173

I/O (RCLK, RDY/
BUSY)

P174

I/O P175

I/O P176

I/O (D0, DIN) DIN P177
I/O, GCK6 

(DOUT)
DOUT P178

CCLK CCLK P179

VCC VCC P180
O, TDO TDO P181

GND GND P182

Table 4: Pinout for the XC4062XLA HQ240 (Continued)

 Pin Function PCI Function HQ240



May, 1999 6 - 13

‡ Pins marked with this symbol are used for Ground connections on 
some revisions of the device. These pins may not physically connect 
to anything on the current device revision. However, they should be 
externally connected to Ground, if possible.

I/O (A0, WS-) P183

I/O, GCK7 (A1) P184
I/O P185

I/O P186

I/O (CS1, A2) P187

I/O (A3) P188

I/O P189

I/O P190
I/O P191

I/O P192

I/O P193

I/O P194

I/O P195

GND GND P196
I/O P197

I/O P198

I/O P199

I/O P200

VCC VCC P201

I/O (A4) P202
I/O (A5) P203

GND‡ GND P204

I/O P205

I/O P206

I/O (A21) P207

I/O (A20) P208
I/O (A6) P209

I/O (A7) P210

GND GND P211

VCC VCC P212

I/O (A8) P213

Table 4: Pinout for the XC4062XLA HQ240 (Continued)

 Pin Function PCI Function HQ240
I/O (A9) P214

I/O (A19) P215
I/O (A18) P216

I/O P217

I/O P218

GND‡ GND P219

I/O (A10) P220

I/O (A11) P221
VCC VCC P222

I/O P223

I/O AD31 P224

I/O P225

I/O AD30 P226

GND GND P227
I/O AD29 P228

I/O AD28 P229

I/O AD27 P230

I/O AD26 P231

I/O (A12) AD25 P232

I/O (A13) AD24 P233
I/O P234

I/O P235

I/O CBE3 P236

I/O IDSEL P237

I/O (A14) P238

I/O, GCK8 (A15) P239
VCC VCC P240

Table 4: Pinout for the XC4062XLA HQ240 (Continued)

 Pin Function PCI Function HQ240



Pinout and Configuration

6 - 14 May, 1999

Pinout for the XC4062XLA BG432 

Table 5: Pinout for the XC4062XLA BG432
 Pin Function PCI Function BG432

I/O, GCK1 (A16) D29

I/O (A17) C30

I/O E28

I/O E29

I/O, TDI TDI D30
I/O, TCK TCK D31

I/O F28

I/O F29

I/O E30

I/O E31

I/O G28
I/O G29

I/O F30

I/O F31

I/O H28

I/O H29

I/O G30
I/O H30

I/O J28

I/O J29

I/O H31

I/O J30

I/O K28
I/O K29

I/O, TMS TMS K30

I/O K31

I/O L29

I/O L30

I/O M30
I/O M28

I/O M29

I/O M31

I/O N31

I/O N28

I/O N29
I/O N30

I/O P30

I/O P28

I/O P29

I/O R31

I/O R30

I/O R28
I/O R29

I/O T31

I/O T30

I/O T29

I/O U31

I/O U30
I/O U28

I/O U29

I/O V30

I/O V29

I/O V28

I/O W31
I/O W30

I/O W29

I/O W28

I/O Y31

I/O Y30

I/O Y29
I/O Y28

I/O AA30

I/O AA29

I/O AB31

I/O AB30

I/O AB29
I/O AB28

I/O AC30

I/O AC29

I/O AC28

I/O AD31

I/O AD30
I/O AD29

I/O AD28

I/O AE30

I/O AE29

I/O AF31

I/O AE28
I/O AF30

I/O AF29

I/O AG31

I/O AF28

I/O AG30

I/O AG29
I/O AH31

I/O AG28

I/O AH30

I/O, GCK2 AJ30

O (M1) M1 AH29
I (M0) M0 AH28
I (M2) M2 AJ28

I/O, GCK3 AK29

Table 5: Pinout for the XC4062XLA BG432 
 Pin Function PCI Function BG432



May, 1999 6 - 15

I/O (HDC) HDC AH27
I/O AK28

I/O AJ27
I/O AL28

I/O (LDC-) LDC- AH26
I/O AK27

I/O AJ26

I/O AL27

I/O AH25
I/O AK26

I/O AL26

I/O AH24

I/O AJ25

I/O AK25

I/O AJ24
I/O AH23

I/O AK24

I/O AL24

I/O AH22

I/O AJ23

I/O AK23
I/O AJ22

I/O AK22

I/O AL22

I/O AJ21

I/O AH20

I/O AK21
I/O AJ20

I/O AH19

I/O AK20

I/O AJ19

I/O AL20

I/O AH18
I/O AK19

I/O AJ18

I/O AL19

I/O AK18

I/O AH17

I/O AJ17
I/O AK17

I/O AL17

I/O AJ16

I/O (INIT-) INIT- AK16
I/O AL16

I/O AH15

I/O AL15
I/O AJ15

Table 5: Pinout for the XC4062XLA BG432 
 Pin Function PCI Function BG432

I/O AK15

I/O AJ14

I/O AH14
I/O AK14

I/O AL13

I/O AK13

I/O AJ13

I/O AH13

I/O AL12
I/O AK12

I/O AJ12

I/O AK11

I/O AH12

I/O AJ11

I/O AL10
I/O AK10

I/O AJ10

I/O AK9

I/O AL8

I/O AH10

I/O AJ9
I/O AK8

I/O AJ8

I/O AH9

I/O AK7

I/O AL6

I/O AJ7
I/O AH8

I/O AK6

I/O AL5

I/O AH7

I/O AJ6

I/O AK5
I/O AL4

I/O AH6

I/O AJ5

I/O AK4

I/O AH5

I/O AK3
I/O, GCK4 AJ4

DONE DONE AH4
PROGRAM- PROGRAM- AH3

I/O (D7) AJ2

I/O, GCK5 PCLK AG4

I/O AD0 AG3

I/O AD1 AH2
I/O AD2 AH1

Table 5: Pinout for the XC4062XLA BG432 
 Pin Function PCI Function BG432



Pinout and Configuration

6 - 16 May, 1999

I/O AD3 AF4

I/O AD4 AF3

I/O AD5 AG2
I/O AD6 AG1

I/O AD7 AE4

I/O AE3

I/O AF2

I/O (D6) AF1

I/O CBE0 AD4
I/O AD8 AD3

I/O AD9 AE2

I/O AD10 AD2

I/O AC4

I/O AD11 AC3

I/O AD12 AD1
I/O AD13 AC2

I/O AD14 AB4

I/O AD15 AB3

I/O CBE1 AB2

I/O REQ- AB1

I/O AA3
I/O (D5) AA2

I/O (CS0-) Y2

I/O Y4

I/O Y3

I/O Y1

I/O PAR W1
I/O SERR- W4

I/O W3

I/O PERR- W2

I/O V2

I/O STOP- V4

I/O DEVSEL- V3
I/O TRDY- U1

I/O IRDY- U2

I/O FRAME- U4

I/O GNT- U3

I/O (D4) T1

I/O CBE2 T2
I/O (D3) T3

I/O (RS-) R1

I/O AD16 R2

I/O AD17 R4

I/O AD18 R3

I/O AD19 P2

I/O AD20 P3
I/O AD21 P4

Table 5: Pinout for the XC4062XLA BG432 
 Pin Function PCI Function BG432

I/O N1

I/O N2

I/O AD22 N3
I/O AD23 N4

I/O IDSEL M1

I/O CBE3 M2

I/O M3

I/O M4

I/O (D2) L2
I/O L3

I/O K1

I/O AD24 K2

I/O AD25 K3

I/O AD26 K4

I/O AD27 J2
I/O AD28 J3

I/O AD29 J4

I/O AD30 H1

I/O AD31 H2

I/O H3

I/O H4
I/O G2

I/O G3

I/O F1

I/O (D1) G4

I/O (RCLK, RDY/
BUSY)

F2

I/O F3

I/O E1

I/O F4
I/O E2

I/O E3

I/O D1

I/O E4

I/O D2

I/O (D0, DIN) DIN C2
I/O, GCK6 

(DOUT)
DOUT D3

CCLK CCLK D4
O, TDO TDO C4

I/O (A0, WS-) B3

I/O, GCK7 (A1) D5

I/O B4

I/O C5

I/O A4

I/O D6
I/O B5

Table 5: Pinout for the XC4062XLA BG432 
 Pin Function PCI Function BG432



May, 1999 6 - 17

I/O C6

I/O (CS1, A2) A5

I/O (A3) D7
I/O B6

I/O A6

I/O D8

I/O C7

I/O B7

I/O D9
I/O B8

I/O A8

I/O D10

I/O C9

I/O I/O B9

I/O C10
I/O B10

I/O A10

I/O C11

I/O D12

I/O B11

I/O C12
I/O D13

I/O B12

I/O C13

I/O A12

I/O D14

I/O B13
I/O (A4) C14

I/O (A5) A13

I/O B14

I/O D15

I/O (A21) C15

I/O (A20) B15
I/O A15

I/O C16

I/O (A6) B16

I/O (A7) A16

I/O (A8) D17

I/O (A9) A17
I/O C17

I/O B17

I/O (A19) C18

I/O (A18) D18

I/O B18

I/O A19

I/O (A10) B19
I/O (A11) C19

Table 5: Pinout for the XC4062XLA BG432 
 Pin Function PCI Function BG432

I/O D19

I/O A20

I/O B20
I/O C20

I/O B21

I/O D20

I/O C21

I/O A22

I/O B22
I/O C22

I/O B23

I/O A24

I/O D22

I/O C23

I/O B24
I/O C24

I/O D23

I/O B25

I/O A26

I/O C25

I/O (A12) D24
I/O (A13) B26

I/O A27

I/O D25

I/O C26

I/O B27

I/O A28
I/O D26

I/O C27

I/O B28

I/O D27

I/O B29

I/O (A14) C28
I/O, GCK8 (A15) D28

BG432
VCC Pins

A1 A11 A21 A31 C3 C29 D11
D21 L1 L4 L28 L31 AA1 AA4

AA28 AA31 AH11 AH21 AJ3 AJ29 AL1
AL11 AL21 AL31 - - - -

GND Pins
A2 A3 A7 A9 A14 A18 A23
A25 A29 A30 B1 B2 B30 B31
C1 C31 D16 G1 G31 J1 J31
P1 P31 T4 T28 V1 V31 AC1

AC31 AE1 AE31 AH16 AJ1 AJ31 AK1
AK2 AK30 AK31 AL2 AL3 AL7 AL9
AL14 AL18 AL23 AL25 AL29 AL30 -

N.C. Pins
C8 - - - - - -

Table 5: Pinout for the XC4062XLA BG432 
 Pin Function PCI Function BG432



Pinout and Configuration

6 - 18 May, 1999

Pinout for the XCS20 TQ144     
Table 6: Pinout for the XCS20 TQ144

 Pin Function PCI Function PQ208
GND GND P1

I/O, GCK1 PCLK P2

I/O AD20 P3

I/O AD19 P4
I/O AD18 P5

I/O, TDI TDI P6

I/O, TCK TCK P7

GND GND P8

I/O AD17 P9

I/O AD16 P10
I/O, TMS TMS P11

I/O CBE2 P12

I/O FRAME- P13

I/O IRDY- P14

I/O TRDY- P15

I/O DEVSEL- P16
GND GND P17

VCC VCC P18

I/O STOP- P19

I/O PERR- P20

I/O SERR- P21

I/O PAR P22
I/O GNT- P23

I/O REQ- P24

I/O CBE1 P25

I/O AD15 P26

GND GND P27

I/O AD14 P28
I/O AD13 P29

I/O AD12 P30

I/O AD11 P31

I/O AD10 P32

I/O, GCK2 AD9 P33

M1 P34
GND GND P35

M0 P36
VCC VCC P37

PWRDWN P38
GCK3 AD8 P39

I/O(HDC) P40
I/O CBE0 P41
I/O AD7 P42

I/O AD6 P43

I/O(LDC-) P44
GND GND P45

I/O AD5 P46

I/O AD4 P47
I/O AD3 P48

I/O AD2 P49

I/O AD1 P50

I/O AD0 P51

I/O P52

I/O (INIT-) INIT- P53
VCC VCC P54

GND GND P55

I/O P56

I/O P57

I/O P58

I/O P59
I/O P60

I/O P61

I/O P62

I/O P63

GND GND P64

I/O P65
I/O P66

I/O P67

I/O P68

I/O P69

I/O, GCK4 P70

GND GND P71
DONE DONE P72
VCC VCC P73

PROGRAM P74
I/O (D7) RST- P75

I/O, GCK5 P76

I/O P77
I/O P78

I/O (D6) P79

I/O P80

GND GND P81

I/O P82

I/O P83
I/O (D5) P84

I/O P85

I/O P86

I/O P87

I/O (D4) P88

I/O P89

VCC VCC P90
GND GND P91

Table 6: Pinout for the XCS20 TQ144 (Continued)

 Pin Function PCI Function PQ208



May, 1999 6 - 19

I/O (D3) P92

I/O P93
I/O P94

I/O P95

I/O (D2) P96

I/O P97

I/O P98

I/O P99
GND GND P100

I/O (D1) P101

I/O P102

I/O P103

I/O P104

I/O (D0, DIN) DIN P105
I/O, GCK6 

(DOUT)
DOUT P106

CCLK CCLK P107
VCC VCC P108

O, TDO TDO P109

GND GND P110

I/O P111

I/O, GCK7 P112

I/O P113
I/O P114

I/O (CS1) P115

I/O P116

I/O P117

GND GND P118

I/O P119
I/O P120

I/O P121

I/O P122

I/O P123

I/O P124

I/O P125
I/O P126

GND GND P127

VCC VCC P128

I/O P129

I/O AD31 P130

I/O AD30 P131

I/O AD29 P132
I/O AD28 P133

I/O AD27 P134

I/O AD26 P135

I/O AD25 P136

GND GND P137

Table 6: Pinout for the XCS20 TQ144 (Continued)

 Pin Function PCI Function PQ208
I/O AD24 P138

I/O CBE3 P139
I/O IDSEL P140

I/O AD23 P141

I/O AD22 P142

I/O, GCK8 AD21 P143

VCC VCC P144

Table 6: Pinout for the XCS20 TQ144 (Continued)

 Pin Function PCI Function PQ208



Pinout and Configuration

6 - 20 May, 1999

Pinout for the XCS30 PQ208    
Table 7: Pinout for the XCS30 PQ208

 Pin Function PCI Function PQ208
GND GND P1

I/O, PGCK1 PCLK P2

I/O P3

I/O P4
I/O AD23 P5

I/O, TDI TDI P6

I/O, TCK TCK P7

I/O AD22 P8

I/O AD21 P9

I/O AD20 P10
I/O AD19 P11

I/O AD18 P12

GND GND P13

I/O AD17 P14

I/O AD16 P15

I/O, TMS TMS P16
I/O P17

VCC VCC P18

I/O GNT- P19

I/O FRAME- P20

I/O IRDY- P21

I/O TRDY- P22
I/O DEVSEL- P23

I/O STOP- P24

GND GND P25

VCC VCC P26

I/O PERR- P27

I/O SERR- P28
I/O PAR P29

I/O REQ- P30

I/O P31

I/O CBE2 P32

VCC VCC P33

I/O P34
I/O CBE1 P35

I/O AD15 P36

I/O AD14 P37

GND GND P38

I/O AD13 P39

I/O AD12 P40

I/O AD11 P41
I/O AD10 P42

I/O AD9 P43

I/O AD8 P44

I/O P45

I/O P46

I/O P47
I/O P48

I/O, SGCK2 P49

N.C. N.C. P50

GND GND P51

MODE MODE P52

VCC VCC P53
N.C. N.C. P54

I/O, PGCK2 P55

I/O (HDC) HDC P56
I/O P57

I/O I/O P58

I/O CBE0 P59
I/O (LDC-) LDC- P60

I/O AD7 P61

I/O AD6 P62

I/O AD5 P63

I/O AD4 P64

I/O AD3 P65
GND GND P66

I/O AD2 P67

I/O AD1 P68

I/O AD0 P69

I/O P70

VCC VCC P71
I/O P72

I/O P73

I/O P74

I/O P75

I/O P76

I/O (INIT-) INIT- P77
VCC VCC P78

GND GND P79

I/O P80

I/O P81

I/O P82

I/O P83
I/O P84

I/O P85

VCC VCC P86

I/O P87

I/O P88

I/O P89

I/O I/O P90
GND GND P91

Table 7: Pinout for the XCS30 PQ208 (Continued)

 Pin Function PCI Function PQ208



May, 1999 6 - 21

I/O P92

I/O P93
I/O P94

I/O P95

I/O P96

I/O P97

I/O P98

I/O P99
I/O P100

I/O P101

I/O, SGCK3 P102

GND GND P103

DONE DONE P104
VCC VCC P105

PROGRAM- PROGRAM- P106
I/O I/O P107

I/O, PGCK3 P108

I/O RST- P109

I/O P110

I/O P111
I/O P112

I/O P113

I/O P114

I/O P115

I/O P116

I/O P117
GND GND P118

I/O P119

I/O P120

VCC VCC P121

I/O P122

I/O P123
I/O P124

I/O P125

I/O P126

I/O P127

I/O P128

I/O P129
VCC VCC P130

GND GND P131

I/O P132

I/O P133

I/O P134

I/O P135

I/O P136
I/O P137

Table 7: Pinout for the XCS30 PQ208 (Continued)

 Pin Function PCI Function PQ208
I/O P138

I/O P139
VCC VCC P140

I/O P141

I/O P142

GND GND P143

I/O P144

I/O P145
I/O P146

I/O P147

I/O P148

I/O P149

I/O P150

I/O P151
I/O P152

I/O (DIN) DIN P153
I/O, SGCK4 

(DOUT)
DOUT P154

CCLK CCLK P155

VCC VCC P156

O, TDO TDO P157

GND GND P158

I/O P159
I/O, PGCK4 P160

I/O P161

I/O P162

I/O P163

I/O P164

I/O P165
I/O P166

I/O P167

I/O P168

I/O P169

GND GND P170

I/O P171
I/O P172

VCC VCC P173

I/O P174

I/O P175

I/O P176

I/O P177

I/O P178
I/O P179

I/O P180

I/O P181

GND GND P182

VCC VCC P183

Table 7: Pinout for the XCS30 PQ208 (Continued)

 Pin Function PCI Function PQ208



Pinout and Configuration

6 - 22 May, 1999

I/O P184

I/O P185
I/O P186

I/O P187

I/O P188

I/O P189

I/O P190

I/O AD31 P191
VCC VCC P192

I/O AD30 P193

I/O AD29 P194

GND GND P195

I/O AD28 P196

I/O AD27 P197
I/O AD26 P198

I/O AD25 P199

I/O AD24 P200

I/O CBE3 P201

I/O IDSEL P202

I/O P203
I/O P204

I/O P205

I/O P206

I/O, SGCK1 P207

VCC VCC P208

Table 7: Pinout for the XCS30 PQ208 (Continued)

 Pin Function PCI Function PQ208



May, 1999 6 - 23

Pinout for the XCS30 PQ240  
Table 8: Pinout for the XCS30 PQ240

 Pin Function PCI Function PQ240
GND GND P1

I/O, PGCK1 PCLK P2

I/O AD23 P3

I/O P4
I/O AD22 P5

I/O, TDI TDI P6

I/O, TCK TCK P7

I/O AD21 P8

I/O AD20 P9

I/O AD19 P10
I/O AD18 P11

I/O P12

I/O P13

GND GND P14

I/O AD17 P15

I/O P16
I/O, TMS TMS P17

I/O P18

VCC P19

I/O AD16 P20

I/O CBE2 P21

GND‡ GND P22
I/O GNT- P23

I/O FRAME- P24

I/O IRDY- P25

I/O TRDY- P26

I/O DEVSEL- P27

I/O STOP- P28
GND GND P29

VCC VCC P30

I/O PERR- P31

I/O SERR- P32

I/O PAR P33

I/O REQ- P34
I/O P35

I/O P36

GND‡ GND P37

I/O P38

I/O P39

VCC VCC P40

I/O P41
I/O P42

I/O CBE1 P43

I/O AD15 P44

GND GND P45

I/O P46

I/O P47
I/O AD14 P48

I/O AD13 P49

I/O AD12 P50

I/O AD11 P51

I/O AD10 P52

I/O AD9 P53
I/O AD8 P54

I/O P55

I/O P56

I/O, SGCK2 P57

N.C. P58

GND GND P59
MODE MODE P60
VCC VCC P61

N.C. N.C. P62

I/O, PGCK2 P63

I/O (HDC) HDC P64
I/O CBE0 P65
I/O AD7 P66

I/O AD6 P67

I/O (LDC-) LDC- P68
I/O AD5 P69

I/O AD4 P70

I/O AD3 P71
I/O AD2 P72

I/O P73

I/O P74

GND GND P75

I/O AD1 P76

I/O P77
I/O AD0 P78

I/O P79

VCC VCC P80

I/O P81

I/O P82

GND‡ GND P83
I/O P84

I/O P85

I/O P86

I/O P87

I/O P88

I/O (INIT-) INIT- P89
VCC VCC P90
GND GND P91

Table 8: Pinout for the XCS30 PQ240 (Continued)

 Pin Function PCI Function PQ240



Pinout and Configuration

6 - 24 May, 1999

I/O P92

I/O P93
I/O P94

I/O P95

I/O P96

I/O P97

GND‡ GND P98

I/O P99
I/O P100

VCC VCC P101

I/O P102

I/O P103

I/O P104

I/O P105
GND GND P106

I/O P107

I/O P108

I/O P109

I/O P110

I/O P111
I/O P112

I/O P113

I/O P114

I/O P115

I/O P116

I/O P117
I/O, SGCK3 P118

GND GND P119

DONE DONE P120
VCC VCC P121

PROGRAM- PROGRAM- P122
I/O RST- P123

I/O, PGCK3 P124

I/O P125

I/O P126

I/O P127

I/O P128

I/O P129
I/O P130

I/O P131

I/O P132

I/O P133

I/O P134

GND GND P135

I/O P136
I/O P137

Table 8: Pinout for the XCS30 PQ240 (Continued)

 Pin Function PCI Function PQ240
I/O P138

I/O P139
VCC VCC P140

I/O P141

I/O P142

GND‡ GND P143

I/O P144

I/O P145
I/O P146

I/O P147

I/O P148

I/O P149

VCC VCC P150

GND GND P151
I/O P152

I/O P153

I/O P154

I/O P155

I/O P156

I/O P157
GND‡ GND P158

I/O P159

I/O P160

VCC VCC P161

I/O P162

I/O P163
I/O P164

I/O P165

GND GND P166

I/O P167

I/O P168

I/O P169
I/O P170

I/O P171

I/O P172

I/O P173

I/O P174

I/O P175
I/O P176

I/O (DIN) DIN P177
I/O, SGCK4 

(DOUT)
DOUT P178

CCLK CCLK P179

VCC VCC P180

O, TDO TDO P181

GND GND P182

I/O P183

Table 8: Pinout for the XCS30 PQ240 (Continued)

 Pin Function PCI Function PQ240



May, 1999 6 - 25

‡ Pins marked with this symbol are used for Ground connections on 
some revisions of the device. These pins may not physically connect 
to anything on the current device revision. However, they should be 
externally connected to Ground, if possible.

