
hop
are
fore
om-
le

age
c-
ften
to-
can
ip-
es
dy a
sed

0
n an
ug-
tly
ere
sh-

ct
st-

ing.
st-
ic

on
ipt)
rs

o-
of
al
Accelerating Adobe Photoshop with Reconfigurable Logic

Satnam Singh
Xilinx Inc.

San Jose, California, U.S.A.
Satnam.Singh@xilinx.com

Robert Slous
Xilinx Inc.

San Jose, California, U.S.A.
Robert.Slous@xilinx.com

Abstract

This paper presents the results of a project designed to pro-
duce a commercial application for reconfigurable logic. We
describe how we took the popular image processing applica-
tion Adobe Photoshop and used its plug-in technology to de-
vise a set of FPGA-based filters to accelerate colour space
conversion and image convolution operations. Some of the
barriers that make it difficult to produce portable FPGA-
based filters are explored.

1 Introduction

In the recent IEEE Computer article Seeking Solutions in
Configurable Computing [5] it was reported that ‘no compa-
nies are known to use reconfigurable computing for a com-
petitive advantage.’ This paper describes one of several
projects by the authors to develop real-world applications for
FPGA technology which address this problem. In particular,
we demonstrate how we designed and implemented several
FPGA-based plug-ins to accelerate the popular Adobe Pho-
toshop application which is widely used for image process-
ing.

This paper gives an overview of the type of image
processing operations one can perform with Adobe Pho-
toshop and then goes on to describe various filtering
operations that are suitable for hardware acceleration. We
describe the state of the art in software and hardware based
Photoshop filters, and then review what reconfigurable com-
puting options are available for speeding up Photoshop. The
design and implementation of several filters using a Xilinx
XC6200 FPGA on a PCI card is presented. We describe the
procedure for developing the hardware and present details of
how the plug-ins were developed and integrated into
Photoshop.

The initial performance results for the FPGA-based fil-
ters are very encouraging. The work presented here could
form the basis of a commercial system for accelerating Adobe
Photoshop using a general purpose FPGA-card (sold by mul-
tiple vendors). This could be a high profile reconfigurable

application that addresses the concerns of the authors of Seek-
ing Solutions in Configurable Computing.

However, based on experience with using the Photos
filters on various platforms, we describe some of the softw
and standards infrastructures that must be in place be
composite hardware-software entities can be sold as c
modity items that run one systems sourced by multip
vendors.

2 Adobe Photoshop

Adobe Photoshop is a widely used image processing pack
which provides a modular architecture for extending its fun
tionality based on plug-ins. Images to be processed are o
in true-colour (24-bits) and may be sampled from a pho
graph at a high resolution. Photoshop provides filters that
manipulate an image in various ways including colour man
ulation and filtering (e.g. Gaussian blur). For large imag
these filters can take a long time to run, and there is alrea
market for specialised DSP-based cards which can be u
with plug-ins to accelerate Photoshop.

By using an off-the-shelf system like the VCC XC620
FPGA system, one can produce filters that are realised o
FPGA. One can distribute image processing circuits as pl
ins, making them a commodity item that is convenien
packaged. If high speed filters can be produced then th
may be a market for the VCC boards in the desktop publi
ing niche.

Related to this project is the PostScript/FPGA proje
which is using the VCC XC6200 cards to accelerate Po
Script rendering. This is also targeted at desktop publish
A studio using a VCC card for image processing and Po
Script rendering provides a compelling example of dynam
reconfiguration. Reconfiguration occurs at the applicati
level (switching between PhotoShop support and PostScr
and within an application (switching between different filte
or rendering algorithms).

The principal reason for us to produce an Adobe Ph
toshop plug-in is to provide an interesting example
dynamic reconfiguration which may evolve into a re
product.

3 Performance Limits

Before considering which filters would be suitable for reali-
sation on the XC6200 PCI cards, it is instructive to calculate
the upper bounds for the performance of a system based on
the VCC XC6200 FPGA cards.

The maximum on-board SRAM is 8MB (23-bits of
address space). Allowing 3 bytes per pixel this can represent
about 2.7 million pixels or an area of 1672 pixels square. For
a 600 dpi target this represents an area which is 3 square
inches. For filters that can mutate the original image the area
is halved. Unfortunately 8MB of SRAM is probably not
enough for realistic image sizes, but it was enough to allow
us to perform experiments to establish feasibility of this
approach. 64MB of RAM would allow more realistically
sized images to be manipulated.

