

Compact D80530C Microcontroller

March 21, 2000

Product Specification

CAST, Inc.

24 White Birch Drive

Pomona, New York 10907 USA
Phone: +1 914-354-4945
Fax: +1 914-354-0325
E-Mail: info@cast-inc.com
URL: www.cast-inc.com

Features

- 8-Bit Control Unit
- 8-Bit Arithmetic Logic Unit
- 32-bit Input/Output ports
- Two 16-bit Timer/Counters
- Interrupt Controller
- Internal Data Memory interface can address up to 256 bytes of Read/Write Data Memory Space
- External Memory interface can address up to 64K bytes of External Program Memory Space and up to 64K bytes of External Data Memory Space
- · Dual Data Pointer
- Variable length MOVX instruction to access fast/slow RAM or peripherals
- · Special Function Registers (SFR) interface
- · Early-warning power-fail interrupt

AllianceCORE™ Facts						
Core Specifics						
See Table 1						
Provided with Core						
Documentation	Core Specification, Instruction Set Details, Test Set Details					
Design File Formats	.ngo, EDIF Netlist, VHDL Source RTL available at extra cost					
Constraints File	D80530C.ucf					
Verification	VHDL testbench					
Instantiation Templates	VHDL, Verilog					
Reference Designs &	Example design,					
Application Notes	assembler programs					
Additional Items	Synthesis and simulation scripts					
Simulation Tool Used						
1076-Compliant VHDL Simulator,						
Verilog Simulator						
Support						
Support provided by CAST, Inc.						

Applications

- Embedded microcontroller systems
- · Data computation and transfer
- Communication systems
- Professional audio and video

Table 1: Core Implementation Data

Supported Family	Device Tested	CLB Slices ¹	Clock IOBs ²	IOBs ²	Performance (MHz)	Xilinx Tools	Special Features
Spartan-II	2S150-6	1515	1	143	51	M2.1i	None
Virtex-E	V200E-8	1515	1	143	66	M2.1i	None
Virtex	V200-6	1515	1	143	52	M2.1i	None

Notes:

- 1. Optimized for speed
- 2. Assuming all core I/Os are routed off-chip

March 21, 2000 3-1

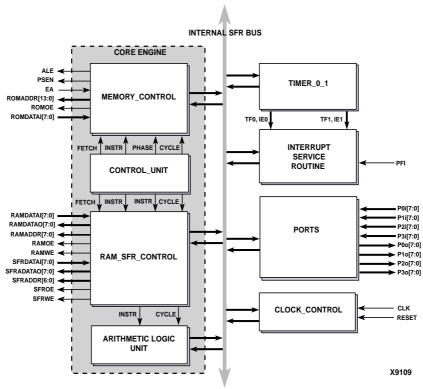


Figure 1: D80530C Microcontroller Block Diagram

General Description

The D80530C is a fast, single-chip, 8-bit microcontroller. It is a fully functional 8-bit embedded controller that executes all ASM51 instructions and has the same instruction set as the 80C51. The D80530C provides software and hardware interrupts; an interface for serial communications, and a timer system with auto-reload resources.

The D80530C is a microcode-free design and is strictly synchronous with positive-edge clocking, a synchronous reset, and no internal tri-states.

The core architecture eliminates redundant bus states and implements parallel execution of fetch and execution phases. Since a cycle is aligned with memory fetch when possible, most instructions have the same number of cycles as bytes. The D80530C uses 4 clocks per cycle. This leads to performance improvement of rate 2.5 (in terms of MIPS) with respect to the legacy 8051 device working at the same clock frequency. The legacy 8051 had a 12-clock architecture.

Table 2 shows the speed advantage of the D80530C over a standard 8051. A speed advantages of 3 means that the

D80530C performs the same instruction three times faster than the standard 8051.

Table 2: Core Speed Average

Speed Advantage	Number Instructions	Number of Op Codes
3	53	160
2	2	2
2.4	16	37
1.5	38	54
1	2	2
Average: 2.5 ¹	Sum: 111	Sum: 255

Notes:

1. The actual speed improvement seen in any system will depend on the instruction mix

Functional Description

The D80530C is a compact version of the D80530 core. The D80530C core is partitioned into modules as shown in Figure 1 and described below.

3-2 March 21, 2000

Core Engine

The D80530C core engine is composed of four components:

- · Memory control unit
- RAM_SFR control unit
- Control unit
- Arithmetic Logic Unit (ALU)

The D80530C engine allows to fetch instruction from program memory and executes them using RAM or SFR.

Memory Control Unit

- Can address up to 64K bytes of External Program Memory Space
- Can address up to 64K bytes of External Data Memory Space

Control Unit

The Control Unit performs instruction fetch and execution from the Memory Control Unit and the RAM_SFR Control Unit.

