

LTC Generator

July 27, 2000

Deltatec

Rue Gilles Magnée, 92/6 B-4430 ANS – BELGIUM Phone: +32 4 239 78 80 Fax: +32 4 239 78 89 URL: www.deltatec.be Mail: sales@deltatec.be

Features

- SMPTE/EBU LTC time code generator
- · Lock-on external (video) reference
- PAL/NTSC support
- · 27 Mhz clock input for internal timing
- Five 16-bit double buffered registers for time code data and sync word
- Versatile synchronization

Product Specification

AllianceCORE™ Facts						
Core Specifics						
See Table 1						
Provided with Core						
Documentation	Core data sheet					
Design File Formats	XNF/Edif netlist					
Constraints File	.ucf					
Verification	VHDL testbench,					
	Simulation vector					
Instantiation Templates VHDL, Verild						
Reference designs &	Application note, Sample design					
application notes	Application note, Sample design					
Additional Items None						
Simulation Tool Used						
1076 Compliant VHDL Simulator						
Support						
Support provided by Deltatec						

Applications

The LTC generator core is used in video distribution/editing equipment.

Table 1: Core Implementation Data

Supported Family	Device Tested	CLBs ²	Clock IOBs	IOBs ¹	Performance (MHz)	Xilinx Tools	Special Features
Virtex	V100-4	69	2	27	85	M2.1i	Distributed DPRAM
XC4000XLA	4013XLA-07	60	2	27	71	M2.1i	Distributed DPRAM

Notes:

1. Assuming all core I/Os are routed off-chip

2. Utilization numbers for Virtex are in CLB slices.

General Description

The LTC generator core accepts 80 bits of SMPTE/EBU audio Longitudinal Time Code from its 16 bits wide μP interface.

The LTC generator synchronizes on the falling edge of the incoming reference signal to start transmission of the received time code.

The 80-bit long time code is serialized, bi-phase mark encoded, and transmitted over the full video frame.

A simple external analog audio interface is necessary to properly shape (gain & slope adjustment) the digital LTC bitstream. See the application note.

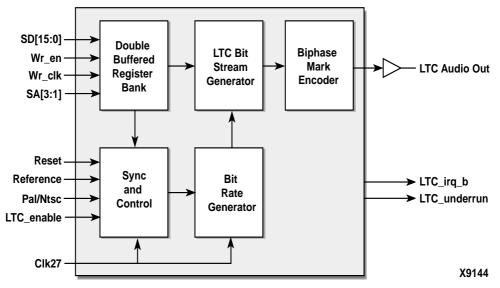


Figure 1: LTC Generator Block Diagram

Functional Description

From the μ P point of view, the LTC generator appears as five 16-bit write-only registers holding the 80-bit time code data formatted as in table 2. The μ P is responsible to upgrade this data at each frame.

For basic applications, only the frames, seconds, minutes, and hours units & tenths must be incremented at each video frame; and the phase correction bit (27 for NTSC, 59 for PAL) must be adjusted so that the full 80-bit LTC word contains an even number of zeros, while with the exception of the constant 0xBFFC sync word, all other bits are null.

For a detailed LTC bits description, see the relevant normative references.

A high to low transition on the input reference signal starts transmission of the next LTC. Typically this reference is driven by the video field parity (odd/even).

The LTC word must begin in line 7 (+- 1 line) in fields 1 & 3 for NTSC, and line 2 (+- 1 line) in fields 1 & 3 & 5 & 7 for PAL and occupies the full frame. Proper alignment of the reference against the video timing must be provided by the user.

A five-16-bit, double-buffered register set is used so the μP can update the next timecode data while transmission of the current one proceeds.

Two handshake signals are generated:

- LTC_irq_b is an active low interrupt request pulse signalling the µP that a new data set can be loaded.
- LTC_underrun is an active high status signalling that no new LTC data was available at the frame end. Bring Reset high or LTC_enable low to reset this status.

Sync word register write is used to the signal, New Data Set Ready for handshaking and must occur after all other registers update.

The µP registers interface can be

- Synchronous: Wr_clk is the free-running µP clock, Wr_en controls register write operations.
- Asynchronous: Wr_clk is the asynchronous µP write control (active on rising edge), Wr_en can either be tied high or used as Chip Select (active high).

Byte Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	E	Binary	/ Group 4 11		11	10	Frame	es tens	Binary Group 1				Frames units			
2	E	Binary (Group	5	27	Seconds tens			Binary Group 2				Seconds units			
4	E	Binary (Group	6	43 Minutes tens			Binary Group 3			Minutes units					
6	Binary Group 7			59	58	Hours	s tens	E	Binary (Group 4	4	Hours units				
8	8 Synchronization word: 0xBFFC															

Table 2: LTC Generator Register Map

Pinout

For easy integration with user design/device, no fixed pinout is required. A sample implementation will provide an example pinout. Signal names are shown in the block diagram in Figure 1 and described in Table 3.

Table 3: Core Signal Pinout

Signal	Signal Direction	Description
SD[15:0]	Input	μP data bus
Wr_en	Input	μP write enable
Wr_clk	Input	μP write clock
SA[3:1]	Input	MP address
Reset	Input	Asynchronous reset
Reference	Input	LTC frame start reference
		(falling edge)
Pal/Ntsc	Input	PAL (1)/NTSC (0) standard
		select
LTC_enable	Input	LTC enable: when set to 1,
		LTC transmission begins at
		next frame
Clk27	Input	27 Mhz video clock
LTC_audio_out	Output	Digital LTC output
LTC_irq_b	Output	LTC interrupt output
LTC_underrun	Input	LTC underrun status

Please contact Deltatec directly for any required modifications.

Core Modifications

Customization of the core (8 bit μP interface for example) can be performed by Deltatec to perfectly match the user's needs.

Core Assumptions

- The bi-directional data bus has been split into two separate buses: DIN[7:0] and DO[7:0]
- The 1.5 stop bit mode (for 5 bit word length) is not supported
- Signals rd2, wr2, xin and xout have been eliminated from the interface

Verification Methods

VHDL functional and timing simulation have been performed on the core; VHDL testbench and simulation vectors for the sample design are provided.

Recommended Design Experience

The user must be familiar with VHDL/Verilog synthesis/simulation and Xilinx design flows.

Ordering Information

This product is available from Deltatec. Please contact Deltatec for additional information and pricing.

Related Information

SMPTE 12M-1995 Television, Audio and Film–Time and Control Code IEC 461-1986 Time and Control Code for Video Tape recorders

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 URL: www.xilinx.com