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Chapter 2

Design Considerations

Summary
This chapter covers the following topics: 

• Using Global Clock Networks 

• Using Digital Clock Managers (DCMs) 

• Using Block SelectRAM™ Memory

• Using Distributed SelectRAM Memory

• Using Look-Up Tables as Shift Registers (SRLUTs)

• Designing Large Multiplexers

• Implementing Sum of Products (SOP) Logic

• Using Embedded Multipliers

• Using Single-Ended SelectI/O Resources

• Using Digitally Controlled Impedance (DCI)

• Using Double-Data-Rate (DDR) I/O

• Using LVDS I/O

• Using Bitstream Encryption

• Using the CORE Generator System 

Introduction
This chapter describes how to take advantage of the many special features of the Virtex-II 
architecture to achieve maximum density and performance. In many cases, the functions 
described can be automatically generated using the Xilinx CORE Generator™ tool. This is 
noted throughout the chapter, in the following sections specifically:

• Using Block SelectRAM™ Memory

• Using Distributed SelectRAM Memory

• Using Look-Up Tables as Shift Registers (SRLUTs)

• Designing Large Multiplexers

• Using Embedded Multipliers
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Using Global Clock Networks

Introduction
Virtex-II devices support very high frequency designs and thus require low-skew 
advanced clock distribution. With device density up to 10 million system gates, numerous 
global clocks are necessary in most designs. Therefore, to provide a uniform and portable 
solution (soft-IP), all Virtex-II devices from XC2V40 to XC2V8000 have 16 global clock 
buffers and support 16 global clock domains. Up to eight of these clocks can be used in any 
quadrant of the device by the synchronous logic elements (that is, registers, 18Kb block 
RAM, pipeline multipliers) and the IOBs. The software tools place and route these global 
clocks automatically.

If the design uses between 8 and 16 clocks, it must be partitioned into quadrants, with up 
to 8 clocks per quadrant. If more than 16 clocks are required, the backbone (24 horizontal 
and vertical long lines routing resources) can be used as additional clock network.

In addition to clock distribution, the 16 clock buffers are also “glitch-free” synchronous 2:1 
multiplexers. These multiplexers are capable of switching between two asynchronous (or 
synchronous) clocks at any time. No particular phase relations between the two clocks are 
needed. The clock multiplexers can also be configured as a global clock buffer with a clock 
enable. The clock can be stopped High or Low at the clock buffer output.

Clock Distribution Resources
The various resources available to manage and distribute the clocks include:

• 16 clock pads that can be used as regular user I/Os if not used as clock inputs. The 16 
clock pads can be configured for any I/O standard, including differential standards 
(for example, LVDS, LVPECL, and so forth).

• 16 “IBUFG” elements that represent the clock inputs in a VHDL or Verilog design. 

• 8 “IBUFGDS” elements (that is, attributes LVPECL_33, LVDS_25, LVDS_33, LDT_25, 
or ULVDS_25) that represent the differential clock input pairs in a VHDL or Verilog 
design. Each IBUFGDS replaces two IBUFG elements.

• 4 to 12 Digital Clock Managers (DCMs), depending on the device size, to de-skew and 
generate the clocks. For more information on DCMs, see "Using Digital Clock 
Managers (DCMs)" on page 175.

• 16 “BUFGMUX” elements that can consist of up to 16 global clock buffers (BUFG), 
global clock buffers with a clock enable (BUFGCE), or global clock multiplexers 
(BUFGMUX).

Figure 2-1 illustrates the placement of these clock resources in Virtex-II devices (the 
XC2V250 through the XC2V2000) that have eight DCMs.
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The simple scheme to distribute an external clock in the device is to implement a clock pad 
with an IBUFG input buffer connected to a BUFG global buffer, as shown in Figure 2-2 and 
Figure 2-3. The primary (GCLKP) and secondary (GCLKS) clock pads have no relationship 
with the P-side and N-side of differential clock inputs. In banks 0 and 1, the GCLKP 
corresponds to the N-side, and the GCLKS corresponds to the P-side of a differential clock 
input. In banks 4 and 5, this correspondence is reversed.
. 

Figure 2-1: Clock Resources in Virtex-II Devices
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Major synthesis tools automatically infer the IBUFG and BUFG when the corresponding 
input signal is used as a clock in the VHDL or Verilog code.

A high frequency or adapted (frequency, phase, and so forth) clock distribution with low 
skew is implemented by using a DCM between the output of the IBUFG and the input of 
the BUFG, as shown in Figure 2-4. "Using Digital Clock Managers (DCMs)" on page 175 
provides details about DCMs and their use.

Clock distribution from internal sources is also possible with a BUFG only or with a DCM, 
as shown in Figure 2-5. 

Figure 2-3: Simple Clock Distribution (Bank 4 and 5 Scheme)

Figure 2-4: Clock Distribution with DCM

Figure 2-5: Internal Logic Driving Clock Distribution
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Global Clock Inputs
The clock buffer inputs are fed either by one of the 16 clock pads (refer to the Virtex-II Data 
Sheet), by the outputs of the DCM, or by local interconnect. Each clock buffer can be a 
synchronous “glitch-free” 2:1 multiplexer with two clock inputs and one select input. 
Internal logic (or alternatively a regular IOB) can feed the clock inputs. Any internal or 
external signal can drive the select input or clock enable input.

The possible inputs driving a global clock buffer or multiplexer are summarized in 
Table 2-1. 

All BUFG (BUFGCE, BUFGMUX) outputs are available at the quadrant boundaries.

The output of the global clock buffer can be routed to non-clock pins.

Primary and Secondary Global Multiplexers
Each global clock buffer is a self-synchronizing circuit called a clock multiplexer.

The 16 global clock buffers or multiplexers are divided as follows:

• Eight primary clock multiplexers 

• Eight secondary clock multiplexers

No hardware difference exists between a primary and a secondary clock multiplexer. 
However, some restrictions apply to primary/secondary multiplexers, because they share 
input connections, as well as access to a quadrant.

Each Virtex-II device is divided into four quadrants: North-West, South-West, North-East, 
and South-East. Each quadrant has two primary and two secondary clock multiplexers. 
The clock multiplexers are indexed 0 to 7, with one primary and one secondary for each 
index, alternating on the top and on the bottom (i.e., clock multiplexer “0P” at the bottom 
is facing clock multiplexer “0S” at the top).

Table 2-1: Inputs Driving Global Clock Buffers or DCMs

Source

Destination

BUFG(I) or
BUFGCE(I)

BUFGCE
(CE)

BUFGMUX
(I0 or I1)

BUFGMUX
(S)

DCM
(CLKIN)

External Clock via IBUFG(O) Dedicated in 
same quadrant1 NA Dedicated in 

same quadrant1 NA Same edge

DCM Clock Outputs Same edge (top 
or bottom)2 NA Same edge (top 

or bottom)2 NA General 
interconnect3 

Internal Logic General 
interconnect

General 
interconnect

General 
interconnect

General 
interconnect

General 
interconnect3 

User I/O Pad via IBUF(O) 
(not IBUFG)

General 
interconnect

General 
interconnect

General 
interconnect

General 
interconnect

General 
interconnect3 

BUFG(O) NA NA NA NA Global clock 
net 

BUFGMUX(O) NA NA General 
interconnect NA Global clock 

net 

Notes: 
1. Not all IBUFGs in the quadrant have a dedicated connection to a specific BUFG. Others would require general interconnect 

to be hooked up.
2. Same edge (top or bottom) enables use of dedicated routing resources.
3. Pad to DCM input skew is not compensated.
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In each device, the eight top/bottom clock multiplexers are divided into four primary and 
four secondary, indexed 0 to 7, as shown in Figure 2-6.

Primary/Secondary: Rule 1

Considering two “facing” clock multiplexers (BUFG#P and BUFG#S), one or the other of 
these clock outputs can enter any quadrant of the chip to drive a clock within that 
quadrant, as shown in Figure 2-7. Note that the clock multiplexers “xP” and “xS” compete 
for quadrant access. For example, BUFG0P output cannot be used in the same quadrant as 
BUFG0S. 

Figure 2-6: Primary and Secondary Clock Multiplexer Locations

Figure 2-7: Facing BUFG#P and BUFG#S Connections
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Primary/Secondary: Rule 2

In a BUFGCE or BUFGMUX configuration, shared inputs have to be considered. Any two 
adjacent clock multiplexers share two inputs, as shown in Figure 2-8. The clock 
multiplexer “1P” and “0S” have common I0/I1 and I1/I0 inputs.

Table 2-2 lists the clock multiplexer pairs in any Virtex-II device. The primary multiplexer 
inputs I1/I0 are common with the corresponding secondary multiplexer inputs I0/I1 (i.e., 
Primary I1 input is common with secondary I0 input, and primary I0 input is common 
with secondary I1 input). 

Figure 2-8: Clock Multiplexer Pair Sharing Clock Multiplexer Inputs

Table 2-2: Top Clock Multiplexer Pairs

Primary I1/I0 1P 3P 5P 7P

Secondary I0/I1 0S 2S 4S 6S

Table 2-3: Bottom Clock Multiplexer Pairs

Primary I1/I0 0P 2P 4P 6P

Secondary I0/I1 1S 3S 5S 7S
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Primary/Secondary Usage

For up to eight global clocks, it is safe to use the eight primary global multiplexers (1P, 3P, 
5P, 7P on the top and 0P, 2P, 4P, 6P on the bottom). Because of the shared inputs, a 
maximum of eight independent global clock multiplexers can be used in a design, as 
shown in Figure 2-9. 

DCM Clocks
The four clock pins (IBUFG) in a quadrant can feed all DCMs in the same edge of the device. The 
clock-to-out and setup times are identical for all DCMs. Up to four clock outputs per DCM can 
be used to drive any clock multiplexer on the same edge (top or bottom), as shown in 
Figure 2-10.

BUFG Exclusivity
Each DCM has a restriction on the number of BUFGs it can drive on its (top or bottom) 
edge. Pairs of buffers with shared dedicated routing resources exist such that only one 
buffer from each dedicated pair can be driven by a single DCM. The exclusive pairs for 
each edge are: 1:5, 2:6, 3:7, and 4:8.

Figure 2-9: Eight Global Clocks Design
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Clock Output
The clock distribution is based on eight clock trees per quadrant. Each clock multiplexer 
output is driving one global clock net. The Virtex-II device has eight dedicated low-skew 
clock nets. The device is divided into four quadrants (NW, NE, SW and SE) with eight 
global clocks available per quadrant.

Eight clock buffers are in the middle of the top edge and eight are in the middle of the 
bottom edge. Any of these 16 clock buffer outputs can be used in any quadrant, up to a 
maximum of eight clocks per quadrant, as illustrated in Figure 2-11, provided there is not 
a primary vs. secondary conflict. 

Figure 2-10: DCM Clocks
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Designs with more than eight clocks must be floorplanned manually or automatically, 
distributing the clocks in each quadrant. As an example, a design with 16 clocks can be 
floorplanned as shown in Figure 2-12. 

The clock nets and clock buffers in this example are associated as shown in Table 2-4. 

Figure 2-12: 16-Clock Floorplan

Table 2-4: Clock Net Association With Clock Buffers
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BUFG 7S 6P 5S 4P 3S 2P 1S 0P
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CLK_A is used in three quadrants, and the other clocks are used in one or two quadrants, 
regardless of the position of the clock buffers (multiplexers), as long as they are not 
competing to access the same quadrant. (That is, CLK_A (BUFG7P) cannot be used in the 
same quadrant with CLK_I (BUFG7S). Refer to "Primary/Secondary: Rule 1" on page 160.) In 
other words, two buffers with the same index (0 to 7) cannot be used in the same quadrant.
Each register, block RAM, registered multiplier, or DDR register (IOB) can be connected to 
any of the eight clock nets available in a particular quadrant. 
Note that if a global clock (primary buffer) is used in four quadrants, the corresponding 
secondary buffer is not available.

Power Consumption
Clock trees have been designed for low skew and low-power operation. Any unused 
branch is disconnected, as shown in Figure 2-13.

Also available to reduce overall power consumption are the BUFGCE feature, for 
dynamically driving a clock tree only when the corresponding module is used, and the 
BUFGMUX feature, for switching from a high-frequency clock to a low-frequency clock.
The frequency synthesizer capability of the DCM can generate the low (or high) frequency 
clock from a single source clock, as illustrated in Figure 2-14. (See "Using Digital Clock 
Managers (DCMs)" on page 175). 

Figure 2-13: Low-Power Clock Network

Figure 2-14: Dynamic Power Reduction Scheme
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Library Primitives and Submodules
The primitives in Table 2-5 are available with the input, output, and control pins listed. 

Refer to "Using Single-Ended SelectI/O Resources" on page 258 for a list of the attributes 
available for IBUFG and Refer to "Using LVDS I/O" on page 317 for a list of the attributes 
available for IBUFGDS.

The submodules in Table 2-6 are available with the input, output, and control pins listed. 

Primitive Functions

IBUFG

IBUFG is an input clock buffer with one clock input and one clock output.

IBUFGDS

IBUFGDS is a differential input clock buffer with two clock inputs (positive and negative 
polarity) and one clock output.

BUFG

All Virtex-II devices have 16 global clock buffers (each of which can be used as BUFG, 
BUFGMUX, or BUFGCE).

BUFG is a global clock buffer with one clock input and one clock output, driving a low-
skew clock distribution network. The output follows the input, as shown in Figure 2-15.

BUGMUX and BUFGMUX_1

BUFGMUX (see Figure 2-16) can switch between two unrelated, even asynchronous 
clocks. Basically, a Low on S selects the CLK0 input, a High on S selects the S1 input. 
Switching from one clock to the other is done in such a way that the output High and Low 
time is never shorter than the shortest High or Low time of either input clock. As long as 
the presently selected clock is High, any level change of S has no effect .

Table 2-5: Clock Primitives

Primitive Input Output Control

IBUFG I O –

IBUFGDS I, IB O –

BUFG I O –

BUFGMUX I0, I1 O S

BUFGMUX_1 I0, I1 O S

Table 2-6: Clock Submodules

Submodule Input Output Control

BUFGCE I O CE

BUFGCE_1 I O CE

Figure 2-15: BUFG Waveforms
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BUFGMUX is the preferred circuit for rising edge clocks, while BUFGMUX_1 is preferred
for falling edge clocks. 

Operation of the BUFGMUX Circuit

If the presently selected clock is Low while S changes, or if it goes Low after S has changed, 
the output is kept Low until the other ("to-be-selected") clock has made a transition from 
High to Low. At that instant, the new clock starts driving the output. 

The two clock inputs can be asynchronous with regard to each other, and the S input can 
change at any time, except for a short setup time prior to the rising edge of the presently 
selected clock; that is, prior to the rising edge of the BUFGMUX output O. Violating this 
setup time requirement can result in an undefined runt pulse output.

Figure 2-17 shows a switchover from CLK0 to CLK1. 

• The current clock is CLK0.

• S  is activated High.

• If CLK0 is currently High, the multiplexer waits for CLK0 to go Low.

• Once CLK0 is Low, the multiplexer output stays Low until CLK1 transitions High to 
Low.

• When CLK1 transitions from High to Low, the output switches to CLK1.

• No glitches or short pulses can appear on the output.

Operation of the BUFGMUX_1 Circuit

If the presently selected clock is High while S changes, or if it goes High after S has 
changed, the output is kept High until the other ("to-be-selected") clock has made a 
transition from Low to High. At that instant, the new clock starts driving the output. 

The two clock inputs can be asynchronous with regard to each other, and the S input can 
change at any time, except for a short setup time prior to the falling edge of the presently 
selected clock; that is, prior to the falling edge of the BUFGMUX output O. Violating this 
setup time requirement can result in an undefined runt pulse output.

Figure 2-16: Virtex-II BUFGMUX or BUFGMUX_1 Function

Figure 2-17: BUFGMUX Waveform Diagram
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Figure 2-18 shows a switchover from CLK0 to CLK1. 

• The current clock is CLK0.

• S  is activated High.

• If CLK0 is currently Low, the multiplexer waits for CLK0 to go High.

• Once CLK0 is High, the multiplexer output stays High until CLK1 transitions Low to 
High.

• When CLK1 transitions from Low to High, the output switches to CLK1.

• No glitches or short pulses can appear on the output.

Submodules

BUFGCE and BUFGCE_1 

BUFGCE and BUFGCE_1 are submodules based on BUFGMUX and BUFGMUX_1, 
respectively. BUFGCE and BUFGCE_1 are global clock buffers incorporating a smart 
enable function that avoids output glitches or runt pulses. The select signal must meet the 
setup time for the clock. 

BUFGCE is the preferred circuit for clocking on the rising edge, while BUFGCE_1 is 
preferred when clocking on the falling edge.

Operation of the BUFGCE Circuit 

If the CE input (see Figure 2-19) is active (High) prior to the incoming rising clock edge, 
this Low-to-High-to-Low clock pulse passes through the clock buffer. Any level change of 
CE during the incoming clock High time has no effect.

If the CE input is inactive (Low) prior to the incoming rising clock edge, the following 
clock pulse does not pass through the clock buffer, and the output stays Low. Any level 
change of CE during the incoming clock High time has no effect. CE must not change 
during a short setup window just prior to the rising clock edge on the BUFGCE input I. 
Violating this setup time requirement can result in an undefined runt pulse output. 

Figure 2-18: BUFGMUX_1 Waveform Diagram

S

CLK0

CLK1

OUT

Wait for High

DS031_46a_101101

Figure 2-19: Virtex-II BUFGCE or BUFGCE_1 Function
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This means the output stays Low when the clock is disabled, but it completes the clock-
High pulse when the clock is being disabled, as shown in Figure 2-20.

Operation of the BUFGCE_1 circuit

If the CE input is active (High) prior to the incoming falling clock edge, this High-to-Low-
to-High clock pulse passes through the clock buffer. Any level change of CE during the 
incoming clock Low time has no effect.

If the CE input is inactive (Low) prior to the incoming falling clock edge, the following 
clock pulse does not pass through the clock buffer, and the output stays High. Any level 
change of CE during the incoming clock Low time has no effect. CE must not change 
during a short setup window just prior to the falling clock edge on the BUFGCE input I. 
Violating this setup time requirement can result in an undefined runt pulse output. 

This means the output stays High when the clock is disabled, but it completes the clock-
Low pulse when the clock is being disabled, as shown in Figure 2-21. 

When BUFGCE (or BUFGCE_1) is used with DCM outputs, a second BUFG can be used for 
clock feedback. Buffer sharing the inputs with BUFGCE is the preferred solution.

Summary
Table 2-7 shows the maximum resources available per Virtex-II device. 

Characteristics
The following are characteristics of global clocks in Virtex-II devices: 

• Low-skew clock distribution.

• Synchronous “glitch-free” multiplexer that avoids runt pulses. Switching between 
two asynchronous clock sources is usually considered unsafe, but it is safe with the 
Virtex-II global clock multiplexer. 

Figure 2-20: BUFGCE Waveforms

Figure 2-21: BUFGCE_1 Waveforms
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Table 2-7: Resources per Virtex-II Device (from XC2V40 to XC2V8000)

Resource Maximum Number

Single-ended IBUFG (pads) 16

Differential IBUFGDS (pairs) 8

BUFG (Global Clock Buffer) 16

BUFGCE (or BUFGCE_1) 8

BUFGMUX (or BUFGMUX_1) 8
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• Any level change on S must meet a setup time requirement with respect to the signal 
on the output O (rising edge for BUFGMUX, falling edge for BUFGMUX_1). Any level 
change on CE must meet a setup time requirement with respect to the signal on the 
Input I (rising edge for BUFGCE, falling edge for BUFGCE_1).

• Two BUFGMUX (or BUFGMUX_1) resources can be cascaded to create a 3 to 1 clock 
multiplexer.

Location Constraints
BUFGMUX and BUFGMUX_1 (primitives) and IBUFG (IBUFGDS) instances can have 
LOC properties attached to them to constrain placement. The LOC properties use the 
following form to constrain a clock net:

NET “clock_name” LOC=”BUFGMUX#P/S”;

Each clock pad (or IBUFG) has a direct connection with a specific global clock multiplexer 
(input I0). A placement that does not conform to this rule causes the software to send a 
warning.

If the clock pad (or IBUFG) has LOC properties attached, the DCM allows place and route 
software maximum flexibility, as compared to a direct connection to the global clock buffer 
(BUFG).

Secondary Clock Network
If more clocks are required, the 24 horizontal and vertical long lines in Virtex-II devices can 
be used to route additional clock nets. Skew is minimized by the place and route software, 
if the USELOWSKEWLINES constraint is attached to the net.

VHDL and Verilog Instantiation
VHDL and Verilog instantiation templates are available as examples (see “VHDL and 
Verilog Templates” on page 170) for all primitives and submodules.

In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template should be inserted within the VHDL design file. The port map of 
the architecture section should include the design signal names.

VHDL and Verilog Templates
The following are templates for primitives:

• BUFGMUX_INST
• BUFGMUX_1_INST
The following are templates for submodules:

• BUFGCE_SUBM
• BUFGCE_1_SUBM

As examples, the BUFGMUX_INST.vhd, BUFGMUX_1_INST.vhd, BUFGCE_SUBM.vhd, 
and BUFGCE_1_SUBM.vhd VHDL templates are shown. In addition, the 
BUFGMUX_INST.v, BUFGMUX_1_INST.v, BUFGCE_1_SUBM.v, and BUFGCE_SUBM.v 
Verilog templates are shown.

VHDL Template
-- Module: BUFGMUX_INST 
-- Description: VHDL instantiation template
-- Global Clock Multiplexer (Switch Low)
-- Device: Virtex-II Family 
---------------------------------------------------------------------
-- Component Declarations:
--
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component BUFGMUX 
  port (
  I0   : in std_logic;
        I1   : in std_logic;
        S    : in std_logic;
        O    : out std_logic
); 

end component;
--
-- Architecture  section:
--
-- Global Clock Buffer Instantiation
U_BUFGMUX: BUFGMUX
  port map (
I0     => , -- insert clock input used when select (S) is Low 
I1     => , -- insert clock input used when select (S) is High
S      => , -- insert Mux-Select input
O      =>   -- insert clock output
);

--
---------------------------------------------------------------------
-- Module: BUFGMUX_1_INST 
-- Description: VHDL instantiation template
-- Global Clock Multiplexer (Switch High)
--
-- Device: Virtex-II Family 
---------------------------------------------------------------------
-- Component Declarations:
component BUFGMUX_1 
  port (
  I0   : in std_logic;
        I1   : in std_logic;
        S    : in std_logic;
        O    : out std_logic
); 

end component;
--
-- Architecture  section:
--
-- Global Clock Buffer Instantiation
U_BUFGMUX_1: BUFGMUX_1
  port map (
I0     => , -- insert clock input used when select (S) is Low 
I1     => , -- insert clock input used when select (S) is High
S      => , -- insert Mux-Select input
O      =>   -- insert clock output
);

--
---------------------------------------------------------------------
-- Module: BUFGCE_SUBM 
-- Description: VHDL instantiation template
-- Global Clock Buffer with Clock Enable:
-- Input Clock Buffer to BUFGMUX - Clock disabled = Low
-- Device: Virtex-II Family 
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
--
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
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--
entity BUFGCE_SUBM is
  port (
        I:  in std_logic;
        CE: in std_logic;
        O:  out std_logic
       ); 
end BUFGCE_SUBM;
--
architecture BUFGCE_SUBM_arch of BUFGCE_SUBM is
--
-- Component Declarations:
component BUFGMUX 
  port (
  I0   : in std_logic;
        I1   : in std_logic;
        S    : in std_logic;
        O    : out std_logic
); 

end component;
--
-- signal declarations
signal GND : std_logic;
signal CE_B : std_logic;
--
begin
GND <= '0';
--
CE_B <= not CE;
--
-- Global Clock Buffer Instantiation
U_BUFGMUX: BUFGMUX
  port map (
I0     => I, 
I1     => GND, 
S      => CE_B, 
O      => O 
);

--
end BUFGCE_SUBM_arch;
---------------------------------------------------------------------
-- Module: BUFGCE_1_SUBM 
-- Description: VHDL instantiation template
-- Global Clock Buffer with Clock Enable:
-- Input Clock Buffer to BUFGMUX_1 - Clock disabled = High
-- Device: Virtex-II Family 
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
--
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
--
entity BUFGCE_1_SUBM is
  port (
        I:  in std_logic;
        CE: in std_logic;
        O:  out std_logic
       ); 
end BUFGCE_1_SUBM;
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--
architecture BUFGCE_1_SUBM_arch of BUFGCE_1_SUBM is
--
-- Component Declarations:
component BUFGMUX_1 
  port (
  I0   : in std_logic;
        I1   : in std_logic;
        S    : in std_logic;
        O    : out std_logic
); 

end component;
--
-- signal declarations
signal VCC : std_logic;
--
signal CE_B : std_logic;
--
begin
VCC <= '1';
--
CE_B <= not CE;
--
-- Global Clock Buffer Instantiation
U_BUFGMUX_1: BUFGMUX_1
  port map (
I0     => I, 
I1     => VCC, 
S      => CE_B, 
O      => O 
);

--
end BUFGCE_1_SUBM_arch;

Verilog Template
//-------------------------------------------------------------------
// Module:      BUFGMUX_INST 
// Description: Verilog Instantiation Template
// Global Clock Multiplexer (Switch Low)
//
//
// Device: Virtex-II Family 
//-------------------------------------------------------------------
//
//BUFGMUX Instantiation
BUFGMUX  U_BUFGMUX 
              (.I0(),  // insert clock input used when select(S) is Low
               .I1(),  // insert clock input used when select(S) is High
               .S(),   // insert Mux-Select input 
               .O()    // insert clock output 
              );
//-------------------------------------------------------------------
// Module:      BUFGMUX_1_INST 
// Description: Verilog Instantiation Template
// Global Clock Multiplexer (Switch High)
//
//
// Device: Virtex-II Family 
//-------------------------------------------------------------------
//
//BUFGMUX_1 Instantiation
BUFGMUX_1  U_BUFGMUX_1 
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              (.I0(),  // insert clock input used when select(S) is Low
               .I1(),  // insert clock input used when select(S) is High
               .S(),   // insert Mux-Select input 
               .O()    // insert clock output 
              );
//-------------------------------------------------------------------
// Module:      BUFGCE_SUBM
// Description: Verilog Submodule
// Global Clock Buffer with Clock Enable:
// Input Clock Buffer to BUFGMUX - Clock disabled = Low
//
// Device: Virtex-II Family 
//-------------------------------------------------------------------
module BUFGCE_SUBM (I,
                    CE,
                    O); 
input   I,
        CE;

output  O;

wire GND;

assign GND = 1'b0;
     
BUFGMUX U_BUFGMUX 
             (.I0(I),
              .I1(GND),
              .S(~CE),
              .O(O)
             );
//
endmodule
//-------------------------------------------------------------------
// Module: BUFGCE_1_SUBM
// Description: Verilog Submodule
// Global Clock Buffer with Clock Enable:
// Input Clock Buffer to BUFGMUX_1 - Clock disabled = High
// 
// Device: Virtex-II Family 
//-------------------------------------------------------------------

module BUFGCE_1_SUBM (I,
                      CE,
                      O); 
input   I,
        CE;

output  O;

wire VCC;

assign VCC = 1'b1;
     
BUFGMUX_1 U_BUFGMUX_1 
             (.I0(I),
              .I1(VCC),
              .S(~CE),
              .O(O)
             );
//
endmodule
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Using Digital Clock Managers (DCMs)

Overview
Virtex-II devices have 4 to 12 DCMs, and each DCM provides a wide range of powerful 
clock management features:

• Clock De-skew: The DCM contains a digitally-controlled feedback circuit (delay-
locked loop) that can completely eliminate clock distribution delays. Clock de-skew 
works as follows: 

The incoming clock drives a long chain of delay elements (individual small buffers). A 
wide multiplexer selects any one of these buffers as an output. A controller drives the 
select inputs of this multiplexer. The phase detector in this controller compares the 
incoming clock signal (CLKIN) against a feedback input (CLKFB), which must be 
another version of the same clock signal, usually from the far end of the internal clock 
distribution network (but it can also be from an output pin). 

The phase detector steers the controller to adjust the tap selection, and thus the 
through-delay in the DCM, in such a way that the two inputs to the phase comparator 
coincide.( This is a typical servo loop.) The tap controller adds exactly the right amount 
of delay to the clock distribution network to give it a total delay of one full clock 
period. For a repetitive clock signal, this effectively eliminates the clock distribution 
delay completely.

• Frequency Synthesis: Separate outputs provide a doubled frequency (CLK2X and 
CLK2X180). Another output (CLKDV) provides a frequency that is a specified fraction 
of the input frequency (÷1.5, ÷2, ÷2.5, and so forth, up to ÷15 and ÷16.) 

Two other outputs (CLKFX and CLKFX180) provide an output frequency that is 
derived from the input clock by simultaneous frequency division and multiplication. 
The user can specify any integer multiplier (M) and divisor (D) within the range 
specified in the DCM Timing Parameters section of the Virtex-II Data Sheet. An internal 
calculator figures out the appropriate tap selection, so that the output edge coincides 
with the input clock whenever that is mathematically possible. For example, M=9 and 
D=5, multiply the frequency by 1.8, and the output rising edge is coincident with the 
input rising edge every 5 input periods = every 9 output periods. 

• Phase Shifting: Three outputs drive the same frequency as CLCK0 but are delayed by 
1/4, 1/2, and 3/4 of a clock period. An additional control optionally shifts all nine 
clock outputs by a fixed fraction of the clock period (defined during configuration, 
and described in multiples of the clock period divided by 256). 

The user can also dynamically and repetitively move the phase forwards or backwards 
by one unit of the clock period divided by 256. Note that any such phase shift is always 
invoked as a specific fraction of the clock period, but is always implemented by 
moving delay taps with a resolution of DCM_TAP (see DCM Timing Parameters in the 
Virtex-II Data Sheet). 

• General Control Signals: The RST input, when High, resets the entire DCM. The  
LOCKED output is High when all enabled DCM circuits have locked. The active High 
STATUS outputs indicate the following:

- Phase Shift Overflow (STATUS[0]) 

- CLKIN Stopped (STATUS[1]) 

- CLKFX Stopped (STATUS[2])
UG002 (v1.3)  3 December 2001 www.xilinx.com 175
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/partinfo/ds031.htm
http://www.xilinx.com/partinfo/ds031.htm


R

Clock De-Skew
The Virtex-II Digital Clock Manager (DCM) offers a fully digital, dedicated on-chip de-skew 
circuit providing zero propagation delay, low clock skew between output clock signals 
distributed throughout the device, and advanced clock domain control. These features can 
be used to implement several circuits that improve and simplify system level design.

Any four of the nine outputs of the DCM can be used to drive a global clock network. All 
DCM outputs can drive general interconnect at the same time; for example, DCM output 
can be used to generate board-level clocks. The well-buffered global clock distribution 
network minimizes clock skew caused by loading differences. By monitoring a sample of 
the output clock (CLK0 or CLK2X), the de-skew circuit compensates for the delay on the 
routing network, effectively eliminating the delay from the external input port to the 
individual clock loads within the device.

Figure 2-22 shows all of the inputs and outputs relevant to the DCM de-skew feature. 

The de-skew feature can also act as a clock mirror. By driving the CLK0 or CLK2X output 
off-chip and then back in again, the de-skew feature can be used to de-skew a board-level 
clock serving multiple devices.

By taking advantage of the de-skew circuit to remove on-chip clock delay, the designer can 
greatly simplify and improve system level design involving high-fanout, high-
performance clocks.

Operation
A de-skew circuit in its simplest form consists of variable delay line and control logic. The 
delay line produces a delayed version of the input clock (CLKIN). The clock distribution 
network routes the clock to all internal registers and to the clock feedback CLKFB pin. The 
control logic samples the input clock, as well as the feedback clock, and adjusts the delay line. 

For optimum performance, the Virtex-II DCM uses a discrete digital delay line, which is a 
series of buffer elements each with an intrinsic delay of less than DCM_TAP (see AC 
characteristics in the Virtex-II Data Sheet).

A de-skew circuit works by inserting delay between the input clock and the feedback clock 
until the two rising edges align, putting the two clocks 360 degrees out of phase, which 
means they are in phase. When the edges from the input clock line up with the edges from 
the feedback clock, the DCM achieves “lock.” The two clocks have no discernible 
difference. Thus, the DCM output clock compensates for the delay in the clock distribution 
network, effectively removing the delay between the source clock and its loads.

Figure 2-22: Clock De-Skew Outputs
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Input Clock Requirements
The clock input of the DCM can be driven either by an IBUFG, an IBUF, or a BUFGMUX. 
An LVDS clock can also be used as input.
The output clock signal of a DCM, essentially a delayed version of the input clock signal, 
reflects any instability on the input clock in the output waveform. A DCM cannot improve 
the input jitter. The DCM input clock requirements are specified in the Virtex-II Data Sheet.
Once locked, the DCM can tolerate input clock period variations of up to the value specified 
by CLKIN_CYC_JITT_DLL_HF (at high frequencies) or CLKIN_CYC_JITT_DLL_LF (at low 
frequencies). Larger frequency changes can cause the DCM to lose lock, which is indicated 
by the LOCKED output going low. The user must then reset the DCM. The cycle-to-cycle 
input jitter must be kept to less than CLKIN_PER_JITT_DLL_LF in the low frequencies and 
CLKIN_PER_JITT_DLL_HF for the high frequencies.

Input Clock Changes
Changing the period of the input clock beyond the maximum drift amount requires a 
manual reset of the DCM. Failure to reset the DCM produces an unreliable lock signal and 
output clock. 
It is possible to stop the input clock with little impact to the de-skew circuit. The clock 
should be stopped for no more than 100 ms to minimize the effect of device cooling, which 
would change the tap delays. The clock should be stopped during a Low phase, and when 
restored, must generate a full High half-period. During this time, LOCKED stays High and 
remains High when the clock is restored. So a High on LOCKED does not necessarily mean 
that a valid clock is available.
When the clock is being stopped, one to four more clock cycles are still generated as the delay 
line is flushed. When the clock is restarted, the output clock cycles are not generated for one 
to four clocks as the delay line is filled. The most common case is two or three clocks. In a 
similar manner, a phase shift of the input clock is also possible. The phase shift propagates to 
the output one to four clocks after the original shift, with no disruption to the DCM control.

Output Clocks
Some restrictions apply regarding the connectivity of the output pins. The DCM clock 
outputs can each drive an OBUF, a global clock buffer BUFGMUX, or they can route 
directly to the clock input of a synchronous element. The DCM clock outputs can drive 
BUFGMUXs that are on the same edge of the device (top or bottom).
Do not use the DCM output clock signals until after activation of the LOCKED signal. Prior 
to the activation of the LOCKED signal, the DCM output clocks are not valid and can 
exhibit glitches, spikes, or other spurious movement.

Characteristics of the De-Skew Circuit

• Can eliminate clock distribution delay by effectively adding one clock period delay. 
Clocks are de-skewed to within CLKOUT_PHASE, specified in the Virtex-II Data Sheet.

• Can be used to eliminate on-chip as well as off-chip clock delay.

• Has no restrictions on the delay in the feedback clock path.

• Requires a continuously running input clock.

• Adapts to a wide range of frequencies. However, once locked to a frequency, cannot 
tolerate large variations of the input frequency.

• De-skew circuit is part of the DCM, which also includes phase adjustment, frequency 
synthesis, and spread spectrum techniques that are described in this document.

• Does not eliminate jitter. The de-skew circuit output jitter is the sum of input jitter and 
some jitter value that the de-skew circuit might add.

• The completion of configuration can be delayed until after DCM locks to guarantee 
the system clock is established prior to initiating the device.
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Port Signals

Source Clock Input — CLKIN

The CLKIN pin provides the user source clock (the clock signal on which the de-skew 
circuit operates) to the DCM. The CLKIN frequency must fall in the ranges specified in the 
Virtex-II Data Sheet. The clock input signal can be provided by one of the following:

IBUF    — Input buffer

IBUFG — Global clock input buffer on the same edge of the device (top or bottom)

BUFGMUX — Internal global clock buffer

Feedback Clock Input — CLKFB

A reference or feedback signal is required to delay-compensate the output. Connect only 
the CLK0 or CLK2X DCM outputs to the feedback clock input (CLKFB) pin to provide the 
necessary feedback to the DCM. The feedback clock input signal can be driven by an 
internal global clock buffer (BUFGMUX), one of the global clock input buffers (IBUFG) on 
the same edge of the device (top or bottom), or IBUF (the input buffer.)

If an IBUFG sources the CLKFB pin, the following special rules apply:

1. An external input port must source the signal that drives the IBUFG input pin.

2. That signal must directly drive only OBUFs and nothing else.

Reset Input — RST

When the reset pin is activated, the LOCKED signal deactivates within four source clock 
cycles. The RST pin, active High, must either connect to a dynamic signal or be tied to 
ground. As the DCM delay taps reset to zero, glitches can occur on the DCM clock output 
pins. Activation of the RST pin can also severely affect the duty cycle of the clock output 
pins. Furthermore, the DCM output clocks no longer de-skew with respect to one another. 
For these reasons, use the reset pin only when reconfiguring the device or changing the 
input frequency. The reset input signal is asynchronous and should be held HIGH for at 
least 2 ns. It takes approximately 120 ms for the DCM to achieve lock after a reset in the 
slowest frequency range. The DCM locks faster at higher frequencies. See the LOCK_DLL 
teiming parameter in the Virtex-II Data Sheet.

Locked Output — LOCKED

In order to achieve lock, the DCM may need to sample several thousand clock cycles. After 
the DCM achieves lock, the LOCKED signal goes High. The DCM timing parameter 
section of the Virtex-II Data Sheet provides estimates for locking times.

To guarantee that the system clock is established prior to the device “waking up,” the DCM 
can delay the completion of the device configuration process until after the DCM locks. 
The STARTUP_WAIT attribute activates this feature.

Until the LOCKED signal activates, the DCM output clocks are not valid and can exhibit 
glitches, spikes, or other spurious movement. In particular, the CLK2X output appears as a 
1x clock with a 25/75 duty cycle.

Status - STATUS

The STATUS output is an 8-bit output, of which STATUS[1] reveals the loss of the input 
clock, CLKIN to the DCM.
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Attributes
The following attributes provide access to some of the Virtex-II series de-skew features, 
(for example, clock division and duty cycle correction).

Frequency Mode

The de-skew feature of the DCM is achieved with a delay-locked loop (DLL). This attribute 
specifies either the high or low-frequency mode of the DLL. The default is low-frequency 
mode. In high-frequency mode, the only outputs available from the DLL are the CLK0, 
CLK180, CLKDV, and LOCKED. (CLK90, CLK270, CLK2X, and CLK2X180 are not 
available in high-frequency mode.) The frequency ranges for both frequency modes are 
specified in the Virtex-II Data Sheet. To set the DLL to high-frequency mode, attach the 
DLL_FREQUENCY_MODE=HIGH attribute in the source code or schematic.

