
Summary This white paper discusses the benefits of placing Xilinx FPGAs next to MIPS microprocessors
to increase system performance.

Background With FPGA design changes being so simple compared to ASICs, FPGAs have become a
valuable weapon in a designer’s arsenal. FPGAs are ideal for fast time-to-market designs, or
designs where upgrades/modifications maybe required.

As FPGAs become more of a system component, the need to interface with different devices
becomes increasingly important. One of the more prevalent devices for FPGAs to interface with
is the microprocessor.

Some common uses of an FPGA when interfaced with a processor are as follows:

• Providing I/O standard conversions

• Performing real time data manipulations

• Optimizing processor intensive functions

• Interfacing processor to backplane, or

• A combination of above

General
Discussion

MIPS processors are very successful in the following markets: consumer electronics, digital
entertainment, mobile computing, office automation, communications, and networking.

Figure 1 shows a simple example of a common MIPS system where each block is a separate
element on the board.

As FPGAs become larger and more cost effective, it is natural that designers will use them to
interface processors and FPGAs. The FPGA’s speed, versatility, and flexibility will attract many
designers. Some common FPGA uses when interfaced to a MIPS processor are as follows.

• Performing custom and/or complex CPU functions

• Interfacing the processor to a bus structure that requires data manipulation like PCI

• Interfacing to devices with different I/O standards

• Performing real time data manipulation, or

• Combination of the above situations.

Custom CPU Functions
Using a processor algorithm to perform complex functions, such as DSP functions (e.g.,
Fourier Transforms) requires multiple serial mathematical calculations (multiply and add) with
each calculation requiring many clock cycles.

An FPGA can be designed to perform Fast Fourier Transforms (FFTs) in parallel, providing a
hardware implementation that is many magnitudes faster than the serial processor algorithm.

White Paper: FPGAs

WP121 (v1.0) September 5, 2000

Benefits of Using Xilinx FPGAs with
MIPS® Microprocessors
Author: Nick Price

R

WP121 (v1.0) September 5, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

Interfacing Bus Structures
FPGAs provide an excellent way to interface a processor to different bus structures like PCI.
The Xilinx PCI core is fully verified and available in 32/33 MHz and 64/66 versions.

Using an FPGA with a Xilinx PCI core allows efficient interaction with the PCI bus, because the
PCI core allows queuing of data to and from the PCI bus using First In First Outs (FIFOs) to
avoid or reduce bus system idle time. A second advantage of using a Xilinx PCI core is that the
core is able to interface with the PCI bus using zero wait states, achieving maximum throughput
with the bus.

Interfacing Different I/O Standards
Xilinx FPGAs can be configured to interface to up to 20 different I/O standards, making it an
excellent tool for converting between multiple standards.

Figure 1: Simple MIPS System

CLK

MIPS
CPU
Core

Arbiter

Interrupt
Control

DMA
Ctrl

Lo
ca

l B
us

Bus
Interface

(PCI)

External
Devices

DMA

WP121_01_081700

SDRAM

SDRAM
Control
2 www.xilinx.com WP121 (v1.0) September 5, 2000
1-800-255-7778

http://www.xilinx.com

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

For instance, one can interface the MIPS processor (using voltage level signal recognition) to
Low Voltage Differential Signal (LVDS) via the Xilinx FPGA. One can have different banks
configured to different voltage standards, allowing an easy transition between them. Xilinx
FPGAs can support these different standards simultaneously.

Real-Time Data Manipulation
FPGAs can also be used to provide real-time data manipulation. They make an excellent tool
for encrypting and decrypting data in real time. By placing the FPGA with the encryption/
decryption design in the processor's path, all data to and from the processor will be
manipulated.

Combination of Above Situations
In most cases, a combination of the above situations occurs. For instance, part of the FPGA
can be dedicated to performing special functions, while another part interacts with the PCI bus.

Figure 2 shows a simple MIPS system utilizing an FPGA for special bus functions and the PCI
core.

