
R

1

2

3

4

A

B

C

D

Using Double-Data-Rate (DDR) I/O

Introduction
Virtex-II devices have dedicated registers in a single IOB to implement input, output, and
output with 3-state control Double-Data-Rate (DDR) registers. Input and output DDR is
accomplished with the use of two registers in the IOB. A single clock triggers one register
on a Low to High transition and a second register on a High to Low transition. Output
DDR with 3-state requires the use of four registers in the IOB clocked in a similar fashion.
Since the introduction of DLLs, Xilinx devices can generate low-skew clock signals that are
180 degrees out of phase, with a 50/50 duty cycle. These clocks reach the DDR registers in
the IOB via dedicated routing resources.

Data Flow

Input DDR
Input DDR is accomplished via a single input signal driving two registers in the IOB. Both
registers are clocked on the rising edge of their respective clocks. With proper clock
forwarding, alternating bits from the input signal are clocked in on the rising edge of the
two clocks, which are 180 degrees out of phase. Figure 2-108 depicts the input DDR
registers and the signals involved.

Figure 2-108: Input DDR

D Q

CE

CK

SET/
PRESET

RESET/
CLR

D Q

UG002_C2_036_031301

Q0

Q1

CE

CK

SET/
PRESET

RESET/
CLR

CLK1

CE

DATA

CLK0

SET/PRE

RESET/CLR
UG002 (v1.3) 3 December 2001 www.xilinx.com 303
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com

R

CLK0 and CLK1 are 180 degrees out of phase. Both registers share the SET/PRE and
RESET/CLR lines. As shown in Figure 2-109, alternating bits on the DATA line are clocked
in via Q0 and Q1 while CE is High. The clocks are shifted out of phase by the DCM (CLK0
and CLK180 outputs) or by the inverter available on the CLK1 clock input..

Output DDR
Output DDR registers are used to clock output from the chip at twice the throughput of a
single rising-edge clocking scheme. Clocking for output DDR is the same as input DDR.
The clocks driving both registers are 180 degrees out of phase. The DDR MUX selects the
register outputs. The output consists of alternating bits from DATA_1 and DATA_2.
Figure 2-110 depicts the output DDR registers and the signals involved.

Figure 2-109: Input DDR Timing Diagram

CLK0

CLK1

CE

OUTPUT
Q0

OUTPUT
Q1

UG002_C2_037_032201

D0A

D0A

D1A

D1A

D2A

D2A

D3A

D3A

D4A

D4A

D5A

D5A

D6A

D6A

D7A D8ADATA
304 www.xilinx.com UG002 (v1.3) 3 December 2001
1-800-255-7778 Virtex-II Platform FPGA Handbook

http://www.xilinx.com

R

1

2

3

4

A

B

C

D

Figure 2-110: Output DDR

D Q

CE

CK

SET/
PRESET

RESET/
CLR

D Q

UG002_C2_038_101300

Q2

Q1

CE

DDR
MUX

CK

OUT

SET/
PRESET

RESET/
CLR

CLK1

CE

CLK2

DATA2

DATA1

SET/PRE

RESET/CLR
UG002 (v1.3) 3 December 2001 www.xilinx.com 305
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com

R

Both registers share the SET/PRE and RESET/CLR line. Both registers share the CE line
which must be High for outputs to be seen on Q1 and Q2. Figure 2-111 shows the data
flow for the output DDR registers.

Output DDR With 3-State Control
The 3-state control allows the output to have one of two values, either the output from the
DDR MUX or high impedance.

The Enable signal is driven by a second DDR MUX (Figure 2-112). This application
requires the instantiation of two output DDR primitives.

