
© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 1

January 12, 2000

Reed-Solomon
Decoder

Product Specification

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
URL: http://www.support.xilinx.com/

support/techsup/tappinfo.htm

Features
• High speed, compact Reed-Solomon Decoder
• Implements many different Reed-Solomon coding

standards
• Fully synchronous design using a single clock
• Supports continuous input data with no gap

between code blocks
• Automatically configured by user entered

parameters
• Symbol size from 3 to 12 bits*
• Code block length variable up to 4095 symbols
• Supports shortened codes
• Supports error and erasure** decoding
• Parameterizable number of errors corrected
• Supports any primitive field polynomial for a given

symbol size
• Counts number of errors corrected and flags

failures
• User-selectable control signal behavior
• High performance and density due to use of Xilinx

Relational Placed Macro (RPM) mapping and
placement technology

• Available for all Virtex™, Virtex™-E, Spartan™-II,
XC4000 and Spartan™ family members.

* Symbol sizes greater than 8 are not available for XC4000 and Spartan
devices.

** See page 5 for limitations on erasure support.

Functional Description
Reed-Solomon codes are usually referred to as (n,k)
codes, where n is the total number of symbols in a
code block and k is the number of information or data
symbols. In a systematic code the complete code
block is formed from the k data symbols, followed by
the n-k check symbols.

Normally n = 2(Symbol Width)-1. If n is less than this then
the code is referred to as a “shortened code”. The
Decoder core handles both full length and shortened
codes.

A Reed-Solomon code is also characterized by two
polynomials: the field polynomial and the generator
polynomial. The field polynomial defines the Galois
field, of which the symbols are members. The
generator polynomial defines how the check symbols
are generated. Both these polynomials are usually
defined in the specification for any particular Reed-
Solomon code. The core GUI allows both of these
polynomials to be user-defined.

The Reed-Solomon Decoder samples the n symbols
on the ‘data_in’ port and attempts to correct any errors.
The corrected symbols are output on the ‘data_out’
port after a fixed latency.

The maximum number of errors in a block that can be
guaranteed to be corrected is t = (n-k)/2. This is
always rounded down to the nearest whole number. If
a block is received with more than t errors then the
Decoder will fail. Depending on the number of errors,
the Decoder may or may not be able to determine if
there was a failure.

Reed-Solomon Decoder

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 2

Pinout
Some of the input pins are optional. The outputs that
are not required should be left unconnected. The
Xilinx mapping software will remove the logic driving
them, ensuring FPGA resources are not wasted.

A representative symbol, with the signal names, is
shown in Figure 1.

reset
clk

data_out

err_cnt

blk_strt

blk_end

err_found

fail

sr

erase

data_in

sync

ce

ready

erase_cnt

Figure 1 - Pinout

Table 1 summarizes the signal functions. They are
described in more detail in the remainder of this
section.

Reset Input
All control signals are synchronous to the rising edge
of ‘clk’ except ‘reset’. When ‘reset’ is asserted (high),
all the core flip-flops are asynchronously initialized.
The core will remain in this state until ‘reset’ is de-
asserted.
‘Reset’ has a high fan-out and should be driven by a
GSR buffer.

SR Input
The Synchronous Reset input is an optional pin. It can
be used to re-initialize the Decoder at any time. ‘Sr’
needs to be asserted high for at least one symbol
period to initialize the circuit. The Decoder becomes
ready for normal operation as soon as ‘sr’ goes low.
This pin should be selected with caution as it
increases the size of the core and may reduce
performance.

The timing for the ‘sr’ input is illustrated in Figure 2.
Note that the ‘data_out’ output is not reset by ‘sr’. The
Decoder’s symbol buffer is not cleared, so any
symbols sampled prior to the synchronous reset will
continue to be shifted out after the normal latency,
albeit with no error correction.

