
Chapter 1

The SubML markup
language

Copyright c© 2001-2006, Tony R. Kuphaldt

1.1 Introduction

SubML stands for Substitutionary Markup Language. Similar in structure to
an SGML-based language, SubML is intended for simple text formatting with
very few frills, but providing the capability of standard font emphasis modes,
itemized lists, and image inclusion.

SubML is designed so that it may be translated into practically any markup
language with nothing more than some search-and-replace commands (hence the
term substitutionary), executed in the sed stream editor. Rather than rely on
complex translational algorithms (i.e. a Perl or Python script), the philosophy
here is to design ease of conversion into the structure of the original markup
so that any fool can write a sed script to convert to any new markup. So far,
the following conversions are provided in a set of sed scripts supplied with this
tutorial:

• SubML to TEX

• SubML to LATEX

• SubML to HTML

• SubML to plain text (ASCII)

More conversion routines are planned. As far as I can see, none of them
should present any unordinary difficulties in conversion. I simply haven’t got
around to writing and testing all the scripts yet. These include:

1

2 CHAPTER 1. THE SUBML MARKUP LANGUAGE

• SubML to nroff/troff/groff

• SubML to Texinfo

• SubML to DocBook (SGML and/or XML)

• SubML to Lout

• SubML to Qwertz

Also, it should be fairly easy to write an XML DTD for SubML, making it
directly readable by XML-compatible browsers and other software.

Platform compatibility is limited only to the availability of a sed binary
to perform the conversion. And since sed is such a widely used and robust
utility (free, too, thanks to the Free Software Foundation!), this should not be
a problem. I’ve successfully “compiled” SubML documents on both Linux and
Microsoft Windows 95 with equal ease.

Characters usually interpreted as escape characters in other markup lan-
guages like \, &, $, %, |, ˜, ˆ, and are handled without special tagging as well
(100% of the time, too – this makes SubML worth $1,000,000 & that’s not all!).
The only characters SubML requires you to specially code (not type verbatim in
your source document) are the < and > symbols, simply because SubML itself
uses them as escape characters to mark the beginning and end of tags.

1.2. LEVELS OF SECTIONS UNDER EACH CHAPTER 3

1.2 Levels of sections under each chapter

This is text contained in the first true section of this tutorial.

1.2.1 This is the first subsection (titlebar)

This is text contained in the first subsection of this tutorial.

1.2.2 This is the second subsection (titlebar)

This is text contained in the second subsection of this tutorial.

This is the first subsubsection (titlebar)

This is text contained in the first subsubsection of this tutorial, which is within
the second subsection.

4 CHAPTER 1. THE SUBML MARKUP LANGUAGE

1.3 Gallery of inline text formatting tricks

In this section, we will explore the various inline (embedded within a sentence)
formatting commands provided by SubML.

Note that this may not be the fanciest array of formatting commands, but
it should suffice for most common formatting requirements.

If the standard SubML philosophy is followed, additional formatting ca-
pabilities may be included at a later date. The only real restriction is that
whatever formatting capability is added must be translatable to the desired
output type (TEX, HTML, DocBook, etc.) using nothing more than simple

search-and-replace algorithms.

1.3.1 Sub- and super-scripting

This is a test of the subscripting and superscripting capabilities of SubML. This
is useful to create simple mathematical (-2−3 = -0.125) and chemical (H2O,

92U
235) expressions.
While the following displays in html, it does not display properly in ps or

pdf due to tex/latex errors when using the normal <subscript>, <superscript>,
as above. Instead, we use <subscript2>, <superscript2>.

10log10(VI)

10log10(VI/VO)

Un-comment line here to create error.
Note the $$ around the whole subscript and superscript

line in the tutorial.sml source above.(You need to be looking at tutorial.sml)
Only use this if you have tex/Latex errors, no ps or pdf. Complex mixtures of
both superscripts and subscripts are a reason.

1.3.2 Boolean overline negation

Boolean negation (not) is supported in LaTeX by the \overline{ } command,
available in the math environment. HTML provides no such support for over-
line. However, it is customary in some texts to indicate negation with a single
quote (’) post-fixed to the negated variable. Thus, we support Boolean negation
in SML with the <ob> and </ob> tags (overbar) enclosing the negated vari-
able.The sed processed Latex output will show (dvi, ps, pdf) overline negated
variables, the html has the post-fixed single quote form of negation. Equations
with any negated variables must be surrounded by and tags
to activate the ”math” environment for latex.