Feedback Input

This attribute specifies the feedback input to the DCM (CLK0, or CLK2x). CLK0 is the 
default feedback. When both the CLK0 and the CLK2x outputs are used internally or 
externally to the device, the feedback input can be either the CLK0 or CLK2x. In order to 
set the feedback to CLK2X, attach the CLOCK_FEEDBACK=2X attribute in the source code 
or schematic. 

Duty Cycle Correction 

The 1x clock outputs, CLK0, CLK90, CLK180, and CLK270, use the duty cycle corrected 
default such that they exhibit a 50/50 duty cycle. The DUTY_CYCLE_CORRECTION 
attribute (by default TRUE) controls this feature. 

To deactivate the DCM duty cycle correction for the 1x clock outputs, attach the 
DUTY_CYCLE_CORRECTION=FALSE attribute in the source code or schematic. This 
makes the output clocks have the same duty cycle as the source clock.

Startup Delay 

The default value of the STARTUP_WAIT attribute is FALSE. When STARTUP_WAIT is set 
to TRUE, and the LCK_cycle BitGen option is used, then the configuration startup 
sequence waits in the specified cycle until the DCM locks. For details, see Chapter 3:  
Configuration and Appendix B:  BitGen and PROMGen Switches and Options.

Legacy Support
The Virtex/Virtex-E library primitives/sub modules are supported in Virtex-II for legacy 
purposes. The following are supported primitives/submodules:

• CLKDLL

• CLKDLLE

• CLKDLLHF

• BUFGDLL

Library Primitive

Only a single library primitive is available for the DLL, a part of the DCM. It is labeled the 
'DCM' primitive.
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Submodules

Figure 2-23: BUFG_CLK0_SUBM

Figure 2-24: BUFG_CLK2X_SUBM

Figure 2-25: BUFG_CLK0_FB_SUBM
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Frequency Synthesis
The DCM provides several flexible methods for generating new clock frequencies. Each 
method has a different operating frequency range and different AC characteristics. The 
CLK2X and CLK2X180 outputs double the clock frequency. The CLKDV output provides 
divided output clocks with division options of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 
9, 10, 11, 12, 13, 14, 15, and 16.

The DCM also offers a fully digital, dedicated Frequency Synthesizer output (CLKFX) and 
its opposite phase (CLKFX180). The output frequency can be any function of the input 
clock frequency described by M ¸ D, where M is the multipler (numerator) and D is the 
divisor (denominator).

The two counter-phase frequency synthesized outputs can drive global clock routing 
networks within the device. The well-buffered global clock distribution network 
minimizes clock skew due to differences in distance or loading. See Figure 2-28.

Operation
The DCM clock output CLKFX is any M/D product of the clock input to the DCM. 
Specifications for M and D, as well as input and output frequency ranges for the frequency 
synthesizer, are provided in the Virtex-II Data Sheet. The frequency synthesizer output is 

Figure 2-26: BUFG_CLK2X_FB_SUBM

Figure 2-27: BUFG_CLKDV_SUBM
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phase aligned to the clock output, CLK0, only if feedback is provided to the CLKFB input 
of the DCM.

The internal operation of the frequency synthesizer is complex and beyond the scope of 
this document. The frequency synthesizer multiplies the incoming frequencies by the pre-
calculated quotient M/D and generates the correct output frequencies as long as it is 
within the range specified in the Virtex-II Data Sheet.

For example, assume input frequency = 50 MHz, M = 25, and D = 8 (note that M and D 
values have no common factors and hence cannot be reduced). The output frequency is 
correctly 156.25 MHz, although 25 x 50 MHz = 1.25 GHz and 50 MHz / 8 = 6.25 MHz, and 
both of these values are far outside the range of the input frequency.

Frequency Synthesizer Characteristics

• The frequency synthesizer provides an output frequency equal to the input frequency 
multiplied by M and divided by D. 

• The outputs CLKFX and CLKFX180 always have a 50/50 duty-cycle.

• Smaller M and D values achieve faster lock times. The user should divide M and D by 
the largest common factor.

• The outputs are phase aligned with CLK0 when CLKFB is connected.

Port Signals

Source Clock Input — CLKIN

The CLKIN pin provides the user source clock to the DCM. The CLKIN frequency must fall 
in the ranges specified in the Virtex-II Data Sheet. The clock input signal can be provided by 
one of the following:

• IBUF    — Input buffer

• IBUFG — Global clock input buffer 

• BUFGMUX — Internal global clock buffer

2x Clock Output — CLK2X

The CLK2X output provides a frequency-doubled clock with an automatic 50/50 duty-
cycle correction. This output is not available in high-frequency mode. 

Figure 2-28: Frequency Synthesis Outputs
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Until the DCM has achieved lock, the CLK2X output appears as a 1x version of the input 
clock with a 25/75 duty cycle. This behavior allows the DCM to lock on the correct edge 
with respect to source clock.

Clock Divide Output — CLKDV

The clock divide output pin CLKDV provides a lower frequency version of the source 
clock. The CLKDV_DIVIDE property controls CLKDV such that the source clock is 
divided by N where N is either 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 
14, 15, or 16.

This feature provides automatic duty cycle correction such that the CLKDV output pin has 
a 50/50 duty cycle always in low-frequency mode, as well as for all all integer values of the 
division factor N in high-frequency mode.

Frequency Synthesized Clock Output - CLKFX

The CLKFX output provides a frequency-synthesized clock (M/D * CLKIN) with a 50/50 
duty cycle. For the CLKFX output to be phase-aligned with CLKIN, the clock feedback 
(CLK0) must be provided at the CLKFB input. With M and D adjusted such that they have 
no common factor, the alignment occurs only once every D input clock cycles.

Frequency Synthesized Clock Output 180o Phase Shifted - CLKFX180

The CLKFX180 output is a 180o phase shifted version of the CLKFX clock output, also with 
a 50/50 duty cycle.

Locked Output — LOCKED

The LOCKED signal is activated after the DCM has achieved the parameter values set by 
the user parameters. To guarantee that the system clock is established prior to the device 
“waking up,” the DCM can delay the completion of the device configuration process until 
after the DCM locks. The STARTUP_WAIT attribute activates this feature. Until the 
LOCKED signal activates, the DCM output clocks are not valid and can exhibit glitches, 
spikes, or other spurious signals. 

Reset Input — RST

When the reset pin activates, the LOCKED signal deactivates within four source clock 
cycles. The M and D values at configuration are maintained after the reset. The RST pin, 
active High, must either connect to a dynamic signal or be tied to ground. Activation of the 
RST pin can also severely affect the duty cycle of the clock output pins. For this reason, 
activate the reset pin only when reconfiguring the device or changing the input frequency. 
The reset input signal is asynchronous and should be held High for at least 2 ns. 

Status - STATUS

The STATUS output is an 8-bit output:

• STATUS[1] indicates the loss of the input clock, CLKIN, only when CLKFB is 
connected.

• STATUS[2] indicates loss of CLKFX and CLKFX180 even though LOCKED might still 
be High. Note that this “CLKFX stopped” status functions only when CLKIN is 
present.

Attributes
The following attributes provide access to some of the Virtex-II series frequency synthesis 
features, (for example, clock multiplication, clock division).

Clock Divide 

The CLKDV_DIVIDE attribute specifies how the signal on the CLKDV pin is frequency 
divided with respect to the CLK0 pin. The values allowed for this attribute are 1.5, 2, 2.5, 3, 
3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, or 16; the default value is 2.
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Frequency Mode for Frequency Synthesis

This attribute specifies either the high or low-frequency mode of the frequency synthesizer. 
The default is low-frequency mode. The frequency ranges for both frequency modes are 
specified in the Virtex-II Data Sheet.

To set the frequency synthesizer to high-frequency mode, attach the 
DFS_FREQUENCY_MODE=HIGH attribute in the source code or schematic.

Multiply/Divide Attribute

The M and D values can be set using the CLKFX_MULTIPLY and the CLKFX_DIVIDE 
attributes. The default settings are M = 4 and D = 1.

Startup Delay 

The default value of the STARTUP_WAIT attribute is FALSE. When STARTUP_WAIT is set 
to TRUE, and the LCK_cycle BitGen option is used, then the configuration startup 
sequence waits in the specified cycle until the DCM locks. For details, see Chapter 3:  
Configuration and Appendix B:  BitGen and PROMGen Switches and Options.

Submodules

Figure 2-29: BUFG_DFS_SUBM

Figure 2-30: BUFG_DFS_FB_SUBM
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Phase Shifting
The DCM can also provide coarse and fine-grained phase shifting. The CLK0, CLK90, 
CLK180, and CLK270 outputs are each phase shifted by ¼ of the input clock period relative 
to each other, providing coarse phase control. Note that CLK90 and CLK270 are not 
available in high-frequency mode. 

Operation
Figure 2-31 shows a block diagram of the DCM and all of the outputs affected by the 
circuitry of the phase shift feature.

Fine-phase adjustment affects all nine DCM output clocks. When activated, the phase shift 
between the rising edges of CLKIN and CLKFB is a specified fraction of the input clock period. 

In variable mode, the PHASE_SHIFT value can also be dynamically incremented or 
decremented as determined by PSINCDEC synchronously to PSCLK, when the PSEN 
input is active. Figure 2-32 illustrates the effects of fine-phase shifting. 

Figure 2-32

Figure 2-31: Phase Shift Outputs
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Two separate components of the phase shift range must be understood: 

• PHASE_SHIFT attribute range

• FINE_SHIFT_RANGE DCM timing parameter range

The PHASE_SHIFT attribute is the numerator in the following equation: 

Phase Shift (ns) = (PHASE_SHIFT/256) * PERIODCLKIN 

The full range of this attribute is always -255 to +255, but its practical range varies with 
CLKIN frequency, as constrained by the FINE_SHIFT_RANGE component, which represents 
the total delay achievable by the phase shift delay line. Total delay is a function of the 
number of delay taps used in the circuit. Across process, voltage, and temperature, this 
absolute range is guaranteed to be as specified in the DCM Timing Parameters section of 
the Virtex-II Data Sheet. 

Absolute range (fixed mode) = ± FINE_SHIFT_RANGE

Absolute range (variable mode) = ± FINE_SHIFT_RANGE/2

The reason for the difference between fixed and variable modes is as follows. For variable 
mode to allow symmetric, dynamic sweeps from -255/256 to +255/256, the DCM sets the 
"zero phase skew" point as the middle of the delay line, thus dividing the total delay line 
range in half.  In fixed mode, since the PHASE_SHIFT value never changes after 
configuration, the entire delay line is available for insertion into either the CLKIN or 
CLKFB path (to create either positive or negative skew). 

Taking both of these components into consideration, the following are some usage 
examples: 

• If PERIODCLKIN = two times FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is 
limited to ± 128, and in variable mode it is limited to ± 64. 

• If PERIODCLKIN = FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to 
± 255, and in variable mode it is limited to ± 128. 

• If PERIODCLKIN £ half of the FINE_SHIFT_RANGE, then PHASE_SHIFT is limited to 
± 255 in either mode.

In variable mode, the phase factor can be changed by activating PSEN for one period of 
PSCLK. Increments or decrements to the phase factor can be made by setting the 
PSINCDEC pin to a High or Low, respectively. When the de-skew circuit has completed an 
increment or decrement operation, the signal PSDONE goes High for a single PSCLK 
cycle. This indicates to the user that the next change may be made. 

The user interface and the physical implementation are different. The user interface 
describes the phase shift as a fraction of the clock period (N/256). The physical 
implementation adds the appropriate number of buffer stages (each DCM_TAP) to the 
clock delay. The DCM_TAP granularity limits the phase resolution at higher clock 
frequencies.

Phase Shift Characteristics

• Offers fine-phase adjustment with a resolution of ±1/256 of the clock period (or ± one 
DCM_TAP, whichever is greater) by configuration and also dynamically under user 
control.

• The phase shift settings affect all nine DCM outputs.

• VCC and temperature do not affect the phase shift.
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Port Signals

1x Clock Outputs — CLK[0|90|180|270]

The 1x clock output pin CLK0 represents a delay-compensated version of the source clock 
(CLKIN) signal. In low-frequency mode, the DCM provides three phase-shifted versions of 
the CLK0 signal (CLK90, CLK180, and CLK270), whereas in high-frequency mode, only 
the 180 phase-shifted version is provided. All four (including CLK0) of the phase shifted 
outputs can be used simultaneously in low-frequency mode. The relationship between 
phase shift and the corresponding period shift appears in Table 2-8. The timing diagrams 
in Figure 2-33 illustrate the DLL clock output characteristics. 

By default, the DCM provides a 50/50 duty cycle correction on all 1x clock outputs. The 
DUTY_CYCLE_CORRECTION attribute (TRUE by default), controls this feature. Attach 
the DUTY_CYCLE_CORRECTION=FALSE property to the DCM symbol in order to 
deactivate the DCM duty cycle correction. With duty cycle correction deactivated, the 
output clocks have the same duty cycle as the source clock.

The DCM clock outputs can drive an OBUF, a BUFGMUX, or they can route directly to the 
clock input of a synchronous element. 

Table 2-8: Relationship of Phase-Shifted Output Clock to Period Shift

Phase (degrees) % Period Shift

0 0%

90 25%

180 50%

270 75%

Figure 2-33: DLL Output Characteristics
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Source Clock Input — CLKIN

The CLKIN pin provides the user source clock to the DCM. The CLKIN frequency must fall 
in the ranges specified in the Virtex-II Data Sheet. The clock input signal can be provided by 
one of the following:

• IBUF    — Input buffer

• IBUFG — Global clock input buffer 

• BUFGMUX — Internal global clock buffer

Feedback Clock Input — CLKFB

A DCM requires a reference or feedback signal to provide delay-compensated output. 
Connect only the CLK0 or CLK2X DCM outputs to the feedback clock input (CLKFB) pin 
to provide the necessary feedback to the DCM. The feedback clock input signal can be 
driven by an internal global clock buffer (BUFGMUX), one of the global clock input buffers 
(IBUFG) on the same edge of the device (top or bottom), or IBUF (the input buffer.)

If an IBUFG sources the CLKFB pin, the following special rules apply:
1. An external input port must source the signal that drives the IBUFG input pin.
2. That signal must directly drive only OBUFs and nothing else.

Phase Shift Clock - PSCLK

The PSCLK input can be sourced by the CLKIN signal to the DCM, or it can be a lower or 
higher frequency signal provided from any clock source (external or internal). The 
frequency range of PSCLK is defined by PSCLK_FREQ_LF/HF (see the Virtex-II Data 
Sheet). This input has to be tied to ground when the CLKOUT_PHASE_SHIFT attribute is 
set to NONE or FIXED. 

Phase Shift Increment/Decrement - PSINCDEC

The PSINCDEC signal is synchronous to PSCLK and is used to increment or decrement the 
phase shift factor. In order to increment or decrement the phase shift by 1/256 of clock 
period, the PSINCDEC signal must be High for increment or Low for decrement. This 
input has to be tied to ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE 
or FIXED. 

Phase Shift Enable - PSEN

To initiate a variable phase-shift operation, the PSEN input must be activated for one 
period of PSCLK. The phase change becomes effective after up to 100 CLKIN pulse cycles 
plus three PSCLK cycles, and is indicated by a High pulse on PSDONE. During the phase 
transition there are no sporadic changes or glitches on any output. PSEN must be tied to 
ground when the CLKOUT_PHASE_SHIFT attribute is set to NONE or FIXED.

Reset Input — RST

When the reset pin is activated, the LOCKED signal deactivates within four source clock 
cycles. After reset, the phase shift value is set to its value at configuration in both the fixed 
and variable modes. The RST pin, active High, must either connect to a dynamic signal or 
be tied to ground. Activation of the RST pin can also severely affect the duty cycle of the 
clock output pins. For this reason, activate the reset pin only when reconfiguring the 
device or changing the input frequency. The reset input signal is asynchronous and should 
be held High for at least 2 ns.

Locked Output — LOCKED

The LOCKED signal activates after the DCM has achieved lock. To guarantee that the 
system clock is established prior to the device “waking up,” the DCM can delay the 
completion of the device configuration process until after the DCM locks. The 
STARTUP_WAIT attribute activates this feature. Until the LOCKED signal activates, the 
DCM output clocks are not valid and can exhibit glitches, spikes, or other spurious 
movement. For details, refer to Chapter 3:  Configuration.
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Phase Shift DONE - PSDONE

The PSDONE signal is synchronous to PSCLK and it indicates, by pulsing High for one 
period of PSCLK, that the requested phase shift was achieved. This signal also indicates to 
the user that a new change to the phase shift numerator can be made. This output signal is 
not valid if the phase shift feature is not being used or is in FIXED mode. 

Status - STATUS

STATUS[0] indicates the overflow of the phase shift numerator and that the absolute delay 
range of the phase shift delay line is exceeded.

Attributes
The following attributes provide access to the Virtex-II fine-phase adjustment capability.

Clock Out Phase Shift 

The CLKOUT_PHASE_SHIFT attribute controls the use of the PHASE_SHIFT value. It can 
be set to NONE, FIXED, or VARIABLE. By default, this attribute is set to NONE, indicating 
that the phase shift feature is not being used. When this attribute is set to NONE, the 
PHASE_SHIFT value has no effect on the DCM outputs. If the CLKOUT_PHASE_SHIFT 
attribute is set to FIXED or NONE, then the PSEN, PSINCDEC, and the PSCLK inputs 
must be tied to ground. The effects of the CLKOUT_PHASE_SHIFT attribute are shown in 
Figure 2-32.

PHASE_SHIFT

This attribute specifies the phase shift numerator as any value from -255 to 255.

Submodules

Figure 2-34: BUFG_PHASE_CLKFX_FB_SUBM
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Figure 2-35: BUFG_PHASE_CLK0_SUBM
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Figure 2-36: BUFG_PHASE_CLK2X_SUBM
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Figure 2-37: BUFG_PHASE_CLKDV_SUBM
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VHDL and Verilog Instantiation
VHDL and Verilog instantiation templates are available as examples (see “VHDL and 
Verilog Templates” on page 191) for all submodules.

In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template should be inserted within the VHDL design file. The port map of 
the architecture section should include the design signal names.

VHDL and Verilog Templates

The following submodules described in this section are available:

• BUFG_CLK0_SUBM
• BUFG_CLK2X_SUBM
• BUFG_CLK0_FB_SUBM
• BUFG_CLK2X_FB_SUBM
• BUFG_CLKDV_SUBM
• BUFG_DFS_SUBM
• BUFG_DFS_FB_SUBM
• BUFG_PHASE_CLKFX_FB_SUBM
• BUFG_PHASE_CLK0_SUBM
• BUFG_PHASE_CLK2X_SUBM
• BUFG_PHASE_CLKDV_SUBM

The corresponding submodules must be synthesized with the design. The 
BUFG_CLK0_SUBM submodule is provided in VHDL and Verilog as an example.

VHDL Template
-- Module: BUFG_CLK0_SUBM 
-- Description: VHDL submodule 
-- DCM with CLK0 deskew
-- Device: Virtex-II Family 
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
--
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
--
entity BUFG_CLK0_SUBM is
  port ( 
        CLK_IN : in std_logic;
        RST    : in std_logic;
        CLK1X  : out std_logic;
        LOCK   : out std_logic
       );
end BUFG_CLK0_SUBM;
--
architecture BUFG_CLK0_SUBM_arch of BUFG_CLK0_SUBM is
-- Components Declarations:
component BUFG 
  port (

I : in std_logic;
O : out std_logic

); 
end component;
component DCM
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-- pragma translate_off
    generic ( 
             DLL_FREQUENCY_MODE : string := "LOW";
             DUTY_CYCLE_CORRECTION : boolean := TRUE;
             STARTUP_WAIT : boolean := FALSE
            );  
-- pragma translate_on
    port ( CLKIN     : in  std_logic;
           CLKFB     : in  std_logic;
           DSSEN     : in  std_logic;
           PSINCDEC  : in  std_logic;
           PSEN      : in  std_logic;
           PSCLK     : in  std_logic;
           RST       : in  std_logic;
           CLK0      : out std_logic;
           CLK90     : out std_logic;
           CLK180    : out std_logic;
           CLK270    : out std_logic;
           CLK2X     : out std_logic;
           CLK2X180  : out std_logic;
           CLKDV     : out std_logic;
           CLKFX     : out std_logic;
           CLKFX180  : out std_logic;
           LOCKED    : out std_logic;
           PSDONE    : out std_logic;
           STATUS    : out std_logic_vector(7 downto 0)
          );
end component;
-- Attributes
attribute DLL_FREQUENCY_MODE : string; 
attribute DUTY_CYCLE_CORRECTION : string; 
attribute STARTUP_WAIT : string; 
attribute DLL_FREQUENCY_MODE of U_DCM: label is "LOW";
attribute DUTY_CYCLE_CORRECTION of U_DCM: label is "TRUE";
attribute STARTUP_WAIT of U_DCM: label is "FALSE";
-- Signal Declarations:
signal GND : std_logic;
signal CLK0_W: std_logic;
signal CLK1X_W: std_logic;
begin
GND <= '0';
CLK1X <= CLK1X_W;
-- DCM Instantiation
U_DCM: DCM
  port map (
            CLKIN =>    CLK_IN,
            CLKFB =>    CLK1X_W,
            DSSEN =>    GND,
            PSINCDEC => GND,
            PSEN =>     GND,
            PSCLK =>    GND,
            RST =>      RST,
            CLK0 =>     CLK0_W,
            LOCKED =>   LOCK
   ); 

-- BUFG Instantiation
U_BUFG: BUFG
  port map (
   I => CLK0_W,

O => CLK1X_W
   );
end BUFG_CLK0_SUBM_arch;
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Verilog Template
// Module:      BUFG_CLK0_SUBM
// Description: Verilog Submodule
// DCM with CLK0 deskew
//
// Device: Virtex-II Family 
//-------------------------------------------------------------------

module BUFG_CKL0_SUBM (
                       CLK_IN,
                       RST,
                       CLK1X,
                       LOCK
                      );

    input CLK_IN;
    input RST;

    output CLK1X;
    output LOCK;
    
    wire CLK0_W;
    wire GND;

    assign GND = 1'b0;

//BUFG Instantiation
//
BUFG  U_BUFG 
            (.I(CLK0_W),  
             .O(CLK1X)
            );
 

// Attributes for functional simulation//
// synopsys translate_off
       defparam U_DCM.DLL_FREQUENCY_MODE = "LOW";
       defparam U_DCM.DUTY_CYCLE_CORRECTION = "TRUE";
       defparam U_DCM.STARTUP_WAIT = "FALSE";
// synopsys translate_on

// Instantiate the DCM primitive//
DCM U_DCM ( 

                   .CLKFB(CLK1X), 
                   .CLKIN(CLK_IN), 
                   .DSSEN(GND), 
                   .PSCLK(GND), 

   .PSEN(GND), 
                   .PSINCDEC(GND), 
                   .RST(RST), 
                   .CLK0(CLK0_W),  

   .LOCKED(LOCK)
                  );

// synthesis attribute declarations
  /* synopsys attribute 

DLL_FREQUENCY_MODE "LOW"
DUTY_CYCLE_CORRECTION "TRUE"
STARTUP_WAIT "FALSE"

  */
endmodule
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DCM Waveforms
The DCM waveforms shown below are the results of functional simulation using Model 
Technology's ModelSim EE/Plus 5.3a_p1 simulator. Note that the time scale for these 
simulations were set to 1ns/1ps. It is important to set the unused inputs of the DCM to 
logic 0 and to set the attribute values to the correct data types. For example, the 
PHASE_SHIFT, CLKFX_DIVIDE, and CLKFX_MULTIPLY attributes are integers and 
should be set to values as shown.

defparam U_DCM.DFS_FREQUENCY_MODE = “LOW”;

defparam U_DCM.CLKFX_DIVIDE = 1; (this value’s range is specified under 
Frequency Synthesis in the Virtex-II Data Sheet)

defparam U_DCM.CLKFX_MULTIPLY = 4; (this value’s range is specified 
under Frequency Synthesis in the Virtex-II Data Sheet)

defparam U_DCM.CLKOUT_PHASE_SHIFT = “FIXED”;

defparam U_DCM.PHASE_SHIFT = 150;       (Any value from 1 to 255)

defparam U_DCM.STARTUP_WAIT = “FALSE”;

The input clock, 'clk_in' (CLKIN input of DCM) in all these waveforms is 50 MHz. The 
DCM_DLL waveforms in Figure 2-38 shows four DCM outputs, namely, clk1x (CLK0 
output of DCM), clk2x (CLK2X output of DCM), clk90 (CLK90 output of DCM), and clk180 
(CLK180 output of DCM). 

The DCM_DFS Waveforms in Figure 2-39 shows four DCM outputs namely, clk1x (CLK0 
output of DCM), clk2x (CLK2X output of DCM), clkfx (CLKFX output of DCM), and 
clkfx180 (CLKFX180 output of DCM). In this case the attributes, CLKFX_DIVIDE = 1, and 
the CLKFX_MULTIPLY = 3.

Figure 2-38: DCM_DLL Waveforms

ug002_c2_095_113000
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The DCM_DPS waveforms in Figure 2-40 shows four DCM outputs, namely, clk1x (CLK0 
output of DCM), clk2x (CLK2X output of DCM), clk90 (CLK90 output of DCM), and clk180 
(CLK180 output of DCM). In this case, the attribute PHASE_SHIFT = 150 which translates 
to a phase shift of (150 x 20 ns)/256 = 11.719 ns, where 20 ns is the clock period.

Figure 2-39: DCM_DFS Waveforms

ug002_c2_096_113000

Figure 2-40: DCM_DPS Waveforms
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The DCM_DPS_DFS waveforms in Figure 2-41 shows four DCM outputs namely, clk1x 
(CLK0 output of DCM), clk90 (CLK90 output of DCM), clkfx (CLKFX output of DCM), and 
clkfx180 (CLKFX180 output of DCM). In this case, the attributes, CLKFX_DIVIDE = 1, and 
the CLKFX_MULTIPLY = 4. The attribute, PHASE_SHIFT = 150 which translates to a phase 
shift of (150 x 20 ns)/256 = 11.719 ns, where 20 ns is the clock period.

Figure 2-41: DCM_DPS_DFS Waveforms

ug002_c2_098_113000
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Using Block SelectRAM™ Memory

Introduction
In addition to distributed SelectRAM memory, Virtex-II devices feature a large number of 
18 Kb block SelectRAM memories. The block SelectRAM memory is a True Dual-Port™ 
RAM, offering fast, discrete, and large blocks of memory in the device. The memory is 
organized in columns, and the total amount of block SelectRAM memory depends on the 
size of the Virtex-II device. The 18 Kb blocks are cascadable to enable a deeper and wider 
memory implementation, with a minimal timing penalty incurred through specialized 
routing resources.
Embedded dual- or single-port RAM modules, ROM modules, synchronous and 
asynchronous FIFOs, and data width converters are easily implemented using the Xilinx 
CORE Generator “Block Memory” modules. Asynchronous FIFOs can also be generated 
using the CORE Generator Asynchronous FIFO module. Starting with IP Update #3, the 
designer can also generate synchronous FIFOs using Block Memory.

Synchronous Dual-Port and Single-Port RAM

Data Flow
The 18Kb block SelectRAM dual-port memory consists of an 18-Kb storage area and two 
completely independent access ports, A and B. The structure is fully symmetrical, and both 
ports are interchangeable. 
Data can be written to either port and can be read from the same or the other port. Each 
port is synchronous, with its own clock, clock enable, and write enable. Note that the read 
operation is also synchronous and requires a clock edge. 

As described below, there are three options for the behavior of the data output during a 
write operation on its port. There is no dedicated monitor to arbitrate the result of identical 
addresses on both ports. It is up to the user to time the two clocks appropriately. However, 
conflicting simultaneous writes to the same location never cause any physical damage.

Figure 2-42: Dual-Port Data Flows
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Operating Modes
To maximize utilization of the True Dual-Port memory at each clock edge, the block 
SelectRAM memory supports three different write modes for each port. The “read during 
write” mode offers the flexibility of using the data output bus during a write operation on 
the same port. Output behavior is determined by the configuration. This choice increases 
the efficiency of block SelectRAM memory at each clock cycle and allows designs that use 
maximum bandwidth.

Read Operation 
The read operation uses one clock edge. The read address is registered on the read port, 
and the stored data is loaded into the output latches after the RAM access interval passes.

Write Operations 
A write operation is a single clock-edge operation. The write address is registered on the 
write port, and the data input is stored in memory.

Three different modes are used to determine data available on the output latches after a 
write clock edge.

WRITE_FIRST or Transparent Mode (Default)

In WRITE_FIRST mode, the input data is simultaneously written into memory and stored 
in the data output (transparent write), as shown in Figure 2-43. 

Figure 2-43:  WRITE_FIRST Mode Waveforms
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READ_FIRST or Read-Before-Write Mode

In READ_FIRST mode, data previously stored at the write address appears on the output 
latches, while the input data is being stored in memory (read before write). See Figure 2-44. 

NO_CHANGE Mode

In NO_CHANGE mode, the output latches remain unchanged during a write operation. 
As shown in Figure 2-45, data output is still the last read data and is unaffected by a write 
operation on the same port. 

Mode selection is set by configuration. One of these three modes is set individually for 
each port by an attribute. The default mode is WRITE_FIRST. 

Figure 2-44: READ_FIRST Mode Waveforms

Figure 2-45: NO_CHANGE Mode Waveforms
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Conflict Resolution
Virtex-II block SelectRAM memory is a True Dual-Port RAM that allows both ports to 
simultaneously access the same memory cell. When one port writes to a given memory 
cell, the other port must not address that memory cell (for a write or a read) within the 
clock-to-clock setup window. Figure 2-46 describes this asynchronous operation. 

If port A and port B are configured with different widths, only the overlapping bits are 
invalid when conflicts occur.

Asynchronous Clocks
The first CLK_A clock edge violates the clock-to-clock setup parameter, because it occurs 
too soon after the last CLK_B clock edge. The write operation on port B is valid, and the read 
operation on port A is invalid.
At the second rising edge of the CLK_B pin, the write operation is valid. The memory 
location (bb) contains 4444. The second rising edge of CLK_A reads the new data at the 
same location (bb), which now contains 4444. 
The clock-to-clock setup timing parameter is specified together with other block 
SelectRAM switching characteristics in the Virtex-II Data Sheet.

Synchronous Clocks
When both clocks are synchronous or identical, the result of simultaneous accesses from 
both ports to the same memory cell is best described in words:

• If both ports read simultaneously from the same memory cell: 
Both Data_out ports will have the same data.

• If both ports write simultaneously into the same memory cell: 
The data stored in that cell becomes invalid (unless both ports write identical data).

• If one port writes and the other one reads from the same memory cell: 
The write operation succeeds, and the write port’s Data_out behaves as determined 
by the read output mode (write_first, read_first, or no_change).
If the write port is in read_first mode, the read port's Data_out represents the previous 
content of the memory cell. If the write port is in write_first mode or in no_change 
mode, the read port's Data_out becomes invalid. Obviously, the read port's mode 
setting does not affect this operation.

Figure 2-46:  READ-WRITE Conditions
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Characteristics
• A write operation requires only one clock edge.

• A read operation requires only one clock edge.

• All inputs are registered with the port clock and have a setup-to-clock timing 
specification.

• All outputs have a read-through function or one of three read-during-write functions, 
depending on the state of the WE pin. The outputs relative to the port clock are 
available after the clock-to-out timing interval.

• Block SelectRAM cells are true synchronous RAM memories and do not have a 
combinatorial path from the address to the output.

• The ports are completely independent of each other (that is, clocking, control, address, 
read/write functions, initialization, and data width) without arbitration.

• Output ports are latched with a self-timed circuit, guaranteeing glitch-free reads. The 
state of the output port does not change until the port executes another read or write 
operation.

• Data input and output signals are always busses; that is, in a 1-bit width 
configuration, the data input signal is DI[0] and the data output signal is DO[0].

Library Primitives
The input and output data busses are represented by two busses for 9-bit width (8+1), 
18-bit width (16+2), and 36-bit width (32+4) configurations. The ninth bit associated with 
each byte can store parity or error correction bits. No specific function is performed on this 
bit. 

The separate bus for parity bits facilitates some designs. However, other designs safely use 
a 9-bit, 18-bit, or 36-bit bus by merging the regular data bus with the parity bus. 
Read/write and storage operations are identical for all bits, including the parity bits. 

Figure 2-47 shows the generic dual-port block RAM primitive. DIA, DIPA, ADDRA, DOA, 
DOPA, and the corresponding signals on port B are busses. 

Figure 2-47:  Dual-Port Block RAM Primitive
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Table 2-9 lists the available dual-port primitives for synthesis and simulation.

Figure 2-48 shows the generic single-port block RAM primitive. DI, DIP, ADDR, DO, and 
DOP are busses.

Table 2-10 lists all of the available single-port primitives for synthesis and simulation.

Table 2-9: Dual-Port Block RAM Primitives

Primitive Port A Width Port B Width

RAMB16_S1_S1

1

1

RAMB16_S1_S2 2

RAMB16_S1_S4 4

RAMB16_S1_S9 (8+1)

RAMB16_S1_S18 (16+2)

RAMB16_S1_S36 (32+4)

RAMB16_S2_S2

2

2

RAMB16_S2_S4 4

RAMB16_S2_S9 (8+1)

RAMB16_S2_S18 (16+2)

RAMB16_S2_S36 (32+4)

RAMB16_S4_S4

4

4

RAMB16_S4_S9 (8+1)

RAMB16_S4_S18 (16+2)

RAMB16_S4_S36 (32+4)

RAMB16_S9_S9

(8+1)

(8+1)

RAMB16_S9_S18 (16+2)

RAMB16_S9_S36 (32+4)

RAMB16_S18_S18
(16+2)

(16+2)

RAMB16_S18_S36 (32+4)

RAMB16_S36_S36 (32+4) (32+4)

Figure 2-48: Single-Port Block RAM Primitive

Table 2-10: Single-Port Block RAM Primitives
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VHDL and Verilog Instantiation
VHDL and Verilog instantiation templates are available as examples (see “VHDL and 
Verilog Templates” on page 207).

In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template should be inserted within the VHDL design file. The port map of 
the architecture section should include the design signal names.

The SelectRAM_Ax templates (with x = 1, 2, 4, 9, 18, or 36) are single-port modules and 
instantiate the corresponding RAMB16_Sx module.

SelectRAM_Ax_By templates (with x = 1, 2, 4, 9, 18, or 36 and y = = 1, 2, 4, 9, 18, or 36) are 
dual-port modules and instantiate the corresponding RAMB16_Sx_Sy module.

Port Signals
Each block SelectRAM port operates independently of the other while accessing the same 
set of 18K-bit memory cells.

Clock - CLK[A|B]
Each port is fully synchronous with independent clock pins. All port input pins have setup 
time referenced to the port CLK pin. The data bus has a clock-to-out time referenced to the 
CLK pin. Clock polarity is configurable (rising edge by default).

Enable - EN[A|B]
The enable pin affects the read, write, and set/reset functionality of the port. Ports with an 
inactive enable pin keep the output pins in the previous state and do not write data to the 
memory cells. Enable polarity is configurable (active High by default).

Write Enable - WE[A|B]
Both EN and WE are active when the contents of the data input bus is written to memory 
at the address pointed to by the address bus. The output latches are loaded or not loaded 
according to the write configuration (WRITE_FIRST, READ_FIRST, NO_CHANGE). When 
inactive, a read operation occurs, and the contents of the memory cells referenced by the 
address bus reflect on the data-out bus, regardless of the write mode attribute. Write enable 
polarity is configurable (active High by default).

Set/Reset - SSR[A|B]
The SSR pin forces the data output latches to contain the value “SRVAL” (see “Attributes” 
on page 205). The data output latches are synchronously asserted to 0 or 1, including the 
parity bit. In a 36-bit width configuration, each port has an independent SRVAL[A|B] 
attribute of 36 bits. This operation does not affect RAM memory cells and does not disturb 
write operations on the other port. Like the read and write operation, the set/reset function 
is active only when the enable pin of the port is active. Set/reset polarity is configurable 
(active High by default).

Address Bus - ADDR[A|B]<#:0>
The address bus selects the memory cells for read or write. The width of the port 
determines the required address bus width, as shown in Table 2-11.
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Data-In Busses - DI[A|B]<#:0> & DIP[A|B]<#:0>
Data-in busses provide the new data value to be written into RAM. The regular data-in bus 
(DI) and the parity data-in bus (when available) have a total width equal to the port width. 
For example the 36-bit port data width is represented by DI<31:0> and DIP<3:0>, as shown 
in Table 2-11.

Data-Out Busses - DO[A|B]<#:0> & DOP[A|B]<#:0>
Data-out busses reflect the contents of memory cells referenced by the address bus at the 
last active clock edge during a read operation. During a write operation (WRITE_FIRST or 
READ_FIRST configuration), the data-out busses reflect either the data-in busses or the 
stored value before write. During a write operation in NO_CHANGE mode, data-out 
busses are not affected. The regular data-out bus (DO) and the parity data-out bus (DOP) 
(when available) have a total width equal to the port width, as shown in Table 2-11.

Inverting Control Pins
For each port, the four control pins (CLK, EN, WE, and SSR) each have an individual 
inversion option. Any control signal can be configured as active High or Low, and the clock 
can be active on a rising or falling edge (active High on rising edge by default) without 
requiring other logic resources.

Unused Inputs
Non-connected Data and/or address inputs should be connected to logic “1”.

GSR
The global set/reset (GSR) signal of a Virtex-II device is an asynchronous global signal that 
is active at the end of device configuration. The GSR can also restore the initial Virtex-II 
state at any time. The GSR signal initializes the output latches to the INIT, or to the INIT_A 
and INIT_B value (see “Attributes” on page 205). A GSR signal has no impact on internal 
memory contents. Because it is a global signal, the GSR has no input pin at the functional 
level (block SelectRAM primitive).

Address Mapping
Each port accesses the same set of 18,432 memory cells using an addressing scheme 
dependent on the width of the port. The physical RAM locations addressed for a particular 
width are determined using the following formula (of interest only when the two ports use 
different aspect ratios):

END = ((ADDR + 1) * Width) -1 START= ADDR * Width

Table 2-12 shows low-order address mapping for each port width.