Signal Signal
Direction

Description

clk Input Clock – active on rising edge
reset Input Active high asynchronous initialize

sr Input Synchronous reset (optional)
data_in Input Input data

ce Input Clock enable (optional)
sync Input Timing control input
erase Input Flag an input symbol as an erasure (optional)

data_out Output Corrected data output
err_cnt Output Number of errors detected in a block

erase_cnt Output Number of erasures flagged in a block (optional)
err_found Output High if Decoder found any errors in the block

fail Output High if Decoder failed to correct the block
blk_strt Output High to signal the start of a block on ‘data_out’
blk_end Output High to signal the end of a block on ‘data_out’
ready Output High when the Decoder is ready to accept symbols

Table 1 - I/O Ports

Xilinx Inc.

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 3

ready

clk

sr

err_found

fail

err_cnt 0

blk_strt

blk_end

Decoder samples ‘sr’ high

Figure 2 - Synchronous Reset Timing

Data_in Input
This is the input bus for the incoming Reed-Solomon
coded data. The width of the bus is set by the symbol
width parameter. Prior to a code block start being
signaled with the ‘sync’ input, ‘data_in’ is passed
through to ‘data_out’ with no error correction and
latency as described on page 8.

CE Input
The Clock Enable input is another optional pin. It can
be used to tell the Decoder to ignore some of the
symbols coming in on ‘data_in’. When ‘ce’ is de-
asserted (low), all the other synchronous inputs are
ignored and the core remains in its current state. This
pin should only be used if it is genuinely required
because it has a high fan out within the core and may
result in lower performance.
An example of ‘ce’ operation is shown in Figure 3. In
this case, the Decoder will ignore symbol D4. Note
that the Decoder still samples n symbols; D4 will not
be one of the n.
In this figure, the symbol period is the same as the
clock period, with one symbol per clock cycle. It is
possible to have more than one clock cycle per
symbol period. This is explained in the processing
delay section on page 6.

Decoder samples ‘ce’ low

No Change

D8D7D6D5D4D3data_in

clk

ce

outputs

Figure 3 - Clock Enable Timing

Notice that the Decoder samples ‘ce’, as it is a
synchronous input. The Decoder outputs will not
change on the following rising ‘clk’ edge.

Sync Input
The timing of the core is controlled via the ‘sync’ input.
The user can select between a number of control
signal behaviors to control the timing. Currently two
modes are defined:

1) Start Pulse
‘Sync’ input is high for one, and only one, symbol
period when the first symbol of a code block is on
‘data_in’, low otherwise.

2) Data Symbol Enable
‘Sync’ input is high whilst the k data symbols are
on ‘data_in’, low otherwise.

“Start Pulse” timing mode is illustrated in Figure 4. D0
is the first symbol of a code block. Once started, the
remaining symbols in the code block are sampled on
consecutive symbol periods. It is impossible to start
another code block before the first one has been
completely sampled. If ‘sync’ is brought low and high
again before the block is over, then the output for the
current block will be corrupted and a further n cycles,
at least, must elapse before a new block can be
started.

D4D3D2D1D0data_in

clk

sync

Figure 4 - Start Pulse Timing

“Data Symbol Enable” timing mode is illustrated in
Figure 5 and Figure 6. In this case, the ‘sync’ input is
held high until the last data symbol has been
sampled. It is then held low until the start of the next
code block.

Reed-Solomon Decoder

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 4

D0 D1 D2 D3 ….data_in

clk

sync

Figure 5 - Data Symbol Enable Timing

…. Dk-1 Dk Dk+1 Dk+2 Dk+3
data_in

clk

sync

Figure 6 - Data Symbol Enable Timing

Erase Input
This optional input is only available when erasure
support is required. Erasure handling is described on
page 5.

Data_out Output
This is the output bus for the corrected symbols. This
bus always has the same width as ‘data_in’.
Corrected symbols start to appear a predefined
number of symbol periods after the first symbol is
sampled on ‘data_in’. This delay is termed the
“latency” of the Decoder and is fully explained in the
Latency section on page 8.