I/O, PGCK4 P184

I/O P185
I/O P186

I/O P187

I/O P188

I/O P189

I/O P190

I/O P191
I/O P192

I/O P193

I/O P194

N.C. N.C. P195

GND GND P196

I/O P197
I/O P198

I/O P199

I/O I/O P200

VCC VCC P201

I/O P202

I/O P203
GND‡ GND P204

I/O P205

I/O P206

I/O P207

I/O P208

I/O P209
I/O P210

GND GND P211

VCC VCC P212

I/O P213

I/O P214

I/O P215

Table 8: Pinout for the XCS30 PQ240 (Continued)

 Pin Function PCI Function PQ240
I/O P216

I/O P217
I/O P218

GND‡ GND P219

I/O P220

I/O P221

VCC VCC P222

I/O P223
I/O AD31 P224

I/O P225

I/O AD30 P226

GND GND P227

I/O AD29 P228

I/O AD28 P229
I/O AD27 P230

I/O AD26 P231

I/O AD25 P232

I/O AD24 P233

I/O P234

I/O P235
I/O CBE3 P236

I/O IDSEL P237

I/O P238

I/O, SGCK1 P239

VCC VCC P240

Table 8: Pinout for the XCS30 PQ240 (Continued)

 Pin Function PCI Function PQ240



Pinout and Configuration

6 - 26 May, 1999

Pinout for the XCS40 PQ208     
Table 9: Pinout for the XCS40 PQ208

 Pin Function PCI Function PQ208
GND GND P1

I/O, PGCK1 PCLK P2

I/O P3

I/O P4
I/O AD23 P5

I/O, TDI TDI P6

I/O, TCK TCK P7

I/O AD22 P8

I/O AD21 P9

I/O AD20 P10
I/O AD19 P11

I/O AD18 P12

GND GND P13

I/O AD17 P14

I/O AD16 P15

I/O, TMS TMS P16
I/O P17

VCC VCC P18

I/O GNT- P19

I/O FRAME- P20

I/O IRDY- P21

I/O TRDY- P22
I/O DEVSEL- P23

I/O STOP- P24

GND GND P25

VCC VCC P26

I/O PERR- P27

I/O SERR- P28
I/O PAR P29

I/O REQ- P30

I/O P31

I/O CBE2 P32

VCC VCC P33

I/O P34
I/O CBE1 P35

I/O AD15 P36

I/O AD14 P37

GND GND P38

I/O AD13 P39

I/O AD12 P40

I/O AD11 P41
I/O AD10 P42

I/O AD9 P43

I/O AD8 P44

I/O P45

I/O P46

I/O P47
I/O P48

I/O, SGCK2 P49

N.C. N.C. P50

GND GND P51

MODE MODE P52

VCC VCC P53
N.C. N.C. P54

I/O, PGCK2 P55

I/O (HDC) HDC P56
I/O P57

I/O I/O P58

I/O CBE0 P59
I/O (LDC-) LDC- P60

I/O AD7 P61

I/O AD6 P62

I/O AD5 P63

I/O AD4 P64

I/O AD3 P65
GND GND P66

I/O AD2 P67

I/O AD1 P68

I/O AD0 P69

I/O P70

VCC VCC P71
I/O P72

I/O P73

I/O P74

I/O P75

I/O P76

I/O (INIT-) INIT- P77
VCC VCC P78

GND GND P79

I/O P80

I/O P81

I/O P82

I/O P83
I/O P84

I/O P85

VCC VCC P86

I/O P87

I/O P88

I/O P89

I/O I/O P90
GND GND P91

Table 9: Pinout for the XCS40 PQ208 (Continued)

 Pin Function PCI Function PQ208



May, 1999 6 - 27

I/O P92

I/O P93
I/O P94

I/O P95

I/O P96

I/O P97

I/O P98

I/O P99
I/O P100

I/O P101

I/O, SGCK3 P102

GND GND P103

DONE DONE P104
VCC VCC P105

PROGRAM- PROGRAM- P106
I/O I/O P107

I/O, PGCK3 P108

I/O RST- P109

I/O P110

I/O P111
I/O P112

I/O P113

I/O P114

I/O P115

I/O P116

I/O P117
GND GND P118

I/O P119

I/O P120

VCC VCC P121

I/O P122

I/O P123
I/O P124

I/O P125

I/O P126

I/O P127

I/O P128

I/O P129
VCC VCC P130

GND GND P131

I/O P132

I/O P133

I/O P134

I/O P135

I/O P136
I/O P137

Table 9: Pinout for the XCS40 PQ208 (Continued)

 Pin Function PCI Function PQ208
I/O P138

I/O P139
VCC VCC P140

I/O P141

I/O P142

GND GND P143

I/O P144

I/O P145
I/O P146

I/O P147

I/O P148

I/O P149

I/O P150

I/O P151
I/O P152

I/O (DIN) DIN P153
I/O, SGCK4 

(DOUT)
DOUT P154

CCLK CCLK P155

VCC VCC P156

O, TDO TDO P157

GND GND P158

I/O P159
I/O, PGCK4 P160

I/O P161

I/O P162

I/O P163

I/O P164

I/O P165
I/O P166

I/O P167

I/O P168

I/O P169

GND GND P170

I/O P171
I/O P172

VCC VCC P173

I/O P174

I/O P175

I/O P176

I/O P177

I/O P178
I/O P179

I/O P180

I/O P181

GND GND P182

VCC VCC P183

Table 9: Pinout for the XCS40 PQ208 (Continued)

 Pin Function PCI Function PQ208



Pinout and Configuration

6 - 28 May, 1999

I/O P184

I/O P185
I/O P186

I/O P187

I/O P188

I/O P189

I/O P190

I/O AD31 P191
VCC VCC P192

I/O AD30 P193

I/O AD29 P194

GND GND P195

I/O AD28 P196

I/O AD27 P197
I/O AD26 P198

I/O AD25 P199

I/O AD24 P200

I/O CBE3 P201

I/O IDSEL P202

I/O P203
I/O P204

I/O P205

I/O P206

I/O, SGCK1 P207

VCC VCC P208

Table 9: Pinout for the XCS40 PQ208 (Continued)

 Pin Function PCI Function PQ208



May, 1999 6 - 29

Pinout for the XCS40 PQ240  
Table 10: Pinout for the XCS40 PQ240

 Pin Function PCI Function PQ240
GND GND P1

I/O, PGCK1 PCLK P2

I/O AD23 P3

I/O P4
I/O AD22 P5

I/O, TDI TDI P6

I/O, TCK TCK P7

I/O AD21 P8

I/O AD20 P9

I/O AD19 P10
I/O AD18 P11

I/O P12

I/O P13

GND GND P14

I/O AD17 P15

I/O P16
I/O, TMS TMS P17

I/O P18

VCC P19

I/O AD16 P20

I/O CBE2 P21

GND‡ GND P22
I/O GNT- P23

I/O FRAME- P24

I/O IRDY- P25

I/O TRDY- P26

I/O DEVSEL- P27

I/O STOP- P28
GND GND P29

VCC VCC P30

I/O PERR- P31

I/O SERR- P32

I/O PAR P33

I/O REQ- P34
I/O P35

I/O P36

GND‡ GND P37

I/O P38

I/O P39

VCC VCC P40

I/O P41
I/O P42

I/O CBE1 P43

I/O AD15 P44

GND GND P45

I/O P46

I/O P47
I/O AD14 P48

I/O AD13 P49

I/O AD12 P50

I/O AD11 P51

I/O AD10 P52

I/O AD9 P53
I/O AD8 P54

I/O P55

I/O P56

I/O, SGCK2 P57

N.C. P58

GND GND P59
MODE MODE P60
VCC VCC P61

N.C. N.C. P62

I/O, PGCK2 P63

I/O (HDC) HDC P64
I/O CBE0 P65
I/O AD7 P66

I/O AD6 P67

I/O (LDC-) LDC- P68
I/O AD5 P69

I/O AD4 P70

I/O AD3 P71
I/O AD2 P72

I/O P73

I/O P74

GND GND P75

I/O AD1 P76

I/O P77
I/O AD0 P78

I/O P79

VCC VCC P80

I/O P81

I/O P82

GND‡ GND P83
I/O P84

I/O P85

I/O P86

I/O P87

I/O P88

I/O (INIT-) INIT- P89
VCC VCC P90
GND GND P91

Table 10: Pinout for the XCS40 PQ240 (Continued)

 Pin Function PCI Function PQ240



Pinout and Configuration

6 - 30 May, 1999

I/O P92

I/O P93
I/O P94

I/O P95

I/O P96

I/O P97

GND‡ GND P98

I/O P99
I/O P100

VCC VCC P101

I/O P102

I/O P103

I/O P104

I/O P105
GND GND P106

I/O P107

I/O P108

I/O P109

I/O P110

I/O P111
I/O P112

I/O P113

I/O P114

I/O P115

I/O P116

I/O P117
I/O, SGCK3 P118

GND GND P119

DONE DONE P120
VCC VCC P121

PROGRAM- PROGRAM- P122
I/O RST- P123

I/O, PGCK3 P124

I/O P125

I/O P126

I/O P127

I/O P128

I/O P129
I/O P130

I/O P131

I/O P132

I/O P133

I/O P134

GND GND P135

I/O P136
I/O P137

Table 10: Pinout for the XCS40 PQ240 (Continued)

 Pin Function PCI Function PQ240
I/O P138

I/O P139
VCC VCC P140

I/O P141

I/O P142

GND‡ GND P143

I/O P144

I/O P145
I/O P146

I/O P147

I/O P148

I/O P149

VCC VCC P150

GND GND P151
I/O P152

I/O P153

I/O P154

I/O P155

I/O P156

I/O P157
GND‡ GND P158

I/O P159

I/O P160

VCC VCC P161

I/O P162

I/O P163
I/O P164

I/O P165

GND GND P166

I/O P167

I/O P168

I/O P169
I/O P170

I/O P171

I/O P172

I/O P173

I/O P174

I/O P175
I/O P176

I/O (DIN) DIN P177
I/O, SGCK4 

(DOUT)
DOUT P178

CCLK CCLK P179

VCC VCC P180

O, TDO TDO P181

GND GND P182

I/O P183

Table 10: Pinout for the XCS40 PQ240 (Continued)

 Pin Function PCI Function PQ240



May, 1999 6 - 31

‡ Pins marked with this symbol are used for Ground connections on 
some revisions of the device. These pins may not physically connect 
to anything on the current device revision. However, they should be 
externally connected to Ground, if possible.

I/O, PGCK4 P184

I/O P185
I/O P186

I/O P187

I/O P188

I/O P189

I/O P190

I/O P191
I/O P192

I/O P193

I/O P194

N.C. N.C. P195

GND GND P196

I/O P197
I/O P198

I/O P199

I/O I/O P200

VCC VCC P201

I/O P202

I/O P203
GND‡ GND P204

I/O P205

I/O P206

I/O P207

I/O P208

I/O P209
I/O P210

GND GND P211

VCC VCC P212

I/O P213

Table 10: Pinout for the XCS40 PQ240 (Continued)

 Pin Function PCI Function PQ240
I/O P214

I/O P215
I/O P216

I/O P217

I/O P218

GND‡ GND P219

I/O P220

I/O P221
VCC VCC P222

I/O P223

I/O AD31 P224

I/O P225

I/O AD30 P226

GND GND P227
I/O AD29 P228

I/O AD28 P229

I/O AD27 P230

I/O AD26 P231

I/O AD25 P232

I/O AD24 P233
I/O P234

I/O P235

I/O CBE3 P236

I/O IDSEL P237

I/O P238

I/O, SGCK1 P239
VCC VCC P240

Table 10: Pinout for the XCS40 PQ240 (Continued)

 Pin Function PCI Function PQ240



Pinout and Configuration

6 - 32 May, 1999

Pinout for the XCV300 BG432 

Table 11: Pinout for the PCI64 
Interface in a XCV300 BG432

PCI Function BG432
AD63 N4
AD62 N3

AD61 N1

AD60 P3

AD59 AB4

AD58 AC2

AD57 AD1
AD56 AC3

AD55 AC4

AD54 AD2

AD53 AE2

AD52 AD3

AD51 AD4
AD50 AF2

AD49 AE3

AD48 AE4

AD47 AG1

AD46 AG2

AD45 AF3
AD44 AF4

AD43 AH1

AD42 AH2

AD41 AG3

AD40 AJ4

AD39 AK3
AD38 AH5

AD37 AK4

AD36 AJ5

AD35 AH6

AD34 AL4

AD33 AK5
AD32 AJ6

AD31 D7

AD30 A5

AD29 C6

AD28 B5

AD27 D6
AD26 A4

AD25 C5

AD24 D2

AD23 E4

AD22 D1

AD21 E2

AD20 F4

AD19 E1

AD18 F3

AD17 F2

AD16 G4

AD15 G3
AD14 G2

AD13 H4

AD12 H3

AD11 H2

AD10 H1

AD9 J4
AD8 J3

AD7 J2

AD6 K1

AD5 L3

AD4 L2

AD3 M4
AD2 M3

AD1 M2

AD0 M1

PCLK A16

RST B6

REQ P2
IDSEL R3

DEVSEL R4

GNT R2

STOP R1

IRDY T3

TRDY T2
FRAME U3

ACK64 U4

REQ64 U2

CBE3 U1

CBE2 V3

CBE1 V2
CBE0 W3

PERR W4

PAR W1

PAR64 Y1

CBE7 Y3

CBE6 Y4

CBE5 Y2
CBE4 AA2

SERR AA3

INTA A6

Table 11: Pinout for the PCI64 
Interface in a XCV300 BG432 

PCI Function BG432



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

11

Resources



Resources



May, 1999 7 - 1

Resources

PCI Special Interest Group (PCI-SIG) 
Publications
The PCI-SIG publishes various PCI specifications and
related documents. Most publications cost US$25 plus
applicable shipping charges.

• PCI Local Bus Specification, Rev. 2.2
• PCI Compliance Checklist v2.1 (available via the Web)
• PCI System Design Guide v1.0

Contact:
PCI Special Interest Group
2575 NE Kathryn St. #17
Hillsboro, OR 97124
Phone: +1 800-433-5177 (within USA)
Phone: +1 503-693-6232 (worldwide)
Fax: +1 503-693-8344
E-Mail: info@pcisig.com
URL: www.pcisig.com

PCI and FPGA XPERT Partners
Listed below are design centers and design consultants
that have experience with the LogiCORE PCI Products.

Nallatech Limited 
Nallatech are experts in complete electronics based
systems design. This includes the skills required for soft-
ware/hardware partitioning and the development of Dis-
tributed Parallel Processing Systems. 
Nallatech specializes in:
- Real time image processing systems 
- DSP 
- DSP algorithm development targeting FPGA's 
- Military designs, specifically obsolescence upgrades 
- High speed data throughput 
- Complex PCI Logicore designs 

10-14 Market Street 
Kilsyth 
Glasgow 
G65 0BD 
Scotland 
Phone: +1 44 7020 986532
Fax: +1 44 7020 986534 
Email: info@nallatech.com
URL: www.nallatech.com

Multi Video Designs 
Multi Video Designs (MVD) offer complete consultant
design and training services to their clients. MVD's
experience in offering design consultancy services has
offered then a broad experience with Xilinx related
designs. 

Edgard Garcia 
106 Av. des Guis 
38130 Plaisance du Touch 
France 
Phone: +1 (33) 05 62 13 52 32
Fax: +1 (33) 05 61 06 72 60 
Email: edgard.garcia@mvd-fpga.com
URL: www.mvd-fpga.com

Memec Design Services
Memec Design Services is dedicated to bringing you the
best Xilinx design engineering services and FPGA
library modules available in the market today. Memec
Design Service is also an AllianceCORE member.
Memec is a global services company with offices in U.S,
Europe, Hong Kong and China. They provide PCI ser-
vices that include customization and integration.
 
Headquarters:
1819 S. Dobson Rd. Ste. 203
Mesa, AZ 85202, USA
Phone: +1 888-360-9044 - inside the USA

+1 602-491-4311 - outside the USA
Fax: +1 602-491-4907
E-mail: southwest@memecdesign.com
URL: www.memecdesign.com

Branch Offices:
2460 N. First Street
Suite 170
San Jose, CA 95131
Phone: +1408-952-7018
Fax: +1 408-952-7059
Email: west@memecdesign.com

30 Nagog Park
Acton, MA 01720
Phone: +1 978-266-9193
Fax: +1 978-266-9194
Email: northeast@memecdesign.com

Memec Design Services
% Insight World Trade Center
Montecito No. 38
Piso 19, OFNA.12.Col.Napoles,
C.P. 03810, Mexico City D.F.
Phone: +1 525-488-0119
 Fax: +1 525-488-0179
Email: mexico@memecdesign.com

 

7
0

0 May, 1999



Resources

7 - 2 May, 1999

4835 University Square
Suite 19
Huntsville, AL 35816
Phone: +1 256-830-5732
Fax: +1 256-830-5787
Email: southeast@memecdesign.com

555 Legget Drive, Suite 305
Kanata, Ontario K2K2X3
Phone: +1 613-271-2028
Fax: +1 613-599-4867
Email: canada@memecdesign.com

Unit 3520, Tower 1, Metroplaza 
Hing Fong Road, Kwai Fong 
N.T., Hong Kong 
Phone: +1 852-2410-2720 
FAX: +1 852-2481-6937 
    
Rm A801, Bao Hua Building 
Hua Qiang North Road 
Shenzhen, P.R.China 

Comit Systems
Comit Systems is a software and systems engineering
company. They offer design services along with a set of
efficiently implemented libraries for Xilinx devices. Comit
Systems is also an AllianceCORE member. Comit Sys-
tems have done numerous turnkey designs and have
extensive experience with Xilinx PCI Core, both in inte-
gration and customization. 

3375 Scott Blvd, Suite 330 
Santa Clara California 95054 
Phone: +1 408-988-7966 
Fax: +1 408-988-2133 
E-mail: preeth@comit.com
URL: www.comit.com

Dark Room Technologies, Inc.
Dark Room Technologies provides all levels of consult-
ing from routing an FPGA to complete board-level solu-
tions, including debugged prototypes. Our tools include
the full Viewlogic tool suite with VHDL modeling capabil-
ity, Abel, XAbel, PC design and layout, C cross compil-
ers, 192-channel 200-MHz logic analysis systems, FCC
prescreening, T1 and DS-3 Test and Diagnostic equip-
ment, and SMD assembly, inspection and rework equip-
ment. We can do code development and bring the
design through FCC EMI testing and verification. 

Dark Room Technologies, Inc. has been specializing in
Xilinx FPGA design consulting since 1987, and doing
product development and engineering consulting since
1976. We have done over 50 FPGA design including
interfaces to SCSI, PCI, ISA/EISA, Turbo channel, ATM,

T1, DS-3, and most micro and embedded processors,
such as StrongARM, i960, IDT4640 and the R3000. 

Austin Franklin
126 Poor Farm Road
Harvard MA, 01451, USA
Phone: +1 508-772-9928
Fax: +1 508-772-4287
E-mail: info@darkroom.com
URL: www.darkroom.com

Supporting PCI Tools
Nallatech Limited
Provides the PCI64 PCI Prototyping Board
Allan Cantle 
10-14 Market Street 
Kilsyth, Glasgow 
G65 0BD 
Scotland 
Phone: +1 44 7020 986532
Fax: +1 44 7020 986534 
Email: a.cantle@nallatech.com
URL: www.nallatech.com

VCC Corporation
Provides HotPCI Rapid Prototyping Board
6925 Canby Ave. #103
Reseda, CA 91335 USA
Phone: +1 818-342-8294
Fax: +1 818-342-0240
E-mail: info@vcc.com
Website: www.vcc.com

Compuware Numega (formerly, Vireo Software Inc.)
Provides drivers and driver development tools.
30 Monument Square, Suite 135
Concord, MA 01742 USA
Phone: +1 978-369-3380
Fax: +1 978-318-6946
E-mail: customer_service@numega.com
Website: www.numega.com



May, 1999 7 - 3

PCI Reference Books
There are many reference books available on PCI. The fol-
lowing are a few that the LogiCORE development team
found useful.

PCI System Architecture by Tom Shanley and Don Ander-
son. ISBN 1-881609-08-1. An excellent general reference
book on PCI. This book is included with the LogiCORE PCI
product.

Contact:
Mindshare Press
2202 Buttercup Dr.
Richardson, TX 75082
Phone: +1 214-231-2216
Fax: +1 214-783-4715

Distributed by:
Computer Literacy Bookshops, Inc.
P.O. Box 641897
San Jose, CA 95164
Phone: +1 408-435-0744
Fax: +1 408-435-1823
E-mail: contact-us@fatbrain.com
URL: www.fatbrain.com

PCI Hardware and Software, 4th Edition by Edward Solari
& George Willse. ISBN 0-929392-59-0. Everything that you
ever wanted to know about PCI systems design, and more.

Contact:
Annabooks

11848 Bernardo Center Drive
Suite 110
San Diego, CA 92128
Phone: +1 619-673-0870

+1 800-462-1042
Fax: +1 619-673-1432
E-mail: info@annabooks.com
URL: www.annabooks.com

Xilinx Documents
See the Xilinx web page at 

www.xilinx.com/pci

for available literature.

IMPORTANT! Be sure to visit the Xilinx WebLINX web 
site for the latest information and application notes 
using the LogiCORE PCI interface.

LogiCORE User's Lounge 
The LogiCORE User's Lounge web site provides a quick
and convenient way to obtain the latest updates, documen-
tation, design tips, application notes, and utilities. The
Lounge web site is open to registered LogiCORE users. To
register, point your Internet browser software to: 

www.xilinx.com/pci



Resources

7 - 4 May, 1999



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

11

Waveforms



Waveforms



May, 1999 8 - 1

Waveforms
These waveforms demonstrate the operation the Xilinx V3.0 PCI core, including the states of the backend signals. The 64-
bit transactions only apply to the PCI64 Virtex Interface. In these examples, the PCI V2.2 Specification names, such as 
FRAME# and IRDY# are used for the PCI Bus signals. Due to the limitations of design tools, the Xilinx PCI core has slightly 
different names for the PCI Bus signals. These names are listed in the Signal Description chapter of the Xilinx PCI Design 
Guide. 

These waveforms were created with the Xilinx Internal PCI Testbench. See specific sections for explanations regarding 
these waveforms.

Target Configuration Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 2
Target Configuration Write  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 4
Initiator 32-bit Single Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 6
Initiator 32-bit Single Memory Write  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 8
Initiator 32-bit Burst Memory Read Multiple  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 10
Initiator 32-bit Burst Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 12
Initiator 32-bit Burst Memory Write with Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 14
Target 32-bit Single Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 16
Target 32-bit Single Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 18
Target 32-bit Burst Memory Read Multiple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 20
Target 32-bit Burst Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 22
Target 32-bit Burst Memory Write with Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 24
Target 32-bit Retry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 26
Target 32-bit Abort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 28
Initiator 64-bit Burst Memory Read Multiple  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 30
Initiator 64-bit Burst Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 32
Initiator 64-bit Burst Memory Write with Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 34
Initiator 64-bit Memory Read of a 32-bit Target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 36
Initiator 64-bit Memory Write of a 32-bit Target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 38
Target 64-bit Burst Memory Read Multiple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 40
Target 64-bit Burst Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 42
Target 64-bit Burst Memory Write with Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 44
Target 64-bit Retry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 46
Target 64-bit Abort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 - 48

 

8
0

0 May, 1999



Waveforms

8 - 2 May, 1999

Target Configuration Read

Figure 1 represents a Configuration Read transaction. In 
this transaction, data from configuration space (in this case 
the devices and vendor IDs) is driven onto the ADIO[31:0] 
bus. The “cfg.v/.vhd” file is the source of the configuration 
space setting. 

Address Phase

The host asserts IDSEL and puts the address on the PCI 
bus. The address appears on the ADIO bus one cycle later.

Data Phase

Since the address is in the first 64 bytes of configuration, 
the PCI core automatically responds to this transactions. 
The PCI core asserts CFG_VLD and ADDR_VLD, indicat-
ing the Target has a valid configuration cycle address on 
the ADIO bus. CFG_HIT and DEVSEL# are then asserted. 

The transaction continues and completes in accordance 
with a single cycle read. The Xilinx PCI core always termi-
nates configuration transactions with a “disconnect with 
data” where DEVSEL#, STOP#, and TRDY# are all 
asserted since burst configuration cycles are not supported 
in Xilinx PCI Interfaces. For details on using extended con-
figuration space (addresses from 40h to FFh) refer to the 
Xilinx PCI Design Guide.



May, 1999 8 - 3

tim
e 

(n
s)

47
40

.0
47

70
.0

48
00

.0
48

30
.0

48
60

.0
48

90
.0

49
20

.0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

C
F

G
_H

IT

C
F

G
_V

LD

11
11

10
10

00
00

11
11

fff
fff

ff
00

00
00

00
fff

fff
ff

ff0
00

00
0

40
62

10
ee

fff
fff

ff

00
00

00
00

40
62

10
ee

00

Figure 1:   Target Configuration Read



Waveforms

8 - 4 May, 1999

Target Configuration Write

Figure 2 represents a Configuration Write transaction. In 
this transaction, data from the host is written into Base 
Address Register 1. 