Table 2-11: Port Aspect Ratio

Port Data Width Depth ADDR Bus DI Bus / DO Bus DIP Bus / DOP Bus

1 16,384 <13:0> <0> NA

2 8,192 <12:0> <1:0> NA

4 4,096 <11:0> <3:0> NA

9 2,048 <10:0> <7:0> <0>

18 1,024 <9:0> <15:0> <1:0>

36 512 <8:0> <31:0> <3:0>
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Attributes
Content Initialization - INIT_xx

INIT_xx attributes define the initial memory contents. By default block SelectRAM 
memory is initialized with all zeros during the device configuration sequence. The 64 
initialization attributes from INIT_00 through INIT_3F represent the regular memory 
contents. Each INIT_xx is a 64-digit hex-encoded bit vector. The memory contents can be 
partially initialized and are automatically completed with zeros.
The following formula is used for determining the bit positions for each INIT_xx attribute.
Given yy = conversion hex-encoded to decimal (xx), INIT_xx corresponds to the memory 
cells as follows:

• from [(yy + 1) * 256] -1 

• to (yy) * 256
For example, for the attribute INIT_1F, the conversion is as follows:

• yy = conversion hex-encoded to decimal X”1F” = 31

• from [(31+1) * 256] -1 = 8191

• to 31 * 256 = 7936
More examples are given in Table 2-13.

Table 2-12: Port Address Mapping

Port 
Width

Parity 
Locations Data Locations

1

N.A.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4 7 6 5 4 3 2 1 0

8 + 1 3 2 1 0 3 2 1 0

16 + 2 1 0 1 0

32 + 4 0 0

Table 2-13: Block SelectRAM Initialization Attributes 

Attribute
Memory Cell 

from to

INIT_00 255 0

INIT_01 511 256

INIT_02 767 512

… … …

INIT_0E 3839 3584

INIT_0F 4095 3840

INIT_10 4351 4096

… … …

INIT_1F 8191 7936

INIT_20 8447 8192

… … …

INIT_2F 12287 12032

INIT_30 12543 12288

.. … …

INIT_3F 16383 16128
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Content Initialization - INITP_xx
INITP_xx attributes define the initial contents of the memory cells corresponding to 
DIP/DOP busses (parity bits). By default these memory cells are also initialized to all 
zeros. The eight initialization attributes from INITP_00 through INITP_07 represent the 
memory contents of parity bits. Each INITP_xx is a 64-digit hex-encoded bit vector and 
behaves like a regular INIT_xx attribute. The same formula can be used to calculate the bit 
positions initialized by a particular INITP_xx attribute.

Output Latches Initialization - INIT (INIT_A & INIT_B)
The INIT (single-port) or INIT_A and INIT_B (dual-port) attributes define the output 
latches values after configuration. The width of the INIT (INIT_A & INIT_B) attribute is 
the port width, as shown in Table 2-14. These attributes are hex-encoded bit vectors and 
the default value is 0.

Output Latches Synchronous Set/Reset - SRVAL (SRVAL_A & SRVAL_B)
The SRVAL (single-port) or SRVAL_A and SRVAL_B (dual-port) attributes define output 
latch values when the SSR input is asserted. The width of the SRVAL (SRVAL_A and 
SRVAL_B) attribute is the port width, as shown in Table 2-14. These attributes are hex-
encoded bit vectors and the default value is 0. 

Initialization in VHDL or Verilog Codes
Block SelectRAM memory structures can be initialized in VHDL or Verilog code for both 
synthesis and simulation. For synthesis, the attributes are attached to the block SelectRAM 
instantiation and are copied in the EDIF output file to be compiled by Xilinx Alliance 
Series™ tools. The VHDL code simulation uses a generic parameter to pass the 
attributes. The Verilog code simulation uses a defparam parameter to pass the attributes. 

The XC2V_RAMB_1_PORT block SelectRAM instantiation code examples (in VHDL and 
Verilog) illustrate these techniques (see “VHDL and Verilog Templates” on page 207).

Location Constraints
Block SelectRAM instances can have LOC properties attached to them to constrain 
placement. Block SelectRAM placement locations differ from the convention used for 
naming CLB locations, allowing LOC properties to transfer easily from array to array.

The LOC properties use the following form:

LOC = RAMB16_X#Y#

The RAMB16_X0Y0 is the bottom-left block SelectRAM location on the device.

Table 2-14: Port Width Values

Port Data Width  DOP Bus  DO Bus INIT / SRVAL

1 NA <0> 1

2 NA <1:0> 2

4 NA <3:0> 4

9 <0> <7:0> (1+8) = 9

18 <1:0> <15:0> (2+16) = 18

36 <3:0> <31:0> (4 + 32) = 36
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Applications

Creating Larger RAM Structures
Block SelectRAM columns have specialized routing to allow cascading blocks with 
minimal routing delays. Wider or deeper RAM structures are achieved with a smaller 
timing penalty than is encountered when using normal routing resources.

The CORE Generator program offers the designer a painless way to generate wider and 
deeper memory structures using multiple block SelectRAM instances. This program 
outputs VHDL or Verilog instantiation templates and simulation models, along with an 
EDIF file for inclusion in a design.

Multiple RAM Organizations
The flexibility of block SelectRAM memories allows designs with various types of RAM in 
addition to regular configurations. Application notes at www.xilinx.com describe some of 
these designs, with VHDL and Verilog reference designs included. 

Virtex-II block SelectRAM can be used as follows:

• Two independent single-port RAM resources

• One 72-bit single-port RAM resource

• One triple-port (1 Read/Write and 2 Read ports) RAM resource

Application notes with VHDL and Verilog reference designs at www.xilinx.com also 
describe other implementations using block SelectRAM memory, such as:

• xapp258 “FIFOs Using Virtex-II Block RAM” 

• xapp260 “Fast Read/Write CAM Solution”

VHDL and Verilog Templates
VHDL and Verilog templates are available for all single-port and dual-port primitives. The 
A and B numbers indicate the width of the ports.

The following are single-port templates:

• SelectRAM_A1
• SelectRAM_A2
• SelectRAM_A4
• SelectRAM_A9
• SelectRAM_A18
• SelectRAM_A36
The following are dual-port templates:

• SelectRAM_A1_B1
• SelectRAM_A1_B2
• SelectRAM_A1_B4
• SelectRAM_A1_B9
• SelectRAM_A1_B18
• SelectRAM_A1_B36
• SelectRAM_A2_B2
• SelectRAM_A2_B4
• SelectRAM_A2_B9
• SelectRAM_A2_B18
• SelectRAM_A2_B36
• SelectRAM_A4_B4
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• SelectRAM_A4_B9
• SelectRAM_A4_B18
• SelectRAM_A4_B36
• SelectRAM_A9_B9
• SelectRAM_A9_B18
• SelectRAM_A9_B36
• SelectRAM_A18_B18
• SelectRAM_A18_B36
• SelectRAM_A36_B36

VHDL Template
As an example, the XC2V_RAMB_1_PORT.vhd file uses the SelectRAM_A36 template:

-- Module: XC2V_RAMB_1_PORT
-- Description: 18Kb Block SelectRAM example
-- Single Port 512 x 36 bits
-- Use template “SelectRAM_A36.vhd"
-- 
-- Device: Virtex-II Family
--------------------------------------------------------------------- 
library IEEE;
use IEEE.std_logic_1164.all;
--
-- Syntax for Synopsys FPGA Express
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on
--
entity XC2V_RAMB_1_PORT is
   port (
    DATA_IN : in std_logic_vector (35 downto 0);
        ADDRESS   : in std_logic_vector (8 downto 0); 
        ENABLE: in std_logic;
        WRITE_EN     : in std_logic;
        SET_RESET    : in std_logic;
        CLK    : in std_logic;
        DATA_OUT     : out std_logic_vector (35 downto 0)
       ); 
end XC2V_RAMB_1_PORT;
--
architecture XC2V_RAMB_1_PORT_arch of XC2V_RAMB_1_PORT is
--
-- Components Declarations:
--
component BUFG
  port (
  I : in std_logic;
  O : out std_logic
  );
end component;
--
-- Syntax for Synopsys FPGA Express
component RAMB16_S36 
-- pragma translate_off
  generic (
-- "Read during Write" attribute for functional simulation
WRITE_MODE : string := "READ_FIRST" ; -- WRITE_FIRST(default)/ 

READ_FIRST/ NO_CHANGE 
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-- Output value after configuration       
INIT : bit_vector(35 downto 0)  := X"000000000";

-- Output value if SSR active       
SRVAL : bit_vector(35 downto 0)  := X"012345678";

-- Plus bits initial content
       INITP_00 : bit_vector(255 downto 0) := 
X"000000000000000000000000000000000000000000000000FEDCBA9876543210";
       INITP_01 : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000";
       INITP_02 : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000";
       INITP_03 : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000";
       INITP_04 : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000";
       INITP_05 : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000";
       INITP_06 : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000";
       INITP_07 : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000";
-- Regular bits initial content
       INIT_00 : bit_vector(255 downto 0) := 
X"000000000000000000000000000000000000000000000000FEDCBA9876543210";
       INIT_01 : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000";
       INIT_02 : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000";
       ... (cut)
       INIT_3E : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000";
       INIT_3F : bit_vector(255 downto 0) := 
X"0000000000000000000000000000000000000000000000000000000000000000"
);

-- pragma translate_on
  port (
        DI     : in std_logic_vector (31 downto 0);
        DIP    : in std_logic_vector (3 downto 0);
        ADDR   : in std_logic_vector (8 downto 0);
        EN     : in STD_LOGIC;
        WE     : in STD_LOGIC;
        SSR    : in STD_LOGIC;
        CLK    : in STD_LOGIC;
        DO     : out std_logic_vector (31 downto 0);
        DOP    : out std_logic_vector (3 downto 0)
); 

end component;
--
-- Attribute Declarations:
attribute WRITE_MODE : string;
attribute INIT: string;
attribute SRVAL: string;
--
attribute INITP_00: string;
attribute INITP_01: string;
attribute INITP_02: string;
attribute INITP_03: string;
attribute INITP_04: string;
attribute INITP_05: string;
attribute INITP_06: string;
attribute INITP_07: string; 
-- 
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attribute INIT_00: string;
attribute INIT_01: string;
attribute INIT_02: string;
… (cut)
attribute INIT_3E: string;
attribute INIT_3F: string;
--
-- Attribute "Read during Write mode" = WRITE_FIRST(default)/ 
READ_FIRST/ NO_CHANGE
attribute WRITE_MODE of U_RAMB16_S36: label is "READ_FIRST"; 
attribute INIT of U_RAMB16_S36: label is "000000000";
attribute SRVAL of U_RAMB16_S36: label is "012345678";
--
-- RAMB16 memory initialization for Alliance
-- Default value is "0" / Partial initialization strings are padded 
-- with zeros to the left
attribute INITP_00 of U_RAMB16_S36: label is 
"000000000000000000000000000000000000000000000000FEDCBA9876543210";
attribute INITP_01 of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
attribute INITP_02 of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
attribute INITP_03 of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
attribute INITP_04 of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
attribute INITP_05 of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
attribute INITP_06 of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
attribute INITP_07 of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
--
attribute INIT_00 of U_RAMB16_S36: label is 
"000000000000000000000000000000000000000000000000FEDCBA9876543210";
attribute INIT_01 of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
attribute INIT_02 of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
... (cut)
attribute INIT_3E of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
attribute INIT_3F of U_RAMB16_S36: label is 
"0000000000000000000000000000000000000000000000000000000000000000";
--
--
-- Signal Declarations:
--
-- signal VCC : std_logic;
-- signal GND : std_logic;
signal CLK_BUFG: std_logic;
signal INV_SET_RESET : std_logic;
--
begin
-- VCC <= '1';
-- GND <= '0';
--
-- Instantiate the clock Buffer
U_BUFG: BUFG
  port map (
  I => CLK,
  O => CLK_BUFG
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  );
--
-- Use of the free inverter on SSR pin
INV_SET_RESET <= NOT SET_RESET;

-- Block SelectRAM Instantiation
U_RAMB16_S36: RAMB16_S36
  port map (
        DI     => DATA_IN (31 downto 0), -- insert 32 bits data-in bus 
(<31 downto 0>)
        DIP    => DATA_IN (35 downto 32), -- insert 4 bits parity data-
in bus (or <35 downto 32>)
        ADDR   => ADDRESS (8 downto 0), -- insert 9 bits address bus        
        EN     => ENABLE, -- insert enable signal
        WE     => WRITE_EN, -- insert write enable signal
        SSR    => INV_SET_RESET, -- insert set/reset signal
        CLK    => CLK_BUFG, -- insert clock signal
        DO     => DATA_OUT (31 downto 0), -- insert 32 bits data-out bus 
(<31 downto 0>)
        DOP    => DATA_OUT (35 downto 32)  -- insert 4 bits parity data-
out bus (or <35 downto 32>)
);

--
end XC2V_RAMB_1_PORT_arch;
---------------------------------------------------------------------

Verilog Template
// Module: XC2V_RAMB_1_PORT
// Description: 18Kb Block SelectRAM-II example
// Single Port 512 x 36 bits
// Use template "SelectRAM_A36.v"
//
// Device: Virtex-II Family
//-------------------------------------------------------------------

module XC2V_RAMB_1_PORT (CLK, SET_RESET, ENABLE, WRITE_EN, ADDRESS, 
DATA_IN, DATA_OUT);

input CLK, SET_RESET, ENABLE, WRITE_EN;
input [35:0] DATA_IN;
input [8:0] ADDRESS;
output [35:0] DATA_OUT;

wire CLK_BUFG, INV_SET_RESET;

//Use of the free inverter on SSR pin
assign INV_SET_RESET = ~SET_RESET;

// initialize block ram for simulation
// synopsys translate_off
defparam  
//”Read during Write” attribute for functional simulation
U_RAMB16_S36.WRITE_MODE = “READ_FIRST”,   //WRITE_FIRST(default)/ 

READ_FIRST/ NO_CHANGE 
//Output value after configuration
U_RAMB16_S36.INIT = 36'h000000000,
//Output value if SSR active
U_RAMB16_S36.SRVAL = 36'h012345678,
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//Plus bits initial content
U_RAMB16_S36.INITP_00 = 

256'h0123456789ABCDEF000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INITP_01 = 

256'h0000000000000000000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INITP_02 = 

256'h0000000000000000000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INITP_03 = 

256'h0000000000000000000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INITP_04 = 

256'h0000000000000000000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INITP_05 = 

256'h0000000000000000000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INITP_06 = 

256'h0000000000000000000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INITP_07 = 

256'h0000000000000000000000000000000000000000000000000000000000000000,

//Regular bits initial content
U_RAMB16_S36.INIT_00 = 

256'h0123456789ABCDEF000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INIT_01 = 

256'h0000000000000000000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INIT_02 = 

256'h0000000000000000000000000000000000000000000000000000000000000000,
...<cut>
U_RAMB16_S36.INIT_3E = 

256'h0000000000000000000000000000000000000000000000000000000000000000,
U_RAMB16_S36.INIT_3F = 

256'h0000000000000000000000000000000000000000000000000000000000000000;
 // synopsys translate_on

//Instantiate the clock Buffer
BUFG U_BUFG (  .I(CLK), .O(CLK_BUFG));

//Block SelectRAM Instantiation
RAMB16_S36 U_RAMB16_S36 (   .DI(DATA_IN[31:0]), 

    .DIP(DATA_IN-PARITY[35:32]),
     .ADDR(ADDRESS), 

    .EN(ENABLE),
     .WE(WRITE_EN),
    .SSR(INV_SET_RESET),
    .CLK(CLK_BUFG),
    .DO(DATA_OUT[31:0]),
    .DOP(DATA_OUT-PARITY[35:32]));

// synthesis attribute declarations
  /* synopsys attribute 

WRITE_MODE "READ_FIRST"
INIT "000000000"
SRVAL "012345678"

INITP_00 
"0123456789ABCDEF000000000000000000000000000000000000000000000000"
INITP_01 

"0000000000000000000000000000000000000000000000000000000000000000"
INITP_02 

"0000000000000000000000000000000000000000000000000000000000000000"
INITP_03 

"0000000000000000000000000000000000000000000000000000000000000000"
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INITP_04 
"0000000000000000000000000000000000000000000000000000000000000000"
INITP_05 

"0000000000000000000000000000000000000000000000000000000000000000"
INITP_06 

"0000000000000000000000000000000000000000000000000000000000000000"
INITP_07 

"0000000000000000000000000000000000000000000000000000000000000000"

INIT_00 
"0123456789ABCDEF000000000000000000000000000000000000000000000000"
INIT_01 

"0000000000000000000000000000000000000000000000000000000000000000"
INIT_02 

"0000000000000000000000000000000000000000000000000000000000000000"
...<cut>
INIT_3E 

"0000000000000000000000000000000000000000000000000000000000000000"
INIT_3F 

"0000000000000000000000000000000000000000000000000000000000000000"
*/

endmodule
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Using Distributed SelectRAM Memory

Introduction
In addition to 18Kb SelectRAM blocks, Virtex-II devices feature distributed SelectRAM 
modules. Each function generator or LUT of a CLB resource can implement a 16 x 1-bit 
synchronous RAM resource. Distributed SelectRAM memory writes synchronously and 
reads asynchronously. However, a synchronous read can be implemented using the 
register that is available in the same slice. This 16 x 1-bit RAM is cascadable for a deeper 
and/or wider memory implementation, with a minimal timing penalty incurred through 
specialized logic resources. 

Distributed SelectRAM modules up to a size of 128 x 1 are available as primitives. Two 
16 x 1 RAM resources can be combined to form a dual-port 16 x 1 RAM with one dedicated 
read/write port and a second read-only port. One port writes into both 16 x1 RAMs 
simultaneously, but the second port reads independently.

This section provides generic VHDL and Verilog reference code examples implementing 
n-bit-wide single-port and dual-port distributed SelectRAM memory.

Distributed SelectRAM memory enables many high-speed applications that require 
relatively small embedded RAM blocks, such as FIFOs, which are close to the logic that 
uses them.

Virtex-II Distributed SelectRAM memories can be generated using the CORE Generator 
Distributed Memory module (V2.0 or later). The user can also generate Distributed RAM-
based Asynchronous and Synchronous FIFOs using the CORE Generator.

Single-Port and Dual-Port RAM

Data Flow

Distributed SelectRAM memory supports the following:

• Single-port RAM with synchronous write and asynchronous read

• Dual-port RAM with one synchronous write and two asynchronous read ports

As illustrated in the Figure 2-49, the dual port has one read/write port and an independent 
read port.

Any read/write operation can occur simultaneously with and independently of a read 
operation on the other port.

Figure 2-49: Single-Port and Dual-Port Distributed SelectRAM
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Write Operations
The write operation is a single clock-edge operation, with a write enable that is active High 
by default. When the write enable is Low, no data is written into the RAM. When the write 
enable is High, the clock edge latches the write address and writes the data on D into the 
RAM.

Read Operation
The read operation is a combinatorial operation. The address port (single or dual port) is 
asynchronous with an access time equivalent to the logic delay.

Read During Write
When new data is synchronously written, the output reflects the data in the memory cell 
addressed (transparent mode). The timing diagram in Figure 2-50 illustrates a write 
operation, with the previous data read on the output port, before the clock edge and then 
the new data.

Characteristics
• A write operation requires only one clock edge.

• A read operation requires only the logic access time.

• Outputs are asynchronous and dependent only on the logic delay.

• Data and address inputs are latched with the write clock and have a setup-to-clock 
timing specification. There is no hold time requirement.

• For dual-port RAM, one address is the write and read address, the other address is an 
independent read address.

Figure 2-50: Write Timing Diagram
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Library Primitives
Seven library primitives from 16 x 1-bit to 128 x 1-bit are available. Four primitives are 
single-port RAM and three primitives are True Dual-Port RAM, as shown in Table 2-15.

The input and output data are 1-bit wide. However, several distributed SelectRAM 
memories can be used to implement wide memory blocks.

Figure 2-51 shows generic single-port and dual-port distributed SelectRAM primitives. 
The A and DPRA signals are address busses.

As shown in Table 2-16, wider library primitives are available for 2-bit, 4-bit, and 8-bit RAM. 

Table 2-15: Single-Port and Dual-Port Distributed SelectRAM

Primitive RAM Size Type Address Inputs

RAM16X1S 16 bits single-port A3, A2, A1, A0

RAM32X1S 32 bits single-port A4, A3, A2, A1, A0

RAM64X1S 64 bits single-port A5, A3, A2, A1, A0

RAM128X1S 128 bits single-port A6, A4, A3, A2, A1, A0

RAM16X1D 16 bits dual-port A3, A2, A1, A0

RAM32X1D 32 bits dual-port A4, A3, A2, A1, A0

RAM64X1D 64 bits dual-port A5, A4, A3, A2, A1, A0

Figure 2-51: Single-Port and Dual-Port Distributed SelectRAM Primitive

Table 2-16: Wider Library Primitives

Primitive RAM Size Data Inputs Address Inputs Data Outputs

RAM16x2S 16 x 2-bit D1, D0 A3, A2, A1, A0 O1, O0

RAM32X2S 32 x 2-bit D1, D0 A4, A3, A2, A1, A0 O1, O0

RAM64X2S 64 x 2-bit D1, D0 A5, A4, A3, A2, A1, A0 O1, O0

RAM16X4S 16 x 4-bit D3, D2, D1, D0 A3, A2, A1, A0 O3, O2, O1, O0

RAM32X4S 32 x 4-bit D3, D2, D1, D0 A4,A3, A2, A1, A0 O3, O2, O1, O0

RAM16X8S 16 x 8-bit D <7:0> A3, A2, A1, A0 O <7:0>

RAM32X8S 32 x 8-bit D <7:0> A4,A3, A2, A1, A0 O <7:0>
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VHDL and Verilog Instantiation
VHDL and Verilog instantiations templates are available as examples (see “VHDL and 
Verilog Templates” on page 221).

In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template should be inserted within the VHDL design file. The port map of 
the architecture section should include the design signal names.

The SelectRAM_xS templates (with x = 16, 32, 64, or 128) are single-port modules and 
instantiate the corresponding RAMxX1S primitive.

SelectRAM_xD templates (with x = 16, 32, or 64) are dual-port modules and instantiate the 
corresponding RAMxX1D primitive.

Ports Signals
Each distributed SelectRAM port operates independently of the other while reading the 
same set of memory cells.

Clock - WCLK
The clock is used for the synchronous write. The data and the address input pins have 
setup time referenced to the WCLK pin. 

Enable - WE
The enable pin affects the write functionality of the port. An inactive Write Enable prevents 
any writing to memory cells. An active Write Enable causes the clock edge to write the data 
input signal to the memory location pointed to by the address inputs.

Address - A0, A1, A2, A3 (A4, A5, A6)
The address inputs select the memory cells for read or write. The width of the port 
determines the required address inputs. Note that the address inputs are not a bus in 
VHDL or Verilog instantiations.

Data In - D
The data input provides the new data value to be written into the RAM. 

Data Out - O, SPO, and DPO
The data out O (Single-Port or SPO) and DPO (Dual-Port) reflects the contents of the 
memory cells referenced by the address inputs. Following an active write clock edge, the 
data out (O or SPO) reflects the newly written data.

Inverting Control Pins
The two control pins (WCLK and WE) each have an individual inversion option. Any 
control signal, including the clock, can be active at 0 (negative edge for the clock) or at 1 
(positive edge for the clock) without requiring other logic resources.

GSR
The global set/reset (GSR) signal does not affect distributed SelectRAM modules.

Attributes

Content Initialization - INIT
With the INIT attributes, users can define the initial memory contents after configuration. 
By default distributed SelectRAM memory is initialized with all zeros during the device 
configuration sequence. The initialization attribute INIT represents the specified memory 
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contents. Each INIT is a hex-encoded bit vector. Table 2-17 shows the length of the INIT 
attribute for each primitive.

Initialization in VHDL or Verilog Codes
Distributed SelectRAM memory structures can be initialized in VHDL or Verilog code for 
both synthesis and simulation. For synthesis, the attributes are attached to the distributed 
SelectRAM instantiation and are copied in the EDIF output file to be compiled by Xilinx 
Alliance Series™ tools. The VHDL code simulation uses a generic parameter to pass the 
attributes. The Verilog code simulation uses a defparam parameter to pass the attributes. 

The distributed SelectRAM instantiation templates (in VHDL and Verilog) illustrate these 
techniques (see “VHDL and Verilog Templates” on page 221).

Location Constraints
The CLB has four slices S0, S1, S2 and S3. As an example, in the bottom left CLB, the slices 
have the coordinates shown below: S

Distributed SelectRAM instances can have LOC properties attached to them to constrain 
placement. The RAM16X1S primitive fits in any LUT of slices S0 or S1.

For example, the instance U_RAM16 is placed in slice X0Y0 with the following LOC 
properties: 

INST "U_RAM16" LOC = "SLICE_X0Y0";

The RAM16X1D primitive occupies half of two slices, as shown in Figure 2-52. The first 
slice (output SPO) implements the read/write port with the same address A[3:0] for read 

Table 2-17: INIT Attributes Length

Primitive Template INIT Attribute Length

RAM16X1S SelectRAM_16S 4 digits

RAM32X1S SelectRAM_32S 8 digits

RAM64X1S SelectRAM_64S 16 digits

RAM128X1S SelectRAM_128S 32 digits

RAM16X1D SelectRAM_16S 4 digits

RAM32X1D SelectRAM_32S 8 digits

RAM64X1D SelectRAM_64S 16 digits

Slice S3 Slice S2 Slice S1 Slice S0

X1Y1 X1Y0 X0Y1 X0Y0
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and write. The second slice implements the second read port with the address DPRA[3:0] 
and is written simultaneously with the first slice to the address A[3:0].

In the same CLB module, the dual-port RAM16X1_D either occupies half of slices S0 
(X0Y0) and S2 (X1Y0), or half of slices S1 (X0Y1) and S3 (X1Y1).

If a dual-port 16 x 2-bit module is built, the two RAM16X1_D primitives occupy two slices, 
as long as they share the same clock and write enable, as illustrated in Figure 2-53. 

Figure 2-52: RAM16X1_D Placement

Figure 2-53: Two RAM16X1_D Placement
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A RAM32X1S primitive fits in one slice, as shown in Figure 2-54.

Following the same rules, a RAM32X1_D primitive fits in two slices, with one slice 
implementing the read/write port and the second slice implementing the second read 
port.

The RAM64X1_S primitive occupies two slices and the RAM64X1_D primitive occupies 
four slices (one CLB element), with two slices implementing the read/write port and two 
other slices implementing the second read port. The RAM64X1_S read path is built on the 
MUXF5 and MUXF6 multiplexers.

The RAM128X1_S primitive occupies four slices, equivalent to one CLB element.

Distributed SelectRAM placement locations use the slice location naming convention, 
allowing LOC properties to transfer easily from array to array.

Applications

Creating Larger RAM Structures
The memory compiler program generates wider and/or deeper memory structures using 
distributed SelectRAM instances. Along with an EDIF file for inclusion in a design, this 
program produces VHDL and Verilog instantiation templates and simulation models.

Table 2-18 shows the generic VHDL and Verilog distributed SelectRAM examples 
provided to implement n-bit-wide memories. 

By using the read/write port for the write address and the second read port for the read 
address, a FIFO that can read and write simultaneously is easily generated. Simultaneous 
access doubles the effective throughput of the memory.

Figure 2-54: RAM32X1_S Placement

A[3:0]

D

Reg

Reg

Virtex-II Slice 

ug002_c2_006_061300

OA4 F
5

Table 2-18: VHDL and Verilog Submodules

Submodules Primitive Size Type

XC2V_RAM16XN_S_SUBM RAM16X1S 16 words x n-bit single-port

XC2V_RAM32XN_S_SUBM RAM32X1S 32 words x n-bit single-port

XC2V_RAM64XN_S_SUBM RAM64X1S 64 words x n-bit single-port

XC2V_RAM128XN_S_SUBM RAM128X1S 128 words x n-bit single-port

XC2V_RAM16XN_D_SUBM RAM16X1D 16 words x n-bit dual-port

XC2V_RAM32XN_D_SUBM RAM32X1D 32 words x n-bit dual-port

XC2V_RAM64XN_D_SUBM RAM64X1D 64 words x n-bit dual-port
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VHDL and Verilog Templates
VHDL and Verilog templates are available for all single-port and dual-port primitives. The 
number in each template indicates the number of bits (for example, SelectRAM_16S is the 
template for the 16 x 1-bit RAM); S indicates single-port, and D indicates dual-port.

In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template should be inserted within the VHDL design file. The port map of 
the architecture section should include the design signal names.

The following are single-port templates:

- SelectRAM_16S

- SelectRAM_32S

- SelectRAM_64S

- SelectRAM_128S

The following are dual-port templates:

- SelectRAM_16D

- SelectRAM_32D

- SelectRAM_64D

Templates for the SelectRAM_16S module are provided in VHDL and Verilog code as 
examples.
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VHDL Template
--
-- Module: SelectRAM_16S 
--
-- Description: VHDL instantiation template
--             Distributed SelectRAM
--             Single Port 16 x 1
--             can be used also for RAM16X1S_1
--
-- Device: Virtex-II Family 
--
---------------------------------------------------------------------
--
-- Components Declarations:
--
component RAM16X1S 
-- pragma translate_off
   generic (
-- RAM initialization (“0” by default) for functional simulation:
        INIT : bit_vector := X"0000"
        );
-- pragma translate_on
  port (
        D    : in std_logic;
        WE   : in std_logic;
        WCLK : in std_logic;
        A0   : in std_logic;
        A1   : in std_logic;
        A2   : in std_logic;
        A3   : in std_logic;
        O    : out std_logic
        ); 
end component;
--
---------------------------------------------------------------------
--
-- Architecture  section:
--
-- Attributes for RAM initialization ("0" by default):
attribute INIT: string;
--
attribute INIT of U_RAM16X1S: label is "0000";
--
-- Distributed SelectRAM Instantiation
U_RAM16X1S: RAM16X1S
  port map (

D      => , -- insert input signal 
WE     => , -- insert Write Enable signal
WCLK   => , -- insert Write Clock signal
A0     => , -- insert Address 0 signal
A1     => , -- insert Address 1 signal
A2     => , -- insert Address 2 signal
A3     => , -- insert Address 3 signal
O      =>   -- insert output signal

);
--
---------------------------------------------------------------------
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Verilog Template

//
// Module: SelectRAM_16S 
//
// Description: Verilog instantiation template
//             Distributed SelectRAM 
//             Single Port 16 x 1
//             can be used also for RAM16X1S_1
//
// Device: Virtex-II Family 
//
//-------------------------------------------------------------------
//
//
// Syntax for Synopsys FPGA Express
// synopsys translate_off

  defparam  

        //RAM initialization (“0” by default) for functional simulation:
U_RAM16X1S.INIT = 16'h0000; 

// synopsys translate_on

//Distributed SelectRAM Instantiation
RAM16X1S U_RAM16X1S (  .D(),      // insert input signal 
               .WE(),     // insert Write Enable signal
              .WCLK(),   // insert Write Clock signal
               .A0(),     // insert Address 0 signal
               .A1(),     // insert Address 1 signal
               .A2(),     // insert Address 2 signal
               .A3(),     // insert Address 3 signal
               .O()       // insert output signal
                );

// synthesis attribute declarations
  /* synopsys attribute 

INIT "0000"
  */
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Using Look-Up Tables as Shift Registers (SRLUTs)

Introduction
Virtex-II can configure any look-up table (LUT) as a 16-bit shift register without using the 
flip-flops available in each slice. Shift-in operations are synchronous with the clock, and 
output length is dynamically selectable. A separate dedicated output allows the cascading 
of any number of 16-bit shift registers to create whatever size shift register is needed. Each 
CLB resource can be configured using the 8 LUTs as a 128-bit shift register.

This section provides generic VHDL and Verilog submodules and reference code examples 
for implementing from 16-bit up to 128-bit shift registers. These submodules are built from 
16-bit shift-register primitives and from dedicated MUXF5, MUXF6, MUXF7, and MUXF8 
multiplexers.

These shift registers enable the development of efficient designs for applications that 
require delay or latency compensation. Shift registers are also useful in synchronous FIFO 
and content-addressable memory (CAM) designs. To quickly generate a Virtex-II shift 
register without using flip-flops (i.e., using the SRL16 element(s)), use the CORE Generator 
RAM-based Shift Register module. 

Shift Register Operations

Data Flow
Each shift register (SRL16 primitive) supports:

• Synchronous shift-in

• Asynchronous 1-bit output when the address is changed dynamically 

• Synchronous shift-out when the address is fixed

In addition, cascadable shift registers (SRLC16) support synchronous shift-out output of 
the last (16th) bit. This output has a dedicated connection to the input of the next SRLC16 
inside the CLB resource. Two primitives are illustrated in Figure 2-55.

Figure 2-55: Shift Register and Cascadable Shift Register
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Shift Operation
The shift operation is a single clock-edge operation, with an active High clock enable 
feature. When enable is High, the input (D) is loaded into the first bit of the shift register, 
and each bit is shifted to the next highest bit position. In a cascadable shift register 
configuration (such as SRLC16), the last bit is shifted out on the Q15 output.

The bit selected by the 4-bit address appears on the Q output.

Dynamic Read Operation
The Q output is determined by the 4-bit address. Each time a new address is applied to the 
4-input address pins, the new bit position value is available on the Q output after the time 
delay to access the LUT. This operation is asynchronous and independent of the clock and 
clock enable signals.

Figure 2-56 illustrates the shift and dynamic read operations. 

Static Read Operation
If the 4-bit address is fixed, the Q output always uses the same bit position. This mode 
implements any shift register length up 1 to 16 bits in one LUT. Shift register length is 
(N+1) where N is the input address.

The Q output changes synchronously with each shift operation. The previous bit is shifted 
to the next position and appears on the Q output.

Figure 2-56: Shift- and Dynamic-Length Timing Diagrams
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Characteristics
• A shift operation requires one clock edge.

• Dynamic-length read operations are asynchronous (Q output).

• Static-length read operations are synchronous (Q output).

• The data input has a setup-to-clock timing specification.

• In a cascadable configuration, the Q15 output always contains the last bit value.

• The Q15 output changes synchronously after each shift operation.

Library Primitives and Submodules
Eight library primitives are available that offer optional clock enable (CE), inverted clock 
(CLK) and cascadable output (Q15) combinations.

Table 2-19 lists all of the available primitives for synthesis and simulation.

In addition to the 16-bit primitives, three submodules that implement 32-bit, 64-bit, and 
128-bit cascadable shift registers are provided in VHDL and Verilog code. Table 2-20 lists 
available submodules.

The submodules are based on SRLC16E primitives, which are associated with dedicated 
multiplexers (MUXF5, MUXF6, and so forth). This implementation allows a fast static- and 
dynamic-length mode, even for very large shift registers. 

Figure 2-57 represents the cascadable shift registers (32-bit and 64-bit) implemented by the 
submodules in Table 2-20.

Table 2-19: Shift Register Primitives

Primitive Length Control Address Inputs Output

SRL16 16 bits CLK A3,A2,A1,A0 Q

SRL16E 16 bits CLK, CE A3,A2,A1,A0 Q

SRL16_1 16 bits CLK A3,A2,A1,A0 Q

SRL16E_1 16 bits CLK, CE A3,A2,A1,A0 Q

SRLC16 16 bits CLK A3,A2,A1,A0 Q, Q15

SRLC16E 16 bits CLK, CE A3,A2,A1,A0 Q, Q15

SRLC16_1 16 bits CLK A3,A2,A1,A0 Q, Q15

SRLC16E_1 16 bits CLK, CE A3,A2,A1,A0 Q, Q15

Table 2-20: Shift Register Submodules

Submodule Length Control Address Inputs Output

SRLC32E_SUBM 32 bits CLK, CE A4,A3,A2,A1,A0 Q, Q31

SRLC64E_SUBM 64 bits CLK, CE A5, A4, A3,A2,A1,A0 Q, Q63

SRLC128E_SUBM 128 bits CLK, CE A6, A5, A4, A3,A2,A1,A0 Q, Q127
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A 128-bit shift register is built on the same scheme and uses MUXF7 (address input A6).

All clock enable (CE) and clock (CLK) inputs are connected to one global clock enable and 
one clock signal per submodule. If a global static- or dynamic-length mode is not required, 
the SRLC16E primitive can be cascaded without multiplexers.

Figure 2-57: Shift-Register Submodules (32-bit, 64-bit)
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Initialization in VHDL and Verilog Code
A shift register can be initialized in VHDL or Verilog code for both synthesis and 
simulation. For synthesis, the attribute is attached to the 16-bit shift register instantiation 
and is copied in the EDIF output file to be compiled by Xilinx Alliance Series tools. The 
VHDL code simulation uses a generic parameter to pass the attributes. The Verilog code 
simulation uses a defparam parameter to pass the attributes. 

The V2_SRL16E shift register instantiation code examples (in VHDL and Verilog) illustrate 
these techniques (see “VHDL and Verilog Templates” on page 232). V2_SRL16E.vhd and .v 
files are not a part of the documentation.

Port Signals

Clock - CLK
Either the rising edge or the falling edge of the clock is used for the synchronous shift-in. The 
data and clock enable input pins have set-up times referenced to the chosen edge of CLK.

Data In - D
The data input provides new data (one bit) to be shifted into the shift register.

Clock Enable - CE (optional)
The clock enable pin affects shift functionality. An inactive clock enable pin does not shift 
data into the shift register and does not write new data. Activating the clock enable allows 
the data in (D) to be written to the first location and all data to be shifted by one location. 
When available, new data appears on output pins (Q) and the cascadable output pin (Q15).

Address - A0, A1, A2, A3
Address inputs select the bit (range 0 to 15) to be read. The nth bit is available on the output 
pin (Q). Address inputs have no effect on the cascadable output pin (Q15), which is always 
the last bit of the shift register (bit 15).

Data Out - Q
The data output Q provides the data value (1 bit) selected by the address inputs.

Data Out - Q15 (optional)
The data output Q15 provides the last bit value of the 16-bit shift register. New data 
becomes available after each shift-in operation.

Inverting Control Pins
The two control pins (CLK, CE) have an individual inversion option. The default is the 
rising clock edge and active High clock enable.

GSR
The global set/reset (GSR) signal has no impact on shift registers. 

Attributes

Content Initialization - INIT
The INIT attribute defines the initial shift register contents. The INIT attribute is a hex-
encoded bit vector with four digits (0000).The left-most hexadecimal digit is the most 
significant bit. By default the shift register is initialized with all zeros during the device 
configuration sequence, but any other configuration value can be specified.
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Location Constraints
Each CLB resource has four slices: S0, S1, S2, and S3. As an example, in the bottom left CLB 
resource, each slice has the coordinates shown in Table 2-21. 