For comparison, an existing correlator implemented on
the XC6200 [9] uses a 32x16 mask which can be used to cor-
relate a 512x512 image in about 30ms (about 8.7 mega-
samples per second). Reconfiguration occurs in a few milli-
seconds (or less).

4 Image Processing Examples

This section describes some of the problems associated with
digitally scanned images and presents the notion of filtering
for smoothing images.

4.1 Anti-Aliasing
Digitised photographs exhibit aliasing which occurs because
a continuous light signal has been mapped onto a discrete
signal of possibly limited colour depth (i.e. a 2D array of pix-
els). By suitably sampling the continuous source signal the
original image can be reconstructed from the finite data.
However, sampling an infinite amount of data down to a
finite amount of data will loose information and cause arti-
facts on the reconstructed image which are not present on the
source image.

One such problem is aliasing which manifests itself as
jaggy lines and sharp edges where rapid frequency variations
in the source signal could not be captured in the discrete sig-
nal. Anti-aliasing is the process of removing these artifacts
from the sampled image. For example, consider the triangle
in Figure 1 (a) which has been sampled as shown in part (b).
The jaggy edge can be smoothed by used different shades of

grey to reflect how much of a pixel is occupied by the source
signal, as shown in part (c).

Figure 1 Anti-Aliasing Graphics

On colour output devices anti-aliasing is performed by
using different shades of black to give a smooth outline for
fonts, as shown in Figure 2.

Figure 2 Anti-Aliasing text

4.2 Image Filtering by Convolution

In order to capture faithfully a source signal of frequency f, it
must be sampled at a minimum of frequency 2f (called the
Nyquist frequency). If the number of high frequency signals
can be reduced, then fewer samples need to be taken of the
source image, but the sampled image will be of a poorer qual-
ity. This is a common compromise which is known as band-
width limiting or band limiting the signal. This technique is
implemented with low-pass filters which inhibit high fre-
quency signals. The perfect filtering function S of some
signal u which is to be constrained in the band -k to k is
defined as:

(a) (b) (c)

S u()
1 when k– u k≤ ≤,
0 elsewhere,

=

Figure Figure shows how low-pass filtering of a noisy
CCD image of Jupiter improves the visibility of fine details at
the cost of a blurrier image.

Figure 3 Low-Pass Filtering of Jupiter

In principal to perform low-pass filtering the image
signal has to be transformed from the spatial domain into the
frequency domain, multiplied by a suitable pulse function (to
mask off the unwanted frequencies) and then transformed
back into the spatial domain. The computational complexity
of this task can be reduced by noting that multiplying two
Fourier transforms in the frequency domain corresponds to
convolution on their inverse Fourier transforms in the spatial
domain.

The convolution of two signals f(x) and g(x) is written as
f(x) * g(x) and represents a weighted average of the neigh-
bourhood around each point of the signal f(x). The weights
are specified by the signal g(x) and the neighbourhood is the
domain over which the filter is nonzero (called the support of
the filter). A filter that is nonzero over a finite domain is said
to have finite support. The filtered signal h(x) is specified by:

The filter function is called the convolution kernel or
filter kernel.

Implementing convolution involves repeated multiplica-
tions and additions which makes this algorithm suitable for
realisation on FPGAs. The implementation can also be pipe-
lined, giving further performance gains. Furthermore,
convolution in software of RGB colour images requires inde-
pendent convolution of the red, green and blue channels.

A common filter kernel is Gaussian Blur, which is a
standard filter in Photoshop. An example of a Gaussian 7x7
filter is:

1 4 8 10 8 4 1
4 12 25 29 25 12 4
8 25 49 58 49 25 8
10 29 58 67 58 29 10
8 25 49 58 49 25 8
4 12 25 29 25 12 4
1 4 8 10 8 4 1

This filter places a lot of weight around the pixels near
the centre of the mask, but tapers off sharply

Using a square filter of size n pixels on a square image of
size m pixels requires multiplications and additions. Each
RGB channel is at most 8 bits, which is also a reasonable
upper bound for the filter component values.

5 Software and DSP Filters

Most Adobe Photoshop filters are implemented in software,
although DSP based Photoshop accelerator cards are also
available. A DayStar Gensis MP600 workstation with four
150MHz PowerPC 604 processor can perform a Gaussian
Blur in about a third of the time taken by a PowerMac 9500
and about roughly the same speed as a PCI PowerShop DSP
card designed to accelerate PostScript. The DayStar system
used specially written plug-ins that exploit the multiple proc-
essors.