Figure 2: Simple MIPS System Using an FPGA

Arbiter

Interrupt
Control

DMA
Ctrl

L
o

ca
l B

u
s

External
Devices

DMA

WP121_02_081700

SDRAM

SDRAM
Control

Bus
Interface

(PCI)

FPGA
DLL

Special
 F(x)'s

CLK

MIPS
CPU
Core
WP121 (v1.0) September 5, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

FPGAs are so flexible that accommodating different designs and function (possibly using
different clocks) in a single FPGA is possible. Figure 3 shows a design that uses an FPGA for
a majority of the system.

FPGA Design Considerations

General

When interfacing a MIPS processor to an FPGA, one of the primary questions is what will the
FPGA do with the MIPS data? Is it going to manipulate data and return a value? Is it going to
be a common memory medium that both will access independently? Or, is it going to be a
required medium to another interface, such as a PCI bus?

Straight Data Manipulation

If the FPGA is only required to provide enhanced data manipulation, custom commands, or
functions, such as providing an FFT for the processor to access as a special command, then,
a simple state machine that looks for the appropriate MIPS command, feeds the data into the
appropriate module (FFT), and returns the result onto the data bus when completed, is all that
as needed. Figure 4 illustrates simple data manipulation.

Figure 3: MIPS System with Maximum FPGA Usage

CLK

MIPS
CPU
Core

ArbiterInterrupt
Control

Lo
ca

l B
us

WP121_03_081700

SDRAM

SDRAM
Control

Bus
Interface

(PCI)

FPGA

DLL

Special
 F(x)'s

DMA
Ctrl

DMA External
Devices
4 www.xilinx.com WP121 (v1.0) September 5, 2000
1-800-255-7778

http://www.xilinx.com

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

Interacting Between Different Media

If interfacing to a specific bus system is required, such as a PCI bus, then a bridge design is
required. Generally when interfacing two asynchronous media together, the bridge design will
primarily consist of an asynchronous FIFO system to allow the temporary storage of a
transmission between the two media. Figure 5 illustrates simple FIFO interface.

Figure 4: Simple Data Manipulation

FPGA

Control FFT

MIPs Interface

En

SysCmd_In SysAD_Out SysAD_In

WP121_04_081700
WP121 (v1.0) September 5, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

http://support.xilinx.com/xapp/xapp131.pdf

This type of interface lends itself well to the use of Dual Port Block RAMs. Xilinx does provide
customizable IP Asynchronous FIFO cores for designers via CoreGen. If one needs to create
a custom FIFO, refer to XAPP131: 170 MHz Synchronous and Asynchronous FIFOs Using the
Virtex Block SelectRAM+ Features at , and XAPP205: Data-Width Conversion FIFOs using
Virtex Block SelectRAM Memory at http://www.xilinx.com/xapp/xapp205.pdf.

Common Memory

Another common interface is to have both systems read and write to common memory. This
allows both systems to access the memory in a non-linear fashion, i.e., just access a common
memory block. Block Select RAM for Virtex™, Virtex-E, and Spartan®-II come in 4-Kbit
chunks. Figure 6 illustrates simple communal memory usage.

Figure 5: Simple FIFO Interface Usage

WP121_05_081700

PCI Core Interface

PCI_Cmd Data_InData_Out

SysCmd_In SysAD_InSysAD_Out

FPGA
Controller

MIPs
Controller

FIFOFIFO

MIPs Interface

Push Pop

Pop Push

FPGA
6 www.xilinx.com WP121 (v1.0) September 5, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp205.pdf

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

Xilinx provides a simple interface for creating custom memory using Block RAM with CoreGen.
If additional manipulation is required, refer to XAPP130: Using the Virtex Block SelectRAM+
Features at Ihttp://www.xilinx.com/xapp/xapp205.pdf.

Figure 6: Simple Communal Memory Usage

wp121_06_081200

Rest of FPGA Design Interface

FPGA_Cmd

SysCmd_In

FPGA
Controller

MIPs
Controller

Dual Port
Memory

Block

MIPs Interface

En Addr

Addr

Data

Data

En

FPGA
WP121 (v1.0) September 5, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp205.pdf
http://www.xilinx.com/xapp/xapp205.pdf
http://www.xilinx.com/xapp/xapp205.pdf
http://www.xilinx.com/xapp/xapp205.pdf

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

Interface Connections
The remainder of this paper will focus on a simple system that directly interfaces the MIPS
processor and the FPGA. A simple example of such a system can be seen in Figure 7. This is
also the basic interface structure used by the reference design provided in the appendix.