To constrain placement, shift register instances can have LOC properties attached to them. 
Each 16-bit shift register fits in one LUT.
A 32-bit shift register in static or dynamic address mode fits in one slice (two LUTs and one 
MUXF5). This shift register can be placed in any slice.

A 64-bit shift register in static or dynamic address mode fits in two slices. These slices are either 
S0 and S1, or S2 and S3. Figure 2-58 illustrates the position of the four slices in a CLB resource.

The dedicated CLB shift chain runs from the top slice to the bottom slice. The data input 
pin must either be in slice S1 or in S3. The address selected as the output pin (Q) is the 
MUXF6 output.

A 128-bit shift register in static or dynamic address mode fits in a four-slice CLB resource. 
The data input pin has to be in slice S3. The address selected as the output pin (Q) is the 
MUXF7 output.

Table 2-21: Slice Coordinates in the Bottom-Left CLB Resource

Slice S3 Slice S2 Slice S1 Slice S0

X1Y1 X1Y0 X0Y1 X0Y0
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Fully Synchronous Shift Registers
All shift-register primitives and submodules do not use the register(s) available in the 
same slice(s). To implement a fully synchronous read and write shift register, output pin Q 
must be connected to a flip-flop. Both the shift register and the flip-flop share the same 
clock, as shown in Figure 2-59. 

Figure 2-58: Shift Register Placement
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This configuration provides a better timing solution and simplifies the design. Because the 
flip-flop must be considered to be the last register in the shift-register chain, the static or 
dynamic address should point to the desired length minus one. If needed, the cascadable 
output can also be registered in a flip-flop.

Static-Length Shift Registers
The cascadable16-bit shift register implements any static length mode shift register 
without the dedicated multiplexers (MUXF5, MUXF6,…). Figure 2-60 illustrates a 40-bit 
shift register. Only the last SRLC16E primitive needs to have its address inputs tied to 
“0111”. Alternatively, shift register length can be limited to 39 bits (address tied to “0110”) 
and a flip-flop can be used as the last register. (In an SRLC16E primitive, the shift register 
length is the address input + 1.) 

Figure 2-59: Fully Synchronous Shift Register
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VHDL and Verilog Instantiation
VHDL and Verilog instantiation templates are available for all primitives and submodules.

In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template should be inserted within the VHDL design file. The port map of 
the architecture section should include the design signal names.

The ShiftRegister_C_x (with x = 16, 32, 64, 128, or 256) templates are cascadable modules 
and instantiate the corresponding SRLCxE primitive (16) or submodule (32, 64, 128, or 
256).

The ShiftRegister_16 template can be used to instantiate an SRL16 primitive. 

VHDL and Verilog Templates
In template names, the number indicates the number of bits (for example, 
SHIFT_SELECT_16 is the template for the 16-bit shift register) and the “C” extension 
means the template is cascadable.

The following are templates for primitives:

• SHIFT_REGISTER_16

• SHIFT_REGISTER_16_C

The following are templates for submodules:

• SHIFT_REGISTER_32_C (submodule: SRLC32E_SUBM)

• SHIFT_REGISTER_64_C (submodule: SRLC64E_SUBM)

• SHIFT_REGISTER_128_C (submodule: SRLC128E_SUBM)

The corresponding submodules have to be synthesized with the design.

Templates for the SHIFT_REGISTER_16_C module are provided in VHDL and Verilog 
code as an example.

VHDL Template:
-- Module: SHIFT_REGISTER_C_16
-- Description: VHDL instantiation template
-- CASCADABLE 16-bit shift register with enable (SRLC16E)
-- Device: Virtex-II Family 
---------------------------------------------------------------------
-- Components Declarations:
--
component SRLC16E 
-- pragma translate_off
  generic (
-- Shift Register initialization ("0" by default) for functional 
simulation:
        INIT : bit_vector := X"0000"
);

-- pragma translate_on
  port (
  D : in std_logic;
        CE   : in std_logic;
        CLK  : in std_logic;
        A0   : in std_logic;
        A1   : in std_logic;
        A2   : in std_logic;
        A3   : in std_logic;
        Q    : out std_logic;
        Q15  : out std_logic
); 

end component;
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-- Architecture  Section:
--
-- Attributes for Shift Register initialization (“0” by default):
attribute INIT: string;
--
attribute INIT of U_SRLC16E: label is “0000”;
--
-- ShiftRegister Instantiation
U_SRLC16E: SRLC16E
  port map (
D      => , -- insert input signal 
CE     => , -- insert Clock Enable signal (optional)
CLK    => , -- insert Clock signal
A0     => , -- insert Address 0 signal
A1     => , -- insert Address 1 signal
A2     => , -- insert Address 2 signal
A3     => , -- insert Address 3 signal
Q      => , -- insert output signal
Q15    =>   -- insert cascadable output signal
);

Verilog Template:
// Module: SHIFT_REGISTER_16
// Description: Verilog instantiation template
// Cascadable 16-bit Shift Register with Clock Enable (SRLC16E)
// Device: Virtex-II Family
//-------------------------------------------------------------------
// Syntax for Synopsys FPGA Express
// synopsys translate_off

  defparam  

//Shift Register initialization ("0" by default) for functional 
simulation:
U_SRLC16E.INIT = 16'h0000;

// synopsys translate_on

//SelectShiftRegister-II Instantiation
   SRLC16E U_SRLC16E   ( .D(),

 .A0(),
                         .A1(),
                         .A2(),
                        .A3(),
                         .CLK(),
                         .CE(),
                         .Q(),
                        .Q15()

       );

// synthesis attribute declarations
  /* synopsys attribute 
INIT "0000"

  */
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Designing Large Multiplexers

Introduction
Virtex-II slices contain dedicated two-input multiplexers (one MUXF5 and one MUXFX 
per slice). These multiplexers combine the 4-input LUT outputs or the outputs of other 
multiplexers. Using the multiplexers MUXF5, MUXF6, MUXF7 and MUXF8 allows to 
combine 2, 4, 8 and 16 LUTs. Specific routing resources are associated with these 2-input 
multiplexers to guarantee a fast implementation of any combinatorial function built upon 
LUTs and MUXFX.

The combination of the LUTs and the MUXFX offers an unique solution to the design of 
wide-input functions. This section illustrates the implementation of large multiplexers up 
to 32:1. Any Virtex-II slice can implement a 4:1 multiplexer, any CLB can implement a 16:1 
multiplexer, and 2 CLBs can implement a 32:1 multiplexer. Such multiplexers are just one 
example of wide-input combinatorial function taking advantage of the MUXFX feature. 
Many other logic functions can be mapped in the LUT and MUXFX features.

This section provides generic VHDL and Verilog reference code implementing 
multiplexers. These submodules are built from LUTs and the dedicated MUXF5, MUXF6, 
MUXF7, and MUXF8 multiplexers. To automatically generate large multiplexers using 
these dedicated elements, use the CORE Generator Bit Multiplexer and Bus Multiplexer 
modules.

For applications like comparators, encoder-decoders or “case” statement in VHDL or 
Verilog, these resources offer an optimal solution.

Virtex-II CLB Resources

Slice Multiplexers
Each Virtex-II slice has a MUXF5 to combine the outputs of the 2 LUTs and an extra 
MUXFX. Figure 2-61 illustrates a combinatorial function with up to 9 inputs in one slice.

Each Virtex-II CLB contains 4 slices. The second MUXFX implements a MUXF6, MUXF7 or 
MUXF8 according to the position of the slice in the CLB. These MUXFX are designed to 
allow LUTs combination up to 16 LUTs in two adjacent CLBs.

Figure 2-61: LUTs and MUXF5 in a Slice
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Figure 2-62 shows the relative position of the slices in the CLB.

Slices S0 and S2 have a MUXF6, designed to combine the outputs of two MUXF5 resources. 
Figure 2-63 illustrates a combinatorial function up to 18 inputs in the slices S0 and S1, or in 
the slices S2 and S3.

Figure 2-62: Slice Positions in a CLB

Figure 2-63: LUTs and (MUXF5 and MUXF6) in Two Slices
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The slice S1 has a MUXF7, designed to combine the outputs of two MUXF6. Figure 2-64 
illustrates a combinatorial function up to 35 inputs in a Virtex-II CLB. 

Figure 2-64: LUTs and (MUXF5, MUXF6, and MUXF7) in One CLB
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The slice S3 of each CLB has a MUXF8. combinatorial functions of up to 68 inputs fit in two 
CLBs as shown in Figure 2-65. The outputs of two MUXF7 are combined through 
dedicated routing resources between two adjacent CLBs in a column.

Figure 2-65: MUXF8 Combining Two Adjacent CLBs
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Wide-Input Multiplexers
Each LUT can implement a 2:1 multiplexer. In each slice, the MUXF5 and two LUTs can 
implement a 4:1 multiplexer. As shown in Figure 2-66, the MUXF6 and two slices can 
implement a 8:1 multiplexer. The MUFXF7 and the four slices of any CLB can implement a 
16:1 and the MUXF8 and two CLBs can implement a 32:1 multiplexer. 

Characteristics
• Implementation in one level of logic (LUT) and dedicated MUXFX

• Full combinatorial path

Figure 2-66: 8:1 and 16:1 Multiplexers
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Library Primitives and Submodules
Four library primitives are available that offer access to the dedicated MUXFX in each slice.

In the example shown in Table 2-22, MUXF7 is available only in slice S1. 

In addition to the primitives, five submodules that implement multiplexers from 2:1 to 32:1 
are provided in VHDL and Verilog code. Synthesis tools can automatically infer the above 
primitives (MUXF5, MUXF6, MUXF7, and MUXF8); however, the submodules described 
in this section used instantiation of the new MUXFX to guarantee an optimized result. 
Table 2-23 lists available submodules:

Port Signals

Data In - DATA_I
The data input provides the data to be selected by the SELECT_I signal(s).

Control In - SELECT_I
The select input signal or bus determines the DATA_I signal to be connected to the output 
DATA_O. For example, the MUX_4_1_SUBM multiplexer has a 2-bit SELECT_I bus and a 
4-bit DATA_I bus. Table 2-24 shows the DATA_I selected for each SELECT_I value.

Data Out - DATA_O
The data output O provides the data value (1 bit) selected by the control inputs.

Table 2-22: MUXFX Resources

Primitive Slice Control  Input Output

MUXF5 S0, S1, S2, S3 S I0, I1 O

MUXF6 S0, S2 S I0, I1 O

MUXF7 S1 S I0, I1 O

MUXF8 S3 S I0, I1 O

Table 2-23: Available Submodules

Submodule Multiplexer Control Input Output

MUX_2_1_SUBM 2:1 SELECT_I DATA_I[1:0] DATA_O

MUX_4_1_SUBM 4:1 SELECT_I[1:0] DATA_I[3:0] DATA_O

MUX_8_1_SUBM 8:1 SELECT_I[2:0] DATA_I[8:0] DATA_O

MUX_16_1_SUBM 16:1 SELECT_I[3:0] DATA_I[15:0] DATA_O

MUX_32_1_SUBM 32:1 SELECT_I[4:0] DATA_I[31:0] DATA_O

Table 2-24: Selected Inputs

SELECT_I[1:0] DATA_O

0 0 DATA_I[0]

0 1 DATA_I[1]

1 0 DATA_I[2]

1 1 DATA_I[3]
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Applications
Multiplexers are used in various applications. These are often inferred by synthesis tools 
when a “case” statement is used (see the example below). Comparators, encoder-decoders 
and wide-input combinatorial functions are optimized when they are based on one level of 
LUTs and dedicated MUXFX resources of the Virtex-II CLBs.

VHDL and Verilog Instantiation
The primitives (MUXF5, MUXF6, and so forth) can be instantiated in VHDL or Verilog 
code, to design wide-input functions.

The submodules (MUX_2_1_SUBM, MUX_4_1_SUBM, and so forth) can be instantiated in 
VHDL or Verilog code to implement multiplexers. However the corresponding submodule 
must be added to the design directory as hierarchical submodule. For example, if a module 
is using the MUX_16_1_SUBM, the MUX_16_1_SUBM.vhd file (VHDL code) or 
MUX_16_1_SUBM.v file (Verilog code) must be compiled with the design source code. The 
submodule code can also be “cut and pasted” into the designer source code.

VHDL and Verilog Submodules
VHDL and Verilog submodules are available to implement multiplexers up to 32:1. They 
illustrate how to design with the MUXFX resources. When synthesis infers the 
corresponding MUXFX resource(s), the VHDL or Verilog code is behavioral code (“case” 
statement). Otherwise, the equivalent “case” statement is provided in comments and the 
correct MUXFX are instantiated. However, most synthesis tools support the inference of all 
of the MUXFX. The following examples can be used as guidelines for designing other 
wide-input functions.

The following submodules are available:

• MUX_2_1_SUBM (behavioral code)

• MUX_4_1_SUBM

• MUX_8_1_SUBM

• MUX_16_1_SUBM

• MUX_32_1_SUBM

The corresponding submodules have to be synthesized with the design

The submodule MUX_16_1_SUBM in VHDL and Verilog are provided as example.

VHDL Template
-- Module: MUX_16_1_SUBM 
-- Description: Multiplexer 16:1
--
-- Device: Virtex-II Family 
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;

-- Syntax for Synopsys FPGA Express
-- pragma translate_off
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
-- pragma translate_on

entity MUX_16_1_SUBM is
    port (
        DATA_I: in std_logic_vector (15 downto 0); 
        SELECT_I: in std_logic_vector (3 downto 0);
        DATA_O: out std_logic
);
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end MUX_16_1_SUBM;

architecture MUX_16_1_SUBM_arch of MUX_16_1_SUBM is
-- Component Declarations:
component MUXF7
    port (
    I0: in std_logic;
    I1: in std_logic;
    S: in std_logic;
    O: out std_logic
    );
end component;   
--
-- Signal Declarations:
signal DATA_MSB : std_logic;
signal DATA_LSB : std_logic;
--
begin
--
-- If synthesis tools support MUXF7 :
--SELECT_PROCESS: process (SELECT_I, DATA_I)
--begin
--case SELECT_I is
-- when "0000" => DATA_O <= DATA_I (0);
-- when "0001" => DATA_O <= DATA_I (1);
-- when "0010" => DATA_O <= DATA_I (2);
-- when "0011" => DATA_O <= DATA_I (3);
-- when "0100" => DATA_O <= DATA_I (4);
-- when "0101" => DATA_O <= DATA_I (5);
-- when "0110" => DATA_O <= DATA_I (6);
-- when "0111" => DATA_O <= DATA_I (7);
-- when "1000" => DATA_O <= DATA_I (8);
-- when "1001" => DATA_O <= DATA_I (9);
-- when "1010" => DATA_O <= DATA_I (10);
-- when "1011" => DATA_O <= DATA_I (11);
-- when "1100" => DATA_O <= DATA_I (12);
-- when "1101" => DATA_O <= DATA_I (13);
-- when "1110" => DATA_O <= DATA_I (14);
-- when "1111" => DATA_O <= DATA_I (15);
-- when others => DATA_O <= 'X';
--end case;
--end process SELECT_PROCESS;
--
-- If synthesis tools DO NOT support MUXF7 :
SELECT_PROCESS_LSB: process (SELECT_I, DATA_I)
begin
case SELECT_I (2 downto 0) is
when "000" => DATA_LSB <= DATA_I (0);
when "001" => DATA_LSB <= DATA_I (1);
when "010" => DATA_LSB <= DATA_I (2);
when "011" => DATA_LSB <= DATA_I (3);
when "100" => DATA_LSB <= DATA_I (4);
when "101" => DATA_LSB <= DATA_I (5);
when "110" => DATA_LSB <= DATA_I (6);
when "111" => DATA_LSB <= DATA_I (7);
when others => DATA_LSB <= 'X';

end case;
end process SELECT_PROCESS_LSB;
--
SELECT_PROCESS_MSB: process (SELECT_I, DATA_I)
begin
case SELECT_I (2 downto 0) is
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when "000" => DATA_MSB <= DATA_I (8);
when "001" => DATA_MSB <= DATA_I (9);
when "010" => DATA_MSB <= DATA_I (10);
when "011" => DATA_MSB <= DATA_I (11);
when "100" => DATA_MSB <= DATA_I (12);
when "101" => DATA_MSB <= DATA_I (13);
when "110" => DATA_MSB <= DATA_I (14);
when "111" => DATA_MSB <= DATA_I (15);
when others => DATA_MSB <= 'X';

end case;
end process SELECT_PROCESS_MSB;
--
-- MUXF7 instantiation
U_MUXF7: MUXF7
    port map (
    I0 => DATA_LSB,
    I1 => DATA_MSB,
    S  => SELECT_I (3),
    O  => DATA_O 
    );  
--
end MUX_16_1_SUBM_arch;
--

Verilog Template
// Module: MUX_16_1_SUBM
//
// Description: Multiplexer 16:1
// Device: Virtex-II Family 
//-------------------------------------------------------------------
//
module MUX_16_1_SUBM (DATA_I, SELECT_I, DATA_O);

input [15:0]DATA_I;
input [3:0]SELECT_I;

output DATA_O;

wire [2:0]SELECT;

reg DATA_LSB;
reg DATA_MSB;

assign SELECT[2:0] = SELECT_I[2:0];

/*
//If synthesis tools supports MUXF7 :
always @ (DATA_I or SELECT_I)

    case (SELECT_I)
       4'b0000 : DATA_O <= DATA_I[0];
4'b0001 : DATA_O <= DATA_I[1];
4'b0010 : DATA_O <= DATA_I[2];
4'b0011 : DATA_O <= DATA_I[3];

        4'b0100 : DATA_O <= DATA_I[4];
4'b0101 : DATA_O <= DATA_I[5];
4'b0110 : DATA_O <= DATA_I[6];
4'b0111 : DATA_O <= DATA_I[7];

        4'b1000 : DATA_O <= DATA_I[8];
4'b1001 : DATA_O <= DATA_I[9];
4'b1010 : DATA_O <= DATA_I[10];
4'b1011 : DATA_O <= DATA_I[11];
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        4'b1100 : DATA_O <= DATA_I[12];
4'b1101 : DATA_O <= DATA_I[13];
4'b1110 : DATA_O <= DATA_I[14];
4'b1111 : DATA_O <= DATA_I[15];
default : DATA_O <= 1'bx;

    endcase
*/

always @ (SELECT or DATA_I)

    case (SELECT)
        3'b000 : DATA_LSB <= DATA_I[0];
3'b001 : DATA_LSB <= DATA_I[1];
3'b010 : DATA_LSB <= DATA_I[2];
3'b011 : DATA_LSB <= DATA_I[3];

        3'b100 : DATA_LSB <= DATA_I[4];
3'b101 : DATA_LSB <= DATA_I[5];
3'b110 : DATA_LSB <= DATA_I[6];
3'b111 : DATA_LSB <= DATA_I[7];
default : DATA_LSB <= 1'bx;

    endcase

always @ (SELECT or DATA_I)

    case (SELECT)
        3'b000 : DATA_MSB <= DATA_I[8];
3'b001 : DATA_MSB <= DATA_I[9];
3'b010 : DATA_MSB <= DATA_I[10];
3'b011 : DATA_MSB <= DATA_I[11];

        3'b100 : DATA_MSB <= DATA_I[12];
3'b101 : DATA_MSB <= DATA_I[13];
3'b110 : DATA_MSB <= DATA_I[14];
3'b111 : DATA_MSB <= DATA_I[15];
default : DATA_MSB <= 1'bx;

    endcase

// MUXF7 instantiation

MUXF7 U_MUXF7   (.I0(DATA_LSB),
.I1(DATA_MSB),
.S(SELECT_I[3]),

 .O(DATA_O)
);

endmodule

//
*/
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Implementing Sum of Products (SOP) Logic

Introduction
Virtex-II slices contain a dedicated two-input multiplexer (MUXCY) and a two-input OR 
gate (ORCY) to perform operations involving wide AND and OR gates. These combine the 
four-input LUT outputs. These gates can be cascaded in a chain to provide the wide AND 
functionality across slices. The output from the cascaded AND gates can then be combined 
with the dedicated ORCY to produce the Sum of Products (SOP).

Virtex-II CLB Resources
Each Virtex-II slice has a MUXCY, which uses the output from the LUTs as a SELECT 
signal. Depending on the width of data desired, several slices can be used to provide the 
SOP output. Figure 2-67 illustrates the logic involved in designing a 16-input AND gate. It 
utilizes the 4-input LUT to provide the necessary SELECT signal for the MUXCY. Only 
when all of the input signals are High, can the VCC at the bottom reach the output. This use 
of carry logic helps to perform AND functions at high speed and saves logic resources. 

The output from the chain of AND gates is passed as one of the inputs of the dedicated OR 
gate, ORCY. To calculate the SOP, these AND chains can be cascaded vertically across 
several CLBs, depending on the width of the input data. Figure 2-68 illustrates how the 
AND outputs are then passed in through the ORCY gates in a horizontal cascade, the sum 
of which is the Sum of Products.

Figure 2-67: Implementing a 16-bit Wide AND Gate Using MUXCY & ORCY
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Port Signals

AND_WIDTH Parameter
The width of each AND gate used in the cascade.

PROD_TERM Parameter
The number of AND gates used along each vertical cascade.

AND_IN Parameter
Data input to the AND gates. The total width of data is calculated from the product of 
AND_WIDTH and PROD_TERM

SOP_OUT Parameter
The Sum of Products (SOP) output data from the cascade chain.

Applications
These logic gates can be used in various applications involving very wide AND gates and 
Sum of Products (SOP) functions.

Figure 2-68: 64-bit Input SOP Design 
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VHDL and Verilog Instantiation
To implement wide-input AND functions, MUXCY and ORCY primitives can be 
instantiated in VHDL or Verilog code. The submodule code provided can be used to 
implement wide-input AND gates for any width of input data.

VHDL and Verilog Submodules
VHDL and Verilog submodules are available to implement the cascade chain of wide-
input AND gates and OR gates to calculate the Sum of Products (SOP). The VHDL module 
provided uses a generic case, where the width of data and the product terms can be 
specified in the case. The Verilog module provides a 64-bit input example, using four wide 
AND chains, each of which handle 16 bits of data.

VHDL Templates
-- Module : AND_CHAIN
-- Description : 16 input AND gate 
--
-- Device : Virtex-II Family
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
--library UNISIM;
--use UNISIM.VCOMPONENTS.ALL;

entity AND_CHAIN is
 generic (
    input_width : integer); --must be a 4x value
 port (
    data_in : in std_logic_vector( input_width-1 downto 0);
    carry_in : in std_logic;
    out_andor_chain : out std_logic);
end AND_CHAIN;

architecture AND_CHAIN_arch of AND_CHAIN is 

component ORCY
  port( i : std_logic;
        ci : in std_logic;
        o : out std_logic);
end component;

component AND_LOGIC
  port( sel_data : in std_logic_vector(3 downto 0);
        data_cin : in std_logic;
        data_out : out std_logic);
end component;

signal VCC, GND : std_logic;
signal cout : std_logic_vector(input_width/4 downto 0);
signal out_and_chain : std_logic;

begin

VCC <= '1';
GND <= '0';

--initialisation of first input for MUXCY
cout(0) <= VCC;

and_chain_x : for i in (input_width/4) - 1 downto 0 generate
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  AND_LOGIC_inst : AND_LOGIC 
        port map (
           sel_data => data_in((4 * i + 3) downto (4 * i)),
           data_cin => cout(i),
           data_out => cout(i + 1));
end generate;

out_and_chain <= cout(input_width/4);

orcy_inst : ORCY
  port map( i => out_and_chain,
        ci => carry_in,
        o => out_andor_chain);

end AND_CHAIN_arch;   

---------------------------------------------------------------------
-- Module AND_LOGIC
-- Description : 4-input AND gate
--
-- Device : Virtex-II Family
---------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
--library UNISIM;
--use UNISIM.VCOMPONENTS.ALL;

entity AND_LOGIC is
  port(
      sel_data : in std_logic_vector(3 downto 0); -- data for select 
signal for MUXCY from LUT
      data_cin : in std_logic;  -- result from previous stage
      data_out : out std_logic);
end AND_LOGIC;

architecture AND_LOGIC_arch of AND_LOGIC is

component MUXCY 
 port( 
     DI : in std_logic;
     CI : in std_logic;
     s : in std_logic;
     o : out std_logic);
end component;

signal GND : std_logic;
signal sel:std_logic;

begin
 
GND <= '0';
sel <= sel_data(0) and sel_data(1) and sel_data(2) and sel_data(3);

--Wide AND gate using MUXCY
MUX : MUXCY
     port map (
        DI => GND,
        CI => data_cin,
        s => sel,
        o => data_out);

end AND_LOGIC_arch; 
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---------------------------------------------------------------------
-- Module : SOP_SUBM
-- Description : Implementing SOP using MUXCY and ORCY
--
-- Device : Virtex-II Family
---------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
--library UNISIM;
--use UNISIM.VCOMPONENTS.ALL;

entity SOP_SUBM is
  generic(
     and_width : integer :=16 ;
     prod_term : integer := 4 ); 
  port(
     and_in : in std_logic_vector(and_width * prod_term - 1 downto 0);
     sop_out : out std_logic);
end SOP_SUBM;

architecture SOP_SUBM_arch of SOP_SUBM is

component AND_CHAIN
 generic (
    input_width : integer); --must be a 4x value
 port (
    data_in : in std_logic_vector( input_width-1 downto 0);
    carry_in : in std_logic;
    out_andor_chain : out std_logic);
end component;

signal VCC, GND : std_logic;
signal carry : std_logic_vector(prod_term downto 0);

begin

VCC <= '1';
GND <= '0';

carry(0) <= GND;
andor_inst : for i in 0 to (prod_term - 1) generate
      and_chainx : AND_CHAIN
             generic map(
                input_width => and_width)
             port map(                 
                data_in => and_in((and_width * i + (and_width -1)) downto 
(and_width * i)),
                carry_in => carry(i),
                out_andor_chain => carry(i + 1));
end generate;
sop_out <= carry(prod_term);

end SOP_SUBM_arch;
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Verilog Templates
// Module : AND_CHAIN
// Description : 16 input AND gate
//
// Device : Virtex-II Family
//-------------------------------------------------------------------
module AND_CHAIN(data_in, carry_in, out_andor_chain);
input [15:0] data_in;
input carry_in;
output out_andor_chain;
wire VCC = 1'b1;
wire out_and_chain;
wire dat_out1, data_out2, data_out3;
AND_LOGIC_OR u4(.sel_data(data_in[15:12]), .data_cin(data_out3),
.carry_in(carry_in), .data_out(out_andor_chain));

AND_LOGIC u3(.sel_data(data_in[11:8]), .data_cin(data_out2),
.data_out(data_out3));
AND_LOGIC u2(.sel_data(data_in[7:4]), .data_cin(data_out1),
.data_out(data_out2));
AND_LOGIC u1(.sel_data(data_in[3:0]), .data_cin(VCC),
.data_out(data_out1));
endmodule

//-------------------------------------------------------------------
// Module AND_LOGIC
// Description : 4-input AND gate
//
// Device : Virtex-II Family
//-------------------------------------------------------------------
// Module : init_and
//
module AND_LOGIC(sel_data, data_cin, data_out);
input[3:0] sel_data;
input data_cin;
output data_out;
wire GND = 1'b0;
wire VCC = 1'b1;
wire and_out;
assign and_out = sel_data[3] & sel_data[2] & sel_data[1] & sel_data[0];
MUXCY muxcy_inst (.DI(GND), .CI(data_cin), .S(and_out), .O(data_out));
endmodule

// Module AND_LOGIC + ORCY
module AND_LOGIC_OR(sel_data, data_cin, carry_in, data_out);
input[3:0] sel_data;
input data_cin;
input carry_in;
output data_out;
wire data_mux_out;
wire GND = 1'b0;
wire VCC = 1'b1;
wire and_out;
assign and_out = sel_data[3] & sel_data[2] & sel_data[1] & sel_data[0];
MUXCY muxcy_inst (.DI(GND), .CI(data_cin), .S(and_out), 
.O(data_mux_out)) /* synthesis  RLOC="x0y0" */;
ORCY u5(.I(carry_in), .CI(data_mux_out), .O(data_out)) /* synthesis  
RLOC="x0y0" */;
endmodule
UG002 (v1.3)  3 December 2001 www.xilinx.com 249
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com


R

//-------------------------------------------------------------------
// Module : SOP_SUBM
// Description : Implementing SOP using MUXCY and ORCY
//
// Device : Virtex-II Family
//-------------------------------------------------------------------
module SOP_SUBM(and_in, sop_out);
input [63:0] and_in;
output sop_out;
wire out_andor_chain1, out_andor_chain2, out_andor_chain3;
wire GND = 1'b0;
AND_CHAIN u4(.data_in(and_in[63:48]), .carry_in(out_andor_chain3),
.out_andor_chain(sop_out));
AND_CHAIN u3(.data_in(and_in[47:32]), .carry_in(out_andor_chain2),
.out_andor_chain(out_andor_chain3));
AND_CHAIN u2(.data_in(and_in[31:16]), .carry_in(out_andor_chain1),
.out_andor_chain(out_andor_chain2)); 
AND_CHAIN u1(.data_in(and_in[15:0]), .carry_in(GND),
.out_andor_chain(out_andor_chain1)); 
endmodule
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Using Embedded Multipliers

Introduction
Virtex-II devices feature a large number of embedded 18-bit X 18-bit two’s-complement 
embedded multipliers. The embedded multipliers offer fast, efficient means to create 18-bit 
signed by 18-bit signed multiplication products. The multiplier blocks share routing 
resources with the Block SelectRAM memory, allowing for increased efficiency for many 
applications. Cascading of multipliers can be implemented with additional logic resources 
in local Virtex-II slices. 

Applications such as signed-signed, signed-unsigned, and unsigned-unsigned 
multiplication, logical, arithmetic, and barrel shifters, two’s-complement and magnitude 
return are easily implemented. 

Using the CORE Generator, the designer can quickly generate multipliers that make use of 
the embedded 18-bit x 18-bit two’s-complement multipliers (V2.0 or later) of the Multiplier 
core for Virtex-II devices. 

Two’s-Complement Signed Multiplier

Data Flow
Each embedded multiplier block (MULT18X18 primitive) supports two independent 
dynamic data input ports: 18-bit signed or 17-bit unsigned. The MULT18X18 primitive is 
illustrated in Figure 2-69.

In addition, efficient cascading of multipliers up to 35-bit X 35-bit signed can be 
accomplished by using 4 embedded multipliers, one 36-bit adder, and one 53-bit adder. See 
Figure 2-70.

Library Primitives and Submodules
One library primitive (MULT18X18) is available. Table 2-25 lists the attributes of this 
primitive.

Figure 2-69: Embedded Multiplier

A

MULT18X18

UG002_C2_025_082100

B

P

18

  18

36

Table 2-25: Embedded Multiplier Primitive

Primitive A width B width P width Signed/Unsigned

MULT18X18 18 18 36 Signed (2’s 
complement)
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In addition to the primitive, 15 submodules that implement various widths of signed and 
unsigned multipliers and two’s-complement return functions are provided in VHDL and 
Verilog code. Multipliers using cascaded MULT18X18 primitives are included with 
registers between stages causing three cycles of latency. Multipliers that make use of the 
embedded Virtex-II 18-bit by 18-bit two’s complement multipliers can be easily generated 
using V2.0 of the CORE Generator Multiplier module. Table 2-26 lists cascaded multiplier 
submodules.

Figure 2-70 represents the cascaded scheme used to implement a 35-bit by 35-bit signed 
multiplier utilizing four embedded multipliers and two adders. 

The fixed adder is 53 bits wide (17 LSBs are always 0 on one input).

The 34-bit by 34-bit unsigned submodule is constructed in a similar manner with the most 
significant bit on each operand being tied to logic low.

Table 2-26 lists multipliers and two’s-complement return functions that utilize one 
MULT18X18 primitive and are not registered. 

Table 2-26: Embedded Multiplier Submodules - Cascaded MULT18X18

Submodule A Width B Width P Width Signed/Unsigned

MULT35X35_S 35 35 70 Signed

MULT34X34_U 34 34 68 Unsigned

Figure 2-70: MULT35X35_S Submodule
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Multipliers of form MULT_aXaS_bXbU use one embedded multiplier to implement two 
multipliers with separate outputs. The submodules listed above use optimized pin 
assignments to achieve shortest possible through-delay.

Figure 2-71 and Figure 2-72 represent 4-bit by 4-bit signed multiplier and 4-bit by 4-bit 
unsigned multiplier implementations, respectively. 

Table 2-27: Embedded Multiplier Submodules - Single MULT18X18

Submodule A width B width P width Signed/Unsigned

MULT17X17_U 17 17 34 Unsigned

MULT8X8_S 8 8 16 Signed

MULT8X8_U 8 8 16 Unsigned

MULT4X4_S 4 4 8 Signed

MULT4X4_U 4 4 8 Unsigned

MULT_6X6S_5X5U 6
5

6
5

12 
10

Signed
Unsigned

MULT_5X5S_6X6U 5
6

5
6

10 
12

Signed
Unsigned

MULT_5X5U_5X5U 5
5

5
5

10
10

Unsigned
Unsigned

MULT_4X4S_7X7U 4
7

4
7

8
14

Signed
Unsigned

MULT_4X4S_3X3S 4
3

4
3

8 
6

Signed
Signed

TWOS_CMP18 18 - 18 -

TWOS_CMP9 9 - 9 -

MAGNTD_18 18 - 17 -

Figure 2-71: MULT4X4_S Submodule

17O

O
A3
A3
A3
A3

A[3:0]

P[7:0]7:0

•••
•••

8
7
6
5
4
[3:0] NC35:8

A

P

17O

O
B3
B3
B3
B3

B[3:0]

•••
•••

8
7
6
5
4
[3:0]

B

MULT 18 x 18

UG002_C2_022_032901
UG002 (v1.3)  3 December 2001 www.xilinx.com 253
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com


R

Submodule MAGNTD_18 performs a magnitude return (i.e., absolute value) of a two’s-
complement number. An incoming negative number returns with a positive number, while 
an incoming positive number remains unchanged. Submodules TWOS_CMP18 and 
TWOS_CMP9 perform a two’s-complement return function. The incoming number in 
two’s-complement form (either signed or unsigned) is complemented when the 
DO_COMP pin is asserted High. Additional slice logic can be used with these submodules 
to efficiently convert sign-magnitude to two’s-complement or vice-versa. Figure 2-73 
shows the connections to a MULT18X18 to create the submodule TWOS_CMP9. 

Two Multipliers in a Single Primitive
Two multipliers can be implemented in a single primitive. For simplified illustration 
purposes, an assumption of two squares being implemented in the same MULT18X18 
primitive is used. The following equation shows the form of the multiplication.

Two Multipliers per Primitive:

(X * 2n + Y)(X * 2n + Y) = (X2 * 22n) + (Y2) + (XY * 2n+1)

(X * 2n) is the input X appearing on the MSBs while Y appears on the LSBs to form the value 
(X * 2n + Y). Two multipliers can coexist in one MULT18X18 primitive, if the conditions in 
the following inequalities are met when neither X nor Y are 0.

Figure 2-72: MULT4X4_U Submodule

Figure 2-73: TWOS_CMP9 Submodule
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Inequality Conditions for Two Multipliers per Primitive:

(X2 * 22n)min > (XY * 2n+1)max, (XY * 2n+1)min > (Y2)max 

For values 0 on X or Y, the equation becomes:

  X2 * 22n {Y=0}

  Y2 {X=0}

   0 {X=0, Y=0}

Figure 2-74 represents the MULT_6X6S_5X5U submodule.

Table 2-28 shows values for X and Y where these conditions are met.

VHDL and Verilog Instantiation
VHDL and Verilog instantiation templates are available as examples of primitives and 
submodules (see "VHDL and Verilog Templates" on page 256).
In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template should be inserted within the VHDL design file. The port map of 
the architecture section should include the design signals names.

Port Signals

Data In - A
The data input provides new data (up to 18 bits) to be used as one of the multiplication 
operands.

Data In - B
The data input provides new data (up to 18 bits) to be used as one of the multiplication 
operands.

Figure 2-74: MULT_6X6S_5X5U -- Connections to a MULT18X18 Primitive

Table 2-28: Two Multipliers per MULT18X18 Allowable Sizes

X * X Y * Y 

Signed Size Unsigned Size Signed Size Unsigned Size

7 X 7 6 X 6 - 4 X 4

6 X 6 5 X 5 - 5 X 5

5 X 5 4 X 4 3 X 3 6 X 6

4 X 4 3 X 3 3 X 3 7 X 7

3 X 3 2 X 2 4 X 4 8 X 8

A_5U 4:0

P_5U9:0

X00 11:5

A_6S 17:12

P_6S35:24

NC23:10

A

B_5U 4:0

X00 11:5

B_6S 17:12

B

P

MULT 18 x 18
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Data Out - P
The data output bus P provides the data value (up to 36 bits) of two’s-complement 
multiplication for operands A and B.

Location Constraints
Each embedded multiplier has location coordinates of the form XrowYcolumn. To 
constrain placement, multiplier instances can have LOC properties attached to 

MULT18X18 embedded multiplier instances can have LOC properties attached to them to 
constrain placement. MULT18X18 placement locations differ from the convention used for 
naming CLB locations, allowing LOC properties to transfer easily from array to array.

The LOC properties use the following form:

LOC = MULT18X18_X#Y#

For example, MULT18X18_X0Y0 is the bottom-left MULT18X18 location on the device. 

VHDL and Verilog Templates
VHDL and Verilog templates are available for the primitive and submodules.

The following is a template for the primitive:

• SIGNED_MULT_18X18 (primitive: MULT18X18)

The following are templates for submodules:

• SIGNED_MULT_35X35 (submodule: MULT35X35_S)

• UNSIGNED_MULT_34X34 (submodule: MULT34X34_U)

• UNSIGNED_MULT_17X17 (submodule: MULT17X17_U)

• SIGNED_MULT_8X8 (submodule: MULT8X8_S)

• UNSIGNED_MULT_8X8 (submodule: MULT8X8_U)

• SIGNED_MULT_4X4 (submodule: MULT4X4_S)

• UNSIGNED_MULT_4X4 (submodule: MULT4X4_U)

• DUAL_MULT_6X6S_5X5U (submodule: MULT_6X6S_5X5U)

• DUAL_MULT_5X5S_6X6U (submodule: MULT_5X5S_6X6U)

• DUAL_MULT_5X5U_5X5U (submodule: MULT_5X5U_5X5U)

• DUAL_MULT_4X4S_7X7U (submodule: MULT_4X4S_7X7U)

• DUAL_MULT_4X4S_3X3S (submodule: MULT_4X4S_3X3S)

• TWOS_COMPLEMENTER_18BIT (submodule: TWOS_CMP18)

• TWOS_COMPLEMENTER_9BIT (submodule: TWOS_CMP9)

• MAGNITUDE_18BIT (submodule: MAGNTD_18)

The corresponding submodules have to be synthesized with the design.