In a benchmark test, a Gensis MP600 workstation per-
formed a 100-pixel radius Gaussian blur of a 50MB RGB
image in 39.5 seconds (about 0.4 mega-samples per second).
For the same machine and image size, RGB to CMYK colour
space conversion took 10.9 seconds and RGB to Lab conver-
sion took 3.7 seconds.

Other high end platforms include Sun SPARC worksta-
tions with the visual instruction set (VIS) which provide
MMX style pixel-parallel operations. High end work stations
are approaching or surpassing the performance achieved from
specialised DSP based accelerator cards. A careful analysis is
required to establish that a XC6200 based implementation of
PhotoShop filters would be competitive against such high end
workstations.

New DSP based PhotoShop accelerators would use the
latest DSP chips e.g. the Texas Instruments TMS320C54x
fixed-point digital signal processor [3]. This can support 40
million multiply-adds per second. Accounting 25ns for the
cost of being a part of a PCI-based system and allowing 3
times 25ns for each channel this gives a total delay of 100ns
for each multiply-accumulate. For a size 100 mask this yields
a minimum execution time of around 277 seconds. This
seems to suggest that high end microprocessors that support
pixel-parallel and multiply-accumulate operations still have
an edge over DSP based systems.

We wrote a straight forward software implementation of
a Gaussian Blur filter in Ada on Pentium Pro 150MHz
machine running under Windows/NT. This took about 4 min-

(a) (b)

h x() f x() h x()× f τ()g x τ–() τd

∞–

∞

∫= =

n
2

r-
of
rs

hop.
elop
h-

re
t
 We
B to
.g.
ra-
hen
s.

d
le
own
r-

he
n

0.
e

to a
the
ale
nd
CI

o
cal
utes to execute for an 80MB image with a size 7 mask, which
indicates that PhotoShop filters are highly optimised.

Even if the XC6200 based filters do not offer better per-
formance with respect to very expensive top of the range
workstations, these filters may still be viable when compared
with typical desktop machines since the cost is only $1000 for
the card.

6 XC6200 FPGA/PCI Card Based Filters

There is certainly enough resource on the XC6216 to imple-
ment several 8-bit by 8-bit multiply and add units. This archi-
tecture would read in the filter values on each clock tick and
a new source image value every ticks. In this case the filter
coefficients would also reside in the on board SRAM and two
memory reads would be required for each pixel multiply-and-
accumulate. This is prohibitively expensive.

A faster alternative is to store the filter values on the
FPGA itself. Ideally, one would like to use constant coef-
ficient multipliers, since the kernel is usually fixed and we
could exploit the existing reconfigurable multiplier design.
An 8-bit reconfigurable multiplier and accumulator with a
16-bit result is 16 cells high and 16 cells wide. At most 32 of
these multiplier can be accommodated on a XC6216. For
small filter kernels e.g. size 5 (e.g. 25 multiply-accumulates),
it may be possible to implement a systolic high speed convo-
lution. However, this can only be accomplished by using
serial multipliers for small values of n.

Using a 40MHz 3-stage pipelined multiplier designed we
can expect a critical path of around 50ns (accounting for other
I/O and memory access delays). This would require 4.9e-7
seconds to process each pixel if we can realise a systolic array
based filter which has been subjected to retiming, slowdown
and hold-up. Regardless of the mask size, such a circuit
would produce 20 mega-samples per second (with larger
latencies for larger masks). However, we can not accommo-
date so many multipliers at once on the FPGA for mask sizes
greater than 3.

A compromise architecture would be to use a pipelined
multiplier for which the source signal is shifted in serially but
the coefficients are available in parallel. A multiplier of this
type has been designed at Xilinx which takes 16 clock ticks
to produce a 16-bit multiplier result. Assuming a critical path
of 15ns for the serial/parallel multiplier, this yields a through-
put of about 4 mega-samples per second which is still ten
times faster than the Gensis MP600 workstation.

7 Accelerating Adobe Photoshop

This section presents a concrete illustration of a novel appli-
cation of the XC6200 FPGA. In particular, we show how the
FastMap interface greatly simplifies the design of systems
that comprise of communicating hardware and software.