Figure 8 shows a more detailed example of how to directly connect a Xilinx FPGA to a QED
7000 MIPS microprocessor. It uses the standard MIPS R4000 interface and can be used as a
starting point for most designs. This interface uses the most common portions to allow for
greatest portability amongst the R4000 MIPS family. Notice that in this example there are no
other devices. No interrupt circuitry is required and, therefore, is ignored.

Figure 7: Direct MIPS to FPGA Example Interface

CLK

MIPS
CPU
Core

Arbiter

Interrupt
Control

DMA
Ctrl

Bus
Interface

(PCI)

External
Devices

PCI
Bus

DMA

FPGA

WP121_07_081700

SDRAM

SDRAM
Control
8 www.xilinx.com WP121 (v1.0) September 5, 2000
1-800-255-7778

http://www.xilinx.com

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

Achieving Maximum I/O Throughput

General

Achieving maximum I/O throughput is beneficial to speed-sensitive systems. I/O speed tends
to be the bottleneck for most systems; achieving maximum I/O throughput is generally desired
for today’s high-speed systems.

There are two areas of focus when achieving maximum I/O throughput: chip issues and board
issues. For chips, the main focus is to get on and off the chip as quickly as possible. For the
board, the focus is to provide a clean signal from any chip to any other chip as quickly as
possible.

Techniques to Aid I/O Throughput

For these two devices, there are two different styles for optimizing the I/O throughputs. For the
MIPS processor, one can only adjust the MIPS interface settings by changing the configuration
mode bits to the most optimal setting. On the other hand, FPGAs are very flexible, and there
are many ways to improve their performance with design techniques and I/O standards.

MIPS Settings to Aid I/O Throughput

Maximizing the MIPS I/O speed can be done by using the appropriate Mode settings, using
optimal clock operating conditions, and using the MIPS phase locked loop (PLL) to reduce
clock delay within the MIPS processor. Since maximum clock speed and operating conditions
are different for different MIPS processors, refer to the appropriate processor data sheet and
user manual.

To maximize the I/O throughput, use the following Mode settings:

• Set write-back data rate to continuous (DDDD). FPGA interfaces directly to the MIPS. No
need to worry about creating bus IDLE time.

• Set Master/SysClock multiplication to the optimal setting.

• Set output drive strength to 100 percent (fastest).

• Set external bus width to 64 bit (Max data per cycle).

Figure 8: FPGA to MIPS Interface Example

WP121_08_081700

FPGA
M_Release

M_CLK

M_ExtRqst

M_ValidOut

TDI

TMS

TCK

M_RdRdy

M_WrRdy

M_ValidIn

TDO

M_SysCmdP

M_SysAD[63:0]

M_SysADC[7:0]

M_SysCmd[8:0]

MIPS
ValidIn

RdRdy

WrRdy

Cold Reset

Reset

ModeIn

SysClock

JTCK

JTMS

JTDI

ValidOut

Release

ExtRqst

Mode Clock

JTDO

SysCmdp

SysAD[63:0]

SysADC[7:0]

SysCmd[8:0]

TDO

ModeClock

TDI

TMS

TCLK

MIPS_Clock

ModeClock
ModeIn

ColdReset

[63:0]

[8:0]

[63:0]

[7:0] [7:0]

[8:0]
WP121 (v1.0) September 5, 2000 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

Notes:
1. Check MIPS data sheet for correct mode bits to set while loading mode configuration.

Write-Back Data Rate Setting

The write-back data rate is a setting on the MIPS device that controls data/idle pattern on the
bus. This allows one to control the maximum data rate to/from the MIPS processor from one
double word per cycle to one double word per four cycles. To achieve maximum data
throughput, having a continuous write back data is desired.

Detailed information can found in the system interface protocol section of the user manual at
http://www.qedinc.com.

Master/System Clock Setting

The goal is to have a system with the highest system frequency. The MIPS devices drive the
master clock used internally by multiplying the system frequency by a value provided in the
mode settings. At present, the fastest system speed available for a QED device is 125 MHz.
This device also uses an internal clock speed of 250 MHz. Therefore, the master/system clock
needs to be set to two.