Figure 2-111: Output DDR Timing Diagram

CLK1

CLK2

D1A D1B D1C

D2A

D1A D2A D1B D2B D1C

D2B D2C

DATA_1

DATA_2

OUT

UG002_C2_039_101300

1 2 3 4 5 6
306 www.xilinx.com UG002 (v1.3) 3 December 2001
1-800-255-7778 Virtex-II Platform FPGA Handbook

http://www.xilinx.com

R

1

2

3

4

A

B

C

D

Figure 2-112: Output DDR With 3-State Control

D Q

CE

CK

SET/
PRESET

RESET/
CLR

D Q

UG002_C2_040_080601

Q2

Q1

CE

DDR
MUX

CK

SET/
PRESET

RESET/
CLR

CET

TRI2

TRI1

D Q

CE

CK

SET/
PRESET

RESET/
CLR

D Q

Q2

Q1

CE

DDR
MUX

CK

OUT

SET/
PRESET

RESET/
CLR

CE

DATA1

DATA2

CLK1

CLK2

SET/PRE

RESET/CLR
UG002 (v1.3) 3 December 2001 www.xilinx.com 307
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com

R

All four registers share the SET/PRESET and RESET/CLEAR lines. Two registers are
required to accomplish the DDR task and two registers are required for the 3-state control.
There are two Clock Enable signals, one for output DDRs performing the DDR function
and another for the output DDRs performing the 3-state control function. Two 180 degree
out of phase clocks are used. CLK1 clocks one of the DDR registers and a 3-state register.
CLK2 clocks the other DDR register and the other 3-state register.

The DDR registers and 3-state registers are associated by the clock that is driving them.
Therefore, the DDR register that is clocked by CLK1 is associated to the 3-state register
being clocked by CLK1. The remaining two registers are associated by CLK2. If both 3-state
registers are driving a logic High, the output sees a high impedance. If both 3-state
registers are driving a logic Low, the output sees the values from the DDR MUX see
Figure 2-113).

When the 3-state registers are not driving the same logic value, the 3-state register being
clocked by CLK1 is called TREG1. The other 3-state register TREG2 is clocked by CLK2.
Similarly, the DDR register being clocked by CLK1 is called DREG1, and the other DDR
register DREG2 is clocked by CLK2. If TREG1 is driving a logic High and TREG2 is driving
a logic Low, the output sees a high impedance when CLK1 is High and the value out of
DREG2 when CLK2 is High. If TREG2 is driving a logic High and TREG1 is driving a logic
Low, the output sees a high impedance when CLK2 is High and the value out of DREG1
when CLK1 is High.

Characteristics
• All registers in an IOB share the same SET/PRE and RESET/CLR lines.

• The 3-State and Output DDR registers have common clocks (OTCLK1 & OTCLK2).

• All signals can be inverted (with no added delay) inside the IOB.

• DDR MUXing is handled automatically within the IOB. There is no manual control of
the MUX-select. This control is generated from the clock.

• When several clocks are used, and when using DDR registers, the floorplan of a design
should take into account that the input clock to an IOB is shared with a pair of IOBs.

Figure 2-113: Timing Diagram for Output DDR With 3-State Control

CLK1

CLK2

DATA_1

TRI 1

OUT

UG002_C2_041_101300

D1A

D1A D1B D1C D1D

DATA_2 D2A D2B D2C D2D

D2A D1B D2B D1C ZZZ

TRI 2
308 www.xilinx.com UG002 (v1.3) 3 December 2001
1-800-255-7778 Virtex-II Platform FPGA Handbook

http://www.xilinx.com

R

1

2

3

4

A

B

C

D

Library Primitives
Input DDR registers are inferred, and dedicated output DDR registers have been provided
as primitives for Virtex-II designs. Input DDR registers consist of two inferred registers
that clock in a single data line on each edge. Generating 3-state output with DDR registers
is as simple as instantiating a primitive.

VHDL and Verilog Instantiation
Examples are available in "VHDL and Verilog Templates" on page 311.

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of
the architecture section should include the design signal names.

Constraints file syntax is provided where input registers need to be used. These settings
force the input DDR registers into the IOB. The output registers should be instantiated and
do not require any constraints file syntax to be pushed into the IOB.