Address Phase

The host asserts IDSEL and puts the address on the PCI 
bus. The address appears on the ADIO bus one cycle later.

Data Phase

Since the address is in the first 64 bytes of configuration, 
the PCI core automatically responds to this transactions. 
The PCI core asserts CFG_VLD and ADDR_VLD, indicat-
ing the Target has a valid configuration cycle address on 
the ADIO bus. CFG_HIT and DEVSEL# are then asserted. 

The transaction continues and completes in accordance 
with a single cycle write. The Xilinx PCI core always termi-
nates configuration transactions with a “disconnect with 
data” where DEVSEL#, STOP#, and TRDY# are all 
asserted since burst configuration cycles are not supported 
in Xilinx PCI Interfaces. For details on using extended con-
figuration space (addresses from 40h to FFh) refer to the 
Xilinx PCI Design Guide.



May, 1999 8 - 5

tim
e 

(n
s)

51
45

.0
51

60
.0

51
90

.0
52

20
.0

52
50

.0
52

80
.0

53
10

.0
53

25
.0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

C
F

G
_H

IT

C
F

G
_V

LD

11
11

10
11

00
00

11
11

fff
fff

ff
00

00
00

14
f0

00
00

00
fff

fff
ff

00
00

00
14

f0
00

00
00

00

Figure 2:   Target Configuration Write 



Waveforms

8 - 6 May, 1999

Initiator 32-bit Single Memory Read

Figure 3 represents a single cycle Memory Read transac-
tion. This consists of an address phase followed immedi-
ately by a single data phase. 

Requesting the PCI Bus

REQUEST is asserted by the user’s logic for one clock 
cycle to generate a REQ# signal to the PCI Arbiter. The PCI 
Interface asserts FRAME# only if GNT# is asserted for 
more than one clock cycle. 

Address Phase

The M_ADDR_N signal is used to drive the output-enable 
of the tri-state buffers (BUFTs) which enable the valid 
address onto the internal ADIO bus one CLK cycle before 
the assertion of FRAME#. Once the Initiator asserts 
FRAME#, it drives the AD bus with the address from the 
ADIO bus, and drives a Memory Read command (0110), 
supplied by the user to the backend (M_CBE[3:0], not 
shown), onto the C/BE# lines. 

Data Phase

The M_DATA phase begins on the CLK cycle immediately 
following the M_ADDR_N phase. During M_DATA, the byte 
enables are presented on M_CBE. One clock cycle after 
FRAME# and REQ64# are asserted, the Initiator asserts 
IRDY#, and the fast decode Target asserts DEVSEL#. 
Since this is a Read, there is a one cycle bus turnaround 
after the address phase; TRDY# can not be asserted until 
after the turnaround cycle. The Target is now suppling data 
onto the PCI bus, while the Initiator is supplying the Byte 
enables. Since this is only a single Dword transfer, COM-
PLETE and M_READY are both asserted at the beginning 
of the transaction, and FRAME# is deasserted after one 
cycle to indicate the last data will occur. The Target asserts 
TRDY#, which starts the data transfer and completes with 
the deassertion of IRDY#, TRDY#, and DEVSEL#. 
M_DATA_VLD indicates that the data is valid on AD bus 
and should be latched by the Initiator register, in the user’s 
backend. Notice that this is the cycle after TRDY# and 
IRDY# were asserted. The signal M_WRDN is asserted 
low to represent data is being read.



May, 1999 8 - 7

tim
e 

(n
s)

54
90

.0
55

20
.0

55
50

.0
55

80
.0

56
10

.0
56

40
.0

56
70

.0
57

00
.0

57
30

.0
57

60
.0

57
90

.0

C
LK

R
E

Q
#

G
N

T
#

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

M
_R

E
A

D
Y

C
O

M
P

LE
T

E

M
_D

A
T

A
_V

LD

M
_S

R
C

_E
N

M
_W

R
D

N

R
E

Q
U

E
S

T

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

00
00

01
10

00
00

11
11

fff
fff

ff
f0

00
00

00
c0

00
00

00
00

00
00

00
00

32
06

49
fff

fff
ff

c0
00

00
00

f0
00

00
00

c0
00

00
00

00
00

00
00

00
32

06
49

Figure 3:   Initiator 32-bit Single Memory Read



Waveforms

8 - 8 May, 1999

Initiator 32-bit Single Memory Write

Figure 4 represents a single cycle Memory Write transac-
tion. This consists of an address phase followed immedi-
ately by a single data phase. 

Requesting the PCI Bus

REQUEST is asserted for one clock cycle to generate a 
REQ# signal to the PCI Arbiter. The PCI Interface asserts 
FRAME# only if GNT# is asserted for more than one clock 
cycle. 

Address Phase

The M_ADDR_N signal is used to drive the output-enable 
of the 3-state buffers (BUFTs) which enable the valid 
address onto the internal ADIO bus one CLK cycle before 
the assertion of FRAME#. 

Once the Initiator asserts FRAME#, it drives the AD lines 
with the address put on the ADIO bus during the previous 
CLK cycle, and drives a Memory Write command (0111), 
supplied by the user to the backend (M_CBE[3:0], not 
shown), onto the C/BE# lines. 

Data Phase

The M_DATA phase begins on the CLK cycle immediately 
following the M_ADDR_N phase. During M_DATA, the byte 
enables are presented on M_CBE. Data is placed on the 
ADIO bus from a register in the user design. The output 
enable of the register is controlled by M_DATA (conditional 
upon being the write state!).

One clock cycle after FRAME# is asserted, the Initiator 
asserts IRDY#, and on the next CLK cycle, the fast decode 
Target asserts both TRDY# and DEVSEL#. Since this is 
only a single Dword transfer, COMPLETE and M_READY 
are both asserted at the beginning of the transaction, and 
FRAME# is deasserted after one cycle to indicate the last 
data is present on the AD[31:0] bus. With both IRDY# and 
TRDY# asserted, the data transfer completes and we see 
M_DATA_VLD on the next cycle, indicating the Target 
accepted the data. The transfer completes with the deas-
sertion of IRDY#, TRDY#, and DEVSEL# and the bus has a 
turnaround cycle. The signal M_WRDN is asserted high to 
represent data is being written.



May, 1999 8 - 9

tim
e 

(n
s)

59
70

.0
60

00
.0

60
30

.0
60

60
.0

60
90

.0
61

20
.0

61
50

.0
61

80
.0

62
10

.0
62

40
.0

62
70

.0

C
LK

R
E

Q
#

G
N

T
#

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

M
_R

E
A

D
Y

C
O

M
P

LE
T

E

M
_D

A
T

A
_V

LD

M
_S

R
C

_E
N

M
_W

R
D

N

R
E

Q
U

E
S

T

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

00
00

01
11

00
00

11
11

fff
fff

ff
00

00
00

00
c0

00
00

00
00

32
06

49
fff

fff
ff

c0
00

00
00

00
32

06
49

00
46

91
26

Figure 4:   Initiator 32-bit Single Memory Write 



Waveforms

8 - 10 May, 1999

Initiator 32-bit Burst Memory Read Multiple

Figure 5 represents a burst cycle Memory Read Multiple 
transaction. This consists of a single address phase fol-
lowed by two or more data phases. 

Requesting the PCI Bus

REQUEST is asserted for one clock cycle to generate a 
REQ# signal to the PCI Arbiter. The PCI Interface asserts 
FRAME# only if GNT# is asserted for more than one clock 
cycle. 

Address Phase

The M_ADDR_N signal is used to drive the output-enable 
of the 3-state buffers (BUFTs) which enable the valid 
address onto the internal ADIO bus one CLK cycle before 
the assertion of FRAME#. Once the Initiator asserts 
FRAME#, it drives the AD lines with the address put on the 
ADIO bus during the previous CLK cycle, and drives a 
Memory Read Multiple command (1100), supplied by the 
user to the backend (M_CBE[3:0], not shown), onto the C/
BE# lines. 

Data Phase

The M_DATA phase begins on the CLK cycle immediately 
following the M_ADDR_N phase. During M_DATA, the byte 

enables are presented on M_CBE. One clock cycle after 
FRAME# and REQ64# are asserted, the Initiator asserts 
IRDY#, and the fast decode Target asserts DEVSEL#. 
Since this is a Read, there is a one cycle bus turnaround 
after the address phase; TRDY# can not be asserted until 
after the turnaround cycle. The Target is now suppling data 
onto the PCI bus, while the Initiator is supplying the Byte 
enables. Since this is a multi-Dword transfer, COMPLETE 
is initially deasserted and M_READY is asserted at the 
beginning of the transaction, and FRAME# stays asserted 
until the next to last data phase. 

M_DATA_VLD indicates the data is present on the AD bus 
and is used to advance the Initiator address pointer. With 
both IRDY# and TRDY# asserted, the data transfer occurs 
without inserted wait states from either agent. COMPLETE 
is asserted on the next to last data phase, since the Initiator 
has to deassert FRAME# at the beginning of the last data 
phase. The transfer completes with the deassertion of 
IRDY#, TRDY#, and DEVSEL# and the bus has a turn-
around cycle. The signal M_WRDN is asserted low to rep-
resent data is being read.



May, 1999 8 - 11

tim
e 

(n
s)

64
50

.0
65

10
.0

65
70

.0
66

30
.0

66
90

.0
67

50
.0

68
10

.0
68

70
.0

C
LK

R
E

Q
#

G
N

T
#

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

M
_R

E
A

D
Y

C
O

M
P

LE
T

E

M
_D

A
T

A
_V

LD

M
_S

R
C

_E
N

M
_W

R
D

N

R
E

Q
U

E
S

T

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

00
00

11
00

00
00

11
11

fff
fff

ff
00

46
91

26
c0

00
00

00
00

32
06

49
00

46
91

26
00

78
97

6f
00

bf
28

95
fff

fff
ff

c0
00

00
00

00
46

91
26

c0
00

00
00

00
32

06
49

00
46

91
26

00
78

97
6f

00
bf

28
95

Figure 5:   Initiator 32-bit Burst Memory Read Multiple



Waveforms

8 - 12 May, 1999

Initiator 32-bit Burst Memory Write

Figure 6 represents a burst cycle Memory Write transac-
tion. This consists of a single address phase followed by 
four data phases. 

Requesting the PCI Bus

REQUEST is asserted for one clock cycle to generate a 
REQ# signal to the PCI Arbiter. The PCI Interface asserts 
FRAME# only if GNT# is asserted for more than one clock 
cycle. 

Address Phase

The M_ADDR_N signal is used to drive the output-enable 
of the 3-state buffers (BUFTs) which enable the valid 
address onto the internal ADIO bus one CLK cycle before 
the assertion of FRAME#. Once the Initiator asserts 
FRAME#, it drives the AD lines with the address put on the 
ADIO bus during the previous CLK cycle, and drives a 
Memory Write command (0111), supplied by the user to the 
backend (M_CBE[3:0], not shown), onto the C/BE# lines. 

Data Phase

The M_DATA phase begins on the CLK cycle immediately 
following the M_ADDR_N phase. During M_DATA, the byte 
enables are presented on M_CBE. Data is placed on the 
ADIO bus from a FIFO in the user design. The output 
enable of the FIFO is controlled by M_DATA (conditional 
upon being the write state!).

One clock cycle after FRAME# is asserted, the Initiator 
asserts IRDY#, and the fast decode Target asserts 
DEVSEL# and TRDY#. Since this is a multi-Dword transfer, 
COMPLETE is initially deasserted and M_READY is 
asserted at the beginning of the transaction. COMPLETE is 
asserted during the next to last data phase and FRAME# is 
deasserted at the beginning of the last data phase. 

M_DATA_VLD indicates the data was taken by the Target 
and M_SRC_EN is used to advance the Initiator address 
pointer to read the next data from the FIFO. With both 
IRDY# and TRDY# asserted, the data transfer occurs with-
out inserted wait states from either agent. The transfer 
completes with the deassertion of IRDY#, TRDY#, and 
DEVSEL# and the bus has a turnaround cycle. The signal 
M_WRDN is asserted high to represent data is being writ-
ten. 



May, 1999 8 - 13

tim
e 

(n
s)

70
50

.0
71

10
.0

71
70

.0
72

30
.0

72
90

.0
73

50
.0

74
10

.0

C
LK

R
E

Q
#

G
N

T
#

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

M
_R

E
A

D
Y

C
O

M
P

LE
T

E

M
_D

A
T

A
_V

LD

M
_S

R
C

_E
N

M
_W

R
D

N

R
E

Q
U

E
S

T

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

00
00

01
11

00
00

11
11

fff
fff

ff
00

78
97

6f
c0

00
00

00
00

32
06

49
00

46
91

26
00

78
97

6f
00

bf
28

95
fff

fff
ff

c0
00

00
00

00
32

06
49

00
46

91
26

00
78

97
6f

00
bf

28
95

01
37

c0
04

Figure 6:   Initiator 32-bit Burst Memory Write



Waveforms

8 - 14 May, 1999

Initiator 32-bit Burst Memory Write with 
Disconnect

Figure 7 represents a burst cycle Memory Write transaction 
with a Target termination. This consists of a single address 
phase followed by four data phases but only three Dwords 
were transferred because of the disconnect with data. 

Requesting the PCI Bus

REQUEST is asserted for one clock cycle to generate a 
REQ# signal to the PCI Arbiter. The PCI Interface asserts 
FRAME# only if GNT# is asserted for more than one clock 
cycle. 

Address Phase

The M_ADDR_N signal is used to drive the output-enable 
of the 3-state buffers (BUFTs) which enable the valid 
address onto the internal ADIO bus one CLK cycle before 
the assertion of FRAME#. Once the Initiator asserts 
FRAME#, it drives the AD lines with the address put on the 
ADIO bus during the previous CLK cycle, and drives a 
Memory Write command (0111), supplied by the user to the 
backend (M_CBE[3:0], not shown), onto the C/BE# lines. 

Data Phase

The M_DATA phase begins on the CLK cycle immediately 
following the M_ADDR_N phase. During M_DATA, the byte 
enables are presented on M_CBE. Data is placed on the 
ADIO bus from a FIFO in the user design. The output 
enable of the FIFO is controlled by M_DATA (conditional 
upon being the write state!).

One clock cycle after FRAME# is asserted, the Initiator 
asserts IRDY#, and the fast decode Target asserts 
DEVSEL# and TRDY#. Since this is a multi-Dword transfer, 
COMPLETE is initially deasserted and M_READY is 
asserted at the beginning of the transaction. COMPLETE is 
asserted during the next to last data phase and FRAME# is 
deasserted at the beginning of the last data phase. 

M_DATA_VLD indicates the data was taken by the Target 
and M_SRC_EN is used to advance the Initiator address 
pointer to read the next data from the FIFO. With both 
IRDY# and TRDY# asserted, the data transfer occurs with-
out inserted wait states from either agent. 

The Target signalled a disconnect by asserting STOP#, and 
kept TRDY# asserted so that the third Dword was trans-
ferred. The last data phase does not have a data transfer 
because TRDY# is not asserted. M_SRC_EN is asserted 
for four cycles and M_DATA_VLD is asserted for only three 
cycles. Since there is a difference between the number of 
data transfers anticipated (four), and the number that 
occurred (three), the user design may have to perform a 
backup of the FIFO. Details on how to do this are docu-
mented in the Xilinx PCI Design Guide.

The transfer completes with the deassertion of IRDY#, 
STOP#, and DEVSEL# and the bus has a turnaround 
cycle. The signal M_WRDN is asserted high to represent 
data is being written. 



May, 1999 8 - 15

tim
e 

(n
s)

76
50

.0
76

80
.0

77
10

.0
77

40
.0

77
70

.0
78

00
.0

78
30

.0
78

60
.0

78
90

.0
79

20
.0

79
50

.0
79

80
.0

80
10

.0

C
LK

R
E

Q
#

G
N

T
#

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

M
_R

E
A

D
Y

C
O

M
P

LE
T

E

M
_D

A
T

A
_V

LD

M
_S

R
C

_E
N

M
_W

R
D

N

R
E

Q
U

E
S

T

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

00
00

01
11

00
00

11
11

fff
fff

ff
01

37
c0

04
c0

00
00

00
00

32
06

49
00

46
91

26
00

78
97

6f
00

bf
28

95
fff

fff
ff

c0
00

00
00

00
32

06
49

00
46

91
26

00
78

97
6f

00
bf

28
95

01
37

c0
04

Figure 7:   Initiator 32-bit Burst Memory Write with Disconnect



Waveforms

8 - 16 May, 1999

Target 32-bit Single Memory Read

Figure 8 represents a single cycle Target Memory Read 
transaction. In this transaction, data is placed on the ADIO 
bus from a data register in the user design. 

Address Phase

The Initiator drives FRAME# and the address onto the AD 
lines, and drives a Memory Read command (0110) onto 
C/BE#. The Initiator signals that it only wants to transfer 
one Dword by deasserting FRAME# and asserting IRDY# 
on the next cycle. ADDR_VLD is asserted one cycle after 
the address phase, indicating that a valid address is 
present on ADIO. The ADDR_VLD is used by the user 
design to capture this address. 

Data Phase

The PCI Interface sees that the bus is no longer idle and 
asserts Target state machine signals, IDLE and B_BUSY. 
After B_BUSY, the Target state machine enters the 
S_DATA state, indicating that the backend will begin trans-
ferring data. DEVSEL# is asserted as a medium decode 
speed. The PCI Interface always adds one cycle of TRDY# 

latency after DEVSEL# assertion. Since this is a read, 
TRDY# is not asserted for one extra cycle beyond the usual 
TRDY# latency due to the Read transaction turnaround 
cycle where the Initiator stops driving AD and the Target 
begins driving AD.

BASE_HIT[x] is asserted for one cycle to indicate to the 
backend logic that it is the target of an access. The signal 
S_WRDN is asserted low to represent data is being read 
from the Target.

S_READY is asserted and S_TERM is deasserted, indicat-
ing that the backend is able to transfer more than one 
Dword. The PCI core deasserts TRDY# and DEVSEL# 
after one transfer, because the Initiator deasserts 
FRAME#. 

S_SRC_EN is asserted for two cycles and S_DATA_VLD is 
asserted for one cycle. Since there is a difference between 
the number of data transfers anticipated (two), and the 
number that occurred (one), the user design may have to 
perform a backup of the FIFO. Details on how to do this are 
documented in the Xilinx PCI Design Guide.



May, 1999 8 - 17

tim
e 

(n
s)

82
80

.0
83

10
.0

83
40

.0
83

70
.0

84
00

.0
84

30
.0

84
60

.0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

01
10

00
00

11
11

fff
fff

ff
f0

00
00

00
fff

fff
ff

00
bf

28
95

00
32

06
49

fff
fff

ff

f0
00

00
00

00
32

06
49

00
46

91
26

00
78

97
6f

00
02

00

Figure 8:   Target 32-bit Single Memory Read



Waveforms

8 - 18 May, 1999

Target 32-bit Single Memory Write

Figure 9 represents a single cycle Target Memory Write 
transaction. In this transaction, data is captured from the 
ADIO bus to a data register in the user design. 

Address Phase

The Initiator drives FRAME# and the address onto the AD 
lines, and drives a Memory Write command (0111) onto 
C/BE#. The Initiator signals that it only wants to transfer 
one Dword by deasserting FRAME# and asserting IRDY# 
on the next cycle. ADDR_VLD is asserted one cycle after 
the address phase, indicating that a valid address is 
present on ADIO. The ADDR_VLD is used by the user 
design to capture this address. 

Data Phase

The PCI Interface sees that the bus is no longer idle and 
asserts Target state machine signals, IDLE and B_BUSY. 
After B_BUSY, the Target state machine enters the 
S_DATA state, indicating that the backend will begin trans-
ferring data. DEVSEL# is asserted as a medium decode 
speed. The PCI Interface always adds one cycle of TRDY# 
latency after DEVSEL# assertion. 

BASE_HIT[x] is asserted for one cycle to indicate to the 
backend logic that it is the target of an access. The signal 
S_WRDN is asserted high to represent that data is being 
written to the target.

S_READY is asserted and S_TERM is deasserted, indicat-
ing that the backend is able to transfer more than one 
Dword. The PCI core deasserts TRDY# and DEVSEL# 
after one transfer, because the Initiator deasserts 
FRAME#. 



May, 1999 8 - 19

tim
e 

(n
s)

86
85

.0
87

00
.0

87
30

.0
87

60
.0

87
90

.0
88

20
.0

88
50

.0
88

65
.0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

01
11

00
00

11
11

fff
fff

ff
f0

00
00

00
00

32
06

49
fff

fff
ff

f0
00

00
00

00
32

06
49

00
02

00

Figure 9:   Target 32-bit Single Memory Write



Waveforms

8 - 20 May, 1999

Target 32-bit Burst Memory Read Multiple

Figure 10 represents a Target Memory Read Multiple trans-
action. In this transaction, data is placed on the ADIO bus 
from a FIFO in the user design. 

Address Phase

The Initiator drives FRAME# and the address onto the AD 
lines, and drives a Memory Read Multiple command (1100) 
onto C/BE#. The Initiator signals that it wants to transfer 
multiple Dwords by keeping FRAME# asserted and assert-
ing IRDY# on the next cycle. ADDR_VLD is asserted one 
cycle after the address phase, indicating that a valid 
address is present on ADIO. The ADDR_VLD is used by 
the user design to capture a copy of this address into the 
address counter.

Data Phase

The PCI Interface sees that the bus is no longer idle and 
asserts Target state machine signals, IDLE and B_BUSY. 
After B_BUSY, the Target state machine enters the 
S_DATA state, indicating that the backend will begin trans-

ferring data. DEVSEL# is asserted as a medium decode 
speed. The PCI Interface always adds one cycle of TRDY# 
latency after DEVSEL# assertion. Since this is a read, 
TRDY# is not asserted for one extra cycle beyond the usual 
TRDY# latency due to the Read transaction turnaround 
cycle where the Initiator stops driving AD and the Target 
begins driving AD.

BASE_HIT[x] is asserted for one cycle to indicate to the 
backend logic that it is the target of an access. The signal 
S_WRDN is asserted low to represent data is being read 
from the Target.

S_READY is asserted and S_TERM is deasserted, indicat-
ing that the backend is able to transfer more than one 
Dword.

S_SRC_EN is asserted for five cycles and S_DATA_VLD is 
asserted for four cycles. Since there is a difference 
between the number of data transfers anticipated (five), 
and the number that occurred (four), the user design may 
have to perform a backup of the FIFO. Details on how to do 
this are documented in the Xilinx PCI Design Guide.



May, 1999 8 - 21

tim
e 

(n
s)

90
90

.0
91

20
.0

91
50

.0
91

80
.0

92
10

.0
92

40
.0

92
70

.0
93

00
.0

93
30

.0
93

60
.0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

11
00

00
00

11
11

fff
fff

ff
f0

00
00

00
fff

fff
ff

00
32

06
49

00
46

91
26

00
78

97
6f

00
bf

28
95

fff
fff

ff

f0
00

00
00

00
32

06
49

00
46

91
26

00
78

97
6f

00
bf

28
95

01
37

c0
04

01
f6

e8
99

00
02

00

Figure 10:   Target 32-bit Burst Memory Read Multiple



Waveforms

8 - 22 May, 1999

Target 32-bit Burst Memory Write

Figure 11 represents a Target Memory Write transaction. In 
this transaction data is captured from the ADIO bus to a 
FIFO in the user design. 

Address Phase

The Initiator drives FRAME# and the address onto the AD 
lines, and drives a Memory Write command (0111) onto 
C/BE#. The Initiator signals that it wants to transfer multiple 
Dwords by keeping FRAME# asserted and asserting 
IRDY# on the next cycle. ADDR_VLD is asserted one cycle 
after the address phase, indicating that a valid address is 
present on ADIO. The ADDR_VLD is used by the user 
design to capture a copy of this address into the address 
counter.