Any extensive use of Boolean equations should be xcircuit images so that
real overlines will be available in html as well as LaTeX. The methods here
are meant to support simple in-sentence Boolean expressions, not free-standing
equations.

<math>Y = (<ob>A</ob> + <ob>B</ob>)</math> This markup
gives the result below:

Y = (A+B) This result.

1.3. GALLERY OF INLINE TEXT FORMATTING TRICKS 5

<math>Y=<ob>(<ob>A</ob>+<ob>B</ob>)</ob></math> This
markup gives:

Y = (A+B) This result with long overline is due to outer tags. The
span of the overline is analogous to the span of a pair of bold tags. While the
parenthesis are not necessary in the LaTeX rendition, they are mandatory in
the ”single quoted” html version to indicate the extent of the negation.

Some other examples follow:

Y = (A+B) = ((A B))

Y = (A BCED) Incorrect in LaTeX, we wanted broken bar BC like AB.

Y = (ABCED) This is incorrect in LaTeX, OK on html. We wanted
broken bar between ABC.

Y = (A B CED) Like this by putting spaces between ABC. See tuto-
rial.sml

Y = ((A (B C))) This is better as an xcircuit image; html is difficult to
follow.

1.3.3 Emphasis fonts

Italicized, boldface, and underlined type are also available in SubML.

1.3.4 Special dashes

The regular dash, such as that used for hyphenation, looks-like-this. A dash
specifically used for subtraction is typeset using a special SubML tag, so that
5−3 (math dash) looks distinct from 5-3 (ordinary dash). Some people don’t
care too much about this, so use this tag at your discretion.

Sometimes it is useful to show a pair of dashes – not the “em-dash” used in
setting off a section of text like this – but a real pair of dashes. In this case,
another special SubML tag has been created to do this −− and you just read
over it! I use it to denote series-connected electronic components in symbolic
form. For example, a pair of resistors (R1 and R2) are connected in parallel with
each other, but together they’re in series with R3. Symbolically, I represent such
a configuration like this: (R1//R2)−−R3.

6 CHAPTER 1. THE SUBML MARKUP LANGUAGE

1.4 Block formatting

An important feature I’ve found in document processing is the ability to typeset
a literal segment of text. That is, a section of print in a monospaced font with
all normal paragraph formatting features of the target markup language turned
off.

One common usage of this feature is for the typesetting of computer pro-
gramming code. An example follows:

File listing: hello.c
. .

.

. #include <stdio.h>

.

. int main(void)

. {

. printf("\nHello, world!\n");

. return (0);

. }

.

. .

The dots are inserted manually within the SubML document to “set off” the
literal block of text from the rest of the document. Also, the leading dots (at
very left of each line) help overcome a problem I’m having with TEX formatting
where leading spaces get discarded and everything ends up smashed against the
left margin.

Without the dots, it looks like this:

#include <stdio.h>

int main(void)

{
printf("\nHello, world!\n");
return (0);

}

The ”set off” leading dot may be replaced by the <sp> tag to avoid the dot
in your literal block.

#include <stdio.h>

int main(void)

{
printf("\nHello, world!\n");
return (0);

}

1.4. BLOCK FORMATTING 7

Another kind of block formatting is the inclusion of offset quotations. Note
the following example:

”Vague and insignificant forms of speech, and abuse of language,
have so long passed for mysteries of science; and hard or misapplied
words with little or no meaning have, by prescription, such a right
to be mistaken for deep learning or height of speculation, that it will
not be easy to persuade either those who speak or those who hear
them, that they are but the covers of ignorance and hindrance of
true knowledge.” - John Locke

Italics may also be added to “set off” a quotation from the rest of the text,
especially in HTML. Combining the italic and bold tag sets inside of the
quotation tag set accomplishes this goal nicely:

”Vague and insignificant forms of speech, and abuse of language,

have so long passed for mysteries of science; and hard or misapplied

words with little or no meaning have, by prescription, such a right

to be mistaken for deep learning or height of speculation, that it will

not be easy to persuade either those who speak or those who hear

them, that they are but the covers of ignorance and hindrance of

true knowledge.” - John Locke

While perhaps not a true block-formatting feature, itemized lists can be
created using SubML. Take the following example:

• This is the first item

• This is the second item

• This is the third item

• Isn’t this fun?