Templates for the SIGNED_MULT_18X18 module are provided in VHDL and Verilog code 
as an example.
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VHDL Template:
-- Module: SIGNED_MULT_18X18
-- Description: VHDL instantiation template
-- 18-bit X 18-bit embedded signed multiplier (asynchronous)
--
-- Device: Virtex-II Family
---------------------------------------------------------------------
-- Components Declarations
component MULT18X18
  port(
       A :  in std_logic_vector (17 downto 0);
       B :  in std_logic_vector (17 downto 0);
       P : out std_logic_vector (35 downto 0)
  );
end component;
--
-- Architecture Section
--
U_MULT18X18 : MULT18X18
  port map (
    A => , -- insert input signal #1
    B => , -- insert input signal #2
    P =>   -- insert output signal
  );

Verilog Template:
// Module: SIGNED_MULT_18X18
// Description: Verilog instantiation template
// 18-bit X 18-bit embedded signed multiplier (asynchronous)
//
// Device: Virtex-II Family
//-------------------------------------------------------------------
// Instantiation Section
//
MULT18X18 U_MULT18X18
  (
    .A () , // insert input signal #1
    .B () , // insert input signal #2
    .P ()   // insert output signal
  );
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Using Single-Ended SelectI/O Resources

Summary
The Virtex-II FPGA series includes a highly configurable, high-performance single-ended 
SelectI/O resource that supports a wide variety of I/O standards. The SelectI/O resource 
includes a robust set of features, including programmable control of output drive strength, 
slew rate, and input delay and hold time. Taking advantage of the flexibility of SelectI/O 
features and the design considerations described in this document can improve and 
simplify system-level design. 

Introduction
As FPGAs continue to grow in size and capacity, the larger and more complex systems 
designed for them demand an increased variety of I/O standards. Furthermore, as system 
clock speeds continue to increase, the need for high-performance I/O becomes more 
important. Chip-to-chip delays have an increasingly substantial impact on overall system 
speed. The task of achieving the desired system performance is becoming more difficult 
with the proliferation of low-voltage I/O standards. SelectI/O resolves this potential 
problem by providing a highly configurable, high-performance alternative to I/O 
resources used in more conventional programmable devices. 

Virtex-II SelectI/O blocks can support up to 19 single-ended I/O standards. Supporting 
such a variety of I/O standards allows support for a wide variety of applications. 

Each Input/Output Block (IOB) includes six registers, two each from the input, output, 
and 3-state signals within the IOB. These registers are optionally configured as either a 
D-type flip-flop or as a level-sensitive latch. The purpose of having six registers is to allow 
designers to design double-data-rate (DDR) logic in the I/O blocks. Each pair of the flip-
flop (FF) has different clocks so that the flip-flops can be driven by two clocks with a 180-
degree phase shift to achieve DDR. All I/O flip-flops still share the same reset/preset line.

The input buffer has an optional delay element used to guarantee a zero hold time 
requirement for input signals registered within the IOB. 

Virtex-II SelectI/O features also provide dedicated resources for input reference voltage 
(VREF) and input output source voltage (VCCO), along with a convenient banking system 
that simplifies board design. Virtex-II inputs and outputs are powered from VCCO. 
Differential amplifier inputs, such as GTL and SSTL, are powered from VREF. 

Fundamentals
Modern bus applications, pioneered by the largest and most influential components in the 
digital electronics industry, are commonly introduced with a new I/O standard tailored 
specifically to the needs of that application. The bus I/O standards provide specifications 
to other vendors who create products designed to interface with these applications. Each 
standard often has its own specifications for current, voltage, I/O buffering, and 
termination techniques. 

The ability to provide the flexibility and time-to-market advantages of programmable logic 
is increasingly dependent on the capability of the programmable logic device to support an 
ever increasing variety of I/O standards.

SelectI/O resources feature highly configurable input and output buffers that provide 
support for a wide variety of I/O standards. An input buffer can be configured as either a 
simple buffer or as a differential amplifier input. An output buffer can be configured as 
either a Push-Pull output or as an Open Drain output. Table 2-29 illustrates all of the 
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supported single-ended I/O standards in Virtex-II devices. Each buffer type can support a 
variety of current and voltage requirements. 

Overview of Supported I/O Standards
This section provides a brief overview of I/O standards supported by all Virtex-II devices.

While most I/O standards specify a range of allowed voltages, this document records 
typical voltage values only. Detailed information on each specification can be found on the 
Electronic Industry Alliance JEDEC website at:

http://www.jedec.org 

LVTTL - Low-Voltage TTL
The low-voltage TTL, or LVTTL, standard is a general purpose EIA/JESDSA standard for 
3.3 V applications that use an LVTTL input buffer and a Push-Pull output buffer. This 
standard requires a 3.3 V input and output source voltage (VCCO), but does not require the 
use of a reference voltage (VREF) or a termination voltage (VTT). 

LVCMOS33 - 3.3 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard (JESD 8.-5). It is used in general 
purpose 3.3 V applications.The standard requires a 3.3 V input/output source voltage 
(VCCO), but does not require the use of a reference voltage (VREF) or a termination voltage 
(VTT).

LVCMOS25 - 2.5 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard (JESD 8.-5). It is used in general 
purpose 2.5 volts or lower applications. This standard requires a 2.5 V input /output 

Table 2-29: Supported Single-Ended I/O Standards

I/O
Standard

Input Reference
Voltage (VREF)

Input Source
Voltage (VCCO)

Output Source
Voltage (VCCO)

Board Termination 
Voltage (VTT)

LVTTL N/A 3.3 3.3 N/A

LVCMOS15 N/A 1.5 1.5 N/A

LVCMOS18 N/A 1.8 1.8 N/A

LVCMOS25 N/A 2.5 2.5 N/A

LVCMOS33 N/A 3.3 3.3 N/A

PCI33_3 N/A 3.3 3.3 N/A

PCI66_3 N/A 3.3 3.3 N/A

PCIX N/A 3.3 3.3 N/A

GTL 0.80 N/A N/A 1.2

GTL+ 1.0 N/A N/A 1.5

HSTL_I 0.75 N/A 1.5 0.75

HSTL_II 0.75 N/A 1.5 0.75

HSTL_III 0.9 N/A 1.5 1.5

HSTL_IV 0.9 N/A 1.5 1.5

SSTL3_I 1.5 N/A 3.3 1.5

SSTL3_II 1.5 N/A 3.3 1.5

SSTL2_I 1.25 N/A 2.5 1.25

SSTL2_II 1.25 N/A 2.5 1.25

AGP-2X 1.32 N/A 3.3 N/A
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source voltage (VCCO), but does not require the use of a reference voltage (VREF) or a board 
termination voltage (VTT). 

LVCMOS18 - 1.8 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard. It is used in general purpose 1.8 V 
applications. The use of a reference voltage (VREF) or board termination voltage (VTT) is not 
required. 

LVCMOS15 - 1.5 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard. It is used in general purpose 1.5 V 
applications. The use of a reference voltage (VREF) or a board termination voltage (VTT) is 
not required. 

PCI - Peripheral Component Interface
The PCI standard specifies support for 33 MHz, 66 MHz and 133 MHz PCI bus 
applications. It uses a LVTTL input buffer and a Push-Pull output buffer. This standard 
does not require the use of a reference voltage (VREF) or a board termination voltage (VTT), 
however, it does require 3.3 V input output source voltage (VCCO). 

GTL -Gunning Transceiver Logic Terminated
The GTL standard is a high-speed bus standard (JESD8.3) invented by Xerox. Xilinx has 
implemented the terminated variation for this standard. This standard requires a 
differential amplifier input buffer and a open Drain output buffer. 

GTL+ - Gunning Transceiver Logic Plus
The Gunning Transceiver Logic Plus, or GTL+ standard is a high-speed bus standard 
(JESD8.3) first used by the Pentium Pro Processor. 

HSTL - High-speed Transceiver Logic
The high-speed Transceiver Logic, or HSTL standard is a general purpose high-speed, 1.5V 
bus standard sponsored by IBM (EIA/JESD8-6). This standard has four variations or 
classes. Virtex-II SelectI/O supports all four Classes. This standard requires a Differential 
Amplifier input buffer and a Push-pull output buffer. 

SSTL3 - Stub Series Terminated Logic for 3.3V
The Stub Series Terminated Logic for 3.3V, or SSTL3 standard is a general purpose 3.3V 
memory bus standard also sponsored by Hitachi and IBM (JESD8-8). This standard has 
two classes, I and II. Virtex-II SelectI/O supports both classes for the SSTL3 standard. This 
standard requires a Differential Amplifier input buffer and a Push-Pull output buffer. 

SSTL2 - Stub Series Terminated Logic for 2.5V
The Stub Series Terminated Logic for 2.5V, or SSTL2 standard is a general purpose 2.5V 
memory bus standard also sponsored by Hitachi and IBM (JESD8-8). This standard has 
two classes, I and II. Virtex-II SelectI/O supports both classes for the SSTL2 standard. This 
standard requires a Differential Amplifier input buffer and a Push-Pull output buffer

AGP-2X - Advanced Graphics Port
The Intel AGP standard is a 3.3V Advanced Graphics Port-2X bus standard used with the 
Pentium II processor for graphic applications. This standard requires a Push-Pull output 
buffer and a Differential Amplifier input buffer. 
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Library Symbols
The Xilinx library includes an extensive list of symbols designed to provide support for the 
variety of SelectI/O features. Most of these symbols represent variations of the five generic 
SelectI/O symbols.

• IBUF (input buffer)

• IBUFG (clock input buffer)

• OBUF (output buffer)

• OBUFT (3-state output buffer)

• IOBUF (input/output buffer)

IBUF
Signals used as inputs to a Virtex-II device must source an input buffer (IBUF) via an 
external input port. The generic Virtex-II IBUF symbol is shown in Figure 2-75. The 
extension to the base name defines which I/O standard the IBUF uses. The assumed 
standard is LVTTL when the generic IBUF has no specified extension.

Table 2-30 details variations of the IBUF symbol for single-ended Virtex-II I/O standards: 

When the IBUF symbol supports an I/O standard that requires a differential amplifier 
input, the IBUF is automatically configured as a differential amplifier input buffer. The 
low-voltage I/O standards with a differential amplifier input require an external reference 
voltage input VREF.

The voltage reference signal is “banked” within the Virtex-II device on a half-edge basis, 
such that for all packages there are eight independent VREF banks internally. For a 
representation of the Virtex-II I/O banks, see Figure 2-77. Within each bank approximately 
one of every six I/O pins is automatically configured as a VREF input. After placing a 
differential amplifier input signal within a given VREF bank, the same external source must 
drive all I/O pins configured as a VREF input. 

Figure 2-75: Input Buffer (IBUF) Symbols

Table 2-30: Variations of the IBUF Symbol

IBUF IBUF_HSTL_III

IBUF_LVCMOS15 IBUF_HSTL_IV

IBUF_LVCMOS18 IBUF_SSTL2_I

IBUF_LVCMOS25 IBUF_SSTL2_II

IBUF_LVCMOS33 IBUF_SSTL3_I

IBUF_APG IBUF_SSTL3_II

IBUF_GTL IBUF_PCI33_3

IBUF_GTLP IBUF_PCI66_3

IBUF_HSTL_I IBUF_PCIX

IBUF_HSTL_II IBUF_AGP

OI

IBUF

x133_01_111699
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IBUF placement restrictions require that any differential amplifier input signals within a 
bank be of the same standard. How to specify a specific location for the IBUF via the LOC 
property is described below. Table 2-31 summarizes compatibility requirements of 
Virtex-II input standards. 

An optional delay element in the input data path is associated with each IBUF. When the 
IBUF drives a flip-flop within the IOB, the delay element is activated by default to ensure 
a zero hold-time requirement at the device input pin. The IOBDELAY = NONE property 
overrides this default, thus reducing the input set-up time, but risking a hold-time 
requirement.

When the IBUF does not drive a flip-flop within the IOB, the delay element is deactivated 
by default to provide a shorter input set-up time. To delay the input signal, activate the 
delay element with the IOBDELAY = BOTH property. 

Each bank has its own VCCO and VREF voltage. Details on compatible input standards for 
each VCCO / VREF voltage combination are available in the Virtex-II Data Sheet .

Figure 2-76: Virtex-II I/O Banks: Top View for Flip-Chip Packages (FF & BF)

Figure 2-77: Virtex-II I/O Banks: Top View for Wire-Bond Packages (CS, FG, & BG)

Table 2-31: Xilinx Input Standard Compatibility Requirements

Rule 1 Standards with the same VCCO, and VREF can be placed within the same bank.

Rule 2 Standards that don't require a VREF can be placed within the same bank with 
the standards that have the same VCCO values
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OBUF
An OBUF must drive outputs through an external output port. Figure 2-78 shows the 
generic output buffer (OBUF) symbol. 

The extension to the base name defines which I/O standard the OBUF uses. With no 
extension specified for the generic OBUF symbol, the assumed standard is slew rate 
limited LVTTL with 12mA drive strength. 

The LVTTL and LVCMOS OBUFs can additionally support one of two slew rate modes to 
minimize bus transients. By default, the slew rate for each output buffer is reduced to 
minimize power bus transients, when switching non-critical signals. 

LVTTL and LVCMOS output buffers have selectable drive strengths. The format for these 
OBUF symbol names is as follows:

OBUF_<slew_rate>_<drive_strength>

<slew_rate> is either F (fast) or S (slow) and <drive_strength> is specified in milliamperes. 
For LVTTL, LVCMOS25, and LVCMOS33, the supported drive strengths are 2, 4, 6, 8, 12, 
16, and 24. For LVCMOS15, and LVCMOS18, the supported drive strengths are 2, 4, 6, 8, 12, 
and 16.

Table 2-32 details variations of the OBUF symbol. 

Figure 2-78: Virtex-II Output Buffer (OBUF) Symbol

Table 2-32: Variations of the OBUF Symbol 

OBUF OBUF_LVCMOS18_S_2 OBUF_LVCMOS33_S_4

OBUF_S_2 OBUF_LVCMOS18_S_4 OBUF_LVCMOS33_S_6

OBUF_S_4 OBUF_LVCMOS18_S_6 OBUF_LVCMOS33_S_8

OBUF_S_6 OBUF_LVCMOS18_S_8 OBUF_LVCMOS33_S_12

OBUF_S_8 OBUF_LVCMOS18_S_12 OBUF_LVCMOS33_S_16

OBUF_S_12 OBUF_LVCMOS18_S_16 OBUF_LVCMOS33_S_24

OBUF_S_16 OBUF_LVCMOS18_F_2 OBUF_LVCMOS33_F_2

OBUF_S_24 OBUF_LVCMOS18_F_4 OBUF_LVCMOS33_F_4

OBUF_F_2 OBUF_LVCMOS18_F_6 OBUF_LVCMOS33_F_6

OBUF_F_4 OBUF_LVCMOS18_F_8 OBUF_LVCMOS33_F_8

OBUF_F_6 OBUF_LVCMOS18_F_12 OBUF_LVCMOS33_F_12

OBUF_F_8 OBUF_LVCMOS18_F_16 OBUF_LVCMOS33_F_16

OBUF_F_12 OBUF_LVCMOS25 OBUF_LVCMOS33_F_24

OBUF_F_16 OBUF_LVCMOS25_S_2 OBUF_PCI33_3

OBUF_F_24 OBUF_LVCMOS25_S_4 OBUF_PCI66-3

OBUF_LVCMOS15 OBUF_LVCMOS25_S_6 OBUF_PCIX

OBUF_LVCMOS15_S_2 OBUF_LVCMOS25_S_8 OBUF_GTL

OBUF_LVCMOS15_S_4 OBUF_LVCMOS25_S_12 OBUF_GTLP

OBUF_LVCMOS15_S_6 OBUF_LVCMOS25_S_16 OBUF_HSTL_I

OI

OBUF
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OBUF placement restrictions require that within a given VCCO bank each OBUF share the 
same output source drive voltage. Input buffers with the same VCCO and output buffers that 
do not require VCCO can be placed within any VCCO bank. Table 2-33 summarizes Virtex-II 
output compatibility requirements. The LOC property can specify a location for the OBUF. 

Each bank has its own VCCO voltage. Details on compatible output standards for each 
VCCO voltage combination are available in the Virtex-II Data Sheet .

OBUFT
The generic 3-state output buffer OBUFT, shown in Figure 2-79, typically implements 
3-state outputs or bidirectional I/O. 

The extension to the base name defines which I/O standard OBUFT uses. With no 
extension specified for the generic OBUFT symbol, the assumed standard is slew rate 
limited LVTTL with 12mA drive strength. 

The LVTTL and LVCMOS OBUFTs additionally can support one of two slew rate modes to 
minimize bus transients. By default, the slew rate for each output buffer is reduced to 
minimize power bus transients, when switching non-critical signals. 

LVTTL and LVCMOS 3-state buffers have selectable drive strengths. The format for these 
OBUFT symbol names is as follows:

OBUFT_<slew_rate>_<drive_strength>

<slew_rate> is either F(fast) or S(slow) and <drive_strength> is specified in milliamperes. For 
LVTTL, LVCMOS25, and LVCMOS33, the supported drive strengths are 2, 4, 6, 8, 12, 16, and 
24. For LVCMOS15 and LVCMOS18, the supported drive strengths are 2, 4, 6, 8, 12, and 16.

OBUF_LVCMOS15_S_8 OBUF_LVCMOS25_S_24 OBUF_HSTL_II

OBUF_LVCMOS15_S_12 OBUF_LVCMOS25_F_2 OBUF_HSTL_III

OBUF_LVCMOS15_S_16 OBUF_LVCMOS25_F_4 OBUF_HSTL_IV

OBUF_LVCMOS15_F_2 OBUF_LVCMOS25_F_6 OBUF_SSTL3_I

OBUF_LVCMOS15_F_4 OBUF_LVCMOS25_F_8 OBUF_SSTL3_II

OBUF_LVCMOS15_F_6 OBUF_LVCMOS25_F_12 OBUF_SSTL2_I

OBUF_LVCMOS15_F_8 OBUF_LVCMOS25_F_16 OBUF_SSTL2_II

OBUF_LVCMOS15_F_12 OBUF_LVCMOS25_F_24 OBUF_AGP

OBUF_LVCMOS15_F_16 OBUF_LVCMOS33

OBUF_LVCMOS18 OBUF_LVCMOS33_S_2

Table 2-33: Output Standards Compatibility Requirements

Rule 1 Only outputs with standards which share compatible VCCO can be used within 
the same bank.

Rule 2 There are no placement restrictions for outputs with standards that do not 
require a VCCO

Table 2-32: Variations of the OBUF Symbol  (Continued)

Figure 2-79: 3-State Output Buffer Symbol (OBUFT)

OI

OBUFT
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Table 2-34 details variations of the OBUFT symbol.

OBUFT placement restrictions require that within a given VCCO bank each OBUFT share 
the same output source drive voltage. Input buffers with the same VCCO and output 
buffers that do not require VCCO can be placed within any VCCO bank. The LOC property 
can specify a location for the OBUFT.

3-state output buffers and bidirectional buffers can have either a weak pull-up resistor, a 
weak pull-down resistor, or a weak “keeper” circuit. Control this feature by adding the 
appropriate symbol to the output net of the OBUFT (PULLUP, PULLDOWN, or KEEPER). 

The weak “keeper” circuit requires the input buffer within the IOB to sample the I/O 
signal. Thus, OBUFTs programmed for an I/O standard that requires a VREF have 

Table 2-34: Variations of the OBUFT Symbol 

OBUFT OBUFT_LVCMOS18_S_2 OBUFT_LVCMOS33_S_4

OBUFT_S_2 OBUFT_LVCMOS18_S_4 OBUFT_LVCMOS33_S_6

OBUFT_S_4 OBUFT_LVCMOS18_S_6 OBUFT_LVCMOS33_S_8

OBUFT_S_6 OBUFT_LVCMOS18_S_8 OBUFT_LVCMOS33_S_12

OBUFT_S_8 OBUFT_LVCMOS18_S_12 OBUFT_LVCMOS33_S_16

OBUFT_S_12 OBUFT_LVCMOS18_S_16 OBUFT_LVCMOS33_S_24

OBUFT_S_16 OBUFT_LVCMOS18_F_2 OBUFT_LVCMOS33_F_2

OBUFT_S_24 OBUFT_LVCMOS18_F_4 OBUFT_LVCMOS33_F_4

OBUFT_F_2 OBUFT_LVCMOS18_F_6 OBUFT_LVCMOS33_F_6

OBUFT_F_4 OBUFT_LVCMOS18_F_8 OBUFT_LVCMOS33_F_8

OBUFT_F_6 OBUFT_LVCMOS18F_12 OBUFT_LVCMOS33_F_12

OBUFT_F_8 OBUFT_LVCMOS18_F_16 OBUFT_LVCMOS33_F_16

OBUFT_F_12 OBUFT_LVCMOS25 OBUFT_LVCMOS33_F_24

OBUFT_F_16 OBUFT_LVCMOS25_S_2 OBUFT_PCI33_3

OBUFT_F_24 OBUFT_LVCMOS25_S_4 OBUFT_PCI66-3

OBUFT_LVCMOS15 OBUFT_LVCMOS25_S_6 OBUFT_PCIX

OBUFT_LVCMOS15_S_2 OBUFT_LVCMOS25_S_8 OBUFT_GTL

OBUFT_LVCMOS15_S_4 OBUFT_LVCMOS25_S_12 OBUFT_GTLP

OBUFT_LVCMOS15_S_6 OBUFT_LVCMOS25_S_16 OBUFT_HSTL_I

OBUFT_LVCMOS15_S_8 OBUFT_LVCMOS25_S_24 OBUFT_HSTL_II

OBUFT_LVCMOS15_S_12 OBUFT_LVCMOS25_F_2 OBUFT_HSTL_III

OBUFT_LVCMOS15_S_16 OBUFT_LVCMOS25_F_4 OBUFT_HSTL_IV

OBUFT_LVCMOS15_F_2 OBUFT_LVCMOS25_F_6 OBUFT_SSTL3_I

OBUFT_LVCMOS15_F_4 OBUFT_LVCMOS25_F_8 OBUFT_SSTL3_II

OBUFT_LVCMOS15_F_6 OBUFT_LVCMOS25_F_12 OBUFT_SSTL2_I

OBUFT_LVCMOS15_F_8 OBUFT_LVCMOS25_F_16 OBUFT_SSTL2_II

OBUFT_LVCMOS15_F_12 OBUFT_LVCMOS25_F_24 OBUFT_AGP

OBUFT_LVCMOS15_F_16 OBUFT_LVCMOS33

OBUFT_LVCMOS18 OBUFT_LVCMOS33_S_2
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automatic placement of a VREF in the bank with an OBUFT configured with a weak 
“keeper” typically implement a bidirectional I/O. In this case, the IBUF (and the 
corresponding VREF) are placed explicitly. 

IOBUF
Use the IOBUF symbol for bidirectional signals that require both an input buffer and a 
3-state output buffer with an active High 3-state pin. Figure 2-80 shows the generic 
input/output IOBUF buffer. 

The extension to the base name defines which I/O standard the IOBUF uses. With no 
extension specified for the generic IOBUF symbol, the assumed standard is LVTTL input 
buffer and slew rate limited LVTTL with 12mA drive strength for the output buffer. 

The LVTTL and LVCMOS IOBUFs can additionally support one of two slew rate modes to 
minimize bus transients. By default, the slew rate for each output buffer is reduced to 
minimize power bus transients, when switching non-critical signals. 

LVTTL and LVCMOS output buffers have selectable drive strengths. The format for these 
OBUF symbol names is as follows:

OBUF_<slew_rate>_<drive_strength>

<slew_rate> is either F (fast) or S (slow) and <drive_strength> is specified in milliamperes. 
For LVTTL, LVCMOS25 and LVCMOS33, the supported drive strengths are 2, 4, 6, 8, 12, 16, 
and 24. For LVCMOS15, and LVCMOS18, the supported drive strengths are 2, 4, 6, 8, 12, 
and 16. Table 2-35 details variations of the IOBUF symbol.

Figure 2-80: Input/Output Buffer Symbol (IOBUF)

Table 2-35: Variations of the IOBUF Symbol 

IOBUF IOBUF_LVCMOS18_S_2 IOBUF_LVCMOS33_S_4

IOBUF_S_2 IOBUF_LVCMOS18_S_4 IOBUF_LVCMOS33_S_6

IOBUF_S_4 IOBUF_LVCMOS18_S_6 IOBUF_LVCMOS33_S_8

IOBUF_S_6 IOBUF_LVCMOS18_S_8 IOBUF_LVCMOS33_S_12

IOBUF_S_8 IOBUF_LVCMOS18_S_12 IOBUF_LVCMOS33_S_16

IOBUF_S_12 IOBUF_LVCMOS18_S_16 IOBUF_LVCMOS33_S_24

IOBUF_S_16 IOBUF_LVCMOS18_F_2 IOBUF_LVCMOS33_F_2

IOBUF_S_24 IOBUF_LVCMOS18_F_4 IOBUF_LVCMOS33_F_4

IOBUF_F_2 IOBUF_LVCMOS18_F_6 IOBUF_LVCMOS33_F_6

IOBUF_F_4 IOBUF_LVCMOS18_F_8 IOBUF_LVCMOS33_F_8

IOBUF_F_6 IOBUF_LVCMOS18F_12 IOBUF_LVCMOS33_F_12

IOBUF_F_8 IOBUF_LVCMOS18_F_16 IOBUF_LVCMOS33_F_16

IOI

IOBUF
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When the IOBUF symbol supports an I/O standard that requires a differential amplifier 
input, IOBUF is automatically configured as a differential amplifier input buffer. Low-
voltage I/O standards with a differential amplifier input require an external reference 
voltage input VREF.

The voltage reference signal is “banked” within the Virtex-II device on a half-edge basis, 
such that for all packages there are eight independent VREF banks internally. For a 
representation of the Virtex-II I/O banks, see Figure 2-77. Within each bank approximately 
one of every twelve I/O pins is automatically configured as a VREF input. After placing a 
differential amplifier input signal within a given VREF bank, the same external source must 
drive all I/O pins configured as a VREF input.

IOBUF placement restrictions require any differential amplifier input signals within a bank 
be of the same standard.

Additional restrictions on Virtex-II SelectI/O IOBUF placement require that within a given 
VCCO bank each IOBUF share the same output source drive voltage. Input buffers with the 
same VCCO and output buffers that do not require VCCO can be placed within any VCCO 
bank. The LOC property can specify a location for the OBUF.

An optional delay element is associated with the input path in each IOBUF. When the 
IOBUF drives an input flip-flop within the IOB, the delay element is activated by default to 
ensure the zero hold-time requirement. Override this default with the 
IOBDELAY = NONE property.

In the case when the IOBUF does not drive an input flip-flop within the IOB, the delay 
element is deactivated by default to provide higher performance. To delay the input signal, 
deactivate the delay element with the IOBDELAY = BOTH property. 

3-state output buffers and bidirectional buffers can have a weak pull-up resistor, a weak 
pull-down resistor, or a weak “keeper” circuit. Control this feature by adding the 
appropriate symbol to the output net of the IOBUF (PULLUP, PULLDOWN, or KEEPER). 

IOBUF_F_12 IOBUF_LVCMOS25 IOBUF_LVCMOS33_F_24

IOBUF_F_16 IOBUF_LVCMOS25_S_2 IOBUF_PCI33_3

IOBUF_F_24 IOBUF_LVCMOS25_S_4 IOBUF_PCI66-3

IOBUF_LVCMOS15 IOBUF_LVCMOS25_S_6 IOBUF_PCIX

IOBUF_LVCMOS15_S_2 IOBUF_LVCMOS25_S_8 IOBUF_GTL

IOBUF_LVCMOS15_S_4 IOBUF_LVCMOS25_S_12 IOBUF_GTLP

IOBUF_LVCMOS15_S_6 IOBUF_LVCMOS25_S_16 IOBUF_HSTL_I

IOBUF_LVCMOS15_S_8 IOBUF_LVCMOS25_S_24 IOBUF_HSTL_II

IOBUF_LVCMOS15_S_12 IOBUF_LVCMOS25_F_2 IOBUF_HSTL_III

IOBUF_LVCMOS15_S_16 IOBUF_LVCMOS25_F_4 IOBUF_HSTL_IV

IOBUF_LVCMOS15_F_2 IOBUF_LVCMOS25_F_6 IOBUF_SSTL3_I

IOBUF_LVCMOS15_F_4 IOBUF_LVCMOS25_F_8 IOBUF_SSTL3_II

IOBUF_LVCMOS15_F_6 IOBUF_LVCMOS25_F_12 IOBUF_SSTL2_I

IOBUF_LVCMOS15_F_8 IOBUF_LVCMOS25_F_16 IOBUF_SSTL2_II

IOBUF_LVCMOS15_F_12 IOBUF_LVCMOS25_F_24 IOBUF_AGP

IOBUF_LVCMOS15_F_16 IOBUF_LVCMOS33

IOBUF_LVCMOS18 IOBUF_LVCMOS33_S_2

Table 2-35: Variations of the IOBUF Symbol  (Continued)
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SelectI/O Properties
Access to some SelectI/O features (for example, location constraints, input delay, output 
drive strength, and slew rate) is available through properties associated with these features.

Input Delay Properties
An optional delay element is associated with the input path in each IBUF. When the IBUF 
drives an input flip-flop within the IOB, the delay element activates by default to ensure 
the zero hold-time requirement. Override this default with the IOBDELAY = NONE 
property.

In the case when the IBUF does not drive an input flip-flop within the IOB, the delay 
element is deactivated by default to provide higher performance. To delay the input signal, 
activate the delay element with the IOBDELAY = BOTH property. 

IOB Flip-Flop/Latch Properties
The Virtex-II series I/O block (IOB) includes two optional registers on the input path, two 
optional registers on the output path, and two optional registers on the 3-state control pin. 
The design implementation software automatically takes advantage of these registers 
when the following option for the MAP program is specified. 

Map -pr b <filename>

Alternatively, the IOB = TRUE property can be placed on a register to force the mapper to 
place the register in an IOB. 

The two registers for each path makes designing double-data-rate (DDR) logic much 
simpler. Each pair of the registers has separate clock inputs, which can be driven by either 
the positive edge or the negative edge of the clock. Users can use both edges of the clocks 
to clock data in and out from the IOB. For details on DDR, see "Using Double-Data-Rate 
(DDR) I/O" on page 303.

Location Constraints
Specify the location of each SelectI/O symbol with the location constraint LOC attached to 
the SelectI/O symbol. The external port identifier indicates the value of the location 
constrain. The format of the port identifier depends on the package chosen for the specified 
design. 

The LOC properties use the following form:

• LOC=A42;

• LOC=P37;

Output Slew Rate Property
As mentioned above, a variety of symbol names provide the option of choosing the desired 
slew rate for the output buffers. In the case of the LVTTL or LVCMOS output buffers 
(OBUF, OBUFT, and IOBUF), slew rate control can be alternatively programmed with the 
SLEW = property. By the default, the slew rate for each output buffer is reduced to 
minimize power bus transients when switching non-critical signals. The SLEW = property 
has one of the two following values:

• SLEW = SLOW

• SLEW = FAST

Output Drive Strength Property
The desired output drive strength can be additionally specified by choosing the 
appropriate library symbol. The Xilinx library also provides an alternative method for 
specifying this feature. For the LVTTL, and LVCMOS output buffers (OBUF, OBUFT, and 
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IOBUF), the desired drive strength can be specified with the DRIVE = property. This 
property could have one of the following values:

• DRIVE = 2

• DRIVE = 4

• DRIVE = 6

• DRIVE = 8

• DRIVE = 12

• DRIVE = 16

• DRIVE = 24

Design Considerations

Reference Voltage (VREF) Pins
Low-voltage I/O standards with a differential amplifier input buffer require an input 
reference voltage (VREF). Provide the VREF as an external signal to the device. 

The voltage reference signal is “banked” within the Virtex-II device on a half-edge basis 
such that for all packages there are eight independent VREF banks internally. See 
Figure 2-77 for a representation of the Virtex-II I/O banks. Within each bank 
approximately one of every twelve I/O pins is automatically configured as a VREF input. 
After placing a differential amplifier input signal within a given VREF bank, the same 
external source must drive all I/O pins configured as a VREF input. 

Within each VREF bank, any input buffers that require a VREF signal must be of the same 
type. Output buffers that have the same VCCO values as the input buffers can be placed 
within the same VREF bank. 

Output Drive Source Voltage (VCCO) Pins
Many of the low-voltage I/O standards supported by SelectI/O devices require a different 
output drive source voltage (VCCO). As a result each device can often have to support 
multiple output drive source voltages. 

Output buffers within a given VCCO bank must share the same output drive source 
voltage. Input buffers for LVTTL, LVCMOS15, LVCMOS18, LVCMOS25, LVCMOS33, 
PCI33_3, PCI66_3, PCIX use the VCCO voltage for input VCCO voltage.

Transmission Line Effects
The delay of an electrical signal along a wire is dominated by the rise and fall times when 
the signal travels a short distance. Transmission line delays vary with inductance and 
capacitance. But a well-designed board can experience delays of approximately 180ps per 
inch. Transmission line effects, or reflections, typically start at 1.5" for fast (1.5ns) rise and 
fall times. Poor (or non-existent) termination or changes in the transmission line 
impedance cause these reflections and can cause additional delay in longer traces. As a 
system speeds continue to increase, the effect of I/O delays can become a limiting factor 
and therefore transmission line termination becomes increasingly more important. 

Termination Techniques
A variety of termination techniques reduce the impact of transmission line effects. 

The following are output termination techniques:

• None

• Series

• Parallel (Shunt)

• Series and Parallel (Series-Shunt)
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The following are input termination techniques:

• None

• Parallel (Shunt)

These termination techniques can be applied in any combination. A generic example of 
each combination of termination methods appears in Figure 2-81. 

Simultaneous Switching Guidelines
Ground bounce can occur with high-speed digital ICS when multiple outputs change states 
simultaneously, causing undesired transient behavior on an output or in the internal logic. 
This problem is also referred to as the Simultaneous Switching Output (SSO) problem. 
Ground bounce is primarily due to current changes in the combined inductance of ground 
pins, bond wires, and group metallization. The IC internal ground level deviates from the 
external system ground level for a short duration (a few nanoseconds) after multiple 
outputs change state simultaneously.
Ground bounce affects stable low outputs and all inputs because they interpret the 
incoming signal by comparing it to the internal ground. If the ground bounce amplitude 
exceeds the actual instantaneous noise margin, then a non-changing input can be 
interpreted as a short pulse with a polarity opposite to the ground bounce. Table 2-36 
provides the guidelines for the maximum number of simultaneously switching outputs 
allowed per output power/ground pair to avoid the effects of ground bounce. Refer to 
Table 2-37 for the number of effective output power/ground pairs for each Virtex-II device 
and package combination.

Figure 2-81: Overview of Standard Input and Output Termination Methods
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Table 2-36: Guidelines for Max Number of Simultaneously Switching Outputs per 
Power/Ground Pair 

Standard
Package

FG,BG,FF,BF CS XC2V40-FG XC2V40-CS

LVTTL2_slow 68 51 51 34

LVTTL4_slow 41 31 31 21

LVTTL6_slow 29 22 22 15

LVTTL8_slow 22 17 17 11

LVTTL12_slow 15 11 11 8

LVTTL16_slow 11 8 8 6

LVTTL24_slow 7 5 5 4

LVTTL2_fast 40 30 30 20

LVTTL4_fast 24 18 18 12

LVTTL6_fast 17 13 13 9

LVTTL8_fast 13 10 10 7

LVTTL12_fast 10 8 8 5

LVTTL16_fast 8 6 6 4

LVTTL24_fast 5 4 4 3

LVDCI_15 50 W impedance 10 8 8 5

LVDCI_DV2_15 25 W impedance 5 4 4 3

LVCMOS15_2_slow 51 38 38 26

LVCMOS15_4_slow 31 23 23 16

LVCMOS15_6_slow 22 17 17 11

LVCMOS15_8_slow 17 13 13 9

LVCMOS15_12_slow 11 8 8 6

LVCMOS15_16_slow 8 6 6 4

LVCMOS15_2_fast 30 23 23 15

LVCMOS15_4_fast 18 14 14 9

LVCMOS15_6_fast 13 10 10 7

LVCMOS15_8_fast 10 8 8 5

LVCMOS15_12_fast 8 6 6 4

LVCMOS15_16_fast 6 5 5 3

LVDCI_18 50 W impedance 11 8 8 6

LVDCI_DV2_18 25 W impedance 6 4 4 3

LVCMOS18_2_slow 58 44 44 29

LVCMOS18_4_slow 35 26 26 18
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LVCMOS18_6_slow 25 19 19 13

LVCMOS18_8_slow 19 14 14 10

LVCMOS18_12_slow 13 10 10 7

LVCMOS18_16_slow 10 8 8 5

LVCMOS18_2_fast 34 26 26 17

LVCMOS18_4_fast 20 15 15 10

LVCMOS18_6_fast 15 11 11 8

LVCMOS18_8_fast 11 8 8 6

LVCMOS18_12_fast 9 7 7 5

LVCMOS18_16_fast 7 5 5 4

LVDCI_25 50 W impedance 13 10 10 7

LVDCI_DV2_25 25 W impedance 7 5 5 3

LVCMOS25_2_slow 68 51 51 34

LVCMOS25_4_slow 41 31 31 21

LVCMOS25_6_slow 29 22 22 15

LVCMOS25_8_slow 22 17 17 11

LVCMOS25_12_slow 15 11 11 8

LVCMOS25_16_slow 11 8 8 6

LVCMOS25_24_slow 7 5 5 4

LVCMOS25_2_fast 40 30 30 20

LVCMOS25_4_fast 24 18 18 12

LVCMOS25_6_fast 17 13 13 9

LVCMOS25_8_fast 13 10 10 7

LVCMOS25_12_fast 10 8 8 5

LVCMOS25_16_fast 8 6 6 4

LVCMOS25_24_fast 5 4 4 2

LVDCI_33 50 W impedance 13 10 10 7

LVDCI_DV2_33 25 W impedance 7 5 5 3

LVCMOS33_2_slow 68 51 51 34

LVCMOS33_4_slow 41 31 31 21

LVCMOS33_6_slow 29 22 22 15

LVCMOS33_8_slow 22 17 17 11

Table 2-36: Guidelines for Max Number of Simultaneously Switching Outputs per 
Power/Ground Pair  (Continued)

Standard
Package

FG,BG,FF,BF CS XC2V40-FG XC2V40-CS
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LVCMOS33_12_slow 15 11 11 8

LVCMOS33_16_slow 11 8 8 6

LVCMOS33_24_slow 7 5 5 4

LVCMOS33_2_fast 40 30 30 20

LVCMOS33_4_fast 24 18 18 12

LVCMOS33_6_fast 17 13 13 9

LVCMOS33_8_fast 13 10 10 7

LVCMOS33_12_fast 10 8 8 5

LVCMOS33_16_fast 8 6 6 4

LVCMOS33_24_fast 5 4 4 2

PCI33/66/X 8 6 6 4

GTL 4 3 3 2

GTL_DCI 3 2 2 1

GTL+ 4 3 3 2

GTL+_DCI 3 2 2 1

HSTLI 20 15 15 10

HSTLI_DCI 20 15 15 10

HSTLII 10 8 8 5

HSTLII_DCI 7 5 5 4

HSTLIII 8 6 6 4

HSTLIII_DCI 8 6 6 4

HSTLIV 4 3 3 2

HSTLIV_DCI 4 3 3 2

SSTL2I 15 11 11 8

SSTL2I_DCI 15 11 11 8

SSTL2II 10 8 8 5

SSTL2II_DCI 5 4 4 3

SSTL3I 12 9 9 6

SSTL3I_DCI 12 9 9 6

SSTL3II 8 6 6 4

SSTL3II_DCI 4 3 3 2

AGP 9 7 7 5

Table 2-36: Guidelines for Max Number of Simultaneously Switching Outputs per 
Power/Ground Pair  (Continued)

Standard
Package

FG,BG,FF,BF CS XC2V40-FG XC2V40-CS
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Application Example
Creating a design with the SelectI/O feature requires either assignment of the 
IOSTANDARD attribute in the constraint file or instantiation of the desired library symbol 
within the design code. 