Data Phase

The PCI Interface sees that the bus is no longer idle and 
asserts Target state machine signals, IDLE and B_BUSY. 
After B_BUSY, the Target state machine enters the 
S_DATA state, indicating that the backend will begin trans-
ferring data. DEVSEL# is asserted as a medium decode 
speed. The PCI Interface always adds one cycle of TRDY# 
latency after DEVSEL# assertion. 

BASE_HIT[x] is asserted for one cycle to indicate to the 
backend logic that it is the target of an access. The signal 
S_WRDN is asserted high to represent that data is being 
written to the target.

S_READY is asserted and S_TERM is deasserted, indicat-
ing that the backend is able to transfer more than one 
Dword. 



May, 1999 8 - 23

tim
e 

(n
s)

96
00

.0
96

30
.0

96
60

.0
96

90
.0

97
20

.0
97

50
.0

97
80

.0
98

10
.0

98
40

.0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

01
11

00
00

11
11

fff
fff

ff
f0

00
00

00
00

32
06

49
00

46
91

26
00

78
97

6f
00

bf
28

95
fff

fff
ff

f0
00

00
00

00
32

06
49

00
46

91
26

00
78

97
6f

00
bf

28
95

00
02

00

Figure 11:   Target 32-bit Burst Memory Write



Waveforms

8 - 24 May, 1999

Target 32-bit Burst Memory Write with 
Disconnect

Figure 12 represents a Target Memory Write transaction 
where the backend causes a disconnect with data termina-
tion. In this transaction data is captured from the ADIO bus 
to a FIFO in the user design. Disconnect with Data occurs 
when both S_READY and S_TERM are asserted.

Address Phase

The Initiator drives FRAME# and the address onto the AD 
lines, and drives a Memory Write command (0111) onto 
C/BE#. The Initiator signals that it wants to transfer multiple 
Dwords by keeping FRAME# asserted and asserting 
IRDY# on the next cycle. ADDR_VLD is asserted one cycle 
after the address phase, indicating that a valid address is 
present on ADIO. The ADDR_VLD is used by the user 
design to capture a copy of this address into the address 
counter.

Data Phase

The PCI Interface sees that the bus is no longer idle and 
asserts Target state machine signals, IDLE and B_BUSY. 
After B_BUSY, the Target state machine enters the 
S_DATA state, indicating that the backend will begin trans-
ferring data. DEVSEL# is asserted as a medium decode 
speed. The PCI Interface always adds one cycle of TRDY# 
latency after DEVSEL# assertion. 

BASE_HIT[x] is asserted for one cycle to indicate to the 
backend logic that it is the target of an access. The signal 
S_WRDN is asserted high to represent that data is being 
written to the target.

Initially, S_READY is asserted and S_TERM is deasserted, 
indicating that the backend is able to transfer more than 
one Dword. S_TERM is asserted with two more Dwords to 
transfer. The equation for S_TERM is usually derived from 
the Almost Full flag on the FIFO. One cycle later, STOP# is 
asserted, and the Initiator concludes the transaction by 
deasserting FRAME# and then IRDY# on the subsequent 
cycle. Only a single Dword is transferred after STOP# is 
asserted.



May, 1999 8 - 25

tim
e 

(n
s)

10
08

0.
0

10
11

0.
0

10
14

0.
0

10
17

0.
0

10
20

0.
0

10
23

0.
0

10
26

0.
0

10
29

0.
0

10
32

0.
0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

01
11

00
00

11
11

fff
fff

ff
f0

00
00

00
00

32
06

49
00

46
91

26
00

78
97

6f
fff

fff
ff

f0
00

00
00

00
32

06
49

00
46

91
26

00
78

97
6f

00
02

00

Figure 12:   Target 32-bit Burst Memory Write with Disconnect



Waveforms

8 - 26 May, 1999

Target 32-bit Retry

Figure 13 represents a Target Retry. This is the same as a 
disconnect without data on first data phase. The Retry 
occurs when S_TERM is asserted while S_READY is low. 
Users may want to signal retrys when designing with very 
slow peripherals or if the user design implements delayed 
reads.

Address Phase

The Initiator drives FRAME# and the address onto the AD 
lines, and drives a Memory Read Multiple command (1100) 
onto C/BE#. The Initiator signals that it wants to transfer 
multiple Dwords by keeping FRAME# asserted and assert-

ing IRDY# on the next cycle. ADDR_VLD is asserted one 
cycle after the address phase, indicating that a valid 
address is present on ADIO. The ADDR_VLD is used by 
the user design to capture a copy of this address into the 
address counter.

Data Phase

The user design deasserts S_READY and asserts 
S_TERM, to cause a Retry. The Target state machine 
never enters the S_DATA state. TRDY# is never asserted 
and STOP# is asserted. The Initiator deasserts FRAME# 
and concludes the cycle.



May, 1999 8 - 27

tim
e 

(n
s)

10
56

0.
0

10
59

0.
0

10
62

0.
0

10
65

0.
0

10
68

0.
0

10
71

0.
0

10
74

0.
0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

11
00

00
00

11
11

fff
fff

ff
f0

00
00

00
fff

fff
ff

f0
00

00
00

00
02

00

Figure 13:   Target 32-bit Retry



Waveforms

8 - 28 May, 1999

Target 32-bit Abort

Figure 14 the signalling of a Target abort. When S_ABORT 
is asserted, this signals a serious error condition and 
requires the current transaction to stop. The transaction 
starts normally as detailed below and end with a Target 
abort.

Address Phase

The Initiator drives FRAME# and the address onto the AD 
lines, and drives a Memory Read Multiple command (1100) 
onto C/BE#. The Initiator signals that it wants to transfer 
multiple Dwords by keeping FRAME# asserted and assert-
ing IRDY# on the next cycle. ADDR_VLD is asserted one 
cycle after the address phase, indicating that a valid 
address is present on ADIO. The ADDR_VLD is used by 
the user design to capture a copy of this address into the 
address counter.

Data Phase

The PCI Interface sees that the bus is no longer idle and 
asserts Target state machine signals, IDLE and B_BUSY. 
After B_BUSY, the Target state machine enters the 
S_DATA state, indicating that the backend will begin trans-
ferring data. DEVSEL# is asserted as a medium decode 
speed. The PCI Interface always adds one cycle of TRDY# 

latency after DEVSEL# assertion. Since this is a read, 
TRDY# is not asserted for one extra cycle beyond the usual 
TRDY# latency due to the Read transaction turnaround 
cycle where the Initiator stops driving AD and the Target 
begins driving AD.

BASE_HIT[x] is asserted for one cycle to indicate to the 
backend logic that it is the target of an access. The signal 
S_WRDN is asserted low to represent data is being read 
from the Target.

S_READY is asserted and S_TERM is deasserted, indicat-
ing that the backend is able to transfer more than one 
Dword. 

The backend design detected a serious error condition, 
such as attempting to burst past the end of the memory 
space for that Base address register. When this occurs, a 
Target abort must be signalled to the Initiator. 

On the rising CLK edge after S_ABORT is asserted, 
STOP# is asserted and both TRDY# and DEVSEL# are 
deasserted. As a result, FRAME# is deasserted on the next 
CLK cycle which ends the transaction.

The states of S_READY and S_TERM are not particularly 
relevant since asserting S_ABORT causes the Target state 
machine to do a Target abort.



May, 1999 8 - 29

tim
e 

(n
s)

10
98

0.
0

11
01

0.
0

11
04

0.
0

11
07

0.
0

11
10

0.
0

11
13

0.
0

11
16

0.
0

11
19

0.
0

11
22

0.
0

11
25

0.
0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

11
00

00
00

11
11

fff
fff

ff
f0

00
00

38
fff

fff
ff

00
46

91
26

00
32

06
49

00
46

91
26

00
78

97
6f

fff
fff

ff

f0
00

00
38

00
32

06
49

00
46

91
26

00
78

97
6f

00
02

00

Figure 14:   Target 32-bit Abort



Waveforms

8 - 30 May, 1999

Initiator 64-bit Burst Memory Read Multiple

Figure 15 represents a 64-bit burst cycle Memory Read 
Multiple transaction. This consists of a single address 
phase followed by two or more data phases. 

Requesting the PCI Bus

REQUEST64 is asserted for one clock cycle to generate a 
REQ# signal to the PCI Arbiter and to signal to the PCI 
Interface that a 64-bit transaction will be performed. The 
PCI Interface asserts FRAME# and REQ64# only if GNT# 
is asserted for more than one clock cycle. 

Address Phase

The M_ADDR_N signal is used to drive the output-enable 
of the 3-state buffers (BUFTs) which enable the valid 
address onto the internal ADIO bus one CLK cycle before 
the assertion of FRAME#. Once the Initiator asserts 
FRAME#, it drives the AD lines with the address put on the 
ADIO bus during the previous CLK cycle, and drives a 
Memory Read Multiple command (1100), supplied by the 
user to the backend (M_CBE[3:0], not shown), onto the C/
BE# lines. 

Data Phase

The M_DATA phase begins on the CLK cycle immediately 
following the M_ADDR_N phase. During M_DATA, the byte 
enables are presented on M_CBE. One clock cycle after 
FRAME# and REQ64# are asserted, the Initiator asserts 
IRDY#, and the fast decode, 64-bit Target asserts 
DEVSEL# and ACK64#. Since this is a Read, there is a one 
cycle bus turnaround after the address phase; TRDY# can 
not be asserted until after the turnaround cycle. The Target 
is now suppling data onto the PCI bus, while the Initiator is 
supplying the Byte enables. Since this is a multi-Qword 
transfer, COMPLETE is initially deasserted and M_READY 
is asserted at the beginning of the transaction, and 
FRAME# and REQ64# stay asserted until the next to last 
data phase. 

M_DATA_VLD indicates the data is present on the AD bus 
and is used to advance the Initiator address pointer. With 
both IRDY# and TRDY# asserted, the 64-bit data transfer 
occurs without inserted wait states from either agent. COM-
PLETE is asserted on the next to last data phase, since the 
Initiator has to deassert FRAME# and REQ64# at the 
beginning of the last data phase. The transfer completes 
with the deassertion of IRDY#, TRDY#, DEVSEL#, and 
ACK64# and the bus has a turnaround cycle. The signal 
M_WRDN is asserted low to represent data is being read.



May, 1999 8 - 31

tim
e 

(n
s)

11
40

0.
0

11
46

0.
0

11
52

0.
0

11
58

0.
0

11
64

0.
0

11
70

0.
0

11
76

0.
0

11
82

0.
0

C
LK

R
E

Q
#

G
N

T
#

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

C
/B

E
#[

7:
4]

A
D

[6
3:

32
]

A
D

IO
[6

3:
32

]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

R
E

Q
64

#

A
C

K
64

#

R
E

Q
U

E
S

T
64

P
A

R
64

S
LO

T
64

S
_C

Y
C

LE
64

M
_R

E
A

D
Y

C
O

M
P

LE
T

E

M
_D

A
T

A
_V

LD

M
_S

R
C

_E
N

M
_W

R
D

N

R
E

Q
U

E
S

T

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

00
00

11
00

00
00

11
11

fff
fff

ff
00

78
97

6f
c0

00
00

00
f0

00
00

38
00

32
06

49
00

78
97

6f
01

37
c0

04
03

2e
a8

9d
fff

fff
ff

c0
00

00
00

00
78

97
6f

c0
00

00
00

f0
00

00
38

00
32

06
49

00
78

97
6f

01
37

c0
04

03
2e

a8
9d

11
11

00
00

11
11

fff
fff

ff
00

bf
28

95
00

00
00

00
fff

fff
ff

00
46

91
26

00
bf

28
95

01
f6

e8
99

05
25

91
36

fff
fff

ff

00
00

00
00

00
bf

28
95

00
00

00
00

fff
fff

ff
00

46
91

26
00

bf
28

95
01

f6
e8

99
05

25
91

36

Figure 15:   Initi ator 64-bit  Burs t Memory Read Multi ple



Waveforms

8 - 32 May, 1999

Initiator 64-bit Burst Memory Write

Figure 16 represents a 64-bit burst cycle Memory Write 
transaction. This consists of a single address phase fol-
lowed by four data phases. 

Requesting the PCI Bus

REQUEST64 is asserted for one clock cycle to generate a 
REQ# signal to the PCI Arbiter and to signal to the PCI 
Interface that a 64-bit transaction will be performed. The 
PCI Interface asserts FRAME# and REQ64# only if GNT# 
is asserted for more than one clock cycle.

Address Phase

The M_ADDR_N signal is used to drive the output-enable 
of the 3-state buffers (BUFTs) which enable the valid 
address onto the internal ADIO bus one CLK cycle before 
the assertion of FRAME#. Once the Initiator asserts 
FRAME#, it drives the AD lines with the address put on the 
ADIO bus during the previous CLK cycle, and drives a 
Memory Write command (0111), supplied by the user to the 
backend (M_CBE[3:0], not shown), onto the C/BE# lines. 

Data Phase

The M_DATA phase begins on the CLK cycle immediately 
following the M_ADDR_N phase. During M_DATA, the byte 
enables are presented on M_CBE. Data is placed on the 
ADIO bus from a FIFO in the user design. The output 
enable of the FIFO is controlled by M_DATA (conditional 
upon being the write state!).

One clock cycle after FRAME# is asserted, the Initiator 
asserts IRDY#, and the fast decode, 64-bit Target asserts 
DEVSEL#, ACK64#, and TRDY#. Since this is a multi-
Qword transfer, COMPLETE is initially deasserted and 
M_READY is asserted at the beginning of the transaction. 
COMPLETE is asserted during the next to last data phase 
and FRAME# and REQ64# are deasserted at the begin-
ning of the last data phase. 

M_DATA_VLD indicates the data was taken by the Target 
and M_SRC_EN is used to advance the Initiator address 
pointer and read the next piece of data from the FIFO. With 
both IRDY# and TRDY# asserted, the data transfer occurs 
without inserted wait states from either agent. The transfer 
completes with the deassertion of IRDY#, TRDY#, 
DEVSEL#, and ACK64# and the bus has a turnaround 
cycle. The signal M_WRDN is asserted high to represent 
data is being written. 



May, 1999 8 - 33

tim
e 

(n
s)

12
00

0.
0

12
06

0.
0

12
12

0.
0

12
18

0.
0

12
24

0.
0

12
30

0.
0

12
36

0.
0

C
LK

R
E

Q
#

G
N

T
#

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

C
/B

E
#[

7:
4]

A
D

[6
3:

32
]

A
D

IO
[6

3:
32

]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

R
E

Q
64

#

A
C

K
64

#

R
E

Q
U

E
S

T
64

P
A

R
64

S
LO

T
64

S
_C

Y
C

LE
64

M
_R

E
A

D
Y

C
O

M
P

LE
T

E

M
_D

A
T

A
_V

LD

M
_S

R
C

_E
N

M
_W

R
D

N

R
E

Q
U

E
S

T

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

00
00

01
11

00
00

11
11

fff
fff

ff
01

37
c0

04
c0

00
00

00
00

32
06

49
00

78
97

6f
01

37
c0

04
03

2e
a8

9d
fff

fff
ff

c0
00

00
00

00
32

06
49

00
78

97
6f

01
37

c0
04

03
2e

a8
9d

08
54

39
d3

11
11

00
00

11
11

fff
fff

ff
01

f6
e8

99
00

00
00

00
00

46
91

26
00

bf
28

95
01

f6
e8

99
05

25
91

36
fff

fff
ff

00
00

00
00

00
46

91
26

00
bf

28
95

01
f6

e8
99

05
25

91
36

0d
79

cb
09

Figure 16:   Initiator 64-bit Burst Memory Write



Waveforms

8 - 34 May, 1999

Initiator 64-bit Burst Memory Write with 
Disconnect

Figure 17 represents a 64-bit burst cycle Memory Write 
transaction with a Target termination. This consists of a sin-
gle address phase followed by four data phases but only 
two Qwords were transferred because of the disconnect 
with data. 

Requesting the PCI Bus

REQUEST64 is asserted for one clock cycle to generate a 
REQ# signal to the PCI Arbiter and to signal to the PCI 
Interface that a 64-bit transaction will be performed. The 
PCI Interface asserts FRAME# and REQ64# only if GNT# 
is asserted for more than one clock cycle.

Address Phase

The M_ADDR_N signal is used to drive the output-enable 
of the 3-state buffers (BUFTs) which enable the valid 
address onto the internal ADIO bus one CLK cycle before 
the assertion of FRAME#. Once the Initiator asserts 
FRAME#, it drives the AD lines with the address put on the 
ADIO bus during the previous CLK cycle, and drives a 
Memory Write command (0111), supplied by the user to the 
backend (M_CBE[3:0], not shown), onto the C/BE# lines. 

Data Phase

The M_DATA phase begins on the CLK cycle immediately 
following the M_ADDR_N phase. During M_DATA, the byte 
enables are presented on M_CBE. Data is placed on the 
ADIO bus from a FIFO in the user design. The output 
enable of the FIFO is controlled by M_DATA (conditional 
upon being the write state!).

One clock cycle after FRAME# and REQ64# are asserted, 
the Initiator asserts IRDY#, and the fast decode Target 
asserts DEVSEL#, TRDY#, and ACK64#. Since this is a 
multi-Qword transfer, COMPLETE is initially deasserted 
and M_READY is asserted at the beginning of the transac-
tion. COMPLETE is asserted during the next to last data 
phase and FRAME# and REQ64# are deasserted at the 
beginning of the last data phase. 

M_DATA_VLD indicates the data was taken by the Target 
and M_SRC_EN is used to advance the Initiator address 
pointer and read the next piece of data from the FIFO. With 
both IRDY# and TRDY# asserted, the data transfer occurs 
without inserted wait states from either agent. 

The Target signalled a disconnect by asserting STOP#, and 
deasserted TRDY# so that the third Qword was not trans-
ferred. Likewise, the last data phase does not have a data 
transfer because TRDY# is not asserted. M_SRC_EN is 
asserted for four cycles and M_DATA_VLD is asserted for 
only two cycles. Since there is a difference between the 
number of data transfers anticipated (four), and the number 
that occurred (two), the user design may have to perform a 
backup of the FIFO. Details on how to do this are docu-
mented in the Xilinx PCI Design Guide.

The transfer completes with the deassertion of IRDY#, 
STOP#, DEVSEL#, and ACK64# and the bus has a turn-
around cycle. The signal M_WRDN is asserted high to rep-
resent data is being written. 



May, 1999 8 - 35

tim
e 

(n
s)

12
60

0.
0

12
66

0.
0

12
72

0.
0

12
78

0.
0

12
84

0.
0

12
90

0.
0

12
96

0.
0

C
LK

R
E

Q
#

G
N

T
#

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

C
/B

E
#[

7:
4]

A
D

[6
3:

32
]

A
D

IO
[6

3:
32

]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

R
E

Q
64

#

A
C

K
64

#

R
E

Q
U

E
S

T
64

P
A

R
64

S
LO

T
64

S
_C

Y
C

LE
64

M
_R

E
A

D
Y

C
O

M
P

LE
T

E

M
_D

A
T

A
_V

LD

M
_S

R
C

_E
N

M
_W

R
D

N

R
E

Q
U

E
S

T

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

00
00

01
11

00
00

11
11

fff
fff

ff
08

54
39

d3
c0

00
00

00
00

32
06

49
00

78
97

6f
01

37
c0

04
fff

fff
ff

c0
00

00
00

00
32

06
49

00
78

97
6f

01
37

c0
04

03
2e

a8
9d

08
54

39
d3

11
11

00
00

11
11

fff
fff

ff
0d

79
cb

09
00

00
00

00
00

46
91

26
00

bf
28

95
01

f6
e8

99
fff

fff
ff

00
00

00
00

00
46

91
26

00
bf

28
95

01
f6

e8
99

05
25

91
36

0d
79

cb
09

Figure 17:   Initiator 64-bit Burst Memory Write with Disconnect



Waveforms

8 - 36 May, 1999

Initiator 64-bit Memory Read of a 32-bit 
Target

Figure 18 represents a 64-bit burst cycle Memory Read 
Multiple transaction of a 32-bit Target. This consists of a 
single address phase followed by two or more data phases. 
The Xilinx PCI core handles this situation by transferring 
one Qword as two Dwords (assuming the Target will take 
both Dwords) and then ending the transaction. 

Requesting the PCI Bus

REQUEST64 is asserted for one clock cycle to generate a 
REQ# signal to the PCI Arbiter and to signal to the PCI 
Interface that a 64-bit transaction will be performed. The 
PCI Interface asserts FRAME# and REQ64# only if GNT# 
is asserted for more than one clock cycle. 

Address Phase

The M_ADDR_N signal is used to drive the output-enable 
of the 3-state buffers (BUFTs) which enable the valid 
address onto the internal ADIO bus one CLK cycle before 
the assertion of FRAME#. Once the Initiator asserts 
FRAME#, it drives the AD lines with the address put on the 
ADIO bus during the previous CLK cycle, and drives a 
Memory Read Multiple command (1100), supplied by the 
user to the backend (M_CBE[3:0], not shown), onto the C/
BE# lines. 

Data Phase

The M_DATA phase begins on the CLK cycle immediately 
following the M_ADDR_N phase. During M_DATA, the byte 

enables are presented on M_CBE. One clock cycle after 
FRAME# and REQ64# are asserted, the Initiator asserts 
IRDY#, and the fast decode, 32-bit Target asserts 
DEVSEL#, leaving ACK64# deasserted. 

The Xilinx PCI Interface sees that the Target did not assert 
ACK64#, and after transferring the first Dword, the Initiator 
state machine automatically deasserts IRDY#, even 
though M_READY is asserted. The data on the upper 
ADIO and M_CBE bus is transferred to the lower AD and 
M_CBE bus inside the PCI core. No extra muxes or back-
end inputs are needed. When the PCI core is being used in 
zero wait state mode, a 64-bit transfer encountering a 32-
bit Target is the only instance where a wait state is ever 
inserted after IRDY# is asserted.

The PCI Interface also asserts M_FAIL64 (not shown) to 
the user backend. M_FAIL64 is used to indicate that the 64-
bit Target request was claimed as a 32-bit transfer by the 
Target.

M_DATA_VLD indicates the data is present on the AD bus. 
Since a automatic wait state was inserted, M_DATA_VLD is 
toggled. The behavior of M_DATA_VLD combined with the 
state of M_FAIL64 indicates two Dwords are transferred. 
M_DATA_VLD and M_FAIL64 are used to advance the Ini-
tiator address pointer.

When an event like this occurs, the Initiator should re-ini-
tiate as a 32-bit transfer and move the data as Dwords. The 
XIlinx PCI core will not allow you to burst more than two 
Dwords in this type of event. The user backend design 
must keep track of the number of Dwords transferred.



May, 1999 8 - 37

tim
e 

(n
s)

13
14

0.
0

13
20

0.
0

13
26

0.
0

13
32

0.
0

13
38

0.
0

13
44

0.
0

13
50

0.
0

C
LK

R
E

Q
#

G
N

T
#

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

C
/B

E
#[

7:
4]

A
D

[6
3:

32
]

A
D

IO
[6

3:
32

]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

R
E

Q
64

#

A
C

K
64

#

R
E

Q
U

E
S

T
64

P
A

R
64

S
LO

T
64

S
_C

Y
C

LE
64

M
_R

E
A

D
Y

C
O

M
P

LE
T

E

M
_D

A
T

A
_V

LD

M
_S

R
C

_E
N

M
_W

R
D

N

R
E

Q
U

E
S

T

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

00
00

11
00

00
00

11
11

fff
fff

ff
01

37
c0

04
c0

00
00

00
03

2e
a8

9d
00

32
06

49
00

46
91

26
fff

fff
ff

c0
00

00
00

01
37

c0
04

c0
00

00
00

03
2e

a8
9d

00
32

06
49

00
46

91
26

11
11

00
00

11
11

fff
fff

ff
01

f6
e8

99
00

00
00

00
fff

fff
ff

00
00

00
00

01
f6

e8
99

00
00

00
00

fff
fff

ff

Figure 18:   Initiator 64-bit Memory Read of a 32-bit Target



Waveforms

8 - 38 May, 1999

Initiator 64-bit Memory Write of a 32-bit 
Target

Figure 19 represents a single cycle Memory Write transac-
tion from a 64-bit master to a 32-bit Target. This consists of 
a single address phase followed by two or more data 
phases. The Xilinx PCI core handles this situation by trans-
ferring one Qword as two Dwords (assuming the Target will 
take both Dwords) and then ending the transaction. 