Blk_strt Output
‘Blk_strt’ is pulsed high for one symbol period to
indicate that the first symbol of a block is currently on
‘data_out’. The timing for ‘blk_strt’ is illustrated in
Figure 7.

D0 D1 D2
data_out

clk

blk_strt

Figure 7 - ‘blk_strt’ Timing

Blk_end Output
‘Blk_end’ is pulsed high for one symbol period to
indicate that the last symbol of a block is currently on
‘data_out’. The timing for ‘blk_end’ is illustrated in
Figure 8.

Dn-3 Dn-2 Dn-1data_out

clk

blk_end

Figure 8 - ‘blk_end’ Timing

Err_found Output
This is one of a number of status outputs, which are
set as the last symbol of a block is output on
‘data_out’. ‘Err_found’ goes high at this time if the
Decoder detected any errors in the code block. If no
errors were found then ‘err_found’ goes low at this
time. The status outputs retain their state until the end
of the next code block or the core is reset. The timing
for all the status outputs is illustrated in Figure 9.

Err_cnt Output
This is another of the status outputs. The ‘err_cnt’ bus
gives the number of errors that were corrected in the
block just output. The width of the bus depends on the
input parameters n and k . The bus width is equal to
the number of binary bits required to represent (n-k). If
n-k = 16, for example, then the ‘err_cnt’ bus will be
five bits wide.

Erase_cnt Output
This status output is only available when erasure
support is required. The bus width is equal to the
number of binary bits required to represent n. Erasure
handling is described on page 5.

Fail Output
‘Fail’ is also a status output. The Decoder sets ‘fail’
high if it determines that there were more errors in the
code block than it could correct.

Dn-3 Dn-2 Dn-1data_out

clk

blk_end

err_found

fail

err_cnt

New value for block just output

New value for block just output

New value for block just output

Figure 9 - Status Output Timing

Ready Output
The ‘ready’ output is high when the Decoder is ready
to sample symbols on ‘data_in’. If the processing

Xilinx Inc.

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 5

delay (see page 6) is greater than n, ‘ready’ will go
low after the last symbol of a block is sampled. This is
the case in Figure 10. It will remain low until the
processing delay is over, as shown in Figure 11. If the
processing delay is less than or equal to n, ‘ready’ will
always be high.

…. Dn-1data_in

clk

ready

Figure 10 - ‘ready’ Timing

Processing Delay over

D0data_in

clk

ready

D1 D2 D3

Figure 11 - ‘ready’ Timing

If the processing delay is greater than n then ‘ready’
always goes low one symbol period after the second-
last symbol has been sampled. Under normal
circumstances this will result in the expected
behavior. However if the ‘ce’ input is brought low
immediately after the second-last symbol has been
sampled, ‘ready’ will go low despite the fact that the
last symbol has still to be sampled. Thus in this case,
‘ready’ goes low a number of symbol periods earlier
than expected. It will also go high again one symbol
period earlier than expected. This is a feature the user
must be aware of and take appropriate action if it is
possible for this to occur in the system.

Erasure Decoding
An erased symbol is an input symbol that is known to
be wrong. The symbol is flagged as being erased by
asserting the ‘erase’ input high whilst the symbol is
being sampled. In the example shown in Figure 12, D2

is flagged as an erasure.

The Decoder will correct the code block if 2e + E ≤ n-
k, where e is the number of errors and E is the
number of erasures.

The ‘erase_cnt’ output provides a count of the number
of erasures that were flagged for the block just output.
It is updated at the same time as ‘err_cnt’ and the
other status outputs. If erasure decoding is selected

then ‘err_cnt’ provides a count of the number of errors
plus erasures that were corrected.