In the spirit of simplicity, I haven’t created the option of enumerated lists,
indented lists, or anything fancy like that within the language of SubML.

8 CHAPTER 1. THE SUBML MARKUP LANGUAGE

1.5 Including graphic images in a document

Graphic image inclusion is perhaps the best feature of SubML. Note the follow-
ing example:

Have a nice day!

You must be sure to specify an HTML-compatible image in the markup
code. This means an image file specified with a filename ending in .png, .jpg,
.bmp, or .gif (three-character extensions only: .jpg, not .jpeg!). For TEX or
LATEX output, there must be an Encapsulated Postscript image file .eps in the
same directory, but not specified in the markup code.

For example, the markup code necessary to place the ”happy face” image
shown above is as follows:



Two versions of the image exist: test.png for inclusion into the HTML
output, and test.eps for inclusion into the TEX or LATEX output, but only the
HTML-compatible file need be specified in the SubML source code.

Have a nice day!

Figure 1.1: This is a fine caption.

Below is the markup code necessary to place the ”happy face” image with
a caption shown in figure 1.1. A ”Figure x.x” string precedes the caption in
LATEX. It also generates LATEX code for a //lable test.eps, which is used to
reference the figure. The caption is included in the html without the ”Figure
x.x” designation.



1.5. INCLUDING GRAPHIC IMAGES IN A DOCUMENT 9

Note that in the previous paragraph, we reference ”figure 1.1” or ”figure
above” in tutorial.ps and tutorial.html, respectively. The markup below, be-
tween the ref tags, is for referencing the above image as a figure. The image
name, test.png, is a symbolic reference, replaced by 1.1, 1.2, etc., during ”latex
tutorial.latex” processing. Put the image name between the tags.

See figure<ref>test.png</ref> for a "happy face".

If you read about Latex figures, labels, and references, you will find that
the label is completely arbitrary. The only requirement is that the //ref com-
mand must call out the label associated with the figure. In our case the
sml2latx.sed file contains substitutions which fill in the image number, eg:
test.png, 02041.png, for the label. Thus, we do not have to manually fill that
in for each of our images, which we may or may not reference. If we do wish to
reference a figure we reference the image number. It may be necessary to run
”latex tutorial.latex” twice to resolve the references.

As an option for html, a word may follow the image name as below. Eg.,
”test.eps above” will put ”above” into the tutorial.html. We have no way to
generate numbered figures in the html. So, figure above, figure below, may
be usefull. View tutorial.html vs tutorial.ps for ”figure 1.1” vs ”figure above”,
respectively. Here we reference figure 1.1 again, but only in tex/latex, no html
as in the above markup. The markup below shows the optional html word.

See figure<ref>test.png above</ref> for a "happy face".

In the case of html, we do not have the referencing facilities provided by
LATEX. The best we can do is refer to the figure above or below as shown in the
above markup.

Unrelated, take a look at tutorial.html to see how we have indented the
above markup code without a leading dot. Compare to previous unindented
markups.

See caution in next section: only one reference per line (pair of <ref> tags).
Else, split line with (return).

1.5.1 Labeling a figure

Do not confuse the ”Labeling” with the caption on a figure. In most all cases
you can skip this section and let the sed processing automatically generate the
label which the ”figure” requires so that it may be referenced. The automatic
label is the same as the image file name (eg 02221.eps). The previous section
covers this. The only reason to read this section is in the rare event that a second
instance of a figure is being used. In which case, it needs a new, unique, not
automatically generated label, not the (automatic) label for the first instance
of the image. You may also skip this, if there is no caption for the figure. We
will give the second instance of the image a unique label so that it will not be
confused with the first instance when we reference it. See Figure 1.2

10 CHAPTER 1. THE SUBML MARKUP LANGUAGE

Have a nice day!

Figure 1.2: Caption for the second instance of our image.

Note that our new figure is captioned as Figure 1.2. The caption is different
than the caption for the previous Figure 1.1. We are able to assign a label to it:



Note that the above markup must be on one line. It is too wide for our
page. So, we wrapped it. It may wrap in the text editor. But there cannot be a
(return) except at the end of the line. The sed script processes a line at a time
for each command. We process all the tags in the line with one command for
image, caption, label, and ref tags.