Requesting the PCI Bus

REQUEST64 is asserted for one clock cycle to generate a 
REQ# signal to the PCI Arbiter and to signal to the PCI 
Interface that a 64-bit transaction will be performed. The 
PCI Interface asserts FRAME# and REQ64# only if GNT# 
is asserted for more than one clock cycle. 

Address Phase

The M_ADDR_N signal is used to drive the output-enable 
of the 3-state buffers (BUFTs) which enable the valid 
address onto the internal ADIO bus one CLK cycle before 
the assertion of FRAME#. Once the Initiator asserts 
FRAME#, it drives the AD lines with the address put on the 
ADIO bus during the previous CLK cycle, and drives a 
Memory Write command (0111), supplied by the user to the 
backend (M_CBE[3:0], not shown), onto the C/BE# lines. 

Data Phase

The M_DATA phase begins on the CLK cycle immediately 
following the M_ADDR_N phase. During M_DATA, the byte 
enables are presented on M_CBE. One clock cycle after 
FRAME# and REQ64# are asserted, the Initiator asserts 

IRDY#, and the fast decode, 32-bit Target asserts 
DEVSEL#, leaving ACK64# deasserted. 

The Xilinx PCI Interface sees that the Target did not assert 
ACK64#, and after transferring the first Dword, the Initiator 
state machine automatically deasserts IRDY#, even 
though M_READY is asserted. The data on the upper 
ADIO and M_CBE bus is transferred to the lower AD and 
M_CBE bus inside the PCI core. No extra muxes or back-
end inputs are needed. When the PCI core is being used in 
zero wait state mode, a 64-bit transfer encountering a 32-
bit Target is the only instance where a wait state is ever 
inserted after IRDY# is asserted.

The PCI Interface also asserts M_FAIL64 (not shown) to 
the user backend. M_FAIL64 is used to indicate that the 64-
bit Target request was claimed as a 32-bit transfer by the 
Target.

M_DATA_VLD indicates that data was taken by the Target. 
M_SRC_EN combined with M_FAIL64 are used to 
advance the Initiator address pointer and read the next 
piece of data from the FIFO. In this case, since the PCI 
Interface asserts M_FAIL and M_SRC_EN, the user FIFO 
should backup the FIFO data to prevent data loss. This is 
because two Dwords were transferred, but the FIFO was 
advanced two Qwords.

When an event like this occurs, the Initiator should re-ini-
tiate as a 32-bit transfer and move the data as Dwords. The 
XIlinx PCI core will not allow you to burst more than two 
Dwords in this type of event. The user backend design 
must keep track of the number of Dwords transferred.



May, 1999 8 - 39

tim
e 

(n
s)

13
71

0.
0

13
77

0.
0

13
83

0.
0

13
89

0.
0

13
95

0.
0

14
01

0.
0

14
07

0.
0

C
LK

R
E

Q
#

G
N

T
#

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

C
/B

E
#[

7:
4]

A
D

[6
3:

32
]

A
D

IO
[6

3:
32

]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

R
E

Q
64

#

A
C

K
64

#

R
E

Q
U

E
S

T
64

P
A

R
64

S
LO

T
64

S
_C

Y
C

LE
64

M
_R

E
A

D
Y

C
O

M
P

LE
T

E

M
_D

A
T

A
_V

LD

M
_S

R
C

_E
N

M
_W

R
D

N

R
E

Q
U

E
S

T

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

00
00

01
11

00
00

11
11

fff
fff

ff
01

f6
e8

99
c0

00
00

00
00

32
06

49
00

78
97

6f
00

46
91

26
fff

fff
ff

c0
00

00
00

00
32

06
49

00
78

97
6f

01
37

c0
04

11
11

00
00

11
11

fff
fff

ff
01

f6
e8

99
00

00
00

00
00

46
91

26
00

bf
28

95
00

46
91

26
fff

fff
ff

00
00

00
00

00
46

91
26

00
bf

28
95

01
f6

e8
99

Figure 19:   Initi ator 64-bit  Memory Write of a 32-bit  Targe t



Waveforms

8 - 40 May, 1999

Target 64-bit Burst Memory Read Multiple

Figure 20 represents a Target Memory Read Multiple trans-
action. In this transaction, data is placed on the ADIO bus 
from a FIFO in the user design. 

Address Phase

The Initiator drives FRAME#, REQ64#, and the address 
onto the AD lines, and drives a Memory Read Multiple com-
mand (1100) onto C/BE#. The Initiator signals that it wants 
to transfer multiple Dwords by keeping FRAME# asserted 
and asserting IRDY# on the next cycle. ADDR_VLD is 
asserted one cycle after the address phase, indicating that 
a valid address is present on ADIO. The ADDR_VLD is 
used by the user design to capture a copy of this address 
into the address counter.

Data Phase

The PCI Interface sees that the bus is no longer idle and 
asserts Target state machine signals, IDLE and B_BUSY. 
After B_BUSY, the Target state machine enters the 
S_DATA state, indicating that the backend will begin trans-
ferring data. DEVSEL# is asserted as a medium decode 
speed, along with ACK64#, claiming the 64-bit transaction. 
The PCI Interface always adds one cycle of TRDY# latency 
after DEVSEL# assertion. Since this is a read, TRDY# is 
not asserted for one extra cycle beyond the usual TRDY# 
latency. This is due to the Read transaction turnaround 

cycle where the Initiator stops driving the AD bus and the 
Target begins driving the AD bus.

BASE_HIT[x] is asserted for one cycle when DEVSEL# is 
asserted to indicate to the backend logic that it is the target 
of an access. The signal S_WRDN is asserted low to rep-
resent data is being read from the Target.

The PCI Interface also asserts S_CYCLE64 starting at the 
assertion of DEVSEL# and it remains asserted throughout 
the transfer. This indicates to the user backend that this is a 
64-bit transfer.

S_READY is asserted and S_TERM is deasserted, indicat-
ing that the backend is able to transfer more than one 
Dword. 

The PCI interface asserts S_SRC_EN to indicate to the 
user backend that it must supply the next piece of data. The 
PCI interface also asserts S_DATA_VLD to indicate to the 
user backend that on the previous clock, data was 
accepted by the Initiator.

In this example, S_SRC_EN is asserted for five cycles and 
S_DATA_VLD is asserted for four cycles. Since there is a 
difference between the number of data transfers antici-
pated (five), and the number that occurred (four), the user 
design may have to perform a backup of the FIFO. Details 
on how to do this are documented in the Xilinx PCI Design 
Guide.



May, 1999 8 - 41

tim
e 

(n
s)

14
34

0.
0

14
37

0.
0

14
40

0.
0

14
43

0.
0

14
46

0.
0

14
49

0.
0

14
52

0.
0

14
55

0.
0

14
58

0.
0

14
61

0.
0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

C
/B

E
#[

7:
4]

A
D

[6
3:

32
]

A
D

IO
[6

3:
32

]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

R
E

Q
64

#

A
C

K
64

#

R
E

Q
U

E
S

T
64

P
A

R
64

S
LO

T
64

S
_C

Y
C

LE
64

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

11
00

00
00

11
11

fff
fff

ff
ff0

00
00

0
fff

fff
ff

00
46

91
26

00
32

06
49

00
78

97
6f

01
37

c0
04

03
2e

a8
9d

fff
fff

ff

ff0
00

00
0

00
32

06
49

00
78

97
6f

01
37

c0
04

03
2e

a8
9d

08
54

39
d3

15
ce

04
dc

11
11

00
00

11
11

fff
fff

ff
00

46
91

26
00

bf
28

95
01

f6
e8

99
05

25
91

36
fff

fff
ff

fff
fff

ff
00

46
91

26
00

bf
28

95
01

f6
e8

99
05

25
91

36
0d

79
cb

09
23

47
cf

e5

00
04

00

Figure 20:   Target 64-bit Burst Memory Read Multiple



Waveforms

8 - 42 May, 1999

Target 64-bit Burst Memory Write

Figure 21 represents a Target Memory Write transaction. In 
this transaction data is captured from the ADIO bus to a 
FIFO in the user design. 

Address Phase

The Initiator drives FRAME#, REQ64#, and the address 
onto the AD lines, and drives a Memory Write command 
(0111) onto C/BE#. The Initiator signals that it wants to 
transfer multiple Qwords by keeping FRAME# asserted 
and asserting IRDY# on the next cycle. ADDR_VLD is 
asserted one cycle after the address phase, indicating that 
a valid address is present on ADIO. The ADDR_VLD is 
used by the user design to capture a copy of this address 
into the address counter.

Data Phase

The PCI Interface sees that the bus is no longer idle and 
asserts Target state machine signals, IDLE and B_BUSY. 
After B_BUSY, the Target state machine enters the 
S_DATA state, indicating that the backend will begin trans-

ferring data. DEVSEL# is asserted as a medium decode 
speed, along with ACK64#, claiming the 64-bit transaction. 
The PCI Interface always adds one cycle of TRDY# latency 
after DEVSEL# assertion. 

BASE_HIT[x] is asserted for one cycle when DEVSEL# is 
asserted to indicate to the backend logic that it is the target 
of an access. The signal S_WRDN is asserted high to rep-
resent that data is being written to the target.

The PCI Interface also asserts S_CYCLE64 starting at the 
assertion of DEVSEL# and it remains asserted throughout 
the transfer. This indicates to the user backend that this is a 
64-bit transfer.

S_READY is asserted and S_TERM is deasserted, indicat-
ing that the backend is able to transfer more than one 
Qword. 

The PCI Interface also asserts S_DATA_VLD to indicate to 
the user backend that valid data is present on the internal 
ADIO bus. This signal is used by the backend to capture 
the data into the FIFO.



May, 1999 8 - 43

tim
e 

(n
s)

14
85

0.
0

14
88

0.
0

14
91

0.
0

14
94

0.
0

14
97

0.
0

15
00

0.
0

15
03

0.
0

15
06

0.
0

15
09

0.
0

15
12

0.
0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

C
/B

E
#[

7:
4]

A
D

[6
3:

32
]

A
D

IO
[6

3:
32

]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

R
E

Q
64

#

A
C

K
64

#

R
E

Q
U

E
S

T
64

P
A

R
64

S
LO

T
64

S
_C

Y
C

LE
64

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

01
11

00
00

11
11

fff
fff

ff
ff0

00
00

0
00

32
06

49
00

78
97

6f
01

37
c0

04
03

2e
a8

9d
fff

fff
ff

ff0
00

00
0

00
32

06
49

00
78

97
6f

01
37

c0
04

03
2e

a8
9d

11
11

00
00

11
11

fff
fff

ff
00

46
91

26
00

bf
28

95
01

f6
e8

99
05

25
91

36
fff

fff
ff

fff
fff

ff
00

46
91

26
00

bf
28

95
01

f6
e8

99
05

25
91

36

00
04

00

Figure 21:   Target 64-bit Burst Memory Write



Waveforms

8 - 44 May, 1999

Target 64-bit Burst Memory Write with 
Disconnect

Figure 22 represents a Target Memory Write transaction 
where the backend causes a disconnect with data termina-
tion. In this transaction data is captured from the ADIO bus 
to a FIFO in the user design. 

Address Phase

The Initiator drives FRAME#, REQ64#, and the address 
onto the AD lines, and drives a Memory Write command 
(0111) onto C/BE#. The Initiator signals that it wants to 
transfer multiple Qwords by keeping FRAME# asserted 
and asserting IRDY# on the next cycle. ADDR_VLD is 
asserted one cycle after the address phase, indicating that 
a valid address is present on ADIO. The ADDR_VLD is 
used by the user design to capture a copy of this address 
into the address counter.

Data Phase

The PCI Interface sees that the bus is no longer idle and 
asserts Target state machine signals, IDLE and B_BUSY. 
After B_BUSY, the Target state machine enters the 
S_DATA state, indicating that the backend will begin trans-
ferring data. DEVSEL# is asserted as a medium decode 
speed, along with ACK64#, claiming the 64-bit transaction. 

The PCI Interface always adds one cycle of TRDY# latency 
after DEVSEL# assertion. 

BASE_HIT[x] is asserted for one cycle when DEVSEL# is 
asserted to indicate to the backend logic that it is the target 
of an access. The signal S_WRDN is asserted high to rep-
resent that data is being written to the target.

The PCI Interface also asserts S_CYCLE64 starting at the 
assertion of DEVSEL# and it remains asserted throughout 
the transfer. This indicates to the user backend that this is a 
64-bit transfer.

The PCI Interface asserts S_DATA_VLD to indicate to the 
user backend that valid data is present on the internal 
ADIO bus. This signal is used by the backend to capture 
the data into the FIFO. 

Initially, S_READY is asserted and S_TERM is deasserted, 
indicating that the backend is able to transfer more than 
one Qword. S_TERM is asserted with two more Qwords to 
transfer. The equation for S_TERM is usually derived from 
the Almost Full flag on the FIFO. One cycle later, STOP# is 
asserted, and the Initiator concludes the transaction by 
deasserting FRAME# and then IRDY# on the subsequent 
cycle.



May, 1999 8 - 45

tim
e 

(n
s)

15
33

0.
0

15
36

0.
0

15
39

0.
0

15
42

0.
0

15
45

0.
0

15
48

0.
0

15
51

0.
0

15
54

0.
0

15
57

0.
0

15
60

0.
0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

C
/B

E
#[

7:
4]

A
D

[6
3:

32
]

A
D

IO
[6

3:
32

]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

R
E

Q
64

#

A
C

K
64

#

R
E

Q
U

E
S

T
64

P
A

R
64

S
LO

T
64

S
_C

Y
C

LE
64

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

01
11

00
00

11
11

fff
fff

ff
ff0

00
00

0
00

32
06

49
00

78
97

6f
01

37
c0

04
fff

fff
ff

ff0
00

00
0

00
32

06
49

00
78

97
6f

01
37

c0
04

11
11

00
00

11
11

fff
fff

ff
00

46
91

26
00

bf
28

95
01

f6
e8

99
fff

fff
ff

fff
fff

ff
00

46
91

26
00

bf
28

95
01

f6
e8

99

00
04

00

Figure 22:   Target 64-bit Burst Memory Write with Disconnect



Waveforms

8 - 46 May, 1999

Target 64-bit Retry

Figure 23 represents a 64-bit Target Retry. This is the same 
as a disconnect without data on first data phase. The Retry 
occurs when S_TERM is asserted while S_READY is low. 
Users may want to signal retrys when designing with very 
slow peripherals or if the user design implements delayed 
reads.

Address Phase

The Initiator drives FRAME#, REQ64#, and the address 
onto the AD lines, and drives a Memory Read Multiple com-
mand (1100) onto C/BE#. The Initiator signals that it wants 
to transfer multiple Qwords by keeping FRAME# asserted 

and asserting IRDY# on the next cycle. ADDR_VLD is 
asserted one cycle after the address phase, indicating that 
a valid address is present on ADIO. The ADDR_VLD is 
used by the user design to capture a copy of this address 
into the address counter.

Data Phase

Based on a decode of the BASE_HIT[x] signal, the user 
design deasserts S_READY and asserts S_TERM, which 
will cause a Retry. The Target state machine never enters 
the S_DATA state. TRDY# is never asserted and STOP# is 
asserted. The Initiator deasserts FRAME# and concludes 
the cycle.



May, 1999 8 - 47

tim
e 

(n
s)

15
81

0.
0

15
84

0.
0

15
87

0.
0

15
90

0.
0

15
93

0.
0

15
96

0.
0

15
99

0.
0

16
02

0.
0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

C
/B

E
#[

7:
4]

A
D

[6
3:

32
]

A
D

IO
[6

3:
32

]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

R
E

Q
64

#

A
C

K
64

#

R
E

Q
U

E
S

T
64

P
A

R
64

S
LO

T
64

S
_C

Y
C

LE
64

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

11
00

00
00

11
11

fff
fff

ff
ff0

00
00

0
fff

fff
ff

ff0
00

00
0

11
11

00
00

11
11

fff
fff

ff

fff
fff

ff

00
04

00

Figure 23:   Target 64-bit Retry



Waveforms

8 - 48 May, 1999

Target 64-bit Abort

Figure 24 the signalling of a Target abort. When S_ABORT 
is asserted, this signals a serious error condition and 
requires the current transaction to stop. The transaction 
starts normally as detailed below and end with a Target 
abort.

Address Phase

The Initiator drives FRAME#, REQ64#, and the address 
onto the AD lines, and drives a Memory Read Multiple com-
mand (1100) onto C/BE#. The Initiator signals that it wants 
to transfer multiple Qwords by keeping FRAME# asserted 
and asserting IRDY# on the next cycle. ADDR_VLD is 
asserted one cycle after the address phase, indicating that 
a valid address is present on ADIO. The ADDR_VLD is 
used by the user design to capture a copy of this address 
into the address counter.

Data Phase

The PCI Interface sees that the bus is no longer idle and 
asserts Target state machine signals, IDLE and B_BUSY. 
After B_BUSY, the Target state machine enters the 
S_DATA state, indicating that the backend will begin trans-
ferring data. DEVSEL# is asserted as a medium decode 
speed. The PCI Interface always adds one cycle of TRDY# 
latency after DEVSEL# assertion. Since this is a read, 
TRDY# is not asserted for one extra cycle beyond the usual 
TRDY# latency due to the Read transaction turnaround 

cycle where the Initiator stops driving the AD bus and the 
Target begins driving the AD bus.

BASE_HIT[x] is asserted for one cycle to indicate to the 
backend logic that it is the target of an access. The signal 
S_WRDN is asserted low to represent data is being read 
from the Target.

The PCI Interface also asserts S_CYCLE64 starting at the 
assertion of DEVSEL# and it remains asserted throughout 
the transfer. This indicates to the user backend that this is a 
64-bit transfer.

S_READY is asserted and S_TERM is deasserted, indicat-
ing that the backend is able to transfer more than one 
Qword. 

The backend design detected a serious error condition, 
such as attempting to burst past the end of the memory 
space for that Base address register. When this occurs, a 
Target abort must be signalled to the Initiator. 

On the rising CLK edge after S_ABORT is asserted, 
STOP# is asserted and TRDY# with DEVSEL# are deas-
serted. As a result, FRAME# is deasserted on the next CLK 
cycle which ends the transaction.

The states of S_READY and S_TERM are not particularly 
relevant since asserting S_ABORT causes the Target state 
machine to do a Target abort.



May, 1999 8 - 49

tim
e 

(n
s)

16
23

0.
0

16
26

0.
0

16
29

0.
0

16
32

0.
0

16
35

0.
0

16
38

0.
0

16
41

0.
0

16
44

0.
0

16
47

0.
0

16
50

0.
0

C
LK

F
R

A
M

E
#

C
/B

E
#[

3:
0]

A
D

[3
1:

0]

A
D

IO
[3

1:
0]

C
/B

E
#[

7:
4]

A
D

[6
3:

32
]

A
D

IO
[6

3:
32

]

IR
D

Y
#

T
R

D
Y

#

S
T

O
P

#

ID
S

E
L

D
E

V
S

E
L#

P
A

R

A
D

D
R

_V
LD

R
E

Q
64

#

A
C

K
64

#

R
E

Q
U

E
S

T
64

P
A

R
64

S
LO

T
64

S
_C

Y
C

LE
64

B
A

S
E

_H
IT

[7
:0

]

S
_R

E
A

D
Y

S
_T

E
R

M

S
_A

B
O

R
T

S
_D

A
T

A
_V

LD

S
_S

R
C

_E
N

S
_W

R
D

N

M
_D

A
T

A

D
R

_B
U

S

I_
ID

LE

M
_A

D
D

R
_N

ID
LE

B
_B

U
S

Y

S
_D

A
T

A

B
A

C
K

O
F

F

11
11

11
00

00
00

11
11

fff
fff

ff
ff0

00
03

0
fff

fff
ff

00
78

97
6f

00
32

06
49

00
78

97
6f

01
37

c0
04

fff
fff

ff

ff0
00

03
0

00
32

06
49

00
78

97
6f

01
37

c0
04

11
11

00
00

11
11

fff
fff

ff
00

bf
28

95
00

46
91

26
00

bf
28

95
01

f6
e8

99
fff

fff
ff

fff
fff

ff
00

46
91

26
00

bf
28

95
01

f6
e8

99

00
04

00

Figure 24:   Target 64-bit Abort



Waveforms

8 - 50 May, 1999



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

11

Ordering Information and 
License Agreement







May, 1999 9 - 1

Ordering Information and License Agreement

Summary
Xilinx provides a complete solution for development of fully
compliant PCI and CompactPCI products. This chapter
describes the various product packages. See Table 1 for a
quick overview. Please refer to the individual data sheets
for details. Call your local sales office for the latest availabil-
ity and pricing information.

Xilinx PCI64 Design Kit
Part no: DO-DI-PCI64-DK

Overview
The LogiCORE PCI64 Virtex interface allows the user to
rapidly implement 64-bit PCI Interfaces. By forming a part-
nership with Nallatech Limited, and Compuware NuMega,
formerly Vireo Software, our customers will always have
access to the leading industry expertise.

Package Includes
See individual data sheets for details

• LogiCORE PCI64 Virtex Interface
- Master and Slave (Initiator/Target) functionality
- Configurable and downloadable from Xilinx web
- CD available upon request only

• LogiCORE PCI32 4000 Interface

- Master and Slave (Initiator/Target) functionality
- Configurable and downloadable from Xilinx web
- CD available upon request only

• LogiCORE PCI32 Spartan Interface
- Master and Slave (Initiator/Target) functionality
- Configurable and downloadable from Xilinx web
- CD available upon request only

• Synthesizable PCI Bridge Design Examples
- VHDL and Verilog source files
- On-line Design Examples User's Guide

• LogiCORE PCI Design Guide
• LogiCORE PCI Implementation Guide
• PCI System Architecture (Reference Book from

MindShare, Inc.)
• Nallatech PCI64 Prototyping System

- 64-bit, 66 MHz PCI Virtex prototyping board
- Example drivers (NuMega)
- PCI64 User's Guide
- Demo software

• NuMega DriverWorks Development tools for Windows
NT/98 drivers 
- Fully functional development tools
- Development and prototyping license
- Unrestricted license required for production and is 

available from NuMega
- Technical support provided by NuMega only

• NuMega VtoolsD Development tools for Windows 95/98

Table 1: Xilinx PCI Product Line

Feature
See individual data sheets for details

PCI64 Design Kit
DO-DI-PCI64-DK

PCI64 Virtex
DO-DI-PCI64

PCI32 Design Kit
DO-DI-PCI32-DK

PCI32 Spartan
DO-DI-PCI32-S

64-bit, 66 MHz PCI Initiator & Target ✔ ✔

64-bit, 33 MHz PCI Initiator & Target ✔ ✔

32-bit, 66 MHz PCI Initiator & Target ✔ ✔

32-bit, 33MHz PCI Initiator & Target ✔ ✔ ✔ ✔

Support for Xilinx Virtex FPGAs ✔ ✔

Support for Xilinx Spartan FPGAs ✔ ✔ ✔ ✔

Support for Xilinx XC4000 FPGAs ✔ ✔ ✔

PCI Bridge Design Examples All All 32 bit only SB03
Configuration and Download from web ✔ ✔ ✔ ✔

LogiCORE User's Guide ✔ ✔ ✔ On-line

PCI System Architecture Book ✔ ✔ ✔

Nallatech PCI64 Prototyping Board ✔ ✔

VCC HotPCI Prototyping System ✔

Example Reference Drivers ✔ ✔

NuMega DriverWorks ✔ ✔

NuMega VtoolsD ✔ ✔

12 month Maintenance Contract ✔ ✔ ✔

Free updates 12 months 12 months 12 months 3 months

 

9 0 0 May, 1999



Ordering Information and License Agreement

9 - 2 May, 1999

and 3.x drivers 
- Fully functional development tools
- Development and prototyping license
- Unrestricted license required for production and is 

available from NuMega
- Technical supported provided by NuMega only

Xilinx PCI64 Virtex
Part no: DO-DI-PCI64

Overview
The LogiCORE PCI64 Virtex interface allows the user to
rapidly implement 64 bit bits interfaces. Based on the
proven LogiCORE PCI32 Interface, the designer will be
able to implement custom 64 bit, 66 MHz PCI Interfaces.