D0 D1 D2 D3 ….data_in

clk

erase

Figure 12 - ‘erase’ Timing

Erasure decoding increases the size of the core
considerably. It should only be selected if it is
essential and is only recommended for codes where
n-k is less than eight. The core does support erasures
for larger values of n-k but there will be a large area
overhead compared to the same core without erasure
support. See the example implementations in Table 5
on page 10.

Parameters
The core GUI provides a number of pre-set parameter
values for several common Reed-Solomon standards.
It also allows the user to define the following
parameters:

• Generator Start
This is the Galois Field logarithm of the first root of the
generator polynomial.
i.e.

Equation 1

∏
−−+

=

−=
1_

_

)()(
knstartgenerator

startgeneratori

ixxg α

Normally generator start is 0 or 1, however the core
will accept any positive integer.

• k
Number of information or data symbols in a code
block.

• n
Number of symbols in an entire code block. If this is a
shortened code, then n should be the shortened
number.

• Field Polynomial
This is the Galois Field polynomial, used to generate
the Galois Field for the code. Polynomials are entered
as decimal numbers. The bits of the binary equivalent
correspond to the polynomial coefficients. For
example,

Reed-Solomon Decoder

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 6

285 = 100011101 => x8+x4+x3+x2+1

A value of zero causes the default polynomial for the
given symbol width to be selected.

Symbol Width Default
Polynomial

Decimal
Representation

3 x3+x+1 11
4 x4+x+1 19
5 x5+x2+1 37
6 x6+x+1 67
7 x7+x3+1 137
8 x8+x4+x3+x2+1 285
9 x9+x4+1 529

10 x10+x3+1 1033
11 x11+x2+1 2053
12 x12+x6+x4+x+1 4179

Table 2 - Default Polynomials

• Symbol Width
This is the bus-width of ‘data_in’ and ‘data_out’.

• Clock Enable
Select this if a clock enable input is required.

• Synchronous Reset
Select this if a synchronous reset input is required.

• Erase
Select this if erasure support is required. Note the
provisos in the Erasure Decoding section on page 5.

• Sync Mode
This allows you to select the timing control mode,
either “Start Pulse” or “Data Symbol Enable”, as
described in the “Sync Input” section on page 3.

• Clock Periods Per Symbol
Normally there is only one clock period per symbol.
This may be increased to reduce the processing
delay. This is described in the next section. The
symbol period must always be a whole number of
clock periods.

• Target Device
Select the required target device family from the list.
The core functionality is independent of the target
device. The maximum operating frequency and area
are likely to differ between family selections.

• Memory Style
If the target device architecture supports block
memory then the following options are available:

• Distributed - core should not use any block
memories if possible. This is useful if they are
required elsewhere in the design. Note that for
symbol widths of 8 and under, this option will
result in no block memories being used. For
symbol widths greater than 8, some will be used
but their use will be kept to a minimum.

• Block - core should use block memories
wherever possible. This will keep the number of
CLBs used to a minimum but may use block
memory wastefully.

• Automatic - allow the core to use the most
appropriate style of memory for each case,
based on required memory depth.

The parameter values for several common standards
are given in Table 4 on page 10.

Valid ranges for the parameters are given in Table 3.

Parameter Min Max Notes
n 3 2(Symbol_Width)-1
k 1 2(Symbol_Width)-3 1

r=n-k 2 128 2
Symbol Width 3 12 3

Gen Start 0 -
Clock Periods
Per Symbol

1 65535 4

Table 3 - Parameter Ranges

Notes:
1. Max=n-r
2. In reality, r is limited by the maximum size of

device available. If the core exceeds the device
size due to r being large, and a larger FPGA
cannot be selected, then the size of the core can
be reduced by increasing the number of clock
periods per symbol. If erasure support is enabled
then r is limited to 64.