Figure 2-114: FDDRRSE Symbol: DDR Flip-Flop With Clock Enable and
Synchronous Reset and Set

Figure 2-115: FDDRCPE Symbol: DDR Flip-Flop With Clock Enable and
Asynchronous PRESET and CLR

FDDRRSED0

S

R

Q

D1

CE

C0

C1

UG002_C2_034_032201

FDDRCPED0

PRE

CLR

Q

D1

CE

C0

C1

UG002_C2_035_101300
UG002 (v1.3) 3 December 2001 www.xilinx.com 309
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com

R

Port Signals

FDDRRSE

Data inputs - D0 and D1

D0 and D1 are the data inputs into the DDR flip-flop. Data on the D0 input is loaded into
the flip-flop when R and S are Low and CE is High during a Low-to-High C0 clock
transition. Data on the D1 input is loaded into the flip-flop when R and S are Low and CE
is High during a Low-to-High C1 clock transition.

Clock Enable - CE

The enable pin affects the loading of data into the DDR flip-flop. When Low, new data is
not loaded into the flip-flop. CE must be High to load new data into the flip-flop.

Clocks - C0 and C1

These two clocks are phase shifted 180 degrees (via the DLL) and allow selection of two
separate data inputs (D0 and D1).

Synchronous Set - S and Synchronous Reset - R

The Reset (R) input, when High, overrides all other inputs and resets the output Low
during any Low-to-High clock transition (C0 or C1). Reset has precedence over Set. When
the Set (S) input is High and R is Low, the flip-flop is set, output High, during a Low-to-
High clock transition (C0 or C1).

Data Output - Q

When power is applied, the flip-flop is asynchronously cleared and the output is Low.

During normal operation, The value of Q is either D0 or D1. The Data Inputs description
above states how the value of Q is chosen.

FDDRCPE

Data inputs - D0 and D1

D0 and D1 are the data inputs into the DDR flip-flop. Data on the D0 input is loaded into
the flip-flop when PRE and CLR are Low and CE is High during a Low-to-High C0 clock
transition. Data on the D1 input is loaded into the flip-flop when PRE and CLR are Low
and CE is High during a Low-to-High C1 clock transition.

Clock Enable - CE

The enable pin affects the loading of data into the DDR flip-flop. When Low, clock
transitions are ignored and new data is not loaded into the flip-flop. CE must be High to
load new data into the flip-flop.

Clocks - C0 and C1

These two clocks are phase shifted 180 degrees (via the DLL) and allow selection of two
separate data inputs (D0 and D1).

Asynchronous Preset - PRE and Asynchronous Clear - CLR

The Preset (PRE) input, when High, sets the Q output High. When the Clear (CLR) input is
High, the output is reset to Low.

Data Output - Q

When power is applied, the flip-flop is asynchronously cleared and the output is Low.
During normal operation, The value of Q is either D0 or D1. The Data Inputs description
above states how the value of Q is chosen.
310 www.xilinx.com UG002 (v1.3) 3 December 2001
1-800-255-7778 Virtex-II Platform FPGA Handbook

http://www.xilinx.com

R

1

2

3

4

A

B

C

D

Initialization in VHDL or Verilog
Output DDR primitives can be initialized in VHDL or Verilog code for both synthesis and
simulation. For synthesis, the attributes are attached to the output DDR instantiation and
are copied in the EDIF output file to be compiled by Xilinx tools. The VHDL code
simulation uses a generic parameter to pass the attributes. The Verilog code simulation
uses the defparam parameter to pass the attributes.

The DDR code examples (in VHDL ad Verilog) illustrate the following techniques.

Location Constraints
DDR instances can have LOC properties attached to them to constrain pin placement.

The LOC constraint uses the following form.

NET <net_name> LOC=A8;

Where “A8” is a valid I/O pin location.

Applications

DDR SDRAM

The DDR SDRAM is an enhancement to the Synchronous DRAM by effectively doubling
the data throughput of the memory device. Commands are registered at every positive
clock edge. Input data is registered on both edges of the data strobe, and output data is
referenced to both edges of the data strobe, as well as both edges of the clock.