Package Includes
See individual data sheets for details

• LogiCORE PCI64 Virtex Interface
- Master and Slave (Initiator/Target) functionality
- Configurable and downloadable from Xilinx web
- CD available upon request only

• LogiCORE PCI32 4000 Interface
- Master and Slave (Initiator/Target) functionality
- Configurable and downloadable from Xilinx web
- CD available upon request only

• LogiCORE PCI32 Spartan Interface
- Master and Slave (Initiator/Target) functionality
- Configurable and downloadable from Xilinx web
- CD available upon request only

• Synthesizable PCI Bridge Design Examples
- VHDL and Verilog source files
- On-line Design Examples User's Guide

• LogiCORE PCI User's Guide
• LogiCORE PCI Implementation Guide
• PCI System Architecture (Reference Book from

MindShare, Inc.)

Xilinx PCI32 Design Kit
Part no: DO-DI-PCI32-DK

Overview
To minimize the learning curve for PCI and to enable rapid
development and prototyping, Xilinx provides a complete
PCI Design Kit including cores, a prototyping board and
driver development tools. By forming a partnership with Vir-
tual Computer Corporation, leading provider of rapid proto-
typing boards and reconfigurable computing systems, and
Compuware Numega, formerly Vireo Software, leading
provider of device driver tools, our customers will always
have access to the leading industry expertise.

Package Includes
See individual data sheets for details.

• LogiCORE 32-bit 33 MHz PCI designs
- Master and Slave (Initiator/Target) functionality
- zero wait-state
- Configurable and downloadable from Xilinx web
- CD available upon request only

• Synthesizable PCI Bridge Design Examples
- VHDL and Verilog source files
- On-line Design Examples User's Guide

• Xilinx PCI Design Guide
• Xilinx PCI Implementation Guide
• PCI System Architecture (Reference Book from

MindShare, Inc.)
• VCC HotPCI Prototyping System

- PCI32 Spartan prototyping board
- Example drivers (NuMega)
- HotPCI User's Guide
- Demo software CD for Windows NT, 98/95 

• NuMega DriverWorks Development tools for Windows
NT/98 drivers 
- Fully functional development tools
- Development and prototyping license
- Unrestricted license required for production and is 

available from NuMega
- Technical support provided by NuMega only

• NuMega VtoolsD Development tools for Windows 95/98
and 3.x drivers 
- Fully functional development tools
- Development and prototyping license
- Unrestricted license required for production and is 

available from NuMega
- Technical supported provided by NuMega only

LogiCORE PCI32 Spartan
Part no: DO-DI-PCI32-S

Overview
The LogiCORE PCI32 Spartan interface is included in Xil-
inx PCI32 Design Kit, but may be purchased separately as
a web-only, release.

Package Includes
See individual data sheets for details

• LogiCORE PCI32 Spartan and SpartanXL Interface
- Configurable and downloadable from Xilinx web
- Support for Xilinx Spartan and SpartanXL families 

(see data sheet for specific parts)
- Master and Slave (Initiator/Target) functionality
- On-line LogiCORE PCI32 User's Guide



May, 1999 9 - 3

Support, Updates, and Licensing
All Xilinx PCI products include a twelve-month mainte-
nance contract including free updates is included with pur-
chase. After expiring, the maintenance contract may be
renewed annually. Included in this contract are the following
items:

• Access to Xilinx LogiCORE PCI Lounges 
www.xilinx.com/pci/
- LogiCORE PCI design files and updates
- Reference Designs
- Extensive Application Notes
- Known issues and design tips

• Answer Database on Xilinx web-site 
support.xilinx.com

• Hotline telephone support
• Apps fax and email
• Technical email Newsletter

Technical support for NuMega DriverWorks, and VtoolsD
driver development tools are provided by NuMega only. The
NuMega DriverWorks and VtoolsD driver development
tools are licensed for development and prototyping only. An
unrestricted license can be purchased from NuMega Soft-
ware.

Licensing
Xilinx LogiCORE PCI64 Interfaces are licensed under the
standard LogiCORE license agreement, at the end of this
chapter. Additional licenses are available for evaluation or
for design with non-Xilinx technology. Contact your local Xil-
inx representative for more details.

Product Upgrades
Existing Xilinx PCI customers with valid maintenance
agreements may be able to upgrade a PCI product to
another. See Figure 3 for available upgrade paths.

Figure 3:   Upgrade paths for various Xilinx PCI products

PCI Master V2.0
DO-DI-PCIM

PCI Slave V2.0
DO-DI-PCIS

PCI64/66 Design Kit
DO-DI-PCI64-DK

PCI64 Virtex
DO-DI-PCI64

PCI32 Design Kit
DO-DI-PCI32-DK

PCI32 Spartan
DO-DI-PCI32-S

DX-DI-PCI32-DK

DX-DI-PCI32-DKDX-DI-PCI64*

*Also a valid update from PCI Master V2.0

Disc
on

tin
ue

d

No n
ew

 O
rd

er
s DX-DI-S2M

DX-DI-M2DK-DK



Ordering Information and License Agreement

9 - 4 May, 1999

Additional PCI Products 
Additional products are available from Xilinx PCI partners
Nallatech, VCC and Compuware Numega. For pricing and
availability, please contact the partners directly.

10-14 Market Street 
Kilsyth, Glasgow 
G65 0BD 
Scotland 
Phone: +1 44 7020 986532
Fax: +1 44 7020 986534
E-mail: info@nallatech.com
Website: www.nallatech.com

6925 Canby Ave. #103
Reseda, CA 91335 USA
Phone: +1 818-342-8294
Fax: +1 818-342-0240
E-mail: info@vcc.com
Website: www.vcc.com

9 Townsend West
Nashua, NH 03063
Phone: 1 800-4NUMEGA (1 800 468-6342)

+1 603 578-8400
Fax: +1 603 578-8401 
E-mail: customer_service@numega.com
Technical support:
www.numega.com/support/support.shtml
Website: www.numega.com

Obsolete products
• LogiCORE PCI Master V2.0 (Part no: DO-DI-PCIM) is

no longer available for new purchases. Existing
customers with valid maintenance will still receive core
design file updates. Additionally, an upgrade package to
the complete PCI32 Design Kit is available for
customers under valid maintenance agreement.
Contact Xilinx for price information.

• LogiCORE PCI Slave V2.0 (Part no: DO-DI-PCIS) is no
longer available for new purchases. Existing customers
with valid maintenance will still receive core design file
updates.



May, 1999 9 - 5

XILINX LOGICORE TM PCI INTEFACE LICENSE AGREEMENT
PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING
THE XILINX LOGICORE PCI INTERFACE DESIGN. UNLESS
YOU HAVE A SEPARATE WRITTEN LICENSE EXECUTED BY
XILINX COVERING YOUR USE OF THE DESIGN, BY USING
THE DESIGN, YOU ARE AGREEING TO BE BOUND BY THE
TERMS OF THIS LICENSE. 

License : XILINX, INC. ("XILINX") hereby grants you a nonexclu-
sive, non-transferable license to use the LOGICORE PCI INTER-
FACE design (the "Design"), solely for your use in developing
designs for XILINX programmable logic devices or XILINX Hard-
Wire™ devices. Use of the Design in non-XILINX devices or tech-
nologies is prohibited unless you have entered into a separate
written agreement with XILINX for such use. XILINX retains title to
the Design and to any patents, copyrights, trade secrets and other
intellectual property rights therein. To protect such intellectual
property rights, you may not decompile, reverse engineer, disas-
semble, or otherwise reduce the Design to a human - perceivable
form. You may not modify or prepare derivative works of the Design
in whole or in part, except with respect to any source code for the
Design supplied by XILINX. This License allows you to make an
unlimited number of copies of any source code, schematics and
other documentation supplied by XILINX for the Design for internal
use only, including without limitation modified versions thereof, pro-
vided you reproduce on each such copy the copyright and any
other proprietary legends that were on the original copy.

Termination : This License is effective until terminated. You may
terminate this License at any time by destroying the Design and all
copies thereof. This License will terminate immediately without
notice from XILINX if you fail to comply with any provision of this
License. Upon termination you must destroy the Design and all
copies thereof.

Governmental Use : The Design is commercial computer software
developed exclusively at Xilinx’s expense. Accordingly, pursuant to
the Federal Acquisition Regulations (FAR) Section 12.212 and
Defense FAR Supplement Section 227.7202, use, duplication and
disclosure of the Design by or for the Government is subject to the
restrictions set forth in this License Agreement. Manufacturer is
XILINX, INC., 2100 Logic Drive, San Jose, California 95124

Limited Warranty and Disclaimer : THE DESIGN IS PROVIDED
TO YOU "AS IS". XILINX AND ITS LICENSORS MAKE AND YOU
RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, AND XILINX SPECIFI-
CALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MER-
CHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A
PARTICULAR PURPOSE. XILINX does not warrant that the func-
tions contained in the Design will meet your requirements, or that
the operation of the Design will be uninterrupted or error free, or
that defects in the Design will be corrected. Furthermore, XILINX
does not warrant or make any representations regarding use or the
results of the use of the Design in terms of correctness, accuracy,
reliability or otherwise.

Limitation of Liability : IN NO EVENT WILL XILINX OR ITS
LICENSORS BE LIABLE FOR ANY LOSS OF DATA, LOST PROF-
ITS, COST OF PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES, OR FOR ANY SPECIAL, INCIDENTAL, CONSE-
QUENTIAL OR INDIRECT DAMAGES ARISING FROM THE USE
OR OPERATION OF THE DESIGN OR ACCOMPANYING DOCU-
MENTATION, HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY. THIS LIMITATION WILL APPLY EVEN IF XILINX HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
THIS LIMITATION SHALL APPLY NOTWITHSTANDING THE FAIL-
URE OF THE ESSENTIAL PURPOSE OF ANY LIMITED REME-
DIES HEREIN.

Export Restriction : You agree that you will not export or re-export
the Design, reference images or accompanying documentation in
any form without the appropriate United States and foreign govern-
ment licenses. Your failure to comply with this provision is a mate-
rial breach of this Agreement.

Third Party Beneficiary : You understand that portions of the
Design and related documentation may have been licensed to XIL-
INX from third parties and that such third parties are intended third
party beneficiaries of the provisions of this Agreement.

Non-Transferable : You may not provide design source information
including, but not limited to, schematics, hardware description lan-
guage source code, or netlist files, to a third party without prior writ-
ten approval from XILINX. You may provide device programming
files—XILINX bit-stream files or PROM files—or the resulting Hard-
Wire gate array to third-parties without prior approval.

Interoperability : If you acquired the Design in the European Union
(EU), even if you believe you require information related to the
interoperability of the Design with other programs, you shall not
decompile or disassemble the Design to obtain such information,
and you agree to request such information from Xilinx at the
address listed above. Upon receiving such a request, Xilinx shall
determine whether you require such information for a legitimate
purpose and, if so, Xilinx will provide such information to you within
a reasonable time and on reasonable conditions.

Governing Law : This License shall be governed by the laws of the
State of California, without reference to conflict of laws principles,
provided that if the Design is acquired in the EU, this License shall
be governed by the laws of the Republic of Ireland. The local lan-
guage version of this License shall apply to any Design acquired in
the EU. Irish law provides that certain conditions and warranties
may be implied in contracts for the sale of goods and in contracts
for the supply of services. Such conditions and warranties are
hereby excluded, to the extent such exclusion, in the context of this
transaction, is lawful under Irish law. Conversely, such conditions
and warranties, insofar as they may not be lawfully excluded, shall
apply. Accordingly nothing in this License shall prejudice any rights
that you may enjoy by virtue of Sections 12, 13, 14 or 15 of the Irish
Sale of Goods Act 1893 (as amended). 

General : If for any reason a court of competent jurisdiction finds
any provision of this License, or portion thereof, to be unenforce-
able, that provision of the License shall be replaced to the maxi-
mum extent permissible so as to effectuate the intent of the parties,
and the remainder of this License shall continue in full force and
effect. This License constitutes the entire agreement between the
parties with respect to the use of this Design and related documen-
tation, and supersedes all prior or contemporaneous understand-
ings or agreements, written or oral, regarding such subject matter. 



Ordering Information and License Agreement

9 - 6 May, 1999

XILINX REFERENCE DESIGN LICENSE AGREEMENT
By using the accompanying Xilinx, Inc. Reference Designs
(the "Designs"), you agree to the following terms and con-
ditions. You may use the Designs solely in support of your
use in developing designs for Xilinx programmable logic
devices or Xilinx HardWire devices. Access to the Designs
is provided only to purchasers of Xilinx programmable
logic devices or Xilinx HardWire devices for the purposes
set forth herein.

The Designs are provided by Xilinx solely for your refer-
ence, for use as-is or as a template to make your own
working designs. The Designs may be incomplete, and Xil-
inx does not warrant that the Designs are completed,
tested, or will work on their own without revisions. The suc-
cess of any designs you complete using the Designs as a
starting point is wholly dependent on your design efforts.
As provided, Xilinx does not warrant that the Designs will
provide any given functionality, and all verification must be
completed by the customer.

Xilinx specifically disclaims any obligations for technical
support and bug fixes, as well as any liability with respect
to the Designs, and no contractual obligations are formed
either directly or indirectly by use of the Designs. XILINX
SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUD-
ING WITHOUT LIMITATION DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, RELIANCE OR CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF THE
DESIGNS, EVEN IF XILINX HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

Xilinx makes no representation that the Designs will pro-
vide the functionality you are looking for, or that they are
appropriate for any given use. Xilinx does not warrant that
the Designs are error-free, nor does Xilinx make any other
representations or warranties, whether express or implied,
including without limitation implied warranties of merchant-
ability or fitness for a particular purpose. The Designs are
not covered by any other license or agreement you may
have with Xilinx.

The Designs are the copyrighted, confidential and propri-
etary information of Xilinx. You may not disclose, repro-
duce, transmit or otherwise copy the Designs by any
means for any purpose not set forth in this license, without
the prior written permission of Xilinx.

You agree that you will comply with all applicable govern-
mental export rules and regulations, and that you will not
export or reexport the Designs in any form without the
appropriate government licenses.



1 Introduction

2 PCI Products

3 FPGA Products

4 Design Methodology

5 PCI Compliance Checklists

6 Pinout and Configuration

7 Resources

8 Waveforms

9 Ordering Information and License Agreement

10 Sales Offices, Sales Representatives, and Distributors

11

Sales Offices, Sales 
Representatives, and 
Distributors







May, 1999 10-1

Headquarters
XILINX, Inc.
2100 Logic Drive
San Jose, CA 95124
Tel: (408) 559-7778
TWX: (510) 600-8750
Fax: (408) 559-7114

Xilinx Sales 
Offices
NORTH AMERICA

XILINX, Inc. 
4825 University Square 
Suite 12 
Huntsville, AL 35816 
Tel: (256) 721-3370 
Fax: 256-721-3371 

XILINX, Inc. 
10235 South 51st St. 
Suite 160 
Phoenix, AZ 85044 
Tel: (602) 753-4503 
Fax: 602-753-4504 

XILINX, Inc.
1281 Oakmead Pkwy.
Suite 202
Sunnyvale, CA 94086
Tel: (408) 245-9850
Fax: (408) 245-9865

XILINX, Inc. 
1227 Platte Ave. 
Ventura, CA 93004 
Tel: (805) 647-9221 
Fax: 805-647-9221 

XILINX, Inc.
5690 DTC Blvd. 
Suite 490W
Englewood, CO 80111
Tel: (303) 220-7541
Fax: (303) 220-8641

XILINX, Inc. 
1500 Kansas Ave. 
Suite 1B 
Longmont, CO 80501 
Tel: (303) 774-1175 
Fax: 303-774-1198 

XILINX, Inc.
1025 S. Semoran Blvd. 
Suite 1093 
Winter Park, FL 32792 
Tel: (407) 673-8661 
Fax: 407-673-8663 

XILINX, Inc.
3280 Pointe Parkway 
Suite 1600 
Norcross, GA 30092 
Tel: (770) 448-4733 
Fax: 770-448-4857 

XILINX, Inc.
15615 Alton Parkway
Suite 280
Irvine, CA 92618
Tel: (949) 727-0780
Fax: (949) 727-3128

XILINX, Inc. 
6494 Weathers Place 
Suite 100 
San Diego, CA 92121 
Tel: (619) 597-9855 
Fax: 619-597-6418 

XILINX, Inc.
61 Spit Brook Rd.
Suite 403
Nashua, NH 03060 
Tel: (603) 891-1098
Fax: (603) 891-0890

XILINX, Inc. 
39 Surrey Dr. 
Belle Mead, NJ 08502 
Tel: (908) 359-3136 
Fax: 908-359-1253 

XILINX, Inc. 
30 Two Bridges Rd. 
Suite 330 
Fairfield, NJ 07004 
Tel: (973) 808-2780 
Fax: 973-808-2738 

XILINX, Inc. 
14 Mitchell Terrace 
West Long Branch, NJ 07764 
Tel: (732) 870-1126 
Fax: 732-870-1785 

XILINX, Inc.
905 Airport Rd.
Suite 200
West Chester, PA 19380
Tel: (610) 430-3300
Fax: (610) 430-0470

XILINX, Inc.
939 North Plum Grove Road
Suite H
Schaumburg, IL 60173
Tel: (847) 605-1972
Fax: (847) 605-1976

XILINX, Inc. 
18283 Minnetonka Blvd. 
Suite C 
Deephaven, MN 55391 
Tel: (612) 473-4816 
Fax: 612-473-5060 

XILINX, Inc. 
12922 Kentbury Dr. 
Clarksville, MD 21029 
Tel: (301) 924-1300 
Fax: 301-924-1301 

XILINX, Inc.
6010-C Six Forks Road
Raleigh, NC 27609
Tel: (919) 846-3922
Fax: (919) 846-8316

XILINX, Inc.
4100 McEwen, Suite 237
Dallas, TX 75244
Tel: (972) 960-1043
Fax: (972) 960-0927

XILINX, Inc. 
4765 S. Quail Point Road
Salt Lake City, UT 84124 
Tel: (801) 273-7338 

XILINX, Inc. 
14575 Bel-Red Road 
Suite 102 
Bellevue, WA 98007 
Tel: (425) 603-0102 
Fax: 425-603-0197

XILINX, Inc.
3554 Brecksville Rd
Richfield, OH 44286
Tel: (330) 659-3131
Fax: (330) 659-9254

XILINX, Inc. 
9600 S. W. Oak St.
Suite 320 
Portland, OR 97223 
Tel: (425) 293-9016 
Fax: 425-293-3858 

XILINX, Inc.
2910 South Sheridan Way,
Suite 203
Oakville, Ontario
Canada L6J7L9
Tel: (905) 829-9095
Fax: (905) 829-3045

XILINX, Inc.
34 Hampel Crescent 
Stittsville, Ontario 
Canada K2S 1E4 
Tel: (613) 836-5255 
Fax: 613-836-5393 

EUROPE

XILINX, Ltd.
Benchmark House
203 Brooklands Road
Weybridge, Surrey
KT13 ORH
United Kingdom
Tel: (44) 1932-349401
Fax: (44) 1932-349499

XILINX, Ltd.
(Northern European Sales)
Suite 1B Cobb House
Oyster Lane
Byfleet, Surrey
KT14 7DU
United Kingdom
Tel: (44) 1932-349403
Fax: (44) 1932-345519

XILINX Sarl
Espace Jouy Technology
21, rue Albert Calmette, Bât. C
78353 Jouy en Josas, Cedex
France
Tel: (33) 1 34 63 01 01
Fax: (33) 1 34 63 01 09

XILINX, Sarl 
417, Chemin du Cassan 
06140 Tourrettes sur Loup 
France 
Tel: (33) 4-9324-1175 
Fax: (33) 4-9324-1007 

XILINX GmbH
Süskindstr. 4
D-81929 München
Germany
Tel: (49) 89-93088-0
Tech Support Tel:
(49) 89-93088-130
Fax: (49) 89-93088-188

0

Sales Offices, Sales 
Representatives, and Distributors

May, 1999 0 10*

R



R

10-2 May, 1999

XILINX AB
Box 1230
Torshamnsgatan 35
S-164 28 Kista
Sweden
Tel: (46) 8-752-2470
Fax: (46) 8-750-6260
E-mail: xilinx-nordic@xilinx.com

XILINX Italia
Via Zamagna 19 - Scala A
20148 Milano
Italy
Tel: (39) 02 487 12 101
Fax: (39) 02 400 94 700

XILINX Benelux bvba
Oude Wichelsesteenweg 27
9340 Lede
Belgium 
Tel: (32) 3 205 56 65
Fax: (32) 5381 0472

JAPAN

XILINX K. K. 
Shinjuku Square Tower 18F
6-22-1 Nishi-Shinjuku
Shinjuku-ku, Tokyo 163-1118
Japan
Tel: (81) 3-5321-7711
Fax: (81) 3-5321-7765

ASIA PACIFIC

XILINX Asia Pacific
Unit 4312, Tower II
Metroplaza
Hing Fong Road
Kwai Fong, N.T.
Hong Kong
Tel: (852) 2-424-5200
Fax: (852) 2-494-7159
E-mail: hongkong@xilinx.com

XILINX Korea
Room #901 
Sambo-Hojung Bldg.,
14-24, Yoido-Dong
Youngdeungpo-Ku
Seoul, South Korea
Tel: (82) 2-761-4277
Fax: (82) 2-761-4278

XILINX Taiwan
Rm. 1006, 10F, No. 2, Lane 150
Sec. 5, Hsin Yin Rd.
Taipei, 105 Taiwan, R.O.C.
Tel: (886) 2-2758-8373
Fax: (886) 2-2758-8367

North American 
Distributors
Hamilton Hallmark
(Locations throughout 
the U.S. and Canada)
Tel: (800) 332-8638
Fax: (800) 257-0568

Insight Electronics
(Locations throughout the U.S.)
Tel: (800) 677-7716
Fax: (619) 587-1380

Nu Horizons
Electronics Corp.
Locations throughout the U.S.
Tel: (516) 396-5000
Fax: (516) 396-7576

U.S. Sales 
Representatives
ALABAMA

Electro Source, Southeast
4825 University Sq., Ste.12
Huntsville, AL 35816
Tel: (256) 830-2533
Fax: (256) 830-5567

ARIZONA

Quatra Associates
10235 S. 51st St. Suite #160
Phoenix, AZ 85044
Tel: (602) 753-5544
Fax: (602) 753-0640
E-mail: quatra@earthlink.net

ARKANSAS

Bonser-Philhower Sales
689 W. Renner Road
Suite 101
Richardson, TX 75080
Tel: (972) 234-8438
Fax: (972) 437-0897

CALIFORNIA

Norcomp
1267 Oakmead Pkwy
Sunnyvale, CA 94086
Tel: (408) 733-7707
Fax: (408) 774-1947

Norcomp
8880 Wagon Way
Granite Bay, CA 95746
Tel: (916) 791-7776
Fax: (916) 791-2223

Norcomp
30101 Agoura Ct. #234
Agoura, CA 91301
Tel: (818) 865-8330
Fax: (818) 865-2167

Norcomp
30 Corporate Park #200
Irvine, CA 92714
Tel: (949) 260-9868
Fax: (949) 260-9659

Quest-Rep Inc.
6494 Weathers Pl, Suite 200
San Diego, CA 92121
Tel: (619) 622-5040
Fax: (619) 622-9007
E-mail: questrep@questrep.com

COLORADO

Luscombe Engineering, Inc.
1500 Kansas Ave. Suite 1B
Longmont, CO 80501
Tel: (303) 772-3342
Fax: (303) 772-8783

CONNECTICUT

John E. Boeing, Co., Inc.
123 South Main Street
Wallingford, CT 06492
Tel: (203) 265-1318
Fax: 203-265-0235

DELAWARE

Delta Technical Sales, Inc.
122 N. York Rd., Suite 9
Hatboro, PA 19040
Tel: (215) 957-0600
Fax: (215) 957-0920

FLORIDA

Semtronic Assoc., Inc.
(Disti Office)
600 S. North Lake Blvd. 
Suite 270
Altamonte Springs, FL 32701
Tel: (407) 831-0451
Fax: (407) 831-6055