3. Symbol widths greater than 8 are not available for
XC4000 and Spartan devices.

4. The practical limit for this parameter will usually
be caused by the core maximum clock frequency
being reached.

Processing Delay
For some parameter selections, the Decoder may not
be ready to accept one code block immediately after
another. This is because it is still processing the first
block. The processing delay for a given t, assuming
one clock cycle per symbol period, is shown in Figure
13. This is the minimum number of symbol periods
from the start of the first symbol period of a code

Xilinx Inc.

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 7

block, before another code block may be started. If
the processing delay is greater than n, it is not
possible to follow one code block immediately with
another. Note that measures can be taken to reduce
the processing delay.

Figure 13 - Processing Delay vs. t

The number of symbol periods may be calculated
using the following equation:

Equation 2

Processing Delay = t2 + 2(3t + i) + 2Σ
i=1

t+1

If erasure decoding is enabled then the following
equation should be used:

Equation 3

Processing Delay = 2(i) + 3(n-k) + 3Σ
i=1

n-k+1

If necessary, the processing delay can be reduced by
increasing the number of clock periods per symbol.

In this case the processing delay (in symbol periods)
may be calculated using the following expression:

Equation 4

1 + RoundDown(P/ClksPerSym)

“P” is the result from Equation 2 or Equation 3.
“ClksPerSym” is the number of clock cycles per
symbol. This may be increased until the maximum
input clock frequency of the core is reached. Note that
the processing delay is always rounded down to the

nearest whole number. To calculate the processing
delay in terms of clock cycles, multiply the above
result by the number of clock periods per symbol.
If the number of clock periods per symbol is greater
than one then all synchronous inputs must be
synchronized to symbol periods. This is illustrated for
four clock periods per symbol in Figure 14.

One Symbol Period

D4D3D2D1D0
data_in

clk

sync

sym_clk

Figure 14 - Input Timing, 4 Periods Per Symbol

The Decoder samples its inputs on rising edges of
‘clk’ coincident with rising edges of the imaginary
‘sym_clk’ signal.

The outputs are also all synchronized to the symbol
period. This is illustrated for three clock periods per
symbol in Figure 15.

Other
outputs

Outputs resetDecoder samples ‘sr’ high

sr

??D2D1D0

blk_strt

One Symbol Period

sym_clk

clk

data_out

Figure 15 - Output Timing, 3 Periods Per Symbol

This figure also shows the timing for ‘sr’ when the
number of clock periods per symbol is greater than
one. ‘Sr’ must be pulsed for a whole number of
symbol periods, just like all the other synchronous
inputs. It is sampled high and the outputs are reset
one symbol period later.

The Decoder always resynchronizes itself when it
detects a rising edge on ‘sync’. If the rising edge of
‘sync’ occurs less than two ‘clk’ periods before the

Reed-Solomon Decoder

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 8

rising edge of ‘sym_clk’, then the Decoder samples
the first symbol twice. This situation is illustrated in
Figure 16. The Decoder still operates correctly, with
D0 as the first symbol of the block and D1 as the
second. D0 appears on ‘data_out’ ‘latency’ symbol
periods after t1. The corrected value of D0 appears
‘latency’ symbol periods after t2.

This may occur when ‘sync’ goes high at the start of
the very first code block. It will not re-occur if the gaps
between blocks are always a whole number of symbol
periods.

t2t1

One Symbol Period

D3D2D1D0data_in

clk

sync

sym_clk

data_out

Figure 16 - Resynchronization using ‘sync’

IMPORTANT - If a code block is started prior to
corrected symbols from the previous block appearing
on ‘data_out’, there must be an integer number of
symbol periods between the last symbol of the
previous block and the first symbol of the new block.
This is illustrated in Figure 17. Figure 18 shows the
case where there is a non-integer number of symbol
periods between blocks A and B. This may cause the
Decoder to lose track of block A.
It is only safe to start another block with ‘sync’
misaligned, relative to the symbol periods from the
previous block, after the corrected symbols from the
previous block have started to appear on ‘data_out’.