To enter the IOSTANDARD attribute in the constraint file (UCF file), the following syntax 
can be used:

NET <pad net name> IOSTANDARD=<the name of the standard>

For example, to enter PCIX standard, use

NET <pad net name> IOSTANDARD=PCIX;

To instantiate a library symbol in the HDL code, use the proper input or output buffer 
name, and follow the standard syntax of instantiation. 

For example, to instantiate a GTL input buffer in VHDL, the following syntax can be used:

GTL_buffer : IBUF_GTL port map (I=>data_in, O=>data_gtl_in);

At the board level, designers need to know the termination techniques required for each 
I/O standard. 

This section describes some common application examples illustrating the termination 
techniques recommended by each of the single-ended standard supported by the 
SelectI/O features. 

Termination Example
Circuit examples involving typical termination techniques for each of the SelectI/O 
standards follow. For a full range of accepted values for the DC voltage specifications for 
each standard, refer to the table associated with each figure. 

The resistors used in each termination technique example and the transmission lines 
depicted represent board level components and are not meant to represent components on 
the device. 

Table 2-37: Virtex-II Equivalent Power/Ground Pairs per Bank

Package
XC2V Device

40 80 250 500 1000 1500 2000 3000 4000 6000 8000 10000

CS1441 1 1 1

FG2561 1 2 3 3 3

FG4561 3 4 5

FG6761 6 7 7

BG5751 5 6 6

BG7281 7 8

FF8962 7 8 10

FF11522 11 13 13 13 13

FF15172 14 17 17 17

BF9572 10 10 10 11 11 11

Notes: 
1. Wire-bond only.
2. Flip-chip only.
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GTL
A sample circuit illustrating a valid termination technique for GTL is shown in Figure 2-82. 

Table 2-38 lists DC voltage specifications. 

GTL +
Figure 2-83 shows a sample circuit illustrating a valid termination technique for GTL+. 

Figure 2-82: GTL Terminated

Table 2-38: GTL Voltage Specifications

Parameter Min Typ Max

VCCO - N/A -

VREF = N ´ VTT
1 0.74 0.8 0.86

VTT 1.14 1.2 1.26

VIH ³ VREF + 0.05 0.79 0.85 -

VIL £ VREF – 0.05 - 0.75 0.81

VOH - - -

VOL - 0.2 0.4

IOH at VOH (mA) - - -

IOLat VOL (mA) at 0.4 V 32 - -

IOLat VOL (mA) at 0.2 V - - 40

Notes: 
1. N must be greater than or equal to 0.653 and less than or equal to 0.68.

VREF = 0.8V

VTT = 1.2V

50Ω50Ω
VCCO = N/A

Z = 50

GTL

x133_08_111699

VTT = 1.2V

Figure 2-83: GTL+ Terminated

VREF = 1.0V

VTT = 1.5V

50Ω
VCCO = N/A

Z = 50

GTL+

x133_09_012400

50Ω

VTT = 1.5V
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Table 2-39 lists DC voltage specifications.

HSTL Class I
Figure 2-88 shows a sample circuit illustrating a valid termination technique for HSTL_I. 

Table 2-44 lists DC voltage specifications.

Table 2-39: GTL+ Voltage Specifications

Parameter Min Typ Max

VCCO - - -

VREF = N ´ VTT
1 0.88 1.0 1.12

VTT 1.35 1.5 1.65

VIH ³ VREF + 0.1 0.98 1.1 -

VIL £ VREF – 0.1 - 0.9 1.02

VOH - - -

VOL 0.3 0.45 0.6

IOH at VOH (mA) - - -

IOLat VOL (mA) at 0.6V 36 - -

IOLat VOL (mA) at 0.3V - - 48

Notes: 
1. N must be greater than or equal to 0.653 and less than or equal to 0.68.

Figure 2-84: Terminated HSTL Class I

Table 2-40: HSTL Class I Voltage Specification

Parameter MIN TYP MAX

VCCO 1.40 1.50 1.60

VREF 0.68 0.75 0.90

VTT - VCCO ´ 0.5 -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 8 - -

VREF = 0.75V

VTT= 0.75V

50Ω

VCCO = 1.5V

Z = 50

HSTL Class I

x133_10_111699
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HSTL Class II
Figure 2-89 shows a sample circuit illustrating a valid termination technique for HSTL_II. 

Table 2-45 lists DC voltage specifications.

HSTL Class III
Figure 2-90 shows a sample circuit illustrating a valid termination technique for HSTL_III. 

Figure 2-85: Terminated HSTL Class II

Table 2-41: HSTL Class II Voltage Specification

Parameter MIN TYP MAX

VCCO 1.40 1.50 1.60

VREF 
(1) - 0.75 -

VTT - VCCO ´ 0.5 -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -16 - -

IOLat VOL (mA) 16 - -

Notes: 
1. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise 

margin in the use conditions specified by the user.”

UG002_C2_013_080300

50Ω
Z = 50

HSTL Class II

50Ω

VREF = 0.75V

VTT= 0.75VVTT= 0.75VVCCO = 1.5V

Figure 2-86: Terminated HSTL Class III

VREF = 0.9V

VTT= 1.5V

50Ω
VCCO = 1.5V

Z = 50

HSTL Class III

x133_11_111699
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Table 2-46 lists DC voltage specifications.

HSTL Class IV
Figure 2-91 shows a sample circuit illustrating a valid termination technique for HSTL_IV. 

Table 2-47 lists DC voltage specifications. 

Table 2-42: HSTL Class III Voltage Specification

Parameter MIN TYP MAX

VCCO 1.40 1.50 1.60

VREF 
(1) - 0.90 -

VTT - VCCO -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 24 - -

Notes: 
1. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise 

margin in the use conditions specified by the user.”

Figure 2-87: Terminated HSTL Class IV

Table 2-43: HSTL Class IV Voltage Specification

Parameter MIN TYP MAX

VCCO 1.40 1.50 1.60

VREF - 0.90 -

VTT - VCCO -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 48 - -

Notes: 
1. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise 

margin in the use conditions specified by the user.

50Ω
Z = 50

HSTL Class IV

x133_12_111699

50Ω

VREF = 0.9V

VTT= 1.5VVTT= 1.5VVCCO = 1.5V
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HSTL Class I (1.8V)
Figure 2-88 shows a sample circuit illustrating a valid termination technique for HSTL_I. 

Table 2-44 lists DC voltage specifications.

HSTL Class II (1.8V)
Figure 2-89 shows a sample circuit illustrating a valid termination technique for HSTL_II. 

Figure 2-88: Terminated HSTL Class I (1.8V)

Table 2-44: HSTL Class I (1.8V) Voltage Specification

Parameter MIN TYP MAX

VCCO 1.7 1.8 1.9

VREF 0.8 0.9 1.1

VTT - VCCO ´ 0.5 -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 8 - -

VREF = 0.9V

VTT= 0.9V

50Ω

VCCO = 1.8V

Z = 50

HSTL Class I (1.8V)

x133_10a_101001

Figure 2-89: Terminated HSTL Class II (1.8V)

UG002_C2_013a_101001

50Ω
Z = 50

HSTL Class II (1.8V)

50Ω

VREF = 0.9V

VTT= 0.9VVTT= 0.9VVCCO = 1.8V
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Table 2-45 lists DC voltage specifications.

HSTL Class III (1.8V)
Figure 2-90 shows a sample circuit illustrating a valid termination technique for HSTL_III. 

Table 2-46 lists DC voltage specifications.

Table 2-45: HSTL Class II (1.8V) Voltage Specification

Parameter MIN TYP MAX

VCCO 1.7 1.8 1.9

VREF 
(1) - 0.9 -

VTT - VCCO ´ 0.5 -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -16 - -

IOLat VOL (mA) 16 - -

Notes: 
1. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise 

margin in the use conditions specified by the user.”

Figure 2-90: Terminated HSTL Class III (1.8V)

Table 2-46: HSTL Class III (1.8V) Voltage Specification

Parameter MIN TYP MAX

VCCO 1.7 1.8 1.9

VREF 
(1) - 1.1 -

VTT - VCCO -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 24 - -

Notes: 
1. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise 

margin in the use conditions specified by the user.”

VREF = 1.1V

VTT= 1.8V

50Ω
VCCO = 1.8V

Z = 50

HSTL Class III (1.8V)

x133_11a_101001
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HSTL Class IV (1.8V)
Figure 2-91 shows a sample circuit illustrating a valid termination technique for HSTL_IV. 

Table 2-47 lists DC voltage specifications. 

Figure 2-91: Terminated HSTL Class IV (1.8V)

Table 2-47: HSTL Class IV (1.8V) Voltage Specification

Parameter MIN TYP MAX

VCCO 1.7 1.8 1.9

VREF - 1.1 -

VTT - VCCO -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 48 - -

Notes: 
1. Per EIA/JESD8-6, “The value of VREF is to be selected by the user to provide optimum noise 

margin in the use conditions specified by the user.

50Ω
Z = 50

HSTL Class IV (1.8V)

x133_12a_101001

50Ω

VREF = 1.1V

VTT= 1.8VVTT= 1.8VVCCO = 1.8V
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SSTL3_I
Figure 2-92 shows a sample circuit illustrating a valid termination technique for SSTL3_I. 

Table 2-48 lists DC voltage specifications.

SSTL3_II
Figure 2-93 shows a sample circuit illustrating a valid termination technique for SSTL3_II. 

Figure 2-92: Terminated SSTL3_I

Table 2-48: SSTL3_I Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF = 0.45 ´ VCCO 1.3 1.5 1.7

VTT = VREF 1.3 1.5 1.7

VIH ³ VREF + 0.2 1.5 1.7 3.9(1)

VIL £ VREF – 0.2 -0.3(2) 1.3 1.5

VOH ³ VREF + 0.6 1.9 2.1 -

VOL £ VREF – 0.6 - 0.9 1.1

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 8 - -

Notes: 
1. VIH maximum is VCCO + 0.3
2. VIL minimum does not conform to the formula

50Ω
Z = 50

SSTL3 Class I

x133_13_111699

25Ω

VREF = 1.5V

VTT= 1.5V
VCCO = 3.3V

Figure 2-93: Terminated SSTL3_II

50Ω
Z = 50

SSTL3 Class II

x133_14_111699

25Ω
50Ω

VREF = 1.5V

VTT= 1.5VVTT= 1.5V
VCCO = 3.3V
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Table 2-49 lists DC voltage specifications.

SSTL2_I
Figure 2-94 shows a sample circuit illustrating a valid termination technique for SSTL2_I. 

Table 2-50 lists DC voltage specifications.

Table 2-49: SSTL3_II Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF = 0.45 ´ VCCO 1.3 1.5 1.7

VTT = VREF 1.3 1.5 1.7

VIH ³ VREF + 0.2 1.5 1.7 3.9(1)

VIL£ VREF – 0.2 -0.3(2) 1.3 1.5

VOH ³ VREF + 0.8 2.1 2.3 -

VOL £ VREF – 0.8 - 0.7 0.9

IOH at VOH (mA) -16 - -

IOLat VOL (mA) 16 - -

Notes: 
1. VIH maximum is VCCO + 0.3
2. VIL minimum does not conform to the formula

Figure 2-94: Terminated SSTL2_I

Table 2-50: SSTL2_I Voltage Specifications

Parameter Min Typ Max

VCCO 2.3 2.5 2.7

VREF = 0.5 ´ VCCO 1.15 1.25 1.35

VTT = VREF + N(1) 1.11 1.25 1.39

VIH ³ VREF + 0.18 1.33 1.43 3.0(2)

VIL £ VREF – 0.18 -0.3(3) 1.07 1.17

VOH ³ VREF + 0.61 1.76 1.82 1.96

VOL £ VREF – 0.61 0.54 0.64 0.74

IOH at VOH (mA) -7.6 - -

IOLat VOL (mA) 7.6 - -

Notes: 
1. N must be greater than or equal to -0.04 and less than or equal to 0.04.
2. VIH maximum is VCCO + 0.3.
3. VIL minimum does not conform to the formula.

50Ω

Z = 50

SSTL2 Class I

x133_15_011900

25Ω

V
REF

 = 1.25V

V
TT

= 1.25V
V

CCO
 = 2.5V
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SSTL2_II
Figure 2-95 shows a sample circuit illustrating a valid termination technique for SSTL2_II. 

Table 2-51 lists DC voltage specifications.

Figure 2-95: Terminated SSTL2_II

Table 2-51: SSTL2_II Voltage Specifications

Parameter Min Typ Max

VCCO 2.3 2.5 2.7

VREF = 0.5 ´ VCCO 1.15 1.25 1.35

VTT = VREF + N(1) 1.11 1.25 1.39

VIH ³ VREF + 0.18 1.33 1.43 3.0(2)

VIL £ VREF – 0.18 -0.3(3) 1.07 1.17

VOH ³ VREF + 0.8 1.95 2.05 -

VOL £ VREF – 0.8 - 0.45 0.55

IOH at VOH (mA) -15.2 - -

IOLat VOL (mA) 15.2 - -

Notes: 
1. N must be greater than or equal to -0.04 and less than or equal to 0.04.
2. VIH maximum is VCCO + 0.3.
3. VIL minimum does not conform to the formula.

50Ω
Z = 50

SSTL2 Class II

x133_16_011900

25Ω
50Ω

VREF = 1.25V

VTT= 1.25VVTT= 1.25V
VCCO = 2.5V
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PCI33_3, PCI66_3, and PCIX
Table 2-52 lists DC voltage specifications.

LVTTL
Table 2-53 lists DC voltage specifications. 

Table 2-52: PCI33_3, PCI66_3, and PCIX Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.5

VREF - - -

VTT - - -

VIH = 0.5 ´ VCCO 1.5 1.65 VCCO + 0.5

VIL = 0.3 ´ VCCO - 0.5 0.99 1.08

VOH = 0.9 ´ VCCO 2.7 - -

VOL= 0.1 ´ VCCO - - 0.36

IOH at VOH (mA) Note 1 - -

IOLat VOL (mA) Note 1 - -

Notes: 
1. Tested according to the relevant specification.

Table 2-53: LVTTL Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF - - -

VTT - - -

VIH 2.0 - 3.6

VIL -0.5 - 0.8

VOH 2.4 - -

VOL - - 0.4

IOH at VOH (mA) -24 - -

IOLat VOL (mA) 24 - -

Notes: 
1. VOLand VOH for lower drive currents are sample tested.
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LVCMOS15
Table 2-54 lists DC voltage specifications.

LVCMOS18
Table 2-55 lists DC voltage specifications.

Table 2-54: LVCMOS15 Voltage Specifications

Parameter Min Typ Max

VCCO - 1.5 -

VREF - - -

VTT - - -

VIH = 0.7 ´ VCCO 1.05 - 1.65

VIL = 0.2 ´ VCCO -0.5 - 0.3

VOH = VCCO - 0.45 - 1.05 -

VOL - - 0.4

IOH at VOH (mA) -16 - -

IOLat VOL (mA) 16 - -

Table 2-55: LVCMOS18 Voltage Specifications

Parameter Min Typ Max

VCCO 1.7 1.8 1.9

VREF - - -

VTT - - -

VIH = 0.7 ´ VCCO 1.19 - 1.95

VIL = 0.2 ´ VCCO -0.5 - 0.4

VOH = VCCO - 0.4 1.3 - -

VOL - - 0.4

IOH at VOH (mA) -16 - -

IOLat VOL (mA) 16 - -
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LVCMOS25
Table 2-56 lists DC voltage specifications.

LVCMOS33
Table 2-57 lists DC voltage specifications.

Table 2-56: LVCMOS25 Voltage Specifications

Parameter Min Typ Max

VCCO 2.3 2.5 2.7

VREF - - -

VTT - - -

VIH 1.7 - 2.7

VIL -0.5 - 0.7

VOH 1.9 - -

VOL - - 0.4

IOH at VOH (mA) -24 - -

IOLat VOL (mA) 24 - -

Table 2-57: LVCMOS33 Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF - - -

VTT - - -

VIH 2.0 - 3.6

VIL -0.5 - 0.8

VOH 2.6 - -

VOL - - 0.4

IOH at VOH (mA) -24 - -

IOLat VOL (mA) 24 - -
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AGP-2X
Table 2-58 lists DC voltage specifications.

Table 2-58: AGP-2X Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF = N ´ VCCO
(1) 1.17 1.32 1.48

VTT - - -

VIH ³ VREF + 0.2 1.37 1.52 -

VIL £ VREF – 0.2 - 1.12 1.28

VOH = 0.9 ´ VCCO 2.7 3.0 -

VOL = 0.1 ´ VCCO - 0.33 0.36

IOH at VOH (mA) Note 2 - -

IOLat VOL (mA) Note 2 - -

Notes: 
1. N must be greater than or equal to 0.39 and less than or equal to 0.41.
2. Tested according to the relevant specification.
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Using Digitally Controlled Impedance (DCI)

Introduction
As FPGAs get bigger and system clock speeds get faster, PCB board design and 
manufacturing has become more difficult. With ever faster edge rates, maintaining signal 
integrity becomes a critical issue. Designers must make sure that most PC board traces are 
terminated properly to avoid reflections or ringing.

To terminate a trace, resistors are traditionally added to make the output and/or input 
match the impedance of the receiver or driver to the impedance of the trace. However, due 
to the increase in the device I/O counts, adding resistors close to the device pins increases 
the board area and component count and might even be physically impossible. To address 
these issues and to achieve better signal integrity, Xilinx developed a new I/O technology 
for the Virtex-II device family, Digitally Controlled Impedance (DCI). 

DCI adjusts the output impedance or input termination to accurately match the 
characteristic impedance of the transmission line. DCI actively adjusts the impedance of 
the I/O to equal an external reference resistance. This compensates for changes in I/O 
impedance due to process variation. It also continuously adjusts the impedance of the I/O 
to compensate for variations of temperature and supply voltage fluctuations. 

In the case of controlled impedance drivers, DCI controls the driver impedance to match 
two reference resistors, or optionally, to match half the value of these reference resistors. 
DCI eliminates the need for external termination resistors. 

DCI provides the termination for transmitters or receivers. This eliminates the need for 
termination resistors on the board, reduces board routing difficulties and component 
count, and improves signal integrity by eliminating stub reflection. Stub reflection occurs 
when termination resistors are located too far from the end of the transmission line. With 
DCI, the termination resistors are as close as possible to the output driver or the input 
buffer, thus, eliminating stub reflections completely. 

Xilinx DCI
DCI uses two multi-purpose reference pins in each bank to control the impedance of the 
driver or the parallel termination value for all of the I/Os of that bank. The N reference pin 
(VRN) must be pulled up to VCCO by a reference resistor, and the P reference pin (VRP) 
must be pulled down to ground by another reference resistor. The value of each reference 
resistor should be equal to the characteristic impedance of the PC board traces, or should 
be twice that value (configuration option).

When a DCI I/O standard is used on a particular bank, the two multi-purpose reference 
pins cannot be used as regular I/Os. however, if DCI I/O standards are not used in the 
bank, these pins are available as regular I/O pins. Check the Virtex-II pinout for detailed 
pin descriptions. 

DCI adjusts the impedance of the I/O by selectively turning transistors in the I/Os on or 
off. The impedance is adjusted to match the external reference resistors. The impedance 
adjustment process has two phases. The first phase, which compensates for process 
variations, is done during the device startup sequence. The second phase, which maintains 
the impedance in response to temperature and supply voltage changes, begins 
immediately after the first phase and continues indefinitely, even while the part is 
operating. By default, the DONE pin does not go High until the impedance adjustment 
process has completed.

For controlled impedance output drivers, the impedance can be adjusted either to match 
the reference resistors or half the resistance of the reference resistors. For on-chip 
termination, the termination is always adjusted to match the reference resistors. 
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DCI can configure output drivers to be the following types:

1. Controlled Impedance Driver (Source Termination)

2. Controlled Impedance Driver with Half Impedance (Source Termination)

It can also configure inputs to have he following types of on-chip terminations:

1. Termination to VCCO (Single Termination)

2. Termination to VCCO/2 (Split Termination, Thevenin equivalent)

For bidirectional operation, both ends of the line can be DCI-terminated permanently:

1. Termination to VCCO (Single Termination)

2. Termination to VCCO/2 (Split Termination, Thevenin equivalent)

Alternatively, bidirectional point-to-point lines can use controlled-impedance drivers 
(with 3-state buffers) on both ends.

Controlled Impedance Driver (Source Termination)
Some I/O standards, such as LVTTL, LVCMOS, etc., must have a drive impedance that 
matches the characteristic impedance of the driven line. DCI can provide a controlled 
impedance output drivers that eliminate reflections without an external source 
termination. The impedance is set by the external reference resistors, whose resistance 
should be equal to the trace impedance. Figure 2-96 illustrates a controlled impedance 
driver inside Virtex-II device. The DCI I/O standards that support Controlled Impedance 
Driver are: LVDCI_15, LVDCI_18, LVDCI_25, and LVDCI_33. 

Controlled Impedance Driver With Half Impedance (Source Termination)
DCI can also provide drivers with one half of the impedance of the reference resistors. The 
DCI I/O standards that support controlled impedance driver with half impedance are: 
LVDCI_DV2_15, LVDCI_DV2_18, LVDCI_DV2_25, and LVDCI_DV2_33

Figure 2-97 illustrates a controlled driver with half impedance inside a Virtex-II device.

Figure 2-96: Controlled Impedance Driver
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Figure 2-97: Controlled Impedance Driver With Half Impedance
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Termination to VCCO (Single Termination)
Some I/O standards, such as HSTL Class III, IV, etc., require an input termination to VCCO. 
See Figure 2-98. 

DCI can provide this termination to VCCO using single termination. The termination 
resistance is set by the reference resistors. For GTL and HSTL standards, they should be 
controlled by 50-ohm reference resistors. The DCI I/O standards that support single 
termination are: GTL_DCI, GTLP_DCI, HSTL_III_DCI, and HSTL_IV_DCI. 

Figure 2-99 illustrates single termination inside a Virtex-II device.

Figure 2-98: Single Termination Without DCI

Figure 2-99: Single Termination Using DCI
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Termination to VCCO/2 (Split Termination)
Some I/O standards, such as HSTL Class I, II, SSTL3_I, etc., require an input termination 
voltage of VCCO/2. See Figure 2-100. 

This is equivalent to having a split termination composed of two resistors. One terminates 
to VCCO, the other to ground. The resistor values are 2R. DCI provides termination to 
VCCO/2 using split termination. The termination resistance is set by the external reference 
resistors, i.e., the resistors to VCC and ground are each twice the reference resistor value. If 
users are planning to use HSTL or SSTL standards, the reference resistors should be 50-
ohms. The DCI I/O standards that support split termination are: HSTL_I_DCI, 
HSTL_II_DCI, SSTL2_I_DCI, SSTL2_II_DCI, SSTL3_I_DCI, and SSTL3_II_DCI. 

Figure 2-101 illustrates split termination inside a Virtex-II device. 

Figure 2-100: Split Termination Without DCI

Figure 2-101: Split Termination Using DCI
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Driver With Single Termination
Some I/O standards, such as HSTL Class IV, require an output termination to VCCO. 
Figure 2-102 illustrates the output termination to VCCO. 

DCI can provide this termination to VCCO using single termination. In this case, DCI only 
controls the impedance of the termination, but not the driver. If users are planning to use 
GTL or HSTL standards, the external reference resistors should be 50-ohms. The DCI I/O 
standards that support a driver with single termination are: GTL_DCI, GTLP_DCI, and 
HSTL_IV_DCI.

Figure 2-103 illustrates a driver with single termination inside a Virtex-II device 

Figure 2-102: Driver With Single Termination Without DCI

Figure 2-103: Driver With Single Termination Using DCI

ug002_c2_057_110600

R

VCCO

Z0

ug002_c2_058_110600

R

VCCO

Z0

Virtex-II
UG002 (v1.3)  3 December 2001 www.xilinx.com 293
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com


R

Driver With Split Termination
Some I/O standards, such as HSTL Class II, require an output termination to VCCO/2. See 
Figure 2-104. 

DCI can provide this termination to VCCO/2 using split termination. It only controls the 
impedance of the termination, but not the driver. For HSTL or SSTL standards, the external 
reference resistors should be 50-ohms. The DCI I/O standards that support a Driver with 
split termination are: HSTL_II_DCI, SSTL2_II_DCI, and SSTL3_II_DCI. 

Figure 2-105 illustrates a driver with split termination inside a Virtex-II device. 

Figure 2-104: Driver With Split Terminating

Figure 2-105: Driver With Split Termination Using DCI
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Software Support
This section lists the valid DCI I/O buffer library components and describes how to use 
DCI in the Xilinx software. 

DCI I/O Buffer Library Components
The DCI input buffer library components, including global clock buffer, are the following:

• IBUFG_GTLP_DCI

• IBUFG_GTL_DCI

• IBUFG_HSTL_I_DCI

• IBUFG_HSTL_II_DCI

• IBUFG_HSTL_III_DCI

• IBUFG_HSTL_IV_DCI

• IBUFG_LVDCI_15

• IBUFG_LVDCI_18

• IBUFG_LVDCI_25

• IBUFG_LVDCI_33

• IBUFG_LVDCI_DV2_15

• IBUFG_LVDCI_DV2_18

• IBUFG_LVDCI_DV2_25

• IBUFG_LVDCI_DV2_33

• IBUFG_SSTL2_I_DCI

• IBUFG_SSTL2_II_DCI

• IBUFG_SSTL3_I_DCI

• IBUFG_SSTL3_II_DCI

• IBUF_GTLP_DCI

• IBUF_GTL_DCI

• IBUF_HSTL_I_DCI

• IBUF_HSTL_II_DCI

• IBUF_HSTL_III_DCI

• IBUF_HSTL_IV_DCI

• IBUF_LVDCI_15

• IBUF_LVDCI_18

• IBUF_LVDCI_25

• IBUF_LVDCI_33

• IBUF_LVDCI_DV2_15

• IBUF_LVDCI_DV2_18

• IBUF_LVDCI_DV2_25

• IBUF_LVDCI_DV2_33

• IBUF_SSTL2_I_DCI

• IBUF_SSTL2_II_DCI

• IBUF_SSTL3_I_DCI

• IBUF_SSTL3_II_DCI
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The following are DCI output buffer library components: 

• OBUF_GTLP_DCI

• OBUF_GTL_DCI

• OBUF_HSTL_I_DCI

• OBUF_HSTL_II_DCI

• OBUF_HSTL_III_DCI

• OBUF_HSTL_IV_DCI

• OBUF_LVDCI_15

• OBUF_LVDCI_18

• OBUF_LVDCI_25

• OBUF_LVDCI_33

• OBUF_LVDCI_DV2_15

• OBUF_LVDCI_DV2_18

• OBUF_LVDCI_DV2_25

• OBUF_LVDCI_DV2_33

• OBUF_SSTL2_I_DCI

• OBUF_SSTL2_II_DCI

• OBUF_SSTL3_I_DCI

• OBUF_SSTL3_II_DCI

The following are DCI 3 state output buffer library components:

• OBUFT_GTLP_DCI

• OBUFT_GTL_DCI

• OBUFT_HSTL_I_DCI

• OBUFT_HSTL_II_DCI

• OBUFT_HSTL_III_DCI

• OBUFT_HSTL_IV_DCI

• OBUFT_LVDCI_15

• OBUFT_LVDCI_18

• OBUFT_LVDCI_25

• OBUFT_LVDCI_33

• OBUFT_LVDCI_DV2_15

• OBUFT_LVDCI_DV2_18

• OBUFT_LVDCI_DV2_25

• OBUFT_LVDCI_DV2_33

• OBUFT_SSTL2_I_DCI

• OBUFT_SSTL2_II_DCI

• OBUFT_SSTL3_I_DCI

• OBUFT_SSTL3_II_DCI
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The following are DCI I/O buffer library components:

• IOBUF_GTLP_DCI

• IOBUF_GTL_DCI

• IOBUF_HSTL_II_DCI

• IOBUF_HSTL_IV_DCI

• IOBUF_SSTL2_II_DCI

• IOBUF_SSTL3_II_DCI

• IOBUF_LVDCI_15

• IOBUF_LVDCI_18

• IOBUF_LVDCI_25

• IOBUF_LVDCI_33

• IOBUF_LVDCI_DV2_15

• IOBUF_LVDCI_DV2_18

• IOBUF_LVDCI_DV2_25

• IOBUF_LVDCI_DV2_33

How to Use DCI in the Software
There are two ways for users to use DCI for Virtex-II devices:

1. Use the IOSTANDARD attribute in the constraint file.

2. Instantiate DCI input or output buffers in the HDL code.

IOSTANDARD Attribute
The IOSTANDARD attribute can be entered through the NCF or UCF file. The syntax is as 
follows:

NET <net name> IOSTANDARD = LVDCI_25;

Where <net name> is the name between the IPAD and IBUF or OPAD or OBUF. For HDL 
designs, this name is the same as the port name. 

The following are valid DCI attributes for output drivers:

• LVDCI_15

• LVDCI_18

• LVDCI_25

• LVDCI_33

• LVDCI_DV2_15

• LVDCI_DV2_15

• LVDCI_DV2_25

• LVDCI_DV2_33

The following are valid DCI attributes for terminations:

• GTL_DCI

• GTLP_DCI

• HSTL_I_DCI

• HSTL_II_DCI
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• HSTL_III_DCI

• HSTL_IV_DCI

• SSTL2_I_DCI

• SSTL2_II_DCI

• SSTL3_I_DCI

• SSTL3_II_DCI

VHDL Example
Instantiating DCI input and output buffers is the same as instantiating any other I/O 
buffers. Users must make sure that the correct I/O buffer names are used and follow the 
standard syntax of instantiation. 

For example, to instantiate a HSTL Class I output DCI buffer, the following syntax can be 
used:

HSTL_DCI_buffer: OBUF_HSTL_I_DCI port map (I=>data_out, O=>data_out_DCI);

Below is an example VHDL code that instantiates four 2.5 V LVDCI drivers and four HSTL 
Class I outputs.

-- Module: DCI_TEST
--
-- Description: VHDL example for DCI SelectI/O
-- Device: Virtex-II Family
---------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity dci_test is
port (clk, reset, ce, control : in std_logic;
A, B : in std_logic_vector (3 downto 0);
Dout : out std_logic_vector (3 downto 0);
muxout : out std_logic_vector (3 downto 0));

end dci_test;

architecture dci_arch of dci_test is

--DCI output buffer component declaration
component OBUF_LVDCI_25 port (I : in std_logic; O : out std_logic);
end component;
attribute syn_black_box of OBUF_LVDCI_25 : component is true;
attribute black_box_pad_pin of OBUF_LVDCI_25 : component is "O";

--HSTL Class I DCI output buffer component declaration
component OBUF_HSTL_I_DCI port (I : in std_logic; O: out std_logic);
end component;
attribute syn_black_box of OBUF_HSTL_I_DCI : component is true;
attribute black_box_pad_pin of OBUF_HSTL_I_DCI : component is "O";

signal muxout_int : std_logic_vector (3 downto 0);
signal dout_int : std_logic_vector (3 downto 0);

begin

process (clk, reset)
begin
if (reset = '1') then

         dout_int<="0000";
  elsif (clk'event and clk='1') then
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    dout_int<=dout_int+1;
end if;
end process;

process (controls, A, B, DOUT_INT)

begin
if (control='1') then
muxout_int<=A and B;

else
  muxout_int<=Dout_int;
end if;

end process;

U0 : OBUF_LVDCI_25 port map(
I=>dout_int(0),
O=>dout(0));

U1 : OBUF_LVDCI_25 port map(
      I=>dout_int(1),
      O=>dout(1));
U2 : OBUF_LVDCI_25 port map(
      I=>dout_int(2),
      O=>dout(2));
U3 : OBUF_LVDCI_25 port map(
      I=>dout_int(3),
      O=>dout(3));

K0 : OBUF_HSTL_I_DCI port map(
I=>muxout_int(0),
O=>muxout(0));

K1 : OBUF_HSTL_I_DCI port map(
      I=>muxout_int(1),
      O=>muxout(1));
K2 : OBUF_HSTL_I_DCI port map(
      I=>muxout_int(2),
      O=>muxout(2));
K3 : OBUF_HSTL_I_DCI port map(
      I=>muxout_int(3),
      O=>muxout(3));

end dci_arch;

DCI in Virtex-II Hardware
DCI only works with certain single-ended I/O standards and does not work with any 
differential I/O standard. DCI supports the following Virtex-II standards:

LVDCI, LVDCI_DV2, GTL_DCI, GTLP_DCI, HSTL_I_DCI, HSTL_II_DCI, HSTL_III_DCI, 
HSTL_IV_DCI, SSTL2_I_DCI, SSTL2_II_DCI, SSTL3_I_DCI, and SSTL3_II_DCI. 

To correctly use DCI in a Virtex-II device, users must follow the following rules:

1. VCCO pins must be connected to the appropriate VCCO voltage based on the 
IOSTANDARDs in that bank. 

2. Correct DCI I/O buffers must be used in the software either by using IOSTANDARD 
attributes or instantiations in the HDL code.

3. External reference resistors must be connected to multi-purpose pins (VRN and VRP) 
in the bank cannot be used as regular I/Os. Refer to the Virtex-II pinouts for the 
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specific pin locations. Pin VRN must be pulled up to VCCO by its reference resistor. Pin 
VRP must be pulled down to ground by its reference resistor.

4. The value of the external reference resistors should be selected to give the desired 
output impedance. If using GTL_DCI, HSTL_DCI, or SSTL_DCI I/O standards, then 
they should be 50 ohms. 

5. The values of the reference resistors must be within the supported range. Availability 
of this range is planned for the next release of the Virtex-II Data Sheet. (~30 to 100 W)

6. Follow the DCI I/O banking rules.

The DCI I/O banking rules are the following:

1. VREF must be compatible for all of the inputs in the same bank.

2. VCCO must be compatible for all of the inputs and outputs in the same bank.

3. No more than one DCI I/O standard using Single Termination type is allowed per 
bank.

4. No more than one DCI I/O standard using Split Termination type is allowed per bank.

5. Single Termination and Split Termination, Controlled Impedance Driver, and 
Controlled Impedance Driver with Half Impedance can co-exist in the same bank.

The behavior of DCI 3-state outputs is as follows:

If a LVDCI or LVDCI_DV2 driver is in 3-state, the driver is 3-stated. If a Driver with Single 
or Split Termination is in 3-state, the driver is 3-stated but the termination resistor remains. 

The following section lists any special care actions that must be taken for each DCI I/O 
standard.

LVDCI_15, LVDCI_18, LVDCI_25, LVDCI_33
Using these buffers configures the outputs as controlled impedance drivers. The number 
extension at the end indicates the VCCO voltage that should be used. For example, 15 
means VCCO=1.5 V, etc. There is no slew rate control or drive strength settings for LVDCI 
drivers. 

LVDCI_DV2_15, LVDCI_DV2_18, LVDCI_DV2_25, LVDCI_DV_33
Using these buffers configures the outputs as controlled drivers with half impedance. The 
number extension at the end indicates the VCCO voltage that should be used. For example, 
15 means VCCO=1.5 V, etc. There is no slew rate control or drive strength settings for 
LVDCI_DV2 drivers. 

GTL_DCI
GTLP does not require a VCCO voltage. However, for GTL_DCI, VCCO must be connected 
to 1.2 V. GTL_DCI provides single termination to VCCO for inputs or outputs. 

GTLP_DCI
GTL+ does not require a VCCO voltage. However, for GTLP_DCI, VCCO must be connected 
to 1.5 V. GTLP_DCI provides single termination to VCCO for inputs or outputs. 

HSTL_ I_DCI, HSTL_ III_DCI
HSTL_I_DCI provides split termination to VCCO/2 for inputs. HSTL_III_DCI provides 
single termination to VCCO for inputs. 

HSTL_ II_DCI, HSTL_ IV_DCI
HSTL_II_DCI provides split termination to VCCO/2 for inputs or outputs. HSTL_IV_ DCI 
provides single termination to VCCO for inputs or outputs. 
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SSTL2_ I_DCI, SSTL3_I_DCI 
SSTL2_I_DCI and SSTL3_I_DCI provide split termination to VCCO/2 for inputs. Then I/O 
standards are SSTL compatible.

SSTL2_II_DCI, SSTL3_II_DCI
SSTL2_II_DCI and SSTL3_II_DCI provide split termination to VCCO/2 for inputs. Then 
I/O standards are SSTL compatible.

Figure 2-106 provides examples illustrating the use of the HSTL_I_DCI, HSTL_II_DCI, 
HSTL_III_DCI, and HSTL_IV_DCI I/O standards.