As newer devices arrive, this ratio (master/system clock) for achieving the greatest I/O
throughput may change.

Output Drive Strength

To achieve the fastest I/O speed, set the drive strength of the MIPS processor to 100 percent.

Maximize Bus Widths

To maximize data throughput, use the largest bus settings available (currently 64-bit). This will
allow the most data to be processed per clock cycle.

FPGA Techniques to Aid I/O Throughput

Some common FPGA design techniques to increase I/O speed are as follows:

• Use a DLL to virtually eliminate clock delay for registers that deal with I/O.

• Register the I/Os to get the minimum distance between the register and the I/O pad.

• Use Select I/O to increase the I/O Port speed.

An example of these techniques is seen in the reference design, which demonstrates the
FPGA techniques discussed to maximize MIPS to FPGA throughput.

Using Internal DLL

To increase I/O data throughput, use a DLL to eliminate clock delay among registers
communicating with I/O. This gives the user more of the clock period to utilize, because there
is less than 25 ps clock delay.

For more detailed information, refer to XAPP 132 Using the Virtex Delay-Locked Loop,
http://www.xilinx.com/xapp/xapp132.pdf

Registering I/O

Another technique used by designers to achieve higher throughput is to utilize the Input-Output
Block (IOB) Registers. These registers are dedicated for the I/Os that are placed on the edge
of the die to be as close to the I/O pad as possible. By using I/O registers, one guarantees the
shortest path between an I/O and a register. Again aiding to achieve the best I/O speed.

Refer to Development System Reference Guide at http://toolbox.xilinx.com/docsan/3_1i/ for
information on how to register the I/O.
10 www.xilinx.com WP121 (v1.0) September 5, 2000
1-800-255-7778

http://www.xilinx.com/xapp/xapp132.pdf
http://www.xilinx.com
http://toolbox.xilinx.com/docsan/3_1i/
http://www.qedinc.com

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

Using Select I/O and Drive Strength

If using the default I/O standard (LVTTL) does not produce adequate results (even in fast
mode), try increasing the drive strength or using a different I/O standard. Increasing the drive
will help increase the I/O speeds by adding more current/power to the I/O. If increasing the
drive strength is not adequate, a different I/O standard may be appropriate.

For the Virtex families, there are a large variety of different I/O standards available. A listing of
I/O available standards can be found in the Xilinx data book at
http://support.xilinx.com/partinfo/databook.htm. By selecting different I/O standards, each with
its own benefits, one can have the I/O behave differently. For achieving optimal I/O throughput,
choosing an HSTL IV as the I/O standard greatly reduces the time on and off the chip, thereby,
achieving a very fast I/O throughput.

For more information on using Select I/O, refer to XAPP133: Using the Virtex Select I/O
Resource at http://support.xilinx.com/xapp/xapp133.pdf.

Board Techniques to Aid I/O Throughput

General Board Techniques

General board techniques to aid in I/O throughput include the following:

• Placing the MIPS and FPGA as close as possible

• Reducing trace length

• Using adequate decoupling capacitors to prevent brown outs and reduce ground bounce

• Using ample VCC and Ground pairs to reduce ground bounce

FPGA Board Techniques

In addition, with FPGAs try to keep all data/address lines running horizontally and all control
and clock lines vertically into the chip. This is because the FPGA’s routing is set up to utilize
data in a horizontal fashion, by having routes that directly connect the data of a Configuration
Logic Block (CLB) to the CLB horizontally beside it. The FPGA also has dedicated routing that
runs in vertical columns (long lines). These long lines are ideal for control signals like clock
enables or clocks that need to control large quantities of data.

To reduce ground bounce, try to spread or separate bus data lines, preferably while
maintaining groupings around ground connections. Spreading the signal will help to spread out
the bouncing ground around the chip. Placing the signals close to ground connections will help
to absorb or lessen the effects of the ground bounce.