A1A0

An-2

Integer Number of Symbol Periods

B2B1B0An-1data_in

clk

sync

data_out

Figure 17 - Integer Number of Symbols between
Blocks

A1A0

An-3 An-2

Non-Integer Number of Symbol Periods

B1B0An-1data_in

clk

sync

data_out

Figure 18 - Resynchronization before ‘data_out’
for Previous Block

Latency
The latency is the number of symbol periods from a
symbol being sampled on ‘data_in’, to the corrected
version of that symbol appearing on ‘data_out’. This
should not be confused with the processing delay; a
subsequent code block may be started before the
latency delay is over.

An example, with a latency of two symbol periods and
one clock period per symbol, is shown in Figure 19. In
reality, the latency will usually be much greater than
this.

The latency is dependent on the values of n (the
number of symbols in a code block) and t (the number
of correctable errors). The total latency may be
determined from the following equation:

Equation 5

sDelayProcessingmnLatency −++=

Xilinx Inc.

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 9

This gives the latency in symbol periods. The
variables, m and s, are defined as follows:

Symbol Width m
=8 6
≠8 5

Clock Periods Per Symbol s
=1 0
>1 1

To calculate the latency in clock periods just multiply
the above result by the number of clock periods per
symbol.

Latency

data_out

D0 D1 D2 D3 ….data_in

clk

sync

D0 D1

Figure 19 - Latency = 2

Core Resource Utilization
The area of the core increases with n, n-k and the
symbol width. Some example configurations are
shown in Table 4 to Table 7. In these tables, the ‘ce’
and ‘sr’ inputs were used, as were all the outputs. The
CLB counts can be reduced slightly by selecting the
option to map primary I/O registers into IOBs during
placement. This option should certainly be selected if
the core I/Os are to be connected directly onto a PCB
via the FPGA package pins. This will give lower
output clock-to-out times and predictable set up and
hold times.

The results were obtained with the “–c 1” packfactor
option applied during mapping. This causes the Xilinx
mapper to pack as much logic as possible into each
CLB. This may reduce performance slightly.

Performance Characteristics
It is important to set a maximum period constraint on
the core clock input. The figures in Table 4 to Table 7
show clock speeds that can be comfortably achieved
when this is done. It may be possible to improve

slightly on these values by trying different seed values
for the place and route software or by setting the
packfactor to give a less dense layout (use mapper
option “-c 100”). If necessary, performance can easily
be increased by selecting a part with a faster speed
grade. Performance increases as n, n-k and the
symbol width decrease.

Ordering Information
This core can only be obtained by agreeing to the
terms of the Xilinx LogiCORE™ Reed-Solomon
license. Please contact Xilinx for further information.

Reed-Solomon Decoder

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 10

DVB
(ETS 300 421)

ATSC

Generator Start 0 0 0 0 0
k 188 187 223 223 223
n 204 207 255 255 255
Polynomial 285 285 285 285 285
Symbol Width 8 8 8 8 8
Sync Mode Data Sym En Data Sym En Start Pulse Start Pulse Start Pulse
Erasure Decoding No No No No No
Clock Periods Per
Symbol

1 1 1 8 20

Processing Delay1 204 294 660 83 34
Latency1 414 507 921 343 294
Xilinx Part XC4020XLA-09 XC4028XLA-09 XC4036XLA-09 XC4036XLA-09 XC4036XLA-09
Use IOB Flip-Flops No No Yes Yes Yes
Area (CLBs) 702 845 1095 953 943
CLBs Remaining 82 179 201 343 353
Max. Clock Freq.2 47 MHz 44 MHz 43 MHz 41 MHz 41 MHz

Notes:
1. Measured in symbol periods.
2. Higher frequencies may be attainable by setting the packfactor option on the mapper to “-c 100” rather than “-c 1”.
3. Area and max clock frequencies are provided as a guide. They may vary with new releases of the Xilinx implementation tools, etc.