Figure 2-106: HSTL DCI Usage Examples

Virtex-II DCI

R R

VCCO VCCO

R R

VCCO VCCO

R

VCCO

R

VCCO

Virtex-II DCI

Virtex-II DCI

R

VCCO

R

VCCO

Virtex-II DCI

R R

VCCO/2 VCCO/2

2R

Virtex-II DCI

2R

R

VCCO VCCO/2

Virtex-II DCI

2R

R

VCCO/2

2R

VCCO

2R

Virtex-II DCI

2R

VCCO

Virtex-II DCI

2R

2R

VCCO

DS031_65a_100201

Conventional

DCI Transmit
Conventional
Receive

Conventional
Transmit
DCI Receive

DCI Transmit
DCI Receive

Bidirectional

Reference
Resistor

Recommended
 Z0

VRN = VRP = R = Z0

50 Ω

VRN = VRP = R = Z0

50 Ω

VRN = VRP = R = Z0

50 Ω

VRN = VRP = R = Z0

50 Ω

HSTL_I HSTL_II HSTL_III HSTL_IV

N/A N/A

Virtex-II DCI

R

VCCO

R

VCCO

R

VCCO

Virtex-II DCI

R

VCCO

Virtex-II DCI

Z0

R

VCCO/2

Virtex-II DCI

R

VCCO/2

Virtex-II DCI

2R

2R

VCCO

Virtex-II DCI
Virtex-II DCI

2R

2R

VCCO

Z0

Z0

Z0

Z0
Z0

Z0
Z0

Z0

Z0
Z0Z0

Z0

Z0

Z0

Z0

Virtex-II DCI

Virtex-II DCI

Z0

Virtex-II DCI

2R

2R

VCCO

2R

2R

VCCO

Virtex-II DCI

Z0

Virtex-II DCI

R

VCCO

R

VCCO
UG002 (v1.3)  3 December 2001 www.xilinx.com 301
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com


R

Figure 2-107 provides examples illustrating the use of the SSTL2_I_DCI, SSTL2_II_DCI, 
SSTL3_I_DCI, and SSTL3_II_DCI I/O standards. 

Figure 2-107: SSTL DCI Usage Examples
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Using Double-Data-Rate (DDR) I/O

Introduction
Virtex-II devices have dedicated registers in a single IOB to implement input, output, and 
output with 3-state control Double-Data-Rate (DDR) registers. Input and output DDR is 
accomplished with the use of two registers in the IOB. A single clock triggers one register 
on a Low to High transition and a second register on a High to Low transition. Output 
DDR with 3-state requires the use of four registers in the IOB clocked in a similar fashion. 
Since the introduction of DLLs, Xilinx devices can generate low-skew clock signals that are 
180 degrees out of phase, with a 50/50 duty cycle. These clocks reach the DDR registers in 
the IOB via dedicated routing resources.

Data Flow

Input DDR
Input DDR is accomplished via a single input signal driving two registers in the IOB. Both 
registers are clocked on the rising edge of their respective clocks.   With proper clock 
forwarding, alternating bits from the input signal are clocked in on the rising edge of the 
two clocks, which are 180 degrees out of phase. Figure 2-108 depicts the input DDR 
registers and the signals involved.

Figure 2-108: Input DDR
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CLK0 and CLK1 are 180 degrees out of phase. Both registers share the SET/PRE and 
RESET/CLR lines. As shown in Figure 2-109, alternating bits on the DATA line are clocked 
in via Q0 and Q1 while CE is High. The clocks are shifted out of phase by the DCM (CLK0 
and CLK180 outputs) or by the inverter available on the CLK1 clock input..

Output DDR
Output DDR registers are used to clock output from the chip at twice the throughput of a 
single rising-edge clocking scheme. Clocking for output DDR is the same as input DDR. 
The clocks driving both registers are 180 degrees out of phase. The DDR MUX selects the 
register outputs. The output consists of alternating bits from DATA_1 and DATA_2. 
Figure 2-110 depicts the output DDR registers and the signals involved.

Figure 2-109: Input DDR Timing Diagram
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Figure 2-110: Output DDR
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Both registers share the SET/PRE and RESET/CLR line. Both registers share the CE line 
which must be High for outputs to be seen on Q1 and Q2.   Figure 2-111 shows the data 
flow for the output DDR registers.

Output DDR With 3-State Control 
The 3-state control allows the output to have one of two values, either the output from the 
DDR MUX or high impedance.

The Enable signal is driven by a second DDR MUX (Figure 2-112). This application 
requires the instantiation of two output DDR primitives.

Figure 2-111: Output DDR Timing Diagram
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Figure 2-112: Output DDR With 3-State Control

D Q

CE

CK

SET/
PRESET

RESET/
CLR

D Q

UG002_C2_040_080601

Q2

Q1

CE

DDR
MUX

CK

SET/
PRESET

RESET/
CLR

CET

TRI2

TRI1

D Q

CE

CK

SET/
PRESET

RESET/
CLR

D Q

Q2

Q1

CE

DDR
MUX

CK

OUT

SET/
PRESET

RESET/
CLR

CE

DATA1

DATA2

CLK1

CLK2

SET/PRE

RESET/CLR
UG002 (v1.3)  3 December 2001 www.xilinx.com 307
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com


R

All four registers share the SET/PRESET and RESET/CLEAR lines. Two registers are 
required to accomplish the DDR task and two registers are required for the 3-state control. 
There are two Clock Enable signals, one for output DDRs performing the DDR function 
and another for the output DDRs performing the 3-state control function. Two 180 degree 
out of phase clocks are used. CLK1 clocks one of the DDR registers and a 3-state register. 
CLK2 clocks the other DDR register and the other 3-state register. 

The DDR registers and 3-state registers are associated by the clock that is driving them. 
Therefore, the DDR register that is clocked by CLK1 is associated to the 3-state register 
being clocked by CLK1. The remaining two registers are associated by CLK2. If both 3-state 
registers are driving a logic High, the output sees a high impedance. If both 3-state 
registers are driving a logic Low, the output sees the values from the DDR MUX see 
Figure 2-113). 

When the 3-state registers are not driving the same logic value, the 3-state register being 
clocked by CLK1 is called TREG1. The other 3-state register TREG2 is clocked by CLK2. 
Similarly, the DDR register being clocked by CLK1 is called DREG1, and the other DDR 
register DREG2 is clocked by CLK2. If TREG1 is driving a logic High and TREG2 is driving 
a logic Low, the output sees a high impedance when CLK1 is High and the value out of 
DREG2 when CLK2 is High. If TREG2 is driving a logic High and TREG1 is driving a logic 
Low, the output sees a high impedance when CLK2 is High and the value out of DREG1 
when CLK1 is High. 

Characteristics
• All registers in an IOB share the same SET/PRE and RESET/CLR lines.

• The 3-State and Output DDR registers have common clocks (OTCLK1 & OTCLK2).

• All signals can be inverted (with no added delay) inside the IOB.

• DDR MUXing is handled automatically within the IOB. There is no manual control of 
the MUX-select. This control is generated from the clock.

• When several clocks are used, and when using DDR registers, the floorplan of a design 
should take into account that the input clock to an IOB is shared with a pair of IOBs.

Figure 2-113: Timing Diagram for Output DDR With 3-State Control
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Library Primitives
Input DDR registers are inferred, and dedicated output DDR registers have been provided 
as primitives for Virtex-II designs. Input DDR registers consist of two inferred registers 
that clock in a single data line on each edge. Generating 3-state output with DDR registers 
is as simple as instantiating a primitive. 

VHDL and Verilog Instantiation 
Examples are available in "VHDL and Verilog Templates" on page 311.

In VHDL, each template has a component declaration section and an architecture section. 
Each part of the template should be inserted within the VHDL design file. The port map of 
the architecture section should include the design signal names.

Constraints file syntax is provided where input registers need to be used. These settings 
force the input DDR registers into the IOB. The output registers should be instantiated and 
do not require any constraints file syntax to be pushed into the IOB. 

Figure 2-114: FDDRRSE Symbol: DDR Flip-Flop With Clock Enable and 
Synchronous Reset and Set

Figure 2-115: FDDRCPE Symbol: DDR Flip-Flop With Clock Enable and 
Asynchronous PRESET and CLR 
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Port Signals

FDDRRSE

Data inputs - D0 and D1

D0 and D1 are the data inputs into the DDR flip-flop. Data on the D0 input is loaded into 
the flip-flop when R and S are Low and CE is High during a Low-to-High C0 clock 
transition. Data on the D1 input is loaded into the flip-flop when R and S are Low and CE 
is High during a Low-to-High C1 clock transition.

Clock Enable - CE

The enable pin affects the loading of data into the DDR flip-flop. When Low, new data is 
not loaded into the flip-flop. CE must be High to load new data into the flip-flop. 

Clocks - C0 and C1

These two clocks are phase shifted 180 degrees (via the DLL) and allow selection of two 
separate data inputs (D0 and D1).

Synchronous Set - S and Synchronous Reset - R

The Reset (R) input, when High, overrides all other inputs and resets the output Low 
during any Low-to-High clock transition (C0 or C1). Reset has precedence over Set. When 
the Set (S) input is High and R is Low, the flip-flop is set, output High, during a Low-to-
High clock transition (C0 or C1).

Data Output - Q

When power is applied, the flip-flop is asynchronously cleared and the output is Low.

During normal operation, The value of Q is either D0 or D1. The Data Inputs description 
above states how the value of Q is chosen.

FDDRCPE

Data inputs - D0 and D1

D0 and D1 are the data inputs into the DDR flip-flop. Data on the D0 input is loaded into 
the flip-flop when PRE and CLR are Low and CE is High during a Low-to-High C0 clock 
transition. Data on the D1 input is loaded into the flip-flop when PRE and CLR are Low 
and CE is High during a Low-to-High C1 clock transition.

Clock Enable - CE

The enable pin affects the loading of data into the DDR flip-flop. When Low, clock 
transitions are ignored and new data is not loaded into the flip-flop. CE must be High to 
load new data into the flip-flop. 

Clocks - C0 and C1

These two clocks are phase shifted 180 degrees (via the DLL) and allow selection of two 
separate data inputs (D0 and D1).

Asynchronous Preset - PRE and Asynchronous Clear - CLR

The Preset (PRE) input, when High, sets the Q output High. When the Clear (CLR) input is 
High, the output is reset to Low.

Data Output - Q

When power is applied, the flip-flop is asynchronously cleared and the output is Low. 
During normal operation, The value of Q is either D0 or D1. The Data Inputs description 
above states how the value of Q is chosen.
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Initialization in VHDL or Verilog 
Output DDR primitives can be initialized in VHDL or Verilog code for both synthesis and 
simulation. For synthesis, the attributes are attached to the output DDR instantiation and 
are copied in the EDIF output file to be compiled by Xilinx tools. The VHDL code 
simulation uses a generic parameter to pass the attributes. The Verilog code simulation 
uses the defparam parameter to pass the attributes.

The DDR code examples (in VHDL ad Verilog) illustrate the following techniques.

Location Constraints
DDR instances can have LOC properties attached to them to constrain pin placement.

The LOC constraint uses the following form.

NET <net_name> LOC=A8;

Where “A8” is a valid I/O pin location.

Applications

DDR SDRAM

The DDR SDRAM is an enhancement to the Synchronous DRAM by effectively doubling 
the data throughput of the memory device. Commands are registered at every positive 
clock edge. Input data is registered on both edges of the data strobe, and output data is 
referenced to both edges of the data strobe, as well as both edges of the clock.

Clock Forwarding

DDR can be used to forward a copy of the clock on the output. This can be useful for 
propagating a clock along with double-data-rate data that has an identical delay. It is also 
useful for multiple clock generation, where there is a unique clock driver for every clock 
load.

VHDL and Verilog Templates
VHDL and Verilog templates are available for output, output with 3-state enable, and 
input DDR registers. 

Input DDR
To implement an Input DDR application, paste the following template in your code.

DDR_input.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity DDR_Input is

Port ( 
clk : in std_logic;
d : in std_logic;
rst : in std_logic;
q1 : out std_logic;
q2 : out std_logic

);

end DDR_Input;

--Describe input DDR registers (behaviorally) to be inferred

architecture behavioral of DDR_Input is
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begin

q1reg : process (clk, d, rst)

begin
   if rst='1' then --asynchronous reset, active high 

q1 <= '0';
   elsif clk'event and clk='1' then  --Clock event - posedge

q1 <= d;

   end if;
end process;

q2reg : process (clk, d, rst)

begin
   if rst='1' then --asynchronous reset, active high  
      q2 <= '0';   
   elsif clk'event and clk='0' then  --Clock event - negedge
      q2 <= d;
   end if;
end process;

end behavioral;

-- NOTE: You must include the following constraints in the .ucf 
-- file when running back-end tools, 
-- in order to ensure that IOB DDR registers are used:
-- 
-- INST "q2_reg" IOB=TRUE;
-- INST "q1_reg" IOB=TRUE;
-- 
-- Depending on the synthesis tools you use, it may be required to 
-- check the edif file for modifications to 
-- original net names...in this case, Synopsis changed the 
-- names: q1 and q2 to q1_reg and q2_reg

DDR_input.v

module DDR_Input (data_in , q1, q2, clk, rst);

input data_in, clk, rst;
output q1, q2;
reg q1, q2;

//Describe input DDR registers (behaviorally) to be inferred

always @ (posedge clk or posedge rst) //rising-edge DDR reg. and 
asynchronous reset

  begin
if (rst) 
   q1 = 1'b0;
else 
   q1 = data_in;

  end 
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always @ (negedge clk or posedge rst) //falling-edge DDR reg. and 
asynchronous reset

begin
if (rst) 
   q2 = 1'b0;
else 
   q2 = data_in;

  end 

assign data_out = q1 & q2;

endmodule

/* NOTE: You must include the following constraints in the .ucf file 
when running back-end tools, \
in order to ensure that IOB DDR registers are used:

INST "q2_reg" IOB=TRUE;
INST "q1_reg" IOB=TRUE;

Depending on the synthesis tools you use, it may be required to check 
the edif file for modifications to 
original net names...in this case, Synopsis changed the names: q1 and q2 
to q1_reg and q2_reg

*/

Output DDR
To implement an Output DDR application, paste the following template in your code. 

DDR_out.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- pragma translate_off
LIBRARY UNISIM;
use UNISIM.VCOMPONENTS.ALL;
--pragma translate_on

entity DDR_Output is
Port(
 clk : in std_logic; --clk and clk180 can be outputs from the DCM or 

clk180 can be the 
 clk180 : in std_logic;  --logical inverse of clk (the inverter is 

located in the IOB and will be inferred.
 d0 : in std_logic;  --data in to fddr
 d1 : in std_logic;  --data in to fddr 
 ce : in std_logic;  --clock enable
 rst : in std_logic;  --reset
 set : in std_logic;  --set
 q : out std_logic  --DDR output
 );

end DDR_Output;

architecture behavioral of DDR_Output is

component FDDRRSE
port(
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Q  : out std_logic;
D0 : in std_logic;
D1 : in std_logic;
C0 : in std_logic;
C1 : in std_logic;
CE : in std_logic;
R  : in std_logic;
S : in std_logic
);

end component;

begin
 
U0: FDDRRSE
port map (
Q => q,
D0 => d0,
D1 => d1,
C0 => clk,
C1 => clk180,
CE => ce,
R => rst,
S => set
);

end behavioral;

DDR_out.v

module DDR_Output (d0 , d1, q, clk, clk180, rst, set, ce);

input d0, d1, clk, clk180, rst, set, ce;
output q;

//Synchronous Output DDR primitive instantiation

FDDRRSE U1 ( .D0(d0),
.D1(d1),
.C0(clk),
.C1(clk180),
.CE(ce),
.R(rst),
.S(set),
.Q(q)

);
endmodule

Output DDR With 3-State Enable
To implement an Output DDR with 3-state Enable, paste the following template in your 
code:

DDR_3state.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- pragma translate_off
LIBRARY UNISIM;
use UNISIM.VCOMPONENTS.ALL;
--pragma translate_on
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entity DDR_3state is
Port( 
clk : in std_logic; --clk and clk180 can be outputs from the DCM or 

clk180 can be the 
clk180 : in std_logic; --logical inverse of clk (the inverter is 

located in the IOB and will be inferred.
d0 : in std_logic; --data in to fddr
d1 : in std_logic; --data in to fddr
ce : in std_logic; --clock enable
set : in std_logic; --set
rst : in std_logic; --reset
en0 : in std_logic; --enable signal
en1 : in std_logic; --enable signal
data_out : out std_logic --data seen at pad

);

end DDR_3state;

architecture behavioral of DDR_3state is

signal ddr_out, tri : std_logic;

component FDDRRSE
   port (

Q : out std_logic;
D0 : in std_logic;
D1 : in std_logic;      
C0 : in std_logic;
C1 : in std_logic;      
CE : in std_logic;
R  : in std_logic;
S : in std_logic

);
end component;

begin
 
--Instantiate Ouput DDR registers 
U0: FDDRRSE port map(Q  => tri,

D0 => en0,
D1 => en1,      
C0 => clk,
C1 => clk180,     
CE => ce,
R  => rst,
S  => set

 );

--Instantiate three-state DDR registers 
U1: FDDRRSE port map(   Q  => ddr_out,

D0 => d0,
D1 => d1,      
C0 => clk,
C1 => clk180,     
CE => ce,
R  => rst,
S  => set

 );

--inferr the 3-State buffer
process(tri, ddr_out)
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begin
if tri = '1' then
   data_out <= 'Z';
elsif tri = '0' then
   data_out <= ddr_out;
end if;

end process;

end behavioral;

DDR_3state.v

module DDR_3state (d0 , d1, data_out, en_0, en_1, clk, clk180, rst, set, 
ce);

input d0, d1, clk, clk180, rst, set, ce, en_0, en_1;

output data_out;
reg data_out;

wire q, q_tri;

//Synchronous Output DDR primitive instantiation

FDDRRSE U1 ( .D0(d0),
.D1(d1),
.C0(clk),
.C1(clk180),
.CE(ce),
.R(rst),
.S(set),
.Q(q)

);

//Synchronous 3-State DDR primitive instantiation

FDDRRSE U2 ( .D0(en_0),
.D1(en_1),
.C0(clk),
.C1(clk180),
.CE(ce),
.R(rst),
.S(set),
.Q(q_tri)

);

//3-State buffer description

always @ (q_tri or q)
  begin
if (q_tri) 
  data_out = 1'bz;
else 
  data_out = q;

  end

endmodule
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Using LVDS I/O

Introduction
Low Voltage Differential Signaling (LVDS) is a very popular and powerful high-speed 
interface in many system applications. Virtex-II I/Os are designed to comply with the IEEE 
electrical specifications for LVDS to make system and board design easier. With the 
addition of an LVDS current-mode driver in the IOBs, which eliminates the need for 
external source termination in point-to-point applications, and with the choice of two 
different voltage modes and an extended mode, Virtex-II devices provide the most flexible 
solution for doing an LVDS design in an FPGA. 

Table 2-59 lists all LVDS primitives that are available for Virtex-II devices.

The primitives in bold type are pre-existing LVDS primitives used in Virtex-E and earlier 
designs. They are not current-mode drivers and are still required for BLVDS (Bus LVDS) 
applications.

*DS_LVDS_25 = 2.5V VCCO LVDS Buffer

*DS_LVDS_33 = 3.3V VCCO LVDS Buffer

There is no difference in the AC characteristics of either voltage-mode LVDS I/O. These 
choices now provide more flexibility for mixed-I/O banking rules; that is, an LVTTL I/O 
can coexist with the 3.3V LVDS buffer in the same bank.

*DS_LVDSEXT* = Extended mode LVDS buffer

This buffer provides a higher drive capability and voltage swing (350 - 750 mV), which 
makes it ideal for long-distance or cable LVDS links.

The output AC characteristics of this LVDS driver are not within the EIA/TIA 
specifications. This LVDS driver is intended for situations that require higher drive 
capabilities in order to produce an LVDS signal that is within EIA/TIA specification at the 
receiver.

Creating an LVDS Input/Clock Buffer
Figure 2-116 illustrates the LVDS input and clock buffer primitives shown in Table 2-60. 
The pin names used are the same as those used in the HDL library primitives.

Table 2-59: Available Virtex-II LVDS Primitives

Input Output 3-State Clock Bi-Directional

IBUF_LVDS OBUF_LVDS OBUFT_LVDS IBUFG_LVDS IOBUF_LVDS

IBUFDS_LVDS_25 OBUFDS_LVDS_25 OBUFTDS_LVDS_25 IBUFGDS_LVDS_25

IBUFDS_LVDS_33 OBUFDS_LVDS_33 OBUFTDS_LVDS_33 IBUFGDS_LVDS_33

IBUFDS_LVDSEXT_25 OBUFDS_LVDSEXT_25 OBUFTDS_LVDSEXT_25 IBUFGDS_LVDSEXT_25

IBUFDS_LVDSEXT_33 OBUFDS_LVDSEXT_33 OBUFTDS_LVDSEXT_33 IBUFGDS_LVDSEXT_33

Table 2-60: LVDS Input and Clock Buffer Primitives

LVDS Inputs LVDS Clocks

IBUFDS_LVDS_25 IBUFGDS_LVDS_25

IBUFDS_LVDS_33 IBUFGDS_LVDS_33

IBUFDS_LVDSEXT_25 IBUFGDS_LVDSEXT_25

IBUFDS_LVDSEXT_33 IBUFGDS_LVDSEXT_33
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To create an LVDS input, instantiate the desired mode (2.5 V, 3.3 V, or Extended) LVDS 
input buffer. Notice that the P and N channels are included in the primitive (I = P, IB = N). 
Software automatically uses the appropriate pin from an adjacent IOB for the N channel. 
The same applies to LVDS clocks: Use IBUFGDS_LVDS*

LVDS Input HDL Examples

VHDL Instantiation
U1: IBUFDS_LVDS_25
port map (

I => data_in_P,
IB => data_in_N
O => data_in

);

Verilog Instantiation
IBUFDS_LVDS_25 U1 ( .I(data_in_P),

.IB(data_in_N),

.O(data_in)
);

Port Signals

I = P-channel data input to the LVDS input buffer

IB = N-channel data input to the LVDS input buffer

O = Non-differential input data from LVDS input buffer

Location Constraints
NET “data_in_P” LOC= “NS”;

LVDS Receiver Termination
All LVDS receivers require standard termination. Figure 2-117 is an example of a typical 
termination for an LVDS receiver on a board with 50W transmission lines.

Figure 2-116: LVDS Input and Clock Primitives
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Creating an LVDS Output Buffer
Figure 2-118 illustrates the LVDS output buffer primitives:

• OBUFDS_LVDS_25

• OBUFDS_LVDS_33

• OBUFDS_LVDSEXT_25

• OBUFDS_LVDSEXT_33

The pin names used are the same as those used in the HDL library primitives.

To create an LVDS output, instantiate the desired mode (2.5, 3.3V, or Extended) LVDS 
output buffer. Notice that the P and N channels are included in the primitive (O = P, OB = 
N). Software automatically uses the appropriate pin from an adjacent IOB for the N 
channel.

LVDS Output HDL Examples

VHDL Instantiation
U1: OBUFDS_LVDS_25
port map (

I => data_out,
O => data_out_P,
OB => data_out_N

);

Verilog Instantiation
OBUFDS_LVDS_25 U1 ( .I(data_out),

.O(data_out_P),

.OB(data_out_N)
);

Port Signals

I = data input to the LVDS input buffer

O = P-channel data output

OB = N-channel data output

Location Constraints
NET “data_out_P” LOC= “NS”;

LVDS Transmitter Termination
The Virtex-II LVDS transmitter does not require any termination. Table 2-59 lists primitives 
that correspond to the Virtex-II LVDS current-mode drivers. Virtex-II LVDS current-mode 
drivers are a true current source and produce the proper (IEEE/EIA/TIA compliant) LVDS 

Figure 2-118: LVDS Output Buffer Primitives
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signal. Figure 2-119 illustrates a Virtex-II LVDS transmitter on a board with 50W 
transmission lines.

Creating an LVDS Output 3-State Buffer
Figure 2-120 illustrates the LVDS 3-State buffer primitives:

• OBUFTDS_LVDS_25

• OBUFTDS_LVDS_33

• OBUFTDS_LVDSEXT_25

• OBUFTDS_LVDSEXT_33

The pin names used are the same as those used in the HDL library primitives.

To create an LVDS 3-State output, instantiate the desired mode (2.5V, 3.3V, or Extended) 
LVDS 3-State buffer. Notice that the P and N channels are included in the primitive (O = P, 
OB = N). Software automatically uses the appropriate pin from an adjacent IOB for the N 
channel.

LVDS 3-State HDL Example

VHDL Instantiation
U1: OBUFTDS_LVDS_25
port map (

I => data_out,
T => tri,
O => data_out_P,
OB => data_out_N

);

Figure 2-119: LVDS Transmitter Termination
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Verilog Instantiation
OBUFTDS_LVDS_25 U1 (  .I(data_out),

 .T(tri),
 .O(data_out_P),
 .OB(data_out_N)

);

Port Signals
I = data input to the 3-state output buffer
T = 3-State control signal
O = P-channel data output
OB = N-channel data output

Location Constraints
NET “data_out_P” LOC = “NS”;

LVDS 3-State Termination
The Virtex-II LVDS 3-state buffer does not require any termination. Table 2-59 lists primitives 
that correspond to Virtex-II LVDS current-mode drivers. These drivers are a true current 
source, and they produce the proper (IEEE/EIA/TIA compliant) LVDS signal. Figure 2-121 
illustrates a simple redundant point-to-point LVDS solution with two LVDS 3-state 
transmitters sharing a bus with one LVDS receiver and the required termination for the circuit. 

Creating a Bidirectional LVDS Buffer
Since LVDS is intended for point-to-point applications, BLVDS (Bus-LVDS) is not an 
IEEE/EIA/TIA standard implementation and requires careful adaptation of I/O and PCB 
layout design rules. The primitive supplied in the software library for bi-directional LVDS 
does not use the Virtex-II LVDS current-mode driver. Therefore, source termination is 
required. Refer to xapp243 for examples of BLVDS termination.
The following are VHDL and Verilog instantiation examples of Virtex-II BLVDS primitves.

VHDL Instantiation
blvds_io: IOBUFDS_BLVDS_25
port map (

 I => data_out, 
 O => data_in,  
 T => tri,     
 IO => data_IO_P, 
 IOB => data_IO_N 
);

Figure 2-121: LVDS 3-State Termination
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Verilog Instantiation
IOBUFDS_BLVDS_25  blvds_io (  .I(data_out),

 .O(data_in),
 .T(tri),
 .IO(data_IO_P),
 .IOB(data_IO_N)

);

Port Signals
I = data output: internal logic to LVDS I/O buffer
T = 3-State control to LVDS I/O buffer
IO = P-channel data I/O to or from BLVDS pins
IOB = N-channel data I/O to or from BLVDS pins
O = Data input: off-chip data to LVDS I/O buffer

Location Constraints
Only the P or N channel must be constrained. Software automatically places the 
corresponding channel of the pair on the appropriate pin.

LDT
Lightning Data Transport (LDT) is a new high speed interface and protocol introduced by 
Advanced Micro Devices. LDT is a differential signaling based interface that is very similar 
to LVDS. Virtex-II IOBs are equipped with LDT buffers. These buffers also have 
corresponding software primitives as follows:

IBUFDS_LDT_25

IBUFGDS_LDT_25

OBUFDS_LDT_25

OBUFTDS_LDT_25

LDT Implementation
LDT implementation is the same as LVDS with DDR, so follow all of the rules and 
guidelines set forth earlier in this chapter for LVDS-DDR, and replace the LVDS buffer with 
the corresponding LDT buffer. For more information on Virtex-II LDT electrical 
specification, refer to the Virtex-II Data Sheet.
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Using Bitstream Encryption
Virtex-II devices have an on-chip decryptor that can be enabled to make the configuration 
bitstream (and thus the whole logic design) secure. The user can encrypt the bitstream in 
the Xilinx software, and the Virtex-II chip then performs the reverse operation, decrypting 
the incoming bitstream, and internally recreating the intended configuration.

This method provides a very high degree of design security. Without knowledge of the 
encryption/decryption key or keys, potential pirates cannot use the externally intercepted 
bitstream to analyze, or even to clone the design. System manufacturers can be sure that 
their Virtex-II implemented designs cannot be copied and reverse engineered. Also, IP 
Virtex-II chips that contain the correct decryption key.

The Virtex-II devices store the internal decryption keys in a few hundred bits of dedicated 
RAM, backed up by a small externally connected battery. At <100 nA load, the endurance 
of the battery is only limited by its shelf life.

The method used to encrypt the data is Data Encryption Standard (DES). This is an official 
standard supported by the National Institute of Standards and Technology (NIST) and the 
U. S. Department of Commerce. DES is a symmetric encryption standard that utilizes a 56-
bit key. Because of the increased sophistication and speed of today’s computing hardware, 
single DES is no longer considered to be secure. However, the Triple Data Encryption 
Algorithm (TDEA), otherwise known as triple DES, is authorized for use by U. S. federal 
organizations to protect sensitive data and is used by many financial institutions to protect 
their transactions. Triple DES has yet to be cracked. Both DES and triple DES are available 
in Virtex-II devices. 

What DES Is
DES and triple DES are symmetric encryption algorithms. This means that the key to 
encrypt and the key to decrypt are the same. The security of the data is kept by keeping the 
key secret. This contrasts to a public key system, like RSA or PGP. One thing to note is that 
Virtex-II devices use DES in Cipher Block Chaining mode. This means that each block is 
combined with the previous encrypted block for added security. DES uses a single 56-bit 
key to encrypt 64-bit blocks one at a time.

How Triple DES is Different 
Triple DES uses three keys (known as a key bundle or key set), and the encryption 
algorithm is repeated for each of those keys. If EK(I) and DK(I) denote the encryption and 
decryption of a data block I using key K, the Triple DES encryption algorithm is as follows 
(known as E-D-E): 

Outputencrypted = EK3(DK2(EK1(I)))

And the decryption algorithm is as follows (known as D-E-D):

Outputdecrypted = DK1(EK2(DK3(I)))

K1 = K2 = K3 gives the same result as single DES.

For a detailed description of the DES standard, refer to: 

http://www.itl.nist.gov/fipspubs/fip46-2.htm 

For a popular description of the origin and the basic concept of DES and many other older 
and newer encryption schemes, see the recent best-seller: 

The Code Book by Simon Singh, Doubleday 1999, ISBN 0-385-49531-5
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Classification and Export Considerations
Virtex-II FPGAs have been classified by the U. S. Department of Commerce as an FPLD 
(3A001.a.7), which is the same classification as current FPGAs. Only the decryptor is on-
chip and can only be used to decrypt an incoming bitstream, so the classification has not 
changed and no new paperwork is required. The software has been classified under 
ECCN#:5D002 and can be exported globally under license exception ENC. No changes to 
current export practices are necessary.

Creating Keys
For Virtex-II, DES or triple DES (TDEA) can be used. DES uses a single 56-bit key, where 
triple-DES always uses three such keys. All of the keys can be chosen by the BitGen 
program at random, or can be explicitly specified by the user.

Virtex-II devices can have six separate keys programmed into the device. A particular 
Virtex-II device can store two sets of triple-DES keys and can thus accept alternate 
bitstreams from two competing IP vendors, without providing access to each other's 
design. However, all of the keys must be programmed at once. 

An encrypted bitstream is created by the BitGen program. Keys and key options can be 
chosen in two ways: by command-line arguments to BitGen, or by specifying a KeyFile 
(with the –g KeyFile command-line option). The BitGen options relevant to encryption are 
listed in Table 2-61.:

Table 2-61: BitGen Encryption Options

Option Description
Values (default first where 

appropriate)

Encrypt Whether to encrypt the bitstream No, Yes

Key0 DES Key 0 pick, <hex string>

Key1 DES Key 1 pick, <hex string>

Key2 DES Key 2 pick, <hex string>

Key3 DES Key 3 pick, <hex string>

Key4 DES Key 4 pick, <hex string>

Key5 DES Key 5 pick, <hex string>

KeyFile Location of separate key definition file <string>

Keyseq0 Set the key sequence for key 0 (S = 
single, F = first, M = middle, L = last) S,F,M,L

Keyseq1 Set the key sequence for key 1 S,F,M,L

Keyseq2 Set the key sequence for key 2 S,F,M,L

Keyseq3 Set the key sequence for key 3 S,F,M,L

Keyseq4 Set the key sequence for key 4 S,F,M,L

Keyseq5 Set the key sequence for key 5 S,F,M,L

StartKey Key number to start decryption 0,3

StartCBC Constant Block Chaining start value pick, <string>
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The key sequence (Keyseq) is set to S for single key encryption, F for first key in multi-key 
encryption, M for middle key in multi-key encryption, and L for last key in multi-key 
encryption. When the KeyFile option is specified, BitGen looks in that file for all other DES 
key options listed above. An example for the input KeyFile using triple DES is:

# Comment for key file 
Key 0 0x9ac28ebeb2d83b; 
Key 1 pick; 
Key 2 string for my key; 
Key 3 0x00000000000000; 
Key 4 8774eb3ebb4f84; 
Keyseq 0 F; 
Keyseq 1 M; 
Keyseq 2 L; 
Keyseq 3 F; 
Keyseq 4 M; 
Keyseq 5 L; 
Key StartCBC 503f2f655b1b2f82; 
StartKey 0;

Every key is given in the output key file, with unused key locations set to 
"0x0000000000000000.” The proper key sequence prefix is added for all used keys. The 
prefix is preserved for unused keys, if the user specified a value. The output key file has the 
same base file name as the .bit file, but with a .nky file extension.

The command line equivalent of the input key file above is as follows:

bitgen –g Encrypt:Yes –g Key0: 0x9ac28ebeb2d83b –g Key1:pick –g Key2:” 
string for my key” –g Key30x00000000000000 –g Key4:8774eb3ebb4f84 –g 
Keyseq0:F, -g Keyseq1:M, -gKeyseq2:L –g Keyseq3:F –g Keyseq4:M –g 
Keyseq5:L -g StartCBC:503f2f655b1b2f82 –g StartKey:0 myinput.ncd

If the key file is used, the command line is as follows:

Bitgen –g Encrypt:Yes –g KeyFile: mykeyfile myinput.ncd

The output key file from either of the above inputs looks something like this:

Device 2v40CS144; 
Key 0 0x9ac28ebeb2d83b; 
Key 1 0xdb1adb5f08b972; 
Key 2 0x5452032773c286; 
Key 3 0x00000000000000; 
Key 4 0x8774eb3ebb4f84; 
Key 5 0x00000000000000; 
Keyseq 0 F; 
Keyseq 1 M; 
Keyseq 2 L; 
Keyseq 3 F; 
Keyseq 4 M; 
Keyseq 5 L; 
Key StartCBC 0x503f2f655b1b2f82; 
StartKey 0;

In the case of the string for Key2, if the keyvalue is a character string, BitGen encodes the 
string into a 56-bit hex string. The same character string gives the same 56-bit hex string 
every time. This enables passwords or phrases to be used instead of hex strings.

The above keys are all specified as 64 bits each. The first 8 bits are used by Xilinx as header 
information and the following 56 bits as the key. BitGen accepts 64 bit keys, but 
automatically overrides the header, if necessary.

Because of security issues, the –g Compress option cannot be used with bitstream 
encryption. Also, partial reconfiguration is not allowed. 
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Loading Keys
DES keys can only be loaded through JTAG. The JTAG Programmer and iMPACT™ tools 
have the capability to take a .nky file and program the device with the keys. In order to 
program the keys, a “key-access mode” is entered. When this mode is entered, all of the 
FPGA memory, including the keys and configuration data, is cleared. Once the keys are 
programmed, they cannot be reprogrammed without clearing the entire device. This “key 
access mode” is completely transparent to most users.

Keys are programmed using the ISC_PROGRAM instruction, as detailed in the JTAG 1532 
specification. SVF generation is also supported, if keys are to be programmed using a 
different method, such as a microprocessor or JTAG test software.

Loading Encrypted Bitstreams
Once the device has been programmed with the correct keys, the device can be configured 
with an encrypted bitstream. Non-encrypted bitstreams may also be used to configure the 
device, and the stored keys are ignored. The method of configuration is not at all affected 
by encryption. Any of the modes may be used, and the signaling does not change (refer to 
Chapter 3:  Configuration). However, all bitstreams must configure the entire device, since 
partial reconfiguration is not permitted. 

Once the device has been configured with an encrypted bitstream, it cannot be 
reconfigured without toggling the PROG pin, cycling power, or performing the JTAG 
JSTART instruction. All of these events fully clear the configuration memory, but none of 
these events reset the keys as long as VBATT or VCCAUX are maintained. 

VBATT
VBATT is a separate battery voltage to allow the keys to remain programmed in the Virtex-II 
device. VBATT draws very little current (on the order of nA) to keep the keys programmed. 
A small watch battery is suitable (refer to VBATT DC Characteristics in the Virtex-II Data 
Sheet and the battery’s specifications to estimate its lifetime).

While the auxiliary voltage (VCCAUX) is applied, VBATT does not draw any current, and the 
battery can be removed or exchanged.
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Using the CORE Generator System

Introduction
This section on the Xilinx CORE Generator System™ and the Xilinx Intellectual Property 
(IP) Core offerings is provided as an overview of products that facilitate the Virtex-II 
design process. For more detailed and complete information, consult the CORE Generator 
Guide, which can be accessed online in the Xilinx software installation, as well as at the 
http://toolbox.xilinx.com/docsan/xilinx4/manuals.htm site, under the “Design Entry Tools” 
heading.

The CORE Generator System
The Xilinx CORE Generator System is the cataloging, customization, and delivery vehicle 
for IP cores targeted to Xilinx FPGAs. This tool is included with all Xilinx ISE BaseX, ISE 
Foundation, and ISE Alliance Series software packages. The CORE Generator provides 
centralized access to a catalog of ready-made IP functions ranging in complexity from 
simple arithmetic operators, such as adders, accumulators, and multipliers, to system-
level building blocks, such as filters, transforms, and memories. Cores can be displayed 
alphabetically, by function, by vendor, or by type. Each core comes with its own data sheet, 
which documents the core’s functionality in detail. 

The CORE Generator User Interface (see Figure 2-122) has direct links to key Xilinx web 
support pages, such as the Xilinx IP Center website (www.xilinx.com/ipcenter) and Xilinx 
Technical Support, making it very easy to access the latest Virtex-II IP releases and get 
helpful, up-to-date specifications and information on technical issues. Links to partner IP 
providers are also built into the informational GUIs for the various partner-supplied 
AllianceCORE products described under "AllianceCORE Program" on page 331. 

The use of CORE Generator IP cores in Virtex-II designs enables designers to shorten 
design time, and it also helps them realize high levels of performance and area efficiency 
without any special knowledge of the Virtex-II architecture. The IP cores achieve these 
high levels of performance and logic density by using Xilinx Smart-IP™ technology.