RAM SFR Control Unit

- Can address up to 256 bytes of Read/Write Data Memory Space
- Serves as Interface for off-core Special Function Registers

Arithmetic Logic Unit (ALU)

The ALU performs:

- 8-bit arithmetic operations
- · 8-bit logical operations
- Boolean manipulations
- 8 x 8 bit multiplication
- 8 / 8 bit division

Timer 0 1

This block has two timers: Timer_0 and Timer_1, which are nearly identical. Both have four modes:

- 13-bit Timer/counter
- 16-bit Timer/counter
- 8-bit timer/counter with auto reload
- Two 8-bit timers (Timer 0 only)

Each timer can also serve as a counter of external pulses (1 to 0 transition) on the corresponding T0 or T1 pin. The T0 and T1 pins are input through signals of the P3i bus of the Ports block. The user can gate the timer/counter using an external control signal. This allows the timer to measure the pulse width of external signals.

Interrupt Service Routine

The D80530C core provides a three-priority interrupt system. There are 14 interrupt sources. Each source has an

independent priority bit, flag, interrupt vector, and enable. In addition, interrupts can be globally enabled or disabled.

Ports

The D80530C provides four I/O ports. P0 to P3 are 8-bit bidirectional I/O ports with separated inputs and outputs.

P0 serves as the multiplexed low-order address and data bus during accesses to external program and data memories

P1 serves the special features, such as, external interrupt inputs, Serial 1 interface, and Timer 2 inputs.

P2 provides the high-order address byte during fetches from external program memory that use 16-bit addresses.

P3 serves the special features, such as, read and write strobes for external data memory, Timer_0 and Timer_1 inputs.

Clock Control

This unit generates the internal synchronous reset signal. It also contains registers for selecting the clock for the timers and for programming the length of the external data memory accesses.

Core Modifications

The D80530C core can be modified to include features such as:

- Three 16-bit Timer/Counters
- · Two Serial Peripheral Interfaces in full duplex mode
- 15 bit Programmable Watchdog Timer
- · 32-Bit Fast Multiplication-Division Unit
- · 4x16 Bit Compare/Capture Unit
- Real Time Clock

Please contact CAST, Inc. directly for any required modifications.

Verification Methods

The functionality of the D80530C core was verified by means of a proprietary hardware modeler. The same stimulus was applied to a hardware model that contained the original Intel 80C31 and Dallas DS80C320 chips, and the results compared with the core's simulation outputs.

Recommended Design Experience

The user must be familiar with HDL design methodology, as well as instantiation of Xilinx netlists in a hierarchical design environment.

March 21, 2000 3-3

Pinout

The pinout of the D80530C core has not been fixed to specific FPGA I/O, thereby, allowing flexibility with a users application. Signal names are shown in the block diagram in Figure 1 and described in Table 3.

Table 3: Core Signal Pinout

Signal	Signal Direction	Description					
Internal Program Memory Interface							
ALE	Output	Address Latch Enable					
PSEN	Output	Program Store Enable					
EA	Input	External Access Enable					
ROMADDR[13:0]	Output	Memory Address Bus					
ROMOE	Output	Memory Output Enable					
ROMDATAI[7:0]	Output	Memory Data Bus					
Internal Data Memory Interface							
RAMDATAI[7:0]	Input	RAM Data Bus Input					
RAMDATAO[7:0]	Output	RAM Data Bus Output					
RAMADDR[7:0]	Output	RAM Address Bus					
RAMOE	Output	Data Output Enable					
RAMWE	Output	Data Write Enable					
E	xternal SF	R Interface					
SFRDATAI[7:0]	Input	SFR Data Bus Input					
SFRDATAO[7:0]	Output	SFR Data Bus Output					
SFRADDR[6:0]	Output	SFR Address Bus					
SFROE	Output	SFR Output Enable					
SFRWE	Output	SFR Write Enable					
Int	errupt Ser	vice Routine					
PFI	Input	Power Failure Interrupt					
Ports							
P0i[7:0]	Input	Port0 Input Bus					
P1i[7:0]	Input	Port1 Input Bus					
P2i[7:0]	Input	Port2 Input Bus					
P3i[7:0]	Input	Port3 Input Bus					
P0o[7:0]	Output	Port0Output Bus					
P1o[7:0]	Output	Port1 Output Bus					
P2o[7:0]	Output	Port2 Output Bus					
P3o[7:0]	Output	Port3 Output Bus					
Clock_Control							
CLK	Input	Clock Input					
RESET	Input	Chip Reset Input					

Ordering Information

This product is available from the AllianceCORE™ partner listed on the first page. Please contact the partner for pricing and more information.

The D80530C core is licensed from Evatronix S.A.

Related Information

- High-Speed Microcontroller Data Book, Dallas Semiconductor, 1995.
- CMOS Single-chip 8-bit Micro controllers, 1996.
- Addendum to the MCS[®]51 Microcontroller Family, Intel, 1996
- 8-bit Embedded Controllers, Intel, 1990

Contact:

Intel Corporation P.O. Box 7641

Mt. Prospect, IL 60056-7641 Phone: 800-548-4725

URL:http://www.intel.com

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
URL: www.xilinx.com

For general Xilinx literature, contact:

Phone: +1 800-231-3386 (inside the US)

+1 408-879-5017 (outside the US)

E-mail: literature@xilinx.com

For AllianceCORE™ specific information, contact:

Phone: +1 408-879-5381 E-mail: alliancecore@xilinx.com

URL:www.xilinx.com/products/logicore/alliance/tblpart.htm

3-4 March 21, 2000