Semtronic Assoc., Inc.
(OEM Sales)
600 S. North Lake Blvd.
Suite 220
Altamonte, Springs, FL 32701
Tel: (407) 831-8233
Fax: (407) 831-2844

Semtronic Assoc., Inc.
3471 NW 55th Street
Ft. Lauderdale, FL 33309
Tel: (954) 731-2384
Fax: (954) 731-1019

Semtronic Assoc., Inc.
14004 Roosevelt Blvd.
Suite 604
Clearwater, FL 33762
Tel: (727) 507-0504
Fax: (727) 539-0601

GEORGIA

Electro Source, Southeast
3280 Pointe Parkway, 
Suite 1500
Norcross, GA 30092
Tel: (770) 734-9898
Fax: (770) 734-9977

IDAHO (Southwest)

Luscombe Engineering, Inc.
6901 Emerald, Suite 206
Boise, ID 83704
Tel: (208) 377-1444
Fax: (208) 377-0282

Thorson Pacific, Inc.
14575 Bel-Red Road #102
Bellevue, WA 98007
Tel: (425) 603-9393
Fax: (425) 603-9380

ILLINOIS

Advanced Technical Sales
13755 St. Charles Rock Rd.
Bridgeton, MO 63044
Tel: (314) 291-5003
Fax: (314) 291-7958

Beta Technology Sales, Inc.
1009 Hawthorn Drive
Itasca, IL 60143
Tel: (708) 250-9586
Fax: (708) 250-9592

INDIANA

Gen II Marketing, Inc.
31 E. Main St.
Carmel, IN 46032
Tel: (317) 848-3083
Fax: (317-848-1264

Gen II Marketing, Inc.
1415 Magnavox Way
Suite 130
Ft. Wayne, IN 46804
Tel: (219) 436-4485
Fax: (219) 436-1977

IOWA

Advanced Technical Sales
375 Collins Road NE
Cedar Rapids, IA 52402
Tel: (319) 393-8280
Fax: (319) 393-7258

KANSAS

Advanced Technical Sales
2012 Prairie Cir. Suite A
Olathe, KS 66062
Tel: (913) 782-8702
Fax: (913) 782-8641

KENTUCKY

Gen II Marketing, Inc.
861 Corporate Dr. #210
Lexington, KY 40503
Tel: (606) 223-9181
Fax: (606) 223-2864

LOUISIANA (Northern)

Bonser-Philhower Sales
689 W. Renner Rd., Suite 101
Richardson, TX 75080
Tel: (972) 234-8438
Fax: (972) 437-0897

LOUISIANA (Southern)

Bonser-Philhower Sales
10700 Richmond, Suite 150
Houston, TX 77042
Tel: (713) 782-4144
Fax: (713) 789-3072



R

May, 1999 10-3

MAINE

Genesis Associates
128 Wheeler Road
Burlington, MA 01803
Tel: (781) 270-9540
Fax: (781) 229-8913

MARYLAND

Micro Comp, Inc.
1421 S. Caton Avenue
Baltimore, MD 21227-1082
Tel: (410) 644-5700
Fax: (410) 644-5707

MASSACHUSETTS

Genesis Associates
128 Wheeler Road
Burlington, MA 01803
Tel: (781) 270-9540
Fax: (781) 229-8913

MICHIGAN

Miltimore Sales Inc.
22765 Heslip Drive
Novi, MI 48375
Tel: (248) 349-0260
Fax: (248) 349-0756

Miltimore Sales Inc.
3680 44th St., Suite 100-J
Kentwood, MI 49512
Tel: (616) 554-9292
Fax: (616) 554-9210

MINNESOTA

Beta Technology
18283 Minnetonka Blvd.
Suite C
Deephaven, MN 55391
Tel: (612) 473-2680
Fax: (612) 473-2690

MISSISSIPPI

Electro Source, Southeast
4825 University Sq., Ste.12
Huntsville, AL 35816
Tel: (256) 830-2533
Fax: (256) 830-5567

MISSOURI

Advanced Technical Sales
2012 Prairie Cir. Suite A
Olathe, KS 66062
Tel: (913) 782-8702
Fax: (913) 782-8641

Advanced Technical Sales
13755 St. Charles Rock Rd.
Bridgeton, MO 63044
Tel: (314) 291-5003
Fax: (314) 291-7958

MONTANA

Luscombe Engineering, Inc.
670 East 3900 South #103
Salt Lake City, UT 84107
Tel: (801) 268-3434
Fax: (801) 266-9021

NEBRASKA
Advanced Technical Sales
375 Collins Road NE
Cedar Rapids, IA 52402
Tel: (319) 393-8280
Fax: (319) 393-7258

NEVADA

Norcomp
8880 Wagon Way
Granite Bay, CA 95748
Tel: (916) 393-8280
Fax: (916) 393-7258

Quatra Associates 
(Las Vegas) 
4645 S. Lakeshore Dr., Suite 1
Tempe, AZ 85282
Tel: (602) 820-7050
Fax: (602) 820-7054

NEW HAMPSHIRE

Genesis Associates
128 Wheeler Road
Burlington, MA 01803
Tel: (781) 270-9540
Fax: (781) 229-8913

NEW JERSEY (Northern)

Parallax
734 Walt Whitman Road
Melville, NY 11747
Tel: (516) 351-1000
Fax: (516) 351-1606

NEW JERSEY (Southern)

Delta Technical Sales, Inc.
122 N. York Road, Suite 9
Hatboro, PA 19040
Tel: (215) 957-0600
Fax: (215) 957-0920

NEW MEXICO

Quatra Associates
600 Autumnwood Place, SE
Albuquerque, NM 87123
Tel: (505) 296-6781
Fax: (505) 292-2092

NEW YORK (Metro)

Parallax
734 Walt Whitman Road
Melville, NY 11747
Tel: (516) 351-1000
Fax: (516) 351-1606

NEW YORK

Electra Sales Corp.
333 Metro Park
Rochester, NY 14623
Tel: (716) 427-7860
Fax: (716) 427-0614

Electra Sales Corp.
6057 Corporate Drive
E. Syracuse, NY 13057
Tel: (315) 463-1248
Fax: (315) 463-1717

NORTH CAROLINA
Electro Source, Southeast
5964-A Six Forks Rd.
Raleigh, NC 27609
Tel: (919) 846-5888
Fax: (919) 846-0408

Electro Source
12411 Angle Oak Drive
Huntersville, NC 28078
Tel: (704) 948-8905
Fax: (704) 948-5829

NORTH DAKOTA

Beta Technology
18283 Minnetonka Blvd.
Suite C
Deephaven, MN 55391
Tel: (612) 473-2680
Fax: (612) 473-2690

OHIO

Bear Marketing, Inc.
3554 Brecksville Road
PO Box 427
Richfield, OH 44286-0427
Tel: (216) 659-3131
Fax: (216) 659-4823

Bear Marketing, Inc.
270 Regency Ridge Drive
Suite 115
Dayton, OH 45459
Tel: (513) 436-2061
Fax: (513) 436-9137

OKLAHOMA

Bonser-Philhower Sales
689 W. Renner Rd., Suite 101
Richardson, TX 75080
Tel: (972) 234-8438
Fax: (972) 437-0897

OREGON

Thorson Pacific, Inc.
9600 SW Oak Street,
Suite 320
Portland, OR 97223
Tel: (503) 293-9001
Fax: (503) 293-9007

PENNSYLVANIA

Bear Marketing, Inc.
4284 Rt. 8, Suite 211
Allison Park, PA 15101
Tel: (412) 492-1150
Fax: (412) 492-1155

Delta Technical Sales, Inc.
122 N. York Rd., Suite 9
Hatboro, PA 19040
Tel: (215) 957-0600
Fax: (215) 957-0920

PUERTO RICO

Semtronic Assoc., Inc.
Crown Hills
125 Carite St.
Esq. Avenue Parana
Rio Piedras, P.R. 00926
Tel: (787) 766-0700/0701
Fax: (787) 763-8071

RHODE ISLAND

Genesis Associates
128 Wheeler Road
Burlington, MA 01803
Tel: (781) 270-9540
Fax: (781) 229-8913

SOUTH CAROLINA

Electro Source, Southeast
5964-A Six Forks Rd.
Raleigh NC 27609
Tel: (919) 846-5888
Fax: (919) 846-0408

SOUTH DAKOTA

Beta Technology
18283 Minnetonka Blvd.
Suite C
Deephaven, MN 55391
Tel: (612) 473-2680
Fax: (612) 473-2690

TENNESSEE

Electro Source, Southeast
4825 University Square,
Suite 12
Huntsville, AL 35816
Tel: (205) 830-2533
Fax: (205)-830-5567

TEXAS

Bonser-Philhower Sales
8240 MoPac Expwy.
Suite 295
Austin, TX 78759
Tel: (512) 346-9186
Fax: (512) 346-2393

Bonser-Philhower Sales
10700 Richmond, Suite 150
Houston, TX 77042
Tel: (713) 782-4144
Fax: (713) 789-3072

Bonser-Philhower Sales
689 W. Renner Rd., Suite 101
Richardson, TX 75080
Tel: (972) 234-8438
Fax: (972) 437-0897

TEXAS (El Paso County)

Quatra Associates
600 Autumnwood Place SE
Albuquerque, NM 87123
Tel: (505) 296-6781
Fax: (505) 292-2092



R

10-4 May, 1999

UTAH

Luscombe Engineering Co.
670 East 3900 South #103
Salt Lake City, UT 84107
Tel: (801) 268-3434
Fax: (801) 266-9021

VERMONT

Genesis Associates
128 Wheeler Road
Burlington, MA 01803
Tel: (781) 270-9540
Fax: (781) 229-8913

VIRGINIA

Microcomp, Inc.
1421 S. Caton Avenue
Baltimore, MD 21227
Tel: (410) 644-5700
Fax: (410) 644-5707

WASHINGTON

Thorson Pacific, Inc.
14575 Bel-Red Rd.
Suite 102
Bellevue, WA 98007
Tel: (206) 603-9393
Fax: (206) 603-9380

WASHINGTON
(Vancouver, WA only) 

Thorson Pacific, Inc.
9600 SW Oak Street
Suite 320
Portland, OR 97223
Tel: (503) 293-9001
Fax: (503) 993-9007

WASHINGTON D.C.

Micro Comp, Inc.
1421 S. Caton Avenue
Baltimore, MD 21227-1082
Tel: (410) 644-5700
Fax: (410) 644-5707

WEST VIRGINIA

Bear Marketing, Inc.
4284 Rt. 8 Suite 211
Allison Park, PA 15101
Tel: (412) 492-1150
Fax: (412) 492-1155

WISCONSIN (Western)

Beta Technology
18283 Minnetonka Blvd.
Suite C
Deephaven, MN 55391
Tel: (612) 473-2680
Fax: (612) 473-2690

WISCONSIN (Eastern)

Beta Technology Sales, Inc.
9401 N. Beloit, Suite 409
Milwaukee, WI 53227
Tel: (414) 543-6609
Fax: (414) 543-9288

WYOMING

Luscombe Engineering, Inc.
1500 Kansas Ave. Suite 1B
Longmont, CO 80501
Tel: (303) 772-3342
Fax: (303) 772-8783

International 
Sales 
Representatives
ALGERIA

Development Centre of 
Advanced Technologies
128 Chemin Mohamed GACEM
16075 El-Madania
Algiers
Algeria
Tel: (213) 2-67-73-25
Fax: (213) 2-66-26-89

ARGENTINA

Reycom Electronica S.A. 
Bdo. de Irigoyen 
972 Piso 2do “B” 
1304 Buenos Aires
Argentina 
Tel: (54) 1-304-2018 
Fax: (54) 1-304-2010

Insight Argentina
Av. Adolfo Davila 550, 2nd Floor
1107 Buenos Aires
Argentina
Tel: (54) 1-310-0052
Fax: (54) 1-310-0053

AUSTRALIA

Advanced Component Dist.
Suite 5, Level 1, "Metro Centre"
124 Forest Rd. 
Hurstville 2220
Australia
Tel: (61) 2-9585-5533
Fax: (61) 2-9585-5534

Advanced Component Dist.
Unit 2, 17-19 Melrich Road
Bayswater VIC 3153
Melbourne, Australia
Tel: (61) 3-9760-4250
Fax: (61) 3-9760-4255

Advanced Component Dist.
20D William Street
Norwood SA 5067
Australia

Tel: (61) 8-8364-2844
Fax: (61) 8-8364-2811

Advanced Component Dist.
Ste. 1, 1048 Beaudesert Rd.
Cooper Plains
Queensland 4108
Australia
Tel: (61) 7-3246-5214
Fax: (61) 7-3275-3662

EDA Solutions Pty. Ltd. 
Level 3, South Tower 
1-5 Railway Street 
Chatswood NSW 2067 
Australia 
Tel: (61) 02-9413-4611 
Fax: (61) 02-9413-4622 

EDA Solutions Pty. Ltd. 
Level 2, 854 Glenferrie Road 
Hawthorn VIC 3122 
Australia 
Tel: (61) 03-9819-0000 
Fax: (61) 03-9818-8870 

AUSTRIA

Metronik GmbH 
Diefenbachgasse 35 
A-1150 Wien 
Austria 
Tel: (43) 1-89-5762652 
Fax: (43) 1-89-5762650 

BELGIUM & LUXEMBURG

SEI Rodelco NV
Limburg Stirum 243
1780 Wemmel
Belgium 
Tel: (32) 2-456-0757
Fax: (32) 2-460-0271

BRASIL

Hitech 
Rua Branco de Moraes 489 
Ch. Santo Antonio 
Sao Paulo 
04718-010 - SP - Brazil 
Tel: (55) 11-882-4000 
Fax: (55) 11-882-4100 

Insight Brasil
Rua Alcides Ricardini Neves
12 - 13o andar
Conjunto 1306 - Brooklin
04575-050 Sao Paulo SP
Tel: (55) 11-5505-6501/2
Fax: (55) 11-5505-6702
E-Mail: insbrz@uol.com.br

BULGARIA

Petrex 92 Ltd.
Philip Kutev Str. 1
BG-1407 Sofia
Bulgaria 
Tel: (359) 2-626987

Fax: (359) 2-627099

CANADA (ALBERTA)

Electro Source
2635 37th Ave NE #245
Calgary, Alberta T1Y 5Z6
Canada
Tel: (403) 735-6230
Fax: (403) 735-0599

CANADA
(BRITISH COLUMBIA)

Thorson Pacific, Inc.
4170 Still Creek Dr. #200
Burnaby BC V5C 6C6
Canada
Tel: (604) 294-3999
Fax: (604) 473-7755

CANADA (OTTAWA)

Electro Source, Inc.
50 Hines Road, Suite 220
Kanata, Ontario K2K 2M5
Canada
Tel: (613) 592-3214
Fax: (613) 592-4256

CANADA (QUEBEC)

Electro Source
6600 TransCanada Hwy
Suite 420 
Pointe Claire, Quebec H9R 4S2
Canada
Tel: (514) 630-7486
Fax: (514) 630-7421

CANADA (TORONTO)

Electro Source, Inc.
230 Galaxy Blvd.
Rexdale Ontario M9W 5R8
Canada
Tel: (416) 675-4490
Fax: (416)-675-6871

CHILE

DTS Ltda. 
Rosas 1444 
Santiago 
Chile 
Tel: (56) 2-6970991 
Fax: (56) 2-6993316

CHINA PEOPLE’S 
REPUBLIC

Insight 
Rm. 692, Pana Tower 
No. 128 Zhichun Rd. 
Haidian District
Beijing 10086
P.R. China
Tel: (86) 10-6262-8985 
Fax: (86) 10-6262-0393



R

May, 1999 10-5

Insight
Rm. 2015-2018,
Tong Mei Mansion
No. 76, Section 1,
Jianshe North Rd.,
Chengdu, Sichuan 610051
P.R. China 
Tel: (86) 28-3399-629 
Fax: (86) 28-3398-829

Insight
Rm. 705,
Wuhan Computer City 
39 Luo Yu Road, 
Hongshan District 
Wuhan, 430079 
PR China 
Tel: (86) 27-8787-4319 
Fax: (86) 27-8786-3102 
E-mail:
memecnh@public.wh.hb.cn 

Insight 
Rm. 715, Bao Hua Bldg.,
#1016, Hua Qiang North Rd., 
Shenzhen 518031
P.R. China
Tel: (86) 755-377-9548 
Fax: (86) 755-377-9026

Insight
Room. 1407-1409
China Venturetech Plaza
819 Nanjing Road (W)
Shanghai 200041
P.R. China
Tel: (86) 21-6215-9935 
Fax: (86) 21-6215-9938

Insight
Rm. 805, Genius Xin Jie Kou 
Commercial Centre 
#219 Zhongshan South Road. 
Nanjing, 210005, P.R. China 
Tel: (86) 25-4549-807 /
4513-183 
Fax: (86) 25-4549-585

Insight 
Rm. 703, Chongqing (Yuzhou)
Computer City 
3 Ke Yuan Yi Rd., Shiqiaopu 
Chongqing, 400039, P.R.
China 
Tel: (86) 23-6879-0845 
Fax: (86) 23-6879-0845 

Insight 
Rm 35G, Tower 3, Xiangjiang
Great Garden 
Xiamen, 361009, P.R. China 
Tel: (86) 592-513-7850 
Fax: (86) 592-513-7850 

CZECH REPUBLIC

MES Praha s.r.o. 
Platonova 3287/26 
CZ 14300 Praha 
Tel: (420) 2-90059190 
Fax: (420) 2-90059190
E-mail: mespraha@ms.anet.cz

DENMARK

Micronor A/S 
P.O. Box 929 
Torvet 1 
DK-8600 Silkeborg
Denmark 
Tel: (45) 8681-6522 
Fax: (45) 8681-2827 
E-Mail: e-mail@micronor.dk 
WWW: http://www.micronor.dk 

Avnet Nortec 
Transformervej 17 
Dek-2730 Herlev 
Denmark 
Tel: (45) 44-88-08-00 
Fax: (45) 44-88-08-88 

EGYPT

Guide Systems Integrators 
27 Mokhles Al-Alfi St. 
First - Zone Nasr City 
Cairo 
Egypt 
Tel: (20) 2-401-4085 
Fax: (20) 2-401-4997 
E-Mail: obadr@idsc.gov.eg 

FINLAND

Memec Finland OY
Kauppakaarre 1
00700 Helsinki
Finland 
Tel: (358) 9-350-8880 
Fax: (358) 9-350-88828 

FRANCE

REP’TRONIC 
1 Bis, rue Marcel Paul 
Z.I. La Bonde 
91742 Massy Cedex
France
Tel: (33) 1 69 53 67 20 
Fax: (33) 1 60 13 91 98 
E-Mail:
100745.605@compuserve.com

AVNET EMG.
79 Rue Pierre Sémard 
92320 Châtillon 
France 
Tel: (33) 1 49 65 27 00
Fax: (33) 1 49 65 27 39

AVNET Composants
Sud-Ouest
Technoparc
Bât.4, Voie 5, BP 404
31314 Labège Cedex
France
Tel: (33) 5 61 39 21 12
Fax: (33) 5 61 39 21 40

AVNET Composants
Rhône-Auvergne
Parc Club du Moulin à Vent
Bât 32-33, rue du Dr. G. Levy
69693 Venissieux Cedex
France
Tel: (33) 4 78 00 1280
Fax: (33) 4 78 75 95 97

AVNET EMG
Parc Club du Moulin à Vent
Bât. 40
33, av. du Dr. Georges Levy
69693 Venissieux Cedex
France
Tel: (33) 4 78 77 13 60
Fax: (33) 4 78 77 13 99

AVNET Composants
Ouest
Technoparc-Bât. E
4 Av. des Peupliers, BP 43
35511 Cesson Sévigné Cedex
France
Tel: (33) 2 99 83 84 85
Fax: (33) 2 99 83 80 83

Compress
47, rue de l’Estérel 
Silic 539 
94633 Rungis Cedex 
France 
Tel: (33) 1 41 80 29 00
Fax: (33) 1 46 86 67 63

Compress
Rhône-Alpesl 
19 Chemin du Goyet
38300 Bourgoin-Jallieu
France 
Tel: (33) 4 74 43 53 33
Fax: (33) 4 74 43 53 30

Compress
Bretagne 
19 rue de Kerjean
22700 Louannec
France 
Tel: (33) 2 96 49 09 52
Fax: (33) 2 96 49 09 56

Compress
Ouest 
5 Impasse Guenot
31100 Toulouse
France 
Tel: (33) 5 62 87 75 08
Fax: (33) 5 62 87 75 09

GERMANY

Avnet EMG GmbH
Stahlgruberring 12
D-81829 München
Germany
Tel: (49) 89-45110-01
Fax: (49) 89-45110-129

Avnet EMG GmbH 
Kurfürstenstr. 130 
D-10785 Berlin 
Germany 
Tel: (49) 30-214882-0 
Fax: (49) 30-2141728 

Avnet EMG GmbH 
Wolfenbüttler Str. 33 
D-38102 Braunschweig 
Germany 
Tel: (49) 531-22073-0 
Fax: (49) 531-22073-35 

Avnet EMG GmbH 
Friedrich-Ebert-Damm 145 
D-22047 Hamburg 
Germany 
Tel: (49) 40-696952-0 
Fax: (49) 40-6962787

Avnet EMG GmbH 
Benzstr. 1
D-70839 Gerlingen
Stuttgart, Germany 
Tel: (49) 7156-4390
Fax: (49) 7156-439-111

Avnet EMG GmbH 
Max-Planck-Str. 15b
D-40699 Erkrath 
Düsseldorf, Germany 
Tel: (49) 211-92003-0 
Fax: (49) 211-9200399

Avnet EMG GmbH 
Schmidtstr. 49 
D-60326 Frankfurt/M. 
Germany 
Tel: (49) 69-973804-0 
Fax: (49) 69-7380712

Avnet EMG GmbH 
Fürther Str. 212
D-90429 Nürnberg 
Germany 
Tel: (49) 911-93149-0
Fax: (49) 911-320821

Intercomp 
Am Hochwald 42 
D-82319 Starnberg 
Germany 
Tel: (49) 8151-16044 
Fax: (49) 8151-79270 
E-Mail: intercomp.tiefenthaler
@t-online.de



R

10-6 May, 1999

Intercomp
Heerstr. 167 
D-78628 Rottweil 
Germany 
Tel: (49) 741-14845 
Fax: (49) 741-15220 
E-Mail:
intercomp.klink@t-online.de 

Intercomp 
Schustergasse 25
D-55278 Köngernheim
Germany 
Tel: (49) 6737-9881
Fax: (49) 6737-9882 
E-Mail:
intercomp.harkam@t-online.de 

Intercomp 
Heidbergstr 30 
D-22846 Norderstedt
Germany 
Tel: (49) 405-25-50377 
Fax: (49) 405-25-50378 
E-Mail:
intercomp.robben@t-online.de 

Intercomp 
Abdeck 3B 
D-84095 Furth bei Landshut 
Germany 
Tel: (49) 870-48-593 
Fax: (49) 870-48-594 
E-mail: intercomp.neugebauer
@t-online.de

Metronik GmbH
Leonhardsweg 2 
D-82008 Unterhaching
München, Germany
Tel: (49) 89-611-080 
Fax: (49) 89-611-08110

Metronik GmbH
Zum Lonnenhohl 40 
D-44319 Dortmund 
Germany 
Tel: (49) 231-9271-10-0 
Fax: (49) 231-9271-10-99 

Metronik GmbH 
Carl-Zeiss Str.6 
D-25451 Quickborn 
Hamburg Germany 
Tel: (49) 4106-77-30-50 
Fax: (49) 4106-77-30-52

Metronik GmbH 
Osmiastrasse 9
D-69221 Dossenheim
Mannheim, Germany 
Tel: (49) 6221-8-70-44 
Fax: (49) 6221-8-70-46

Metronik GmbH 
Äussere Grossweiden-
mühlstr. 45
D-90419 Nürnberg
Germany 
Tel: (49) 911-338802 
Fax: (49) 911-338827 

Metronik GmbH 
Löwenstrasse 37 
D-70597 Stuttgart 
Germany 
Tel: (49) 711-769641-0 
Fax: (49) 711-765-5181 