Clock Forwarding

DDR can be used to forward a copy of the clock on the output. This can be useful for
propagating a clock along with double-data-rate data that has an identical delay. It is also
useful for multiple clock generation, where there is a unique clock driver for every clock
load.

VHDL and Verilog Templates
VHDL and Verilog templates are available for output, output with 3-state enable, and
input DDR registers.

Input DDR
To implement an Input DDR application, paste the following template in your code.

DDR_input.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity DDR_Input is

Port (
clk : in std_logic;
d : in std_logic;
rst : in std_logic;
q1 : out std_logic;
q2 : out std_logic

);

end DDR_Input;

--Describe input DDR registers (behaviorally) to be inferred

architecture behavioral of DDR_Input is
UG002 (v1.3) 3 December 2001 www.xilinx.com 311
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com

R

begin

q1reg : process (clk, d, rst)

begin
 if rst='1' then --asynchronous reset, active high

q1 <= '0';
 elsif clk'event and clk='1' then --Clock event - posedge

q1 <= d;

 end if;
end process;

q2reg : process (clk, d, rst)

begin
 if rst='1' then --asynchronous reset, active high
 q2 <= '0';
 elsif clk'event and clk='0' then --Clock event - negedge
 q2 <= d;
 end if;
end process;

end behavioral;

-- NOTE: You must include the following constraints in the .ucf
-- file when running back-end tools,
-- in order to ensure that IOB DDR registers are used:
--
-- INST "q2_reg" IOB=TRUE;
-- INST "q1_reg" IOB=TRUE;
--
-- Depending on the synthesis tools you use, it may be required to
-- check the edif file for modifications to
-- original net names...in this case, Synopsis changed the
-- names: q1 and q2 to q1_reg and q2_reg

DDR_input.v

module DDR_Input (data_in , q1, q2, clk, rst);

input data_in, clk, rst;
output q1, q2;
reg q1, q2;

//Describe input DDR registers (behaviorally) to be inferred

always @ (posedge clk or posedge rst) //rising-edge DDR reg. and
asynchronous reset

 begin
if (rst)
 q1 = 1'b0;
else
 q1 = data_in;

 end
312 www.xilinx.com UG002 (v1.3) 3 December 2001
1-800-255-7778 Virtex-II Platform FPGA Handbook

http://www.xilinx.com

R

1

2

3

4

A

B

C

D

always @ (negedge clk or posedge rst) //falling-edge DDR reg. and
asynchronous reset

begin
if (rst)
 q2 = 1'b0;
else
 q2 = data_in;

 end

assign data_out = q1 & q2;

endmodule

/* NOTE: You must include the following constraints in the .ucf file
when running back-end tools, \
in order to ensure that IOB DDR registers are used:

INST "q2_reg" IOB=TRUE;
INST "q1_reg" IOB=TRUE;

Depending on the synthesis tools you use, it may be required to check
the edif file for modifications to
original net names...in this case, Synopsis changed the names: q1 and q2
to q1_reg and q2_reg

*/

Output DDR
To implement an Output DDR application, paste the following template in your code.

DDR_out.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- pragma translate_off
LIBRARY UNISIM;
use UNISIM.VCOMPONENTS.ALL;
--pragma translate_on

entity DDR_Output is
Port(
 clk : in std_logic; --clk and clk180 can be outputs from the DCM or

clk180 can be the
 clk180 : in std_logic; --logical inverse of clk (the inverter is

located in the IOB and will be inferred.
 d0 : in std_logic; --data in to fddr
 d1 : in std_logic; --data in to fddr
 ce : in std_logic; --clock enable
 rst : in std_logic; --reset
 set : in std_logic; --set
 q : out std_logic --DDR output
);

end DDR_Output;

architecture behavioral of DDR_Output is

component FDDRRSE
port(
UG002 (v1.3) 3 December 2001 www.xilinx.com 313
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com