We selected an off the shelf application for FPGA-based
acceleration. Our choice was Adobe Photoshop, which is
used extensively for high quality image processing. This
application provides a collection of ‘filters’ that perform va
ious image processing operations. The filter menu
Photoshop is shown in Figure 4 below. The available filte
are not fixed, but instead are read as plug-ins to Photos
This means that a user can purchase more filters or dev
more filters and extend the functionality of Photoshop wit
out access to the source code of the application.

We used the publicly available Photoshop Softwa
Development Kit (SDK) to implement a variety of filters tha
use the XC6200 to accelerate the image processing time.
have been concentrating on colour space conversion (RG
greyscale conversion) and convolution style calculations (e
Gaussian Blur). Gaussian Blur is one of the slowest ope
tions in Photoshop and is often used as a benchmark w
assessing the performance of desk-top publishing system

Figure 4 The Filter Menu of Adobe Photoshop

The filter plug-ins were developed in C++ and compile
as Windows DLLs. A circuit for converting RGB to greysca
was designed (by performing a weighted average), as sh
in Figure 6. The binary programming information for the ci
cuit is compiled into the DLL as a Windows resource.

The interesting thing about this circuit is that it uses t
wirless I/O feature of the XC6200. The input RGB is writte
by the plug-in software into the lower 24-bits of column
This write operation automatically triggers a clock puls
which after a suitable delay latched the greyscale result in
24-bit register in column 14. This register is then read by
plug-in software and is used to create the new greysc
image. In this model of operation, the image is written a
read a pixel at a time to the FPGA which resides on a P
card. A more efficient version of this circuit was als
designed which reads and writes the image from a lo

n
2

n
2

rd
rm-
 the

-
 a

s a
es.
ard

ile
ient
d to
SRAM frame buffer. This version operates at 20 million
pixels per second.

8 Developing Photoshop Plug-Ins
The plug-ins are added to Photoshop by simply copying
them into a filter directory. When Photoshop runs, it scans
this directory and then loads the plug-ins. Some of the plug-
ins developed at Xilinx are shown in the Photoshop filter
menu in Figure 5.

Figure 5 Some of the Xilinx filters developed for Photoshop

9 A Colour to Greyscale Filter

9.1 Colour Space Conversion

A simple way to produce a greyscale image from a colour
RGB (red, green, blue) format image is to modify each RGB
value in the target to be the simple average of the red, green
and blue intensities. However, the human eye is more sensi-
tive to some frequencies than others. A better result is
achieved if a weighted average is used. We implemented sev-
eral filters based around the following average which pro-
duced good results: grey = 0.29*red + 0.587*green +
0.114*blue. In hardware, this was implemented using a series
of shifts and adds that give a close enough approximation.

9.2 A Software Only Filter
We first produced a software only version of a plug-in that
peforms this weighted average. This operation of this filter
was analysed and we measured a performance of around 0.05
mega-pixels per second. Plug-in filters spend a considerable
amount of time getting a copy of the image from Photoshop
in the format required and then submitting the result image
(which Photoshop converts back into its internal format). All
of the filter speeds presented in this paper including the time
spent communicating the image to the plug-in and the over-
head of the plug-in interface protocol.

Direct access to the image data used by Photoshop would
eliminate the time taken to copy large images to and from the
plug-in buffers, and also avoids having to create so many
large temporary image buffers too.

The software greyscale filter that we developed is not
quite as fast at the built in image mode conversion function of
Photoshop. This is in part due to the fact that this operation is
not implemented as a filter in Photoshop (it is a special menu
item), so there is no image communication overhead.

10 A Wireless I/O Greyscale Filter

A layout of a circuit that converts a 24-bit RGB value to a 24-
bit greyscale value (8-bit weighted average on each channel)
is shown in Figure 6 on a XC6216 device (64 by 64 cells).
The interesting thing about this circuit is that the inputs and
outputs use wireless I/O (also called FastMap). The input
RGB value is written by the plug-in software into the lower
24-bits of column 0. This write operation automatically trig-
gers a clock pulse which after a suitable delay latches the
greyscale result into a 24-bit register in column 14. This reg-
ister is then read by the plug-in software and is used to create
the new greyscale image. In this mode of operation, the image
is written and read a pixel at a time to and from the FPGA
which resides on a PCI card.