Metronik GmbH 
Franz-Schubert-Str.41 
D-16548 Glienicke 
Berlin, Germany 
Tel: (49) 33056-62510 
Fax: (49) 33056-62550

Metronik GmbH 
Schönauer Strasse 113 
D-04207 Leipzig 
Germany 
Tel: (49) 341-4240027
Fax: (49) 341-4240029

Metronik GmbH 
Bahnstrasse 9 
D-65205 Wiesbaden 
Germany 
Tel: (49) 611-973-84-0 
Fax: (49) 611-973-8418

GREECE

Semicon
104 Aeolou Str. 
10564 Athens 
Greece 
Tel: (30) 1-32-536-26 
Fax: (30) 1-32-160-63 
E-Mail: semicon@hellas.eu.net 

HONG KONG

Insight 
Units 3601-02 & 07-25, Tower I,
Metroplaza, Hing Fong Road, 
Kwai Fong, N.T. 
Hong Kong 
Tel: (852) 2410-2780 
Fax: (852) 2401-2518 

HUNGARY

ChipCAD Kft 
Dolmany u. 12 
H-1131 Budapest 
Tel: (36) 1-270-7680 
Fax: (36) 1-270-7699 

INDIA

CG-CoreEl Logic System Ltd. 
First Floor, Surya Bhavan 
1181 Fergusson College Rd. 
Pune 411 005 
India 
Tel: (91) 212-323982, 328074
Fax: (91) 212-323985 
Email: xsupport@cromp.ernet.in

CG-CoreEL Logic System Ltd.
961 Main 12th
HAL 2nd Stage 
Bangalore 560 008 
India 
Tel: (91) 80-527-9726
Fax: (91) 80-527-3073 
E-Mail:
vishwa@giasbg01.vsni.net.in 

CG-CoreEl Logic Systems 
ABC Business Centre
N-52 Connaught Place
New Delhi, 110001
India 
Tel: (91) 11-3738-973 
Fax: (91) 11-3730-404 

Core El Micro Systems 
45131 Manzanita Ct. 
Fremont, CA 94539 
Tel: ( 510) 770-2277 
Fax: (510) 770-2288 

IRELAND

Memec Ireland Ltd. 
Gardner House
Bank Place
Limerick
Ireland 
Tel: (353) 61-411842
Fax: (353) 61-411888 
E-Mail: memec@iol.ie 

ISRAEL

E.I.M. International Ltd. 
9 Hashiloach Street 
P.O. Box 7025 
Petach Tikva 49130 
Israel 
Tel: (972) 3-923-3257 
Fax: (972) 3-922 3577

E.I.M. International Elec 
2000 Arctic Ave 
Bohemia 
New York, NY 11716 
Tel: (516) 567-0500 
Fax: (516) 567-0011 

ITALY

Acsis Srl 
Via Alberto Mario, 26
20149 Milano, Italy 
Tel: (39) 02-480-22522 
Fax: (39) 02-480-12289 
WWW: http://www.acsis.it

Avnet EMG 
Centro Direzionale 
Via Novara, 570 
C.A.P 20153 Milan 
Italy 
Tel: (39) 02-381-901 
Fax: (39) 02-380-02988

Avnet EMG 
Ancona 
Via Adriatica, 13
60022 Castelfidardo
Italy
Tel: (39) 071-781-9644 
Fax: (39) 071-781-9699

Avnet EMG 
Firenze 
Via Panciatichi, 40
50127 Firenze
Italy
Tel: (39) 055-436-0392 
Fax: (39) 055-431-035

Avnet EMG 
Modena 
Via Scaglia Est, 144 
41100 Modena
Italy
Tel: (39) 059-351-300 
Fax: (39) 059-344993

Avnet EMG 
Napoli
Via Ferrante Imparato, 27 
80146 Napoli
Italy
Tel: (39) 081-55-91477
Fax: (39) 081-55-91580

Avnet EMG 
Roma 
Via Zoe Fontana, 220 
Tecnocitta 
00131 Roma
Italy
Tel: (39) 064-13-1151 
Fax: (39) 064-13-1161

Avnet EMG
Torino 
Corso Orbassano, 336 
10137 Torino
Italy
Tel: (39) 011-311-2347 
Fax: (39) 011-308-2138

Avnet EMG 
Treviso
Via Delle Querce, 7 
31033 Castelfranco Veneto
Italy
Tel: (39) 0423-722-675 
Fax: (39) 0423-722-671



R

May, 1999 10-7

Silverstar-Celdis 
Viale Fulvio Testi, 280 
20126 Milano
Italy 
Tel: (39) 02-661-251 
Fax: (39) 02-661-01-359

Silverstar-Celdis 
Via Collamarini, 22 
40138 Bologna
Italy 
Tel: (39) 051-53-8500 
Fax: (39) 051-53-8831

Silverstar-Celdis 
Via G. Antonio Resti, 63 
00143 Roma
Italy 
Tel: (39) 06-519-57527 
Fax: (39) 06-504-3330

Silverstar-Celdis 
Centro Piero Della Francesca
Corso Svizzera, 185 Bis
10149 Torino
Italy
Tel: (39) 011-77-10082 
Fax: (39) 011-77-64921

Silverstar-Celdis 
Centro Direzionale Benelli 
Via Degli Abeti, 346 
61100 Pesaro
Italy 
Tel: (39) 0721-26-560 
Fax: (39) 0721-400896

Silverstar-Celdis 
Via A.da Noli, 6 
50127 Firenze
Italy 
Tel: (39) 055-43-5125 
Fax: (39) 055-43-77184

Silverstar-Celdis 
Via. delle Industrie, 13 
35010 Limena 
Padova
Italy 
Tel: (39) 049-88-40044 
Fax: (39) 049-88-41079

Silverstar-Celdis 
Via Famagosta, 1/5 
17100 Savona
Italy 
Tel: (39) 019-81-5090 
Fax: (39) 019-81-5091 

JAPAN

Kaga Electronics Co., Ltd. 
1-26-1, Otowa
Bunkyo-ku, Tokyo 112-8657
Japan 
Tel: (81) 3-3942-6744 
Fax: (81) 3-3942-6256 

Kaga Electronics Co., Ltd. 
3-13-20, Nishi-tenman
Kita-ku, Osaka 530-0047
Japan
Tel: (81) 6-364-3911 
Fax: (81) 6-364-4191

Marubun Corporation 
Marubun Daiya Bldg.
8-1, Nihonbashi, Odenmacho
Chuo-ku, Tokyo 103-8577
Japan 
Tel: (81) 3-3639-5120 
Fax: (81) 3-3639-9925

Marubun Corporation 
5-5-15, Nishi-nakashima
Yodogawa-ku, Osaka 532-0011
Japan 
Tel: (81) 6-301-1551 
Fax: (81) 6-301-1991

OEL K.K.
Bunkyo Green Court Center
Office, 19F
2-28-8 Hon-Komagome
Bunkyo-ku
Tokyo 113-6591
Japan
Tel: (81) 3-5978-8204
Fax: (81) 3-5978-1818

OEL K.K.
4-4-2 Kitakyuhoji-cho
Chuo-ku
Osaka 541-0057
Japan
Tel: (81) 6-282-4810 
Fax: (81) 6-282-4160

Tokyo Electron Device Ltd. 
No. 1, Higashikata-machi
Tsuzuki-ku,
Yokohama 
Kanagawa 224-0003
Japan 
Tel: (81) 45-474-5096 
Fax: (81) 45-474-5583 

Tokyo Electron Device Ltd. 
4-1-14, Miyahara, Yodogawa-ku
Osaka 532-0003
Japan 
Tel: (81) 6-399-0234
Fax: (81) 6-399-0283

THE NETHERLANDS

Rodelco BV 
P.O. Box 6824 
Takkebijsters 2 
4802 HV Breda 
The Netherlands 
Tel: (31) 76-5722700 
Fax: (31) 76-5710029 

NEW ZEALAND

MEMEC EBV (NZ) Ltd.
Suite 5a, Level 4,
North City Plaza,
Titahi Bay Rd., Porirua,
Wellington, New Zealand
Tel: (64) 4-237-9711 
Fax: (64) 4-237-9718

MEMEC EBV (NZ) Ltd. 
P.O. Box 3700
Christchurch 
New Zealand 
Tel: (64) 03-379-3889 
Fax: (64) 03-379-3072 

MEMEC EBV (NZ) Ltd. 
Unit 7, 110 Mays Road 
Penrose 
Auckland 
New Zealand 
Tel: (64) 09-636-5984 
Fax: (64) 09-636-5985

NORWAY

BIT Elektronikk AS 
Smedsvingen 4 
P.O. Box 194 
1360 Nesbru 
Norway 
Tel: (47) 66-77-65-00 
Fax: (47) 66-77-65-01 

POLAND

P.T.H. Atest s.c.
ul. Sowinskiego 5
PL-44-100 Gliwice 
Poland 
Tel: (48) 32-380341
Fax: (48) 32-380692

PORTUGAL

ADM Electronica SA 
en 107, No 743
Aguas Santas 
4445 Ermesinde
Portugal 
Tel: (35) 1-92-973-6957 
Fax: (35) 1-92-973-6958

RUSSIA

Scan Ltd.
10/32 “B” Druzhby St. 
117330 Moscow
Russia 
Tel: (7) 095-232-2343
Fax: (7) 095-938-2247

Scan Ltd
42 Ordjonikidze Street
196143 St. Petersburg 
Russia 
Tel: (7) 812-299-7028 
Fax: (7) 812-264-6000

Scan Engineering
14 Plekhanova St. 
Voronezh 394000
Russia 
Tel: (7) 0732-521006 
Fax: same

Scan Pulsar 
9 Rogaliova St. 
Dniepropetrovsk 320030
Ukraine 
Tel: (7) 0562-472870 
Fax: (7) 0562-451115 

Scan-West 
217, 32 Asanbaljieva St.
Minsk 220024
Belorussia
Tel: (7) 0172-756 261
Fax: (7) 0172-756 750

SINGAPORE

MEMEC (Asia Pacific) Penang 
6L-2 Jalan Rumbia
11900 Penang
Malaysia 
Tel: (60) 4-646-9986 
Fax: (60) 4-646-9946 

MEMEC Asia Pacific Ltd. 
Singapore Representative 
Office 
10 Anson Road #23-08
International Plaza 
Singapore 079903 
Tel: (65)-222-4962 
Fax: (65)-222-4939

SLOVAK REPUBLIC

Elbatex SK S.R.O.
Kasmirska 7 
SK-821 04 Bratislava 
Tel: (421) 7-43414173 
Fax: (421) 7-43420600
Email: ek.elbatex@net.lask

SLOVENIA/CROATIA

IC Elektronika d.o.o. 
Vodovodna 100 
SL-1000 Ljubljana 
Tel: (386) 61165316010 
Fax: (386) 61165317020 

SOUTH AFRICA

Avnet - ASD 
Avnet Kopp (Pty) Ltd. 
PO Box 3853 
Rivonia 2128 
South Africa 
Tel: (27) 11 444 2333 
Fax: (27) 11 444 7778 



R

10-8 May, 1999

SOUTH KOREA

Hyunmyung Electronics Co. Ltd.
3 Fl, Dukwha Bldg.,
444-17, Seokyo-Dong,
Mapo-Ku, Seoul
South Korea
Tel: (82) 2-3141-0147
Fax: (82) 2-3141-0149

Insight 
Rm. 501, Daeha Bldg. 
14-11 Yoido-Dong 
Youngdeungpo-Ku 
Seoul, 150-715 
South Korea 
Tel: (82) 2-786-8180 
Fax: (82) 2-761-4121

Seodu Inchip
4 Fl, Myoungi Bldg.,
142-21, Samsung-Dong,
Kangnam-Ku, Seoul
South Korea
Tel: (82) 2-563-8008
Fax: (82) 2- 563-8411

SPAIN

ADM Electronica SA
Calle Tomas Breton, 
No 50, 3-2 
28045 Madrid 
Spain 
Tel: (34) 9-1-530-4121 
Fax: (34) 9-1-530-164

ADM Electronica SA 
Calle Mallorca 1 
08014 Barcelona 
Spain 
Tel: (349) 3-426-6892 
Fax: (349) 3-425-0544

ADM Electronica, SA 
Sasi Koa, 26, 3°C
48200 Durango (Vizcaya) 
Spain 
Tel: (349) 4-620-1572 
Fax: (349) 4- 620-2331

SWEDEN

DipCom Electronics AB 
Torshamnsgatan 35
P.O. Box 1230 
S-164 28 Kista 
Sweden 
Tel: (46) 8 752 24 80 
Fax: (46) 8 751 3649

Avnet EMG AB 
Boc 1410 
Englundavagen 7 
S-171 27 Solna 
Sweden 
Tel: (46) 8-629-14-00 
Fax: (46) 8-29--26-95 

SWITZERLAND

Memotec AG 
Gaswerkstr. 32 
CH-4901 Langenthal 
Switzerland 
Tel: (41) 629195555 
Fax: (41) 629195500 

TAIWAN

Insight 
Rm. 1005, 10F, No.2, Lane 150
Sec.5, Hsin Yin Rd.
Taipei, Taiwan R.O.C. 
Tel: (886) 2-8780-1216 
Fax: (886) 2-8780-1220

Avnet - Mercuries Co. Ltd. 
14th Floor, No. 145, Sec. 
2, Chien-Kuo N. Rd. 
Taipei, 
Taiwan R.O.C. 
Tel: (886) 2-2503-1111 
Fax: (886) 2-2505-1449 

THAILAND

MEMEC Thailand
240/10, 12th Floor, 
Ayodhaya Tower 
Ratchadapisek Road 
Huey-Kuang 
Bangkok, 10310 
Thailand 
Tel: 662-2741644-5
Fax: 662-2741673 

TURKEY

Empa Elektronik ve Bilgi 
Teknolojilei AS
Besyol Mah. Florya Kavsagi
Eski Havaalani Cad. No: 26/6
34630 Florya
Istanbul
Turkey
Tel: (90) 212 592 7401
Fax: (90) 212 599 3059

Eltronik Inc.
8427 Kennedy Boulevard 
North Bergen 
New Jersey 07047 
USA
Tel: (201) 453-0410
Fax: (201) 453-0959 

UNITED ARAB EMIRATES

Culato
P.O. Box 7820
Dubai
United Arab Emirates
Tel: (971)-4-284031
Fax: (971)-4-284934

Rezwan Trading Est. 
PO Box 51973 
Dubai 
United Arab Emirates 
Tel: (97) 1-4279420 
Fax: (97) 1-4275741 

UNITED KINGDOM

Avnet EMG Ltd
Avnet House
Rutherford Close, Meadway
Stevenage 
Hertfordshire, SG1 2EF 
England
Tel: (44) 1438-788500
Fax: (44) 1438-788 250

Cedar Technologies 
Unit One Old Barns 
Rycote Lane Farm 
Milton Common 
Oxfordshire 
OX9 2NZ 
England 
Tel: (44) 1844-278278 
Fax: (44) 1844-278378

Cedar Technologies 
32 Enterprise House 
Sprinkerse Business Park 
Striling FK7 7UF
England
Tel: (44) 1786-446220
Fax: (44) 1786-446223

Memec Plc
17, Thame Park Road
Thame 
Oxfordshire
OX9 3XD
England
Tel: (44) 1844-261919
Fax: (44) 1844-1683

Memec Ireland Ltd.
Garden House
Bank Place
Limerick
Eire
Tel: (353) 61-411842
Fax: (353) 61-411888
Email: memec@iol.ie

Microcall Ltd. 
The Gate House 
Alton House Business Park 
Gatehouse Way 
Aylesbury, Bucks
HP19 3DL 
England 
Tel: (44) 1296-330061 
Fax: (44) 1296-330065


	Cover
	Table of Contents
	Introduction
	Introduction
	Using an FPGA for PCI
	Using Xilinx for PCI
	Highest-Performance PCI
	Lowest-cost PCI

	The Real-PCI from Xilinx
	Real Compliance
	Real Flexibility
	Real Performance
	Real Availability
	Xilinx PCI Design Kits
	PCI over the Internet
	About this Databook


	PCI Products
	PCI64 Virtex Interface Version 3.0
	Introduction
	Features
	Applications
	General Description
	Smart-IP Technology - guaranteed timing
	Functional Description
	PCI Configuration Space
	PCI I/O Interface Block
	Parity Generator/Checker
	Target State Machine
	Initiator State Machine
	User Application with Optional Burst FIFOs

	Interface Configuration
	Supported PCI Commands
	Burst Transfer
	Bandwidth
	Timing Specification
	Verification Methods
	Ping Reference Design
	Device Utilization
	Recommended Design Experience

	PCI32 Virtex Version 3.0
	Introduction
	Features
	Applications
	General Description
	Smart-IP Technology - guaranteed timing
	Functional Description
	PCI Configuration Space
	PCI I/O Interface Block
	Parity Generator/Checker
	Target State Machine
	Initiator State Machine
	User Application with Optional Burst FIFOs

	Interface Configuration
	Supported PCI Commands
	Burst Transfer
	Bandwidth
	Timing Specification
	Verification Methods
	Ping Reference Design
	Device Utilization
	Recommended Design Experience

	PCI32 4000 XLA Interface Version 3.0
	Introduction
	Features
	Applications
	General Description
	Smart-IP Technology - guaranteed timing
	Functional Description
	PCI I/O Interface Block
	Parity Generator/Checker
	Target State Machine
	Initiator State Machine
	PCI Configuration Space
	User Application with Optional Burst FIFOs

	Interface Configuration
	Supported PCI Commands
	Burst Transfer
	Bandwidth
	Timing Specification
	Verification Methods
	Ping Reference Design
	Synthesizable PCI Bridge Design Example
	Device Utilization
	Recommended Design Experience

	PCI32 SpartanXL Interface Version 3.0
	Introduction
	Features
	Applications
	General Description
	Smart-IP Technology - guaranteed timing
	Functional Description
	PCI I/O Interface Block
	Parity Generator/Checker
	Target State Machine
	Initiator State Machine
	PCI Configuration Space
	User Application with Optional Burst FIFOs

	Interface Configuration
	Supported PCI Commands
	Burst Transfer
	Bandwidth
	Timing Specification
	Verification Methods
	Ping Reference Design
	Synthesizable PCI Bridge Design Example
	Device Utilization
	Recommended Design Experience

	PCI32 Spartan Master & Slave Interface
	Introduction
	Features
	Applications
	General Description
	Smart-IP Technology
	Functional Description
	PCI I/O Interface Block
	Parity Generator/Checker
	Target State Machine
	Initiator State Machine
	PCI Configuration Space
	User Application with Optional Burst FIFOs

	Interface Configuration
	Supported PCI Commands
	Burst Transfer
	Bandwidth
	Timing Specification
	Verification Methods
	Ping Reference Design
	Synthesizable PCI Bridge Design Example
	Device Utilization
	Recommended Design Experience

	Synthesizable PCI Bridge Design Examples
	Introduction
	General Description
	Functional Description
	BAR0 Configuration
	BAR1 Configuration
	Register File Interface
	Target FIFO Interface
	Initiator FIFO Interface

	Pinout
	Core Modifications
	Verification Methods
	Recommended Design Experience
	Reference Design License

	PCI64 PCI Prototyping Board
	Nallatech Limited
	Introduction
	Features
	Options
	General Description
	Configuration
	Software

	HotPCI Spartan Prototyping Board
	Virtual Computer Corporation
	Introduction
	Features
	Options
	General Description
	Software

	Functional Description
	Configuration with the CCM
	Configuration with an Xchecker cable


	DriverWorks Windows Device Driver Development Kit Version 2.0
	Compuware NuMega
	Introduction
	Support
	Features
	Description
	Licensing

	VtoolsD Windows Device Driver Development Kit Version 3.0
	Compuware NuMega
	Introduction
	Support
	Features
	Description
	Licensing

	Synthesizable PCI Power Management Design Example
	Introduction
	Features
	General Description
	Functional Description
	Capabilities Linked List
	Power Management Register Block
	User-defined Configuration Space
	PME Generation

	Pinout
	Core Modifications
	The cfg file
	The pcim_top/pcis_top file
	Web download
	Editing the cfg file

	Verification Methods
	Recommended Design Experience


	FPGA Products
	LogiCORE PCI Supported Virtex FPGAs
	Features
	Description

	LogiCORE PCI32 Supported Spartan and SpartanXL FPGAs
	Introduction
	Spartan Series Features
	Additional SpartanXL Features
	Universal PCI Interfaces


	Design Methodology
	LogiCORE PCI Configuration
	Core Configuration in VHDL and Verilog

	Selectable Options
	Enable 66 MHz (Virtex PCI64 only)
	Latency Timer
	Base Address Register Enable
	External Subsystem
	Cap List Enable
	INTA# Enable
	User Config Space

	Core Features
	Base Address Registers


	PCI Compliance Checklists
	Virtex PCI Compliance Checklist
	Component Product Information
	Component Electrical Checklist
	5 V Signaling
	3.3 V Signaling
	Loading and Device Protection
	Timing Specification
	64-bit Components

	XC4000XLA PCI Compliance Checklist
	Component Product Information
	Component Electrical Checklist
	5 V Signaling
	3.3 V Signaling
	Loading and Device Protection
	Timing Specification
	64-bit Components

	Spartan-XL PCI Compliance Checklist
	Component Product Information
	Component Electrical Checklist
	5 V Signaling
	3.3 V Signaling
	Loading and Device Protection
	Timing Specification
	64-bit Components

	LogiCORE PCI V3.0 Cores PCI Compliance Checklist
	Component Product Information
	Component Configuration Checklist
	Device Control
	Device Status
	Base Addresses
	VGA Devices
	General Component Protocol Checklist (Master)
	General Component Protocol Checklist (Target)
	Component Protocol Checklist for a Master Device
	Component Protocol Checklist for a Target Device


	Pinout and Configuration
	Layout Considerations
	Compatibility Considerations
	Pinout Tables
	Configuration Mode
	Pinout for the XC4013XLA PQ208
	Pinout for the XC4013XLA PQ240
	Pinout for the XC4028XLA HQ240
	Pinout for the XC4062XLA HQ240
	Pinout for the XC4062XLA BG432
	Pinout for the XCS20 TQ144
	Pinout for the XCS30 PQ208
	Pinout for the XCS30 PQ240
	Pinout for the XCS40 PQ208
	Pinout for the XCS40 PQ240
	Pinout for the XCV300 BG432

	Resources
	PCI Special Interest Group (PCI-SIG) Publications
	PCI and FPGA XPERT Partners
	Supporting PCI Tools
	PCI Reference Books
	Xilinx Documents
	LogiCORE User's Lounge

	Waveforms
	Target Configuration Read
	Target Configuration Write
	Initiator 32-bit Single Memory Read
	Initiator 32-bit Single Memory Write
	Initiator 32-bit Burst Memory Read Multiple
	Initiator 32-bit Burst Memory Write
	Initiator 32-bit Burst Memory Write with Disconnect
	Target 32-bit Single Memory Read
	Target 32-bit Single Memory Write
	Target 32-bit Burst Memory Read Multiple
	Target 32-bit Burst Memory Write
	Target 32-bit Burst Memory Write with Disconnect
	Target 32-bit Retry
	Target 32-bit Abort
	Initiator 64-bit Burst Memory Read Multiple
	Initiator 64-bit Burst Memory Write
	Initiator 64-bit Burst Memory Write with Disconnect
	Initiator 64-bit Memory Read of a 32-bit Target
	Initiator 64-bit Memory Write of a 32-bit Target
	Target 64-bit Burst Memory Read Multiple
	Target 64-bit Burst Memory Write
	Target 64-bit Burst Memory Write with Disconnect
	Target 64-bit Retry
	Target 64-bit Abort

	Ordering Information and License Agreement
	Xilinx PCI64 Design Kit
	Xilinx PCI64 Virtex
	Xilinx PCI32 Design Kit
	LogiCORE PCI32 Spartan
	Support, Updates, and Licensing
	Product Upgrades
	Additional PCI Products
	Obsolete products

	Sales Offices, Sales Representatives, and Distributors
	Headquarters
	Xilinx Sales Offices
	North American Distributors
	U.S. Sales Representatives
	International Sales Representatives