Figure 2-122: Core Generator User Interface
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Smart-IP Technology
Smart-IP technology leverages Xilinx FPGA architectural features, such as look-up tables 
(LUTs), distributed RAM, segmented routing and floorplanning information, as well as 
relative location constraints and expert logic mapping to optimize the performance of 
every core instance in a given Xilinx FPGA design. In the context of Virtex-II cores, 
Smart-IP technology includes the use of the special high-performance Virtex-II 
architectural features, such as embedded 18x18 multipliers, block memory, shift register 
look-up tables (SRL16’s), and special wide mux elements.

Smart-IP technology delivers:

• Physical layouts optimized for high performance

• Predictable high performance and efficient resource utilization

• Reduced power requirements through compact design and interconnect minimization

• Performance independent of device size

• Ability to use multiple cores without deterioration of performance

• Reduced compile time over competing architectures 

CORE Generator Design Flow
A block diagram of the CORE Generator design flow is shown in Figure 2-123.

Note:
1. The outputs produced by the CORE Generator consist of an implementation Netlist and 

optional schematic symbol, HDL template files, and HDL simulation model wrapper files. 

Core Types

Parameterized Cores
The CORE Generator System supplies a wide assortment of parameterized IP cores that 
can be customized to meet specific Virtex-II design needs and size constraints. See 
Figure 2-124. For each parameterized core, the CORE Generator System supplies:

• A customized EDIF implementation netlist (.EDN)

Figure 2-123: CORE Generator Design Flow

CORE Generator System

Netlist Netlist

Netlist

Design Entry Design Verification

Design Implementation

Synthesis
(User design only)

Place & Route

Functional
Simulation

Timing
Simulation

User Design
(HDL or Schematic)

CORE Generator
Output Files

Constraints

ug002_c2_069_101001

HDL Wrapper

Symbol

HDLTemplate
328 www.xilinx.com UG002 (v1.3)  3 December 2001
1-800-255-7778 Virtex-II Platform FPGA Handbook

http://www.xilinx.com


R

1

2

3

4

A

B

C

D

• A parameterized Verilog or VHDL behavioral simulation model (.V, .VHD) and 
corresponding wrapper file (also .V, .VHD)

• Verilog or VHDL templates (.VEO, .VHO)

• An ISE Foundation or Viewlogic® schematic symbol

The EDIF implementation netlist is used by the Xilinx tools to implement the core. The 
other design files generated depend on the Design Entry settings specified (target CAE 
vendor, and design flow type -- schematic or HDL). Schematic symbol files are generated 
when a schematic design flow is specified for the project.

Parameterized HDL simulation models are provided in two separate HDL simulation 
libraries, one for Verilog functional simulation support, and the other for VHDL functional 
simulation support. The libraries, which are included as part of the Xilinx installation, are 
in the following locations:

$XILINX/verilog/src/XilinxCoreLib

$XILINX/vhdl/src/XilinxCoreLib 

If using a compiled simulator, these libraries must be precompiled before performing a 
functional simulation of the cores. An analyze_order file describing the required compile 
order of these models is included with each XilinxCoreLib library, one for Verilog 
(verilog_analyze_order) and one for VHDL (vhdl_analyze_order).

For an HDL design flow, Verilog and VHDL templates (.VEO and .VHO files) are also 
provided to facilitate the integration of the core into the design for the purposes of 
functional simulation, synthesis, and implementation. The Verilog (.V) and VHDL (.VHD) 
wrapper files are also generated. The wrapper files for a particular core are compiled like 
normal simulation models. They convey custom parameter values to the corresponding 
generic, parameterized behavioral model for that core in the XilinxCoreLib library. The 
custom parameter values are used to tailor the behavior of the customized core. 

Figure 2-124: Core Customization Window for a Parameterized Core
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The following is a sample VHO template:

component adder8 
    port ( 
    a: IN std_logic_VECTOR(7 downto 0); 
    b: IN std_logic_VECTOR(7 downto 0); 
    c: IN std_logic; 
    ce: IN std_logic; 
    ci: IN std_logic; 
    clr: IN std_logic; 
    s: OUT std_logic_VECTOR(8 downto 0)); 
end component; 

-- Synplicity black box declaration 
attribute black_box : boolean; 
attribute black_box of test: component is true; 

-- COMP_TAG_END ------ End COMPONENT Declaration ------------ 

-- The following code must appear in the VHDL architecture 
-- body. Substitute your own instance name and net names. 

------------- Begin Cut here for INSTANTIATION Template ----- INST_TAG
your_instance_name : adder8 
    port map ( 
    a => a, 
    b => b, 
    c => c, 
    ce => ce, 
    ci => ci, 
    clr => clr, 
    s => s); 

-- INST_TAG_END ------ End INSTANTIATION Template ------------ 
-- You must compile the wrapper file test.vhd when simulating 
-- the core, test. When compiling the wrapper file, be sure to 
-- reference the XilinxCoreLib VHDL simulation library. For detailed 
-- instructions, please refer to the "Core Generator Guide".

Fixed Netlist Cores
The other type of Virtex-II core provided by the CORE Generator is the fixed netlist core. 
These are preset, non-parameterized designs that are shipped with the following:

• A fixed EDIF implementation netlist (as opposed to one that is customized on the fly) 

• .VEO and .VHO templates

• Non-parameterized .V and .VHD behavioral simulation models

• Schematic symbol support

Examples include the fixed netlist Xilinx FFTs and most AllianceCORE products. 

Since the HDL behavioral models for fixed netlist cores are not parameterized, the 
corresponding .VEO and .VHO template files are correspondingly simple. They do not 
need to pass customizing parameter values to a library behavioral model. 

Xilinx IP Solutions and the IP Center
The CORE Generator works in conjunction with the Xilinx IP Center on the world wide 
web to provide the latest IP and software upgrades. To make the most of this resource, 
Xilinx highly recommends that whenever starting a design, first do a quick search of the 
Xilinx IP Center (www.xilinx.com/ipcenter) to see whether a ready-made core solution is 
already available.
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A complete catalog of Xilinx cores and IP tools resides on the IP Center, including:

• LogiCORE Products

• AllianceCORE Products

• Reference Designs

• XPERTS Partner Consultants

• Design Reuse Tools

When installing the CORE Generator software, the designer gains immediate access to dozens 
of cores supplied by the LogiCORE Program. In addition, data sheets are available for all 
AllianceCORE products, and additional, separately licensed, advanced function LogiCORE 
products are also available. New and updated Virtex-II IP for the CORE Generator can be 
downloaded from the IP Center and added to the CORE Generator catalog.

LogiCORE Program
LogiCORE products are designed, sold, licensed, and supported by Xilinx. LogiCORE 
products include a wide selection of generic, parameterized functions, such as muxes, 
adders, multipliers, and memory cores which are bundled with the Xilinx CORE Generator 
software at no additional cost to licensed software customers. System-level cores, such as 
PCI, Reed-Solomon, ADPCM, HDLC, POS-PHY, and Color Space Converters are also 
available as optional, separately licensed products. Probably, the most common 
application of the CORE Generator is to use it to quickly generate Virtex-II block and 
distributed memories.   A more detailed listing of available Virtex-II LogiCORE products is 
available in Table 2-62 and on the Xilinx IP Center website (www.xilinx.com/ipcenter).

Types of IP currently offered by the Xilinx LogiCORE program include:

• Basic Elements: logic gates, registers, multiplexers, adders, multipliers

• Communications and Networking: ADPCM modules, HDLC controllers, ATM 
building blocks, forward error correction modules, and POS-PHY Interfaces

• DSP and Video Image Processing: cores ranging from small building blocks (e.g., Time 
Skew Buffers) to larger system-level functions (e.g., FIR Filters and FFTs)

• System Logic: accumulators, adders, subtracters, complementers, multipliers, 
integrators, pipelined delay elements, single and dual-port distributed and block RAM, 
ROM, and synchronous and asynchronous FIFOs

• Standard Bus Interfaces: PCI 64/66 (64-bit, 66 MHz), 64/33 (64-bit, 33 MHz), and 
32/33 (32-bit, 3 3MHz) Interfaces

AllianceCORE Program
The AllianceCORE program is a cooperative effort between Xilinx and third-party IP 
developers to provide additional system-level IP cores optimized for Xilinx FPGAs. To 
ensure a high level of quality, AllianceCORE products are implemented and verified in a 
Xilinx device as part of the certification process.

Xilinx develops relationships with AllianceCORE partners who can complement the Xilinx 
LogiCORE product offering. Where Xilinx does not offer a LogiCORE for a particular 
function, Xilinx partners with an AllianceCORE partner to offer that function. A large 
percentage of Xilinx AllianceCORE partners focus on data and telecommunication 
applications, as well as processor and processor peripheral designs.

Together, Xilinx and the AllianceCORE partners are able to provide an extensive library of 
cores to accelerate the design process. AllianceCORE products include customizable cores 
which can be configured to exact needs, as well as fixed netlist cores targeted toward 
specific applications. In many cases, partners can provide cores customized to meet the 
specific design needs if the primary offerings do not fit the requirements. Additionally, 
source code versions of the cores are often available from the partners at additional cost for 
those who need maximum flexibility.
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The library of Xilinx and AllianceCORE IP cores allows designers to leverage the expertise 
of experienced designers who are well-versed in optimizing designs for Virtex-II and other 
Xilinx architectures. This enables designers to obtain high performance and density in the 
target Virtex-II device with a faster time to market.

Reference Designs
Xilinx offers two types of reference designs; application notes (XAPPs) developed by 
Xilinx, and reference designs developed through the Xilinx Reference Design Alliance 
Program. Both types are extremely valuable to customers looking for guidance when 
designing systems. Reference designs can often be used as starting points for 
implementing a broad spectrum of functions in Xilinx programmable logic. 

Application notes developed by Xilinx usually include supporting design files. They are 
supplied free of charge, without technical support or warranty. To see currently available 
reference designs, visit the www.xilinx.com/products/logicore/refdes.htm website. 

Reference designs developed through the Xilinx Reference Design Alliance Program are 
developed, owned, and controlled by the partners in the program. The goal of the program 
is to form strategic engineering and marketing partnerships with other semiconductor 
manufacturers and design houses so as to assist in the development of high quality, 
multicomponent reference designs that incorporate Xilinx devices and demonstrate how 
they can operate at the system level with other specialized and general purpose 
semiconductors. 

The reference designs in the Xilinx Reference Design Alliance Program are fully functional 
and applicable to a wide variety of digital electronic systems, including those used for 
networking, communications, video imaging, and DSP applications. Visit the 
www.xilinx.com/company/reference_design/referencepartners.htm website to see a list of 
designs currently available through this program.

XPERTS Program
Xilinx established the XPERTS Program to provide customers with access to a worldwide 
network of certified design consultants proficient with Xilinx Platform FPGAs, software, and 
IP core integration. All XPERT members are certified and have extensive expertise and 
experience with Xilinx technology in various vertical applications, such as communications 
and networking, DSP, video and image processing, system I/O interfaces, and home 
networking. 

XPERTS partners are an integral part of Xilinx strategy to provide customers with cost-
efficient design solutions, while accelerating time to market. For more information on Xilinx 
XPERTS Program, visit the www.xilinx.com/company/consultants/index.htm website.

Design Reuse Tools
To facilitate the archiving and sharing of IP created by different individuals and 
workgroups within a company, Xilinx offers the IP Capture Tool. The IP Capture Tool helps 
to package design modules created by individual engineers in a standardized format so 
that they can be cataloged and distributed using the Xilinx CORE Generator. A core can 
take the form of synthesizable VHDL or Verilog code, or a fixed function netlist. Once it is 
packaged by the IP Capture Tool and installed into the CORE Generator, the “captured” 
core can be shared with other designers within a company through an internal network. 
The IP Capture Tool is supplied as a separate utility through the Xilinx IP Center. For more 
information, see the www.xilinx.com/ipcenter/designreuse/ipic.htm website.

CORE Generator Summary
The CORE Generator delivers a complete catalog of IP including behavioral models, 
synthesis templates, and netlists with performance guaranteed by Xilinx Smart-IP 
technology. It is a repository for LogiCORE products from Xilinx, AllianceCORE products 
from Xilinx partners, and it supports Design Reuse for internally developed IP. In addition, 
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LogiCORE products are continuously updated to add support for new Xilinx architectures, 
such as Virtex-II. The most current IP updates are available from the Xilinx IP Center.

Utilizing the CORE Generator library of parameterizable cores, designed by Xilinx for 
Xilinx FPGAs, the designer can enjoy the advantages of design reuse, including faster time 
to market and lower cost solutions. For more information, visit the Xilinx IP Center 
www.xilinx.com/ipcenter website.

Virtex-II IP Cores Support
Table 2-62 provides a partial listing of cores available for Virtex-II designs. For a complete 
catalog of Virtex-II IP, visit the Xilinx IP Center www.xilinx.com/ipcenter website.

Table 2-62: Virtex-II IP Cores Support 

Function
Vendor 
Name

IP Type
Implementation Example

Key Features
Application 
ExamplesOcc MHz Device

Basic Elements

BUFE-based 
Multiplexer Slice

Xilinx LogiCORE    1-256 bits wide

BUFT-based 
Multiplexer Slice

Xilinx LogiCORE    1-256 bits wide  

Binary Counter Xilinx LogiCORE    2-256 bits output width  

Binary Decoder Xilinx LogiCORE    2-256 bits output width  

Bit Bus Gate Xilinx LogiCORE    1-256 bits wide  

Bit Gate Xilinx LogiCORE    1-256 bits wide  

Bit Multiplexer Xilinx LogiCORE    1-256 bits wide  

Bus Gate Xilinx LogiCORE    1-256 bits wide  

Bus Multiplexer Xilinx LogiCORE    IO widths up to 256 bits  

Comparator Xilinx LogiCORE    1-256 bits wide  

FD-based Parallel 
Register Xilinx LogiCORE    1-256 bits wide  

FD-based Shift 
Register

Xilinx LogiCORE    1-64 bits wide  

LD-based Parallel 
Latch

Xilinx LogiCORE    1-256 bits wide  

RAM-based Shift 
Register

Xilinx LogiCORE    
1-256 bits wide, 1024 

words deep
 

Communication & Networking

3G FEC Package Xilinx LogiCORE    
Viterbi Decoder, Turbo 
Codec, Convolutional 

Enc

3G Wireless 
Infrastructure

3GPP Compliant 
Turbo Convolutional 

Decoder
Xilinx LogiCORE 80% 40 XC2V500

3GPP specs, 2 Mbps, 
BER=10-6 for 1.5dB SNR

3G Wireless 
Infrastructure

3GPP Compliant 
Turbo Convolutional 

Encoder
Xilinx LogiCORE 65% 60 XC2V250 Compliant w/ 3GPP, 

puncturing
3G Wireless 

Infrastructure

3GPP Turbo Decoder SysOnChip AllianceCORE 87% 66 XC2V500-5 3GPP/UMTS compliant, 
IMT-2000, 2Mbps data 

Error correction, 
wireless
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8b/10b Decoder Xilinx LogiCORE
1 

BRAM 100 XC2V1000
Industry std 8b/10b 

en/decode for serial data 
transmission

Physical layer of 
Fiber Channel

8b/10b Encoder Xilinx LogiCORE 1 
BRAM

100 XC2V1000
Industry std 8b/10b 

en/decode for serial data 
transmission

Physical layer of 
Fiber Channel

ADPCM 1024 
Channel

Amphion AllianceCORE G.721, 723, 726, 726a, 727, 
727a, u-law, a-law

DECT, VOIP, 
cordless telephony

ADPCM 256 Channel Amphion AllianceCORE
G.721, 723, 726, 726a, 727, 

727a, u-law, a-law
DECT, VOIP, 

cordless telephony

ADPCM 512 Channel Amphion AllianceCORE      

ADPCM 768 Channel Amphion AllianceCORE 89% 50 XC2V500-5
G.721, 723, 726, 726a, 727, 

727a, u-law, a-law
DECT, VOIP, 

cordless telephony

ADPCM Speech 
Codec, 32 Channel 

(DO-DI-ADPCM32)
Xilinx LogiCORE 62% 25 XC2V500

G.726, G.727, 32 duplex 
channels

DECT, VOIP, 
Wireless local 

loop, DSLAM, PBX

ADPCM Speech 
Codec, 64 Channel 

(DO-DI-ADPCM64)
Xilinx LogiCORE 61% 27 XC2V500

G.726, G.727, 64 duplex 
channels

DECT, VOIP, 
wireless local loop, 

DSLAM, PBX

BOOST LITE 
Bluetooth Baseband 

Processor
NewLogic AllianceCORE 73% 33% XC2V1000-4

Compliant to Bluetooth 
v1.1, BQB qualified 
software for L2CAP, 

LHP, HC1, voice support

Bluetooth 
applications

BOOST Lite 
Bluetooth Baseband 

Processor
NewLogic AllianceCORE 73% 33% XC2V1000-4

Compliant to Bluetooth 
v1.1, BQB qualified 
software for L2CAP, 

LHP, HC1, voice support

Bluetooth 
applications

Convolutional 
Encoder Xilinx LogiCORE 10% 26 XC2V40

k from 3 to 9, puncturing 
from 2/3 to 12/13

3G base stations, 
broadcast, wireless 

LAN, cable 
modem, xDSL, 
satellite com, 

uwave

DVB-RCS Turbo 
Decoder

iCODING AllianceCORE 54% 69 XC2V2000-5

DVB-RCS compliant, 
9Mbps, data rate, 

switchable code rates 
and frame sizes

Error correction, 
wireless, DVB, 

Satellite data link

Flexbus 4 Interface 
Core, 16-Channel 
(DO-DI-FLX4C16)

Xilinx LogiCORE 31% 200 XC2V3000 
FG676-5

 
Line card: terabit 
routers & optical 

switches

Flexbus 4 Interface 
Core, 4-Channel (DO-

DI-FLX4C4)
Xilinx LogiCORE 27% 200

XC2V1000 
FG456-5

 
Line card: terabit 
routers & optical 

switches

Flexbus 4 Interface 
Core, 1-Channel (DO-

DI-FLX4C1)
Xilinx LogiCORE 12% 200

XC2V1000 
FG456-5

 
Line card: terabit 
routers & optical 

switches

Table 2-62: Virtex-II IP Cores Support  (Continued)

Function
Vendor 
Name

IP Type
Implementation Example

Key Features
Application 
ExamplesOcc MHz Device
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HDLC Controller 
Core, 32 Channels

Xilinx LogiCORE 34% 81 XC2V250
32 full duplex, CRC-

16/32, 8/16-bit address 
insertion/deletion

X.25, POS, cable 
modems, frame 
relay switches, 

video confer. over 
ISDN

HDLC Controller 
Core, Single Channel

Xilinx LogiCORE 15% 115 XC2V250

16/32-bit frame seq, 
8/16-bit addr 

insert/delete, flag/zerop 
insert/detect

X.25, POS, cable 
modems, frame 
relay switches, 

video conf. over 
ISDN

Interleaver/De-
interleaver

Xilinx LogiCORE 30% 187 XC2V40 Convolutional, width up 
to 256 bits, 256 branches

Broadcast, wireless 
LAN, cable 

modem, xDSL, 
satellite 

com,uwave nets, 
digital TV

PE-MACMII Dual 
Speed 10/100 Mbps 

Ethernet MAC
Alcatel AllianceCORE 33% 60 XC2V500-4

802.3 compliant, 
Supports single & 

multimode fiber optic 
devices, M11 interfaces, 
RMON and Etherstate 

statistics

Networking, 
Broadband, NIC, 

SOHO, Home 
networking, 

storage, routers, 
switches, printers, 

POS-PHY Level 3 
Link Layer Interface 

Core, 48 Channel 
(DO-DI-

POSL3LINK48A)

Xilinx LogiCORE 33% 104
XC2V6000 
FF1152-4

  

POS-PHY L3 Link 
Layer Interface, 16-Ch 

(DO-DI-
POSL3LINK16)

Xilinx LogiCORE 40% 104
XC2V1000 
FG456-4

 
Line card: terabit 
routers & optical 

switches

POS-PHY L3 Link 
Layer Interface, 4-Ch 

(DO-DI-
POSL3LINK4)

Xilinx LogiCORE 15% 104
XC2V1000 
FG456-4

 
Line card: terabit 
routers & optical 

switches

POS-PHY L3 Link 
Layer Interface, 2-Ch 

(DO-DI-
POSL3LINK2)

Xilinx LogiCORE 55% 104 XCV50E-8  
Line card: terabit 
routers & optical 

switches

POS-PHY L3 Link 
Layer Interface, 
Single Channel

Xilinx LogiCORE 6% 104 XC2V1000 
FG456-4

  

POS-PHY L4 Multi-
Channel Interface 

(DO-DI-POSL4MC)
Xilinx LogiCORE 29% 104

XC2V3000 
FG676-5

  

Reed-Solomon 
Decoder

Xilinx LogiCORE 40% 98 XC2V250
Std or custom coding, 3-
12 bit symbol width, up 

to 4095 symbols

Broadcast, wireless 
LAN, digital TV, 

cable modem, 
xDSL, satellite 

com,uwave nets

Reed-Solomon 
Decoder

TILAB AllianceCORE 56% 61 XC2V1000-5 parameterizable, RTL 
available

Error correction, 
wireless, DSL

Table 2-62: Virtex-II IP Cores Support  (Continued)
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Reed-Solomon 
Encoder

Xilinx LogiCORE 42% 180 XC2V40

Std or cust coding, 3-12 
bit width, up to 4095 

symbols with 256 check 
symb.

Broadcast, wireless 
LAN, digital TV, 

cable modem, 
xDSL, satellite 

com,uwave nets 

SDLC Controller CAST AllianceCORE 38% 158 XC2V100-5

Like Intel 8XC152 Global 
Serial Channel, Serial 
Comm., HDLC apps, 

telecom

Embedded 
systems, 

professional audio, 
video

SPEEDROUTER 
Network Processor

IP AllianceCORE 64%

80 
MHz, 

2.5 
Gbps

XC2V1500-5

Solution requires 
SPEEDAnalyzer ASIC, 

2.5 Gbps fdx wire speed; 
net processor (NPV)

Networking, edge 
and access, 

Switches and 
routers

Turbo Decoder - 
3GPP

SysOnChip AllianceCORE 88% 65 XC2V2000-5
3GPP/UMTS compliant, 

2Mbps data rate
Error correction, 

wireless

Turbo Encoder TILAB AllianceCORE 48% 120 XC2V80-5
3GPP/UMTS compliant, 
upto 4 interleaver laws

Error correction, 
wireless

TURBO_DEC Turbo 
Decoder

TILAB AllianceCORE 99% 65 XC2V2000-5
3GPP/UMTS compliant, 

>2Mbps data rate
Error correction, 

wireless

Viterbi Decoder Xilinx LogiCORE 80% 100 XC2V250
Puncturing, serial & 
parallel architecture, 

3G base stations, 
broadcast, wireless 

LAN, cable 
modem, xDSL, 
satellite com, 

uwave

Viterbi Decoder, IEEE 
802-compatible

Xilinx LogiCORE 70% 147 XC2V250
Constraint length(k)=7, 

G0=171, G1=133

L/MMDS, cable 
modem, broadcast 

equip, wireless 
LAN, xDSL, sat 

com, uwave nets

Digital Signal Processing

1024-Point Complex 
FFT IFFT for Virtex-II

Xilinx LogiCORE 62%
41us, 
100 

MHz
XC2V500

16 bit complex data, 2’s 
comp, forward and 
inverse transform

 

16-Point Complex 
FFT IFFT for Virtex-II

Xilinx LogiCORE 37%
123ns, 

130 
MHz

XC2V500
16 bit complex data, 2’s 

comp, forward and 
inverse transform

 

256-Point Complex 
FFT IFFT for Virtex-II

Xilinx LogiCORE 54%
7.7us, 

100 
MHz

XC2V500
16 bit complex data, 2’s 

comp, forward and 
inverse transform

 

32 Point Complex 
FFT/IFFT

Xilinx LogiCORE      

64-Point Complex 
FFT IFFT for Virtex-II

Xilinx LogiCORE 38%
1.9us, 

100 
MHz

XC2V500
16 bit complex data, 2’s 

comp, forward and 
inverse transform

 

Bit Correlator Xilinx LogiCORE   
4096 taps, serial/parallel 

input, 4096 bits width
 

Cascaded Integrator 
Comb (CIC)

Xilinx LogiCORE   
32 bits data width, rate 
change from 8 to 16384
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Direct Digital 
Synthesizer Xilinx LogiCORE    

8-65K samples, 32-bits 
output precision, phase 

dithering/offset
 

Distributed 
Arithmetic FIR Filter

Xilinx LogiCORE    

32-bit input/coeff width, 
1024 taps, 1-8 chan, 

polyphase, online coeff 
reload

 

GVA-300 Virtex-II 
DSP Hardware 

Accelerator
GV AllianceCORE NA NA

2 Virtex-II, Spartan-II 
FPGAs, 1 CPLD, Matlab 

I/F
DSP prototyping

LFSR, Linear 
Feedback Shift 

Register
Xilinx LogiCORE    

168 input widths, 
SRL16/register 
implementation

 

Math Functions

Accumulator Xilinx LogiCORE    1-256s bit wide  

Adder Subtracter Xilinx LogiCORE    1-256s bit wide  

DFP2INT Floating 
Point to Integer 

Converter
Digital AllianceCORE 39% 66 XC2V250-5

Full IEEE-754 
compliance, 4 pipelines, 

Single precision real 
format support

DSP, Math, 
Arithmetic apps

DFPADD Floating 
Point Adder Digital AllianceCORE 39% 66 XC2V250-5

Full IEEE-754 
compliance, 4 pipelines, 

Single precision real 
format support

DSP, Math, 
Arithmetic apps

DFPCOMP Floating 
Point Comparator

Digital AllianceCORE 16% 91 XC2V80-5

Full IEEE-754 
compliance, 4 pipelines, 

Single precision real 
format support

DSP, Math, 
Arithmetic apps.

DFPDIV Floating 
Point Divider

Digital AllianceCORE 99% 53 XC2V250-5

Full IEEE-754 
compliance, 15 pipelines, 

Single precision real 
format support

DSP, Math, 
Arithmetic apps

DFPMUL Floating 
Point Multiplier

Digital AllianceCORE 44% 74 XC2V250-5

Full IEEE-754 
compliance, 7 

pipelines,32x32 mult, 
Single precision real 

format support

DSP, Math, 
Arithmetic apps.

DFPSQRT Floating 
Point Square Root

Digital AllianceCORE 39% 66 XC2V250-5

Full IEEE-754 
compliance, 4 pipelines, 

Single precision real 
format support

DSP, Math, 
Arithmetic apps

DINT2FP Integer to 
Floating Point 

Converter
Digital AllianceCORE 37% 73 XC2V250-5

Full IEEE-754 
compliance, double 

word input, 2 pipelines, 
Single precision real 

output

DSP, Math, 
Arithmetic apps

Multiply 
Accumulator (MAC)

Xilinx LogiCORE    
Input width up to 32 bits, 

65-bit accumulator, 
truncation rounding

 

Table 2-62: Virtex-II IP Cores Support  (Continued)

Function
Vendor 
Name

IP Type
Implementation Example

Key Features
Application 
ExamplesOcc MHz Device
UG002 (v1.3)  3 December 2001 www.xilinx.com 337
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com


R

Multiply Generator Xilinx LogiCORE    

64-bit input data width, 
constant, reloadable or 

variable inputs, 
parallel/sequential 

implementation

 

Pipelined Divider Xilinx LogiCORE    
32-bit input data width, 

multiple clock per output
 

Sine Cosine Look Up 
Table

Xilinx LogiCORE    
3-10 bit in, 4-32 bit out, 
distributed/block ROM

 

Twos Complementer Xilinx LogiCORE    
Input width up to 256 

bits
 

Memories & Storage Elements

Asynchronous FIFO Xilinx LogiCORE    

1-256 bits, 15-65535 
words, DRAM or BRAM, 

independent I/O clock 
domains

 

Content Addressable 
Memory (CAM) Xilinx LogiCORE    

1-512 bits, 2-10K words, 
SRL16  

Distributed Memory Xilinx LogiCORE    

1-1024 bit, 16-65536 
word, 

RAM/ROM/SRL16, opt 
output regs and 

pipelining

 

Dual-Port Block 
Memory

Xilinx LogiCORE    1-256 bits, 2-13K words  

Single-Port Block 
Memory

Xilinx LogiCORE    1-256 bits, 2-128K words  

Synchronous FIFO Xilinx LogiCORE    1-256 bits, 16-256 words, 
distributed/block RAM

 

Microprocessors, Controllers & Peripherals

10/100 Ethernet 
MAC

Xilinx LogiCORE
Interfaces through OPB 

to MicroBlaze

Networking, 
comm., processor 

applications 

AX1610 16-bit RISC 
Processor

Loarant AllianceCORE 12% 91 XC2V500-5
44 opcode, 64-K word 

data, program, Harvard 
arch.

Control functions, 
State mach, 
Coprocessor

C165X 
MicroController

CAST AllianceCORE 60% 134 XC2V80-5
Microchip 16C5X PIC 

like
Embedded 

systems, telecom

C68000 
Microprocessor

CAST AllianceCORE 90% 32 XC2V500-5 MC68000 Compatible
Embedded 

systems, pro 
audio, video

CPU FPGA (Virtex-II) 
MicroEngine Cards

NMI AllianceCORE NA NA NA Hitachi SH-3 CPU
Embedded 

systems

CZ80CPU 
Microprocessor

CAST AllianceCORE 55% 72 XC2V500-5
Zilog Z80 compatible, 8-

bit processor

Embedded 
systems, 

Communications
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D

DDR SDRAM 
Controller Core

Memec-
Core

AllianceCORE 7% 133 XC2V1000-4

DDR SDRAM burst 
length support for 2,4,8 

per access, supports data 
16,32, 64, 72.

Digital video, 
embedded 

computing , 
networking

DFPIC125X Fast RISC 
MicroController

Digital AllianceCORE 49% 126 XC2V80-5
PIC 12c4x like, 2X faster, 
12-bit wide instruction 

set, 33 instructions

Embedded 
systems, telecom, 
audio and video

DFPIC1655X Fast 
RISC MicroController

Digital AllianceCORE 79% 140 XC2V80-5

S/W compatible with 
PIC16C55X, 14-bit 
instruction set, 35 

instructions

Embedded 
systems, telecom, 
audio and video

DFPIC165X Fast RISC 
MicroController

Digital AllianceCORE 49% 126 XC2V80-5
PIC 12c4x like, 2X faster, 
12-bit wide instruction 

set, 33 instructions

Embedded 
systems, telecom, 
audio and video

DI2CM I2C Bus 
Controller Master

Digital AllianceCORE 58% 143 XC2V50-5 I2C-like, multi master, 
fast/std. modes

Embedded 
systems

DI2CM I2C Bus 
Controller Slave Digital AllianceCORE 28% 157 XC2V50-5 I2C-like, Slave Embedded

DI2CSB I2C Bus 
Controller Slave Base

Digital AllianceCORE 15% 187 XC2V50-5 I2C-like, Slave
Embedded 

Systems

DR8051 RISC 
MicroController

Digital AllianceCORE 68% 73 XC2V250-5
80C31 instruction set, 
RISC architecture 6.7X 

faster than standard 8051

Embedded 
systems, telecom, 

video

DR8051BASE RISC 
MicroController Digital AllianceCORE 46% 80-90 XC2V250-5

80C31 instruction set, 
high speed multiplier, 
RISC architecture 6.7X 

faster than standard 8051

Embedded 
systems, telecom, 

video

DR8052EX RISC 
MicroController

Digital AllianceCORE 99% 71 XC2V250-5

80C31 instruction set, 
high speed mult/div 
,RISC 6.7X faster than 

standard 8051

Embedded 
systems, telecom, 

video

e8254 Programmable 
Interval 

Timer/Counter
einfochips AllianceCORE 1% 175 XC2V1000-5

Three 8-bit parallel ports, 
24 programmable IO 

lines, 8-bit bidi data bus

Processor, I/O 
interface

e8255 Peripheral 
Interface einfochips AllianceCORE 1% 175 XC2V1000-5

Three 8-bit parallel ports, 
24 programmable IO 

lines, 8-bit bidi data bus

Processor, I/O 
interface

Flip805x-PS 
Microprocessor

Dolphin AllianceCORE 39% 38 XC2V1000-5

Avg 8X faster & code 
compatible v. legacy 
8051, verification bus 
monitor, SFR IF, DSP 

focused

DSP, Telecom, 
industrial, high 
speed control

IIC Xilinx LogiCORE
Interfaces through OPB 

to MicroBlaze
Networking, com, 
processor applic 

LavaCORE 
Configurable Java 

Processor Core
Derivation AllianceCORE 38% 20 XC2V1000-5

32b data/address 
optional DES

Internet appliance, 
industrial control

LavaCORE 
Configurable Java 

Processor Core
Derivation AllianceCORE 38% 20 XC2V1000-5

32b data/address 
optional DES

Internet appliance, 
industrial control
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Lightfoot 32-bit Java 
Processor Core

Digital AllianceCORE 33% 40 XC2V1000-5
32bit data, 24 bit address, 
3 Stage pipeline, Java/C 

dev. tools

Internet appliance, 
industrial control, 
HAVi multimedia, 

set top boxes

MicroBlaze Soft RISC 
Processor

Xilinx LogiCORE 125
Soft RISC Processor, 

small footprint
Networking, 

communications

OPB Arbiter Xilinx LogiCORE 125
Bundled in the 

MicroBlaze 
Development Kit

Processor 
applications

OPB GPIO Xilinx LogiCORE 125
Bundled in the 

MicroBlaze 
Development Kit

Processor 
applications

OPB Interrupt 
Controller

Xilinx LogiCORE 125
Bundled in the 

MicroBlaze 
Development Kit

Processor 
applications

OPB Memory 
Interface (Flash, 

SRAM)
Xilinx LogiCORE 125

Bundled in the 
MicroBlaze 

Development Kit

Processor 
applications

OPB Timer/Counter Xilinx LogiCORE 125
Bundled in the 

MicroBlaze 
Development Kit

Processor 
applications

OPB UART (16450, 
16550) Xilinx LogiCORE 125

Interfaces through OPB 
to MicroBlaze

Processor 
applications

OPB UART Lite Xilinx LogiCORE 125
Bundled in the 

MicroBlaze 
Development Kit

Processor 
applications

OPB WDT Xilinx LogiCORE 125
Bundled in the 

MicroBlaze 
Development Kit

Processor 
applications

PF3100 PC/104-Plus 
Reconfigurable 

Module
Derivation AllianceCORE N/A N/A XC2V1000 

FG256
PC/104 & PC/104+ 
devlopment board

Internet appliance, 
industrial control

SPI Xilinx LogiCORE
Interfaces through OPB 

to MicroBlaze

Networking, 
communications, 

processor 
applications 

XF-UART 
Asynchronous 

Communications 
Core

Memec-
Core AllianceCORE 15% 50 XCS20-4

UART and baud rate 
generator

Serial data 
communication

Standard Bus Interfaces

PCI-X 64/100 
Interface for Virtex-II 
(DO-DI-PCIX64-VE)

Xilinx LogiCORE 30% 100
XC2V1000 
FG456-5

PCI-X 1.0 comp, 64/32-
bit, 66 MHz PCI-X 

initiator and target IF, 
PCI 2.2 comp, 64/32-bit, 
33 MHz PCI initiator and 
target IF, 3.3 V PCI-X at 
33-66 MHz, 3.3 V PCI at 

0-33 MHz

Server,Embedded,
gb ethernet,U320 

SCSI,Fibre 
Ch,RAID 

cntl,graphics
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PCI32 Virtex Interface 
Design Kit (DO-DI-

PCI32-DKT)
Xilinx LogiCORE 6% 66 XC2V1000 

FG456-5

Includes PCI32 board, 
drive development kit, 

and customer education 
3-day training class

PCI32 Virtex 
Interface, IP Only 
(DO-DI-PCI32-IP)

Xilinx LogiCORE 6% 66
XC2V1000 
FG456-5

v2.2 comp, assured PCI  
timing, 3.3/5-V, 0-

waitstate, CPCI hot swap 
friendly

PC add-in boards, 
CPCI, Embedded

PCI64 & PCI32, 
IP Only

(DO-DI-PCI-AL)
Xilinx LogiCORE 6 - 7% 66 XC2V1000 

FG456-5

v2.2 comp, assured PCI  
timing, 3.3/5-V, 0-

waitstate, CPCI hot swap 
friendly

PC 
boards,CPCI,Emb

edded,hiperf 
video,gb ethernet

PCI64 Virtex Interface 
Design Kit (DO-DI-

PCI64-DKT)
Xilinx LogiCORE 7% 66

XC2V1000 
FG456-5

v2.2 comp, assured PCI  
timing, 3.3/5-V, 0-

waitstate, CPCI hot swap 
friendly

PC boards, CPCI, 
Embedded, hiperf 
video, gb ethernet

PCI64 Virtex 
Interface, IP Only 
(DO-DI-PCI64-IP)

Xilinx LogiCORE 7% 66 XC2V1000 
FG456-5

v2.2 comp, assured PCI  
timing, 3.3/5-V, 0-

waitstate, CPCI hot swap 
friendly

PC 
boards,CPCI,Emb

edded,hiperf 
video,gb ethernet

RapidIO 8-bit port 
LP-LVDS Phy Layer 
(DO-DI-RIO8-PHY)

Xilinx LogiCORE 24% 250
XC2V1000 
FG456-5

RapidIO Interconnect 
v1.1 compliant, verified 

with Motorola’s RapidIO 
bus functional model 

v1.4

Routers, switches, 
backplane, control 
plane, data path, 
embedded sys, 

high speed 
interface to 

memory and 
encryption 

engines, high end 
video

USB 1.1 Device 
Controller

Memec-
Core AllianceCORE 21% 12 XC2V1000-5

Compliant with USB1.1 
spec., Supports VCI bus, 
Performs CRC, Supports 

1.5 Mbps & 12 Mbps

Scanners, Printers, 
Handhelds, Mass 

Storage

Video & Image Processing

1-D Discrete Cosine 
Transform

Xilinx LogiCORE    
8-24 bits for coeff & 

input, 8-64 pts
 

2-D DCT/IDCT 
Forward/Inverse 
Discrete Cosine 

Transform

Xilinx LogiCORE   
image, video 

phone, color laser 
printers

FASTJPEG_BW 
Decoder

BARCO-
SILEX AllianceCORE 67% 73 XC2V1000-4

Conforms to ISO/IEC 
Baseline 10918-1, Gray-

Scale

Video editing, 
digital camera, 

scanners

FASTJPEG_C 
Decoder

BARCO-
SILEX

AllianceCORE 78% 56 XC2V1000-4
Conforms to ISO/IEC 
Baseline 10918-1, color, 
multi-scan, Gray-Scale

Video editing, 
digital camera, 

scanners
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