R

Q : out std_logic;
D0 : in std_logic;
D1 : in std_logic;
C0 : in std_logic;
C1 : in std_logic;
CE : in std_logic;
R : in std_logic;
S : in std_logic
);

end component;

begin

U0: FDDRRSE
port map (
Q => q,
D0 => d0,
D1 => d1,
C0 => clk,
C1 => clk180,
CE => ce,
R => rst,
S => set
);

end behavioral;

DDR_out.v

module DDR_Output (d0 , d1, q, clk, clk180, rst, set, ce);

input d0, d1, clk, clk180, rst, set, ce;
output q;

//Synchronous Output DDR primitive instantiation

FDDRRSE U1 (.D0(d0),
.D1(d1),
.C0(clk),
.C1(clk180),
.CE(ce),
.R(rst),
.S(set),
.Q(q)

);
endmodule

Output DDR With 3-State Enable
To implement an Output DDR with 3-state Enable, paste the following template in your
code:

DDR_3state.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- pragma translate_off
LIBRARY UNISIM;
use UNISIM.VCOMPONENTS.ALL;
--pragma translate_on
314 www.xilinx.com UG002 (v1.3) 3 December 2001
1-800-255-7778 Virtex-II Platform FPGA Handbook

http://www.xilinx.com

R

1

2

3

4

A

B

C

D

entity DDR_3state is
Port(
clk : in std_logic; --clk and clk180 can be outputs from the DCM or

clk180 can be the
clk180 : in std_logic; --logical inverse of clk (the inverter is

located in the IOB and will be inferred.
d0 : in std_logic; --data in to fddr
d1 : in std_logic; --data in to fddr
ce : in std_logic; --clock enable
set : in std_logic; --set
rst : in std_logic; --reset
en0 : in std_logic; --enable signal
en1 : in std_logic; --enable signal
data_out : out std_logic --data seen at pad

);

end DDR_3state;

architecture behavioral of DDR_3state is

signal ddr_out, tri : std_logic;

component FDDRRSE
 port (

Q : out std_logic;
D0 : in std_logic;
D1 : in std_logic;
C0 : in std_logic;
C1 : in std_logic;
CE : in std_logic;
R : in std_logic;
S : in std_logic

);
end component;

begin

--Instantiate Ouput DDR registers
U0: FDDRRSE port map(Q => tri,

D0 => en0,
D1 => en1,
C0 => clk,
C1 => clk180,
CE => ce,
R => rst,
S => set

);

--Instantiate three-state DDR registers
U1: FDDRRSE port map(Q => ddr_out,

D0 => d0,
D1 => d1,
C0 => clk,
C1 => clk180,
CE => ce,
R => rst,
S => set

);

--inferr the 3-State buffer
process(tri, ddr_out)
UG002 (v1.3) 3 December 2001 www.xilinx.com 315
Virtex-II Platform FPGA Handbook 1-800-255-7778

http://www.xilinx.com

R

begin
if tri = '1' then
 data_out <= 'Z';
elsif tri = '0' then
 data_out <= ddr_out;
end if;

end process;

end behavioral;

DDR_3state.v

module DDR_3state (d0 , d1, data_out, en_0, en_1, clk, clk180, rst, set,
ce);

input d0, d1, clk, clk180, rst, set, ce, en_0, en_1;

output data_out;
reg data_out;

wire q, q_tri;

//Synchronous Output DDR primitive instantiation

FDDRRSE U1 (.D0(d0),
.D1(d1),
.C0(clk),
.C1(clk180),
.CE(ce),
.R(rst),
.S(set),
.Q(q)

);

//Synchronous 3-State DDR primitive instantiation

FDDRRSE U2 (.D0(en_0),
.D1(en_1),
.C0(clk),
.C1(clk180),
.CE(ce),
.R(rst),
.S(set),
.Q(q_tri)

);

//3-State buffer description

always @ (q_tri or q)
 begin
if (q_tri)
 data_out = 1'bz;
else
 data_out = q;

 end

endmodule
316 www.xilinx.com UG002 (v1.3) 3 December 2001
1-800-255-7778 Virtex-II Platform FPGA Handbook

http://www.xilinx.com