Figure 6 An RGB to Greyscale Conversion Circuit using FastMap

This circuit can be operated at around 20 mega-pixels per
second on the VCC Hotworks XC6200 FPGA cards that we
used. However, the PCI bottleneck reduces the perceived per-
formance to just 0.12 mega-pixels per second. This is about
twice as fast as the software only version, but very much
slower than the circuit’s potential. Unfortunately, the ca
and PC system we used delivered a very poor PCI perfo
ance, although VCC have subsequently greatly improved
PCI interface.

The programming information for this circuit was com
piled into plug-in as a binary resource. The plug-in itself is
windows Dynamically Linked Library (DLL). The plug-in
code contains calls to objects of a C++ class that provide
convenient interface to the FPGA and board resourc
Assuming the user of such a system already has a c
installed with its device driver, we need only supply one f
which is used to accelerate Photoshop. This one conven
module contains both the hardware and software neede
add accelerate Photoshop.

The core part of the C++ filter code is shown below. The
code uses an instance of a class that represents the XC6200
board and its capabilities (called board). The code includes
two nested for loops that iterate over the image. For each
pixel, a 24-bit word is read from the source image buffer
(srcPtr) and written to the FastMap register in column 0 on the
board. When the write occurs, the circuit is automatically
clocked (using the CBUF feature of the XC6200), which
means by the time the processor is ready to execute the next
instruction the greyscale value has already been deposited
into the register in column 14. Indeed, the next instruction
reads the content of this register and places the greyscale
result in the appropriate part of the destination image buffer.

for (i=0; i < rows; i++)
 for (j=0; j < columns; j++)
 { board.setColumn (0, *((word*) srcPtr)) ;
 ((word)dstPtr) = board.getColumn (14) ;
 srcPtr += gStuff->planes+1;
 dstPtr += gStuff->planes+1;
 }

The FastMap feature of this device greatly simplifies the task
of providing an FPGA co-processor its input data and reading
the result. Indeed, the plug-in code above is good for any
wireless I/O filter that computes a destination pixel based
purely on the information in the corresponding source pixel.

10.1 Using the on-board SRAM
The wireless I/O greyscale filter has a disappointing perform-
ance gain with respect to the software version. Most of the
time is taken sending pixels back and forth over the PCI bus
and in executing many lines of C code for each pixel transac-
tion.

By using the SRAM available on the VCC XC6200 card
we can send the image to the board in blocks (benefiting from
versions of the PCI interface that support block transfers) and
we only execute a few lines of C code for each block that is
processed. Then the FPGA can process the on-board image
without software intervention. This allowed us to design cir-
cuits that execute at around 20 million pixels per second, but
these systems were far more complicated to design because
we also had to implement the SRAM interface and control
logic on the XC6200.

The layout of the SRAM greyscale circuit is shown in
Figure 7. The core circuit is the same as the circuit used in the
wireless I/O version. However, extra circuitry was needed for
address generation, and for generating the correct control sig-
nals to the SRAM and for latches to hold in-coming and out-
going data. This circuit fares much better than other SRAM
based XC6200 circuit which are clocked off a CBUF pulse,
thus limiting the speed of the circuit to the speed at which a C
loop can be executed in software. One problem with this
implementation is that it has proved to be sensitive to differ-
ent types of XC6200 PCI cards. Some cards have different

SRAM chips with slightly different timing behaviour. This
gives unreliable performance, since sometimes the filter pro-
duces a blank image (or an image in which only some of the
output channels are correctly processed).

Figure 7 SRAM Version of the Greyscale Circuit

The core of the filter plug-in code is shown below. The
size of the image is calculated and is then sent to the on board
RAM using the writeRAM member of the board class. The cir-
cuit is cleared, and then we wait 60ns for the entire image to
be processed (in principal we could vary the time depending
on the image size). The circuit will read-write-modify each
word of the on-board SRAM image buffer. We then read
processed image back from the same location on the on-board
SRAM.

board.writeRAM (0, (word*)srcPtr, imageSize);
board.clear () ;
Sleep (60) ;
board.readRAM (0, (word*)dstPtr, imageSize);

This circuit delivers a performance of around 0.22 mega-
pixels per second. However, on the VCC Hotworks board the
image is processed at 10 mega-pixels per second. Again, we
suffer due to the PCI bus.

11 Convolution Filters

We have also developed a series of convolver circuits for per-
forming operations like Gaussian Blur. These circuits per-

form 1D and 2D convolutions. Some versions just operate
over three pixels in one dimension, but perform full precision
parallel multiplies and additions (unlike the corresponding
MMX implementation). Other versions process a 3 by 3
window for 2D convolution simultaneously on three channels
(red, green and blue) performing 27 serial multiplications at
a time at up to 8 million pixels per second.