To reduce board skew, use a second DLL in the FPGA to de-skew the board clock. Try to keep
all the I/O and feedback trace lines equal in length to ensure proper clock de-skewing. For more
detailed information, refer to XAPP132 Using the Virtex Delay-Locked Loop,

http://www.xilinx.com/xapp/xapp132.pdf

To run at optimal performance, make sure the device loading on the local bus is within
specification. If there is too much loading from too many devices, one will have to slow down
the system clock frequency or add latency. One way to reduce bus loading is to interface
multiple components (memory and PCI) via the FPGA, thereby, only having loading from the
FPGA rather than from all the other devices.

Recommenda-
tions

When interfacing a MIPS processor to a Xilinx FPGA, I/O throughput is generally the system
bottleneck. Here is a list of recommendations to help maximize the I/O throughput between the
MIPS processor and the Xilinx FPGA:

• MIPS - Optimal I/O mode

• FPGA - Registered I/O

• FPGA - Select I/O

• FPGA - DLL (internal and externally)
WP121 (v1.0) September 5, 2000 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp132.pdf
http://support.xilinx.com/partinfo/databook.htm
http://support.xilinx.com/partinfo/databook.htm

Benefits of Using Xilinx FPGAs with MIPS® Microprocessors
R

• Board - Place chips as close together

• Board - Enough Decoupling capacitors

By using the above techniques, one should be able to utilize the maximum I/O throughput
available from the MIPS processor with an FPGA.

References XAPP130: Using the Virtex Block SelectRAM+ Features at
http://www.xilinx.com/xapp/xapp130.pdf

XAPP131: 170 MHz Synchronous and Asynchronous FIFOs Using the Virtex Block
SelectRAM+ Features at http://www.xilinx.com/xapp/xapp131.pdf

XAPP132: Using the Virtex Delay-Locked Loop,http://www.xilinx.com/xapp/xapp132.pdf

• XAPP133: Using the Virtex Select I/O Resource at http://www.xilinx.com/xapp/xapp133.pdf
XAPP205: Data-Width Conversion FIFOs using Virtex Block SelectRAM Memory at
http://www.xilinx.com/xapp/xapp205.pdf

• Development System Reference Guide at http://toolbox.xilinx.com/docsan/3_1i

• Xilinx data book at http://support.xilinx.com/partinfo/databook.htm

• QED: RM7000/RM7000A Data Sheet at http://www.qedinc.com

• MIPS web site: http://www.mips.com/

Appendix Example Reference Design
Link to MIPS to Virtex-E reference design.TBD

MIPS Line Card Providers
http://www.mips.com/Documentation/LineCard.pdf

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/05/00 1.0 Initial Xilinx release.
12 www.xilinx.com WP121 (v1.0) September 5, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp132.pdf
http://www.xilinx.com/xapp/xapp130.pdf
http://www.xilinx.com/xapp/xapp131.pdf
http://www.xilinx.com/xapp/xapp133.pdf
http://www.xilinx.com/xapp/xapp132.pdf
http://www.xilinx.com/xapp/xapp132.pdf
http://www.xilinx.com/xapp/xapp130.pdf
http://www.xilinx.com/xapp/xapp130.pdf
���http://support.xilinx.com/xapp/xapp133.pdf
���http://support.xilinx.com/xapp/xapp133.pdf
http://www.mips.com/Documentation/LineCard.pdf

	Summary
	Background
	General Discussion
	Custom CPU Functions
	Interfacing Bus Structures
	Interfacing Different I/O Standards
	Real-Time Data Manipulation
	Combination of Above Situations
	FPGA Design Considerations
	General
	Straight Data Manipulation
	Interacting Between Different Media
	Common Memory

	Interface Connections
	Achieving Maximum I/O Throughput
	General
	Techniques to Aid I/O Throughput
	MIPS Settings to Aid I/O Throughput
	Write-Back Data Rate Setting
	Master/System Clock Setting
	Output Drive Strength
	Maximize Bus Widths

	FPGA Techniques to Aid I/O Throughput
	Using Internal DLL
	Registering I/O
	Using Select I/O and Drive Strength

	Board Techniques to Aid I/O Throughput
	General Board Techniques
	FPGA Board Techniques

	Recommenda- tions
	References
	Appendix
	Example Reference Design
	MIPS Line Card Providers

	Revision History