Table 4 - Example XC4000/Spartan Decoder Implementations

Generator Start 0 0 120 120
k 20 20 124 124
n 27 27 128 128
Polynomial 37 37 391 391
Symbol Width 5 5 8 8
Sync Mode Start Pulse Start Pulse Start Pulse Start Pulse
Erasure Decoding No Yes No Yes
Clock Periods Per
Symbol

1 1 1 1

Processing Delay1 49 96 30 45
Latency1 81 128 164 179
Xilinx Part XCS20XL-5 XCS30XL-5 XC4013XLA-09 XC4013XLA-09
Use IOB Flip-Flops Yes Yes Yes Yes
Area (CLBs) 235 427 376 547
CLBs Remaining 165 149 200 29
Max. Clock Freq.2 60 MHz 46 MHz 48 MHz 48 MHz

Notes:
1. Measured in symbol periods.
2. Higher frequencies may be attainable by setting the packfactor option on the mapper to “-c 100” rather than “-c 1”.
3. Area and max clock frequencies are provided as a guide. They may vary with new releases of the Xilinx implementation tools,

etc.

Table 5 - More Example XC4000/Spartan Decoder Implementations

Xilinx Inc.

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 11

DVB
(ETS 300 421)

DVB
(ETS 300 421)

Generator Start 0 0 0 0 0
k 188 188 223 223 223
n 204 204 255 255 255
Polynomial 285 285 285 285 285
Symbol Width 8 8 8 8 8
Sync Mode Data Sym En Data Sym En Start Pulse Start Pulse Start Pulse
Erasure Decoding No No No No No
Clock Periods Per
Symbol

1 1 1 8 20

Processing Delay1 204 204 660 83 34
Latency1 414 414 921 343 294
Xilinx Part XCV50-6 XCV50-6 XCV100-6 XCV100-6 XCV100-6
Use IOB Flip-Flops No No Yes Yes Yes
Memory Style Block Distributed Automatic Automatic Automatic
Block RAMs Used 2 0 3 2 2
Area (Slices) 637 764 1012 1006 1005
Slices Remaining 131 4 188 194 195
Max. Clock Freq.2 62 MHz 62 MHz 55 MHz 56 MHz 59 MHz

Notes:
1. Measured in symbol periods.
2. Higher frequencies may be attainable by setting the packfactor option on the mapper to “-c 100” rather than “-c 1”.
3. Area and max clock frequencies are provided as a guide. They may vary with new releases of the Xilinx implementation tools, etc.

Table 6 - Example Virtex Decoder Implementations

ATSC
Generator Start 0 0 0 120 120
k 187 20 20 124 124
n 207 27 27 128 128
Polynomial 285 37 37 391 391
Symbol Width 8 5 5 8 8
Sync Mode Data Sym En Start Pulse Start Pulse Start Pulse Start Pulse
Erasure Decoding No No Yes No Yes
Clock Periods Per
Symbol

1 1 1 1 1

Processing Delay1 294 49 96 30 45
Latency1 507 81 128 164 179
Xilinx Part XCV100-6 XCV50-6 XCV50-6 XCV50-6 XCV50-6
Use IOB Flip-Flops No Yes Yes Yes Yes
Memory Style Automatic Automatic Automatic Automatic Automatic
Block RAMs Used 2 1 1 2 2
Area (Slices) 775 214 393 335 530
Slices Remaining 425 554 375 433 238
Max. Clock Freq.2 63 MHz 75 MHz 74 MHz 60 MHz 60 MHz

Notes:
1. Measured in symbol periods.
2. Higher frequencies may be attainable by setting the packfactor option on the mapper to “-c 100” rather than “-c 1”.
3. Area and max clock frequencies are provided as a guide. They may vary with new releases of the Xilinx implementation tools, etc.

Table 7 - More Example Virtex Decoder Implementations