11.1 1D Image Convolution
A one dimensional 3-pixel image convolver was designed
using wireless I/O (FastMap) for the image input and output.
The layout is shown in Figure 8. This is a systolic design,
where each processing stage contains a multiplier and an
adder. The multiplier is the constant coefficient multiplier
designed by Kean et. al. [2]. This allows us to very quickly
reconfigure the multiplier for different weights. The multipli-
cations are 8 bits by 8 bits, with the intermediate results stored
to enough precision to give an accurate 8-bit result (assuming
that all the coefficients add up to a weight of 255).

Figure 8 1D 3-pixel Wireless I/O Convolver

A software version of this convolver plug-in runs at 0.02
mega-pixels per second. The wireless I/O version shown
above ran at 0.1 mega-pixels per second (once again, per-
formance is limited by the PCI bus). The circuit can be
clocked at up to 8MHz.

11.2 2D 3x3 Image Convolver Plug-In
The previous section has shown how we performed a 1D con-
volution to an image. This convolver operates on each line of
the image independently. We have also designed a filter
which can perform a 2D Gaussian blur. In order to do this we
need a 2D convolver which operates on pixels in a line as well

as pixels in a row together to calculate a single pixel result.
The size of the convolver, or window, is determined by the
radius of the Gaussian blur to be performed. Our first attempt
uses a 3X3 window which translates to a 1.5 pixel radius. The
3X3 window gets convolved with a 3X3 table of coefficients.
These coefficients are calculated such that they represent a
Gaussian distribution curve. The idea is to perform a spatial
low pass filter on a grouping of pixels. The centre pixel,
which is located at the top of the curve, has the most weight.
As you move away from the centre pixel the pixels have less
influence and, therefore, have less weight. The actual con-
volver circuit that we designed is shown in Figure 9.

Figure 9 2D 3x3-pixel Convolver Layout

In order to perform a 3X3 convolution you need to do 9
multiplies and 8 adds. The Gaussian coefficients are symmet-
rical. We can exploit this symmetry and reduce the circuit to
3 multiplies and 8 adds. Because we wanted to be able to per-
form other filters besides the Gaussian blur we kept the
convolver flexible. Our convolver does not exploit symmetry
and, therefore, does 9 multiplies and 8 adds. Because the
images that our filter operates on are RGB the convolution
has to be done on each colour. This means a total of 27 mul-
tiplies and 24 adds for each pixel.

We chose a bit-serial approach to minimize the amount
of chip real estate. The adders are a carry-save variety and
take up 5 cells.

The multipliers are parallel/serial. The coefficient is
loaded into a parallel register and the data is shifted through
the multiplier serially. The partial products are added using
carry-save adders. The size of the multipliers is determined
by the width of the coefficient. We used an 8 bit coefficient.
This requires 8 AND gates and 8 adders for a total of 48 cells
per multiplier.

ed
.g.

st-
re
r.
 get
rs.
the
nts

is
on-

CI
tes
had
el
nd
een
the
. A
ol
for
sor

up-
ard
hat
ible
ld
M
rd
AM

ke
-
le

of
lex-
r of
he

hat
h
the
our
il-

s-
lso
 to
Data for this filter is provided from the 32 bit dedicated
processor interface on the XC6200. The Photoshop plug-in
controls the reading and writing of image data to and from the
VCC Hotworks board. Because the convolution occurs on a 3
pixel column the plug-in does three write accesses to the
board before the filter can calculate a result at which time the
plug-in reads back the result. Reading and writing to the
XC6200 is done using the FastMap interface feature of the
device.

The XC6200 has another unique feature that we used for
letting user logic determine when the microprocessor inter-
face has accessed a register. Whenever the microprocessor
interface accesses a register a special internal signal gets
pulsed. After the plug-in is done writing the filter needs to
crunch on the data and produce a result. This pulsed signal is
used to start the filters state machine. This pulsing feature
prevented us from having to design extra logic to start the
state machine as well as extra software which would have
slowed the filter down. The data gets written to a shift register
on the XC6200. Then the multiply and add functions are per-
formed on the serial data. The final result is shifted back into
a shift register where the plug-in reads back the result.

The performance of the 2D convolver is 0.1 mega-pixels
per second. Without the PCI bus limit, it would perform at
around 8 mega-pixels per second.