Once it has a label, we can distinguish it from the other figure by referencing
it the same way we reference other figures (just a different label):

If we compare the above image caption for newtest.png to the previous cap-
tion for for test.png, we find that both specify the same image, test.png. The
latter has a different label ”newtest.png” This is just a label. There is no image
by that name.

See figure<ref>newtest.png above</ref> for a 2nd "happy face".

Caution, a limitation of the sed script for caption processing is that only one
figure reference (eg.: <ref>newtest.png</ref>) may be processed properly
per line. Typically, there is only one line, all the words up to the end-of-line
between <para> tags. If we need more than one <ref></ref> in a paragraph,
the paragraph may be split into two or more lines between the two paragraph
tags. See tutorial.sml for an example of this in the paragraph ”Note that our
new figure is captioned. . . ”

1.5.2 Scaling an image

Once in a long while, an image which is of satisfactory size in the html version
of a document is too small in the LaTeX produced pdf document. The solution
is to make the image the ”right size” for the html document, then scale it to
a suitable size in the LaTeX file. This is done by a sed (string substitution

1.5. INCLUDING GRAPHIC IMAGES IN A DOCUMENT 11

program) command in sml2latx.sed. When the sml source is processed, a scale
factor is added to the .latex file, but not the .html file.

The scale factor must be added to the .sml as a modification between the


The image command must be on a single line, a CR only at the end, none in
the middle. Though, we wrapped it above for appearance. And, don’t put two
on one line– split into two lines. This scale parameter, [scale=0.5], only works
if the <caption> tags are used, due to sed script limitations. The same is true
of the <label> tags. The caption tags generate a figure number, even if there
is nothing between the tag. There must be a unique label between the <label>
tags, else LaTeX give an error. There must be no space between [scale=0.5] and
test.png. LaTeX doesn’t want a space in front of the image file name. It must
be like this [scale=0.5]test.png.

Have a nice day!

Figure 1.3: This is scaled down in LaTeX.

12 CHAPTER 1. THE SUBML MARKUP LANGUAGE

1.6 Special characters

In addition to special logos like TEX, SubML provides for certain often-used
characters of the Greek alphabet.

The ratio of a circle’s circumference to its diameter is symbolized by the
Greek letter “pi,” which SubML represents like this: π. The area of a circle is
given as A=πr2. Not many people realize that the standard symbol π is actually
the lower-case version of the Greek letter. The capital version looks like this:
Π, and it does not represent the same thing in mathematics.

But there are other useful Greek characters for us to use in SubML as well.
When SubML is converted to plain ASCII text, some of the Greek characters like
µ and ρ will be represented by the closest-resembling Roman (English alphabet)
character available. If there is no Roman character close enough, the Greek
character’s name will be spelled in parentheses. TEX, on the other hand, is
very Greek-literate and requires no “fudging” to obtain perfect representation.
HTML output from SubML conversion renders these characters using Unicode.
In order for a web browser to properly display them, it must be set up with
Unicode character support. For your viewing pleasure, we have:

• Alpha (lower-case): α

• Beta (lower case): β

• Gamma (lower case): γ Gamma (capital): Γ

• Delta (lower case): δ Delta (capital): ∆

• Epsilon (lower case): ε

• Varepsilon (lower case): ε

• Zeta (lower case): ζ

• Eta (lower case): η

• Theta (lower case): θ Theta (capital): Θ

• Vartheta (lower case): ϑ

• Iota (lower case): ι

• Kappa (lower case): κ

• Lambda (lower case): λ Lambda (capital): Λ

• Mu (lower case): µ

• Nu (lower case): ν

• Xi (lower case): ξ Xi (capital): Ξ

• Pi (lower case): π Pi (capital): Π

1.6. SPECIAL CHARACTERS 13

• Rho (lower case): ρ

• Varrho (lower case): %

• Sigma (lower case): σ Sigma (capital): Σ

• Varsigma (lower case): ς

• Tau (lower case): τ

• Upsilon (lower case): υ Upsilon (capital) Υ

• Phi (lower case): φ Phi (capital): Φ

• Varphi (lower case