12 Filter Development Procedure

The plug-in software was developed using the freely availa-
ble SDK from Adobe, which contains ready to use projects
for use with Microsoft’s C++ compiler (Developer Studio).
We made extensive use of the XC6200DS C++ class library,
which provides high level access to all the board resources
including the FPGA, the on-board SRAM and the on-board
programming clock generator.

Most of the filters were designed using the Lava hard-
ware description language. This is based on the algebraic
hardware description language Ruby [8], and allows us to
specify the behaviour and layout of circuits using powerful
circuit combinators [7].

13 Limitations

The filters produced worked perfectly on the development PC
using the VCC board. However, some of the filters did not
work on other versions of the VCC cards, and on some of the
Annopolis XC6200 PCI cards, even though all these cards are
made to a common reference standard. One problem is that
these cards using different SRAM chips (some by Toshiba
some by NEC) which have slightly different timing diagrams
and speeds. This means that some of the SRAM-based filters
do not port properly.

The performance of the system is very much bounded by
the PCI bandwidth. During the development of this project

the PCI interface core was modified by VCC, which result
in a board that went twice as fast for some of our filters (e
the SRAM version of the greyscale circuit).

The Hotworks board has 2 Megabytes of SRAM. Bur
ing large chunks of image data to the SRAM is much mo
efficient than doing a bunch of single pixel writes to the filte
Once the image data is resident on the board the filter can
very quick access to the data while avoiding PCI transfe
Once the filter has operated on all the data and written
results back to the SRAM the PCI bus can burst the conte
of the SRAM back to main memory. A drawback of th
approach is the added complexity of the circuit design to c
trol the SRAM.

In the case of the 3X3 convolution we had to do 3 P
writes to the board before each calculation. Two of the wri
are redundant because we didn’t use line buffers. If we
created line buffers in the SRAM then the first time a pix
was written it would have been saved in the line buffer a
the next two times the pixel was needed it could have b
quickly accessed from the buffer. Bursting entire lines to
SRAM would have increased performance even more
drawback of this method is creating the circuitry to contr
the address generation for the line buffers, particularly
arbitrary image sizes. Having an embedded microproces
resident on the board would greatly simplify this issue.

14 Future Work

There is clearly a need to provide operating system level s
port for such applications. In particular, we need a stand
software architecture (or hardware abstraction layer) t
allows systems to be built which are independent as poss
from the details of a specific board. For example, we wou
like to be able to abstract from details like the type of SRA
device used. And we would like to have straightforwa
information about the board resources e.g. how much SR
is installed.

Another reconfigurable processing board we would li
to test is the ACEcard™ from TSI TeleSys. It has an embed
ded microprocessor which would be very useful for hand
reconfiguration and controlling the memory. It has a lot
memory which makes image storage on the board more f
ible. It also has a lot more gates. This board has a pai
XC6264 devices on it. This is eight times the capacity of t
board we are using.

Another way to improve performance is to use a card t
supports Intel’s Advanced Graphics Port (AGP) [1] whic
allows transfers up to 533Mb/s on a separate bus, with
control signals passing as usual over the PCI bus. To
knowledge AGP is not supported on any commercially ava
able FPGA cards.

We are now working on the implementation of anti-alia
ing filters based on simple linear interpolation. We are a
considering more compute intensive operations like RGB

d,
CMYK colour space conversion. This occurs every time a
page is printed, and in conjunction with colour correction is a
very slow process.

15 Summary

This experiment shows that it is possible to use a generic PCI-
based FPGA card which be purchase from various vendors
for the acceleration of shrink-wrapped applications via plug-
in technology. As each different filter is selected, a new
design is downloaded. This makes much more flexible use of
the FPGA than is typical in embedded applications. Further-
more, the close association between on-chip registers and
program variables greatly simplifies the production of the
plug-in software.

However, a lot of work still need to be done before one
can produce hardware/software filters and sell them as com-
modity items. There needs to be greater standardisation of
card resources and a higher level run-time support for appli-
cation software.

16 Acknowledgements

This work was carried out with the support of several people
at Xilinx including Jaime Cummins, Raj Patel, Bernie New,
Dennis Rose, Stuart Nisbet, Beth Cowie, Tom Kean and Ann
Duncan. Finally, thanks to John Gray, who got us hooked in
the first place and continues to encourage us.

References

[1] Intel. Accelerated Graphics Port Interface Specification
Revision 2.0. December 11, 1997.

[2] T. Kean, B. New, B. Slous. A Multiplier for the XC6200.
Sixth International Workshop on Field Programmable
Logic and Applications. Darmstadt, 1996.

[3] H. T. Kung. Why Systolic Architectures. IEEE Compu-
ter. January 1982.

[4] Charles E. Leiserson. Systolic and Semisystolic Design.
IEEE Conference on Computer Design/VLSI In Com-
puters (ICCD’83). 1983.

[5] William H. Mangione-Smith, Brad Hutchings, David
Andrews, André DeHon, Carl Ebeling, Reiner Harten-
stein, Oskar Mencer, John Morris, Kirshna Palem,
Viktor K. Prasanna, Henk A. E. Spaanenburg. Seeking
Solutions in Configurable Computing. IEEE Computer,
December, Vol. 30, No. 12. December 1997.

[6] Satnam Singh and Pierre Bellec. Virtual Hardware for
Graphics Applications using FPGAs. FCCM’94. IEEE
Computer Society, 1994.

[7] Satnam Singh. Architectural Descriptions for FPGA
Circuits. FCCM’95. IEEE Computer Society. 1995.

[8] M. Sheeran, G. Jones. Circuit Design in Ruby. Formal

Methods for VLSI Design, J. Stanstrup, North Hollan
1992.

[9] Xilinx. XC6200 FPGA Family Data Sheet. Xilinx Inc.
1995.

[10] J.D. Foley, A. Van Dam. Fundamentals of Interactive
Computer Graphics. Addison Wesley. 1984.

	Accelerating Adobe Photoshop with Reconfigurable Logic
	Satnam Singh Xilinx Inc. San Jose, California, U.S.A. Satnam.Singh@xilinx.com
	Robert Slous Xilinx Inc. San Jose, California, U.S.A. Robert.Slous@xilinx.com
	Abstract
	1 Introduction
	2 Adobe Photoshop
	3 Performance Limits
	4 Image Processing Examples
	4.1 Anti-Aliasing
	Figure 1 Anti-Aliasing Graphics
	Figure 2 Anti-Aliasing text

	4.2 Image Filtering by Convolution
	Figure 3 Low-Pass Filtering of Jupiter

	5 Software and DSP Filters
	6 XC6200 FPGA/PCI Card Based Filters
	7 Accelerating Adobe Photoshop
	Figure 4 The Filter Menu of Adobe Photoshop

	8 Developing Photoshop Plug-Ins
	Figure 5 Some of the Xilinx filters developed for Photoshop

	9 A Colour to Greyscale Filter
	9.1 Colour Space Conversion
	9.2 A Software Only Filter

	10 A Wireless I/O Greyscale Filter
	Figure 6 An RGB to Greyscale Conversion Circuit using FastMap
	10.1 Using the on-board SRAM
	Figure 7 SRAM Version of the Greyscale Circuit

	11 Convolution Filters
	11.1 1D Image Convolution
	Figure 8 1D 3-pixel Wireless I/O Convolver

	11.2 2D 3x3 Image Convolver Plug-In
	Figure 9 2D 3x3-pixel Convolver Layout

	12 Filter Development Procedure
	13 Limitations
	14 Future Work
	15 Summary
	16 Acknowledgements
	References
	[1] Intel. Accelerated Graphics Port Interface Specification Revision 2.0. December 11, 1997.
	[2] T. Kean, B. New, B. Slous. A Multiplier for the XC6200. Sixth International Workshop on Field...
	[3] H. T. Kung. Why Systolic Architectures. IEEE Computer. January 1982.
	[4] Charles E. Leiserson. Systolic and Semisystolic Design. IEEE Conference on Computer Design/VL...
	[5] William H. Mangione-Smith, Brad Hutchings, David Andrews, André DeHon, Carl Ebeling, Reiner H...
	[6] Satnam Singh and Pierre Bellec. Virtual Hardware for Graphics Applications using FPGAs. FCCM’...
	[7] Satnam Singh. Architectural Descriptions for FPGA Circuits. FCCM’95. IEEE Computer Society. 1...
	[8] M. Sheeran, G. Jones. Circuit Design in Ruby. Formal Methods for VLSI Design, J. Stanstrup, N...
	[9] Xilinx. XC6200 FPGA Family Data Sheet. Xilinx Inc. 1995.
	[10] J.D. Foley, A. Van Dam. Fundamentals of Interactive Computer Graphics. Addison Wesley. 1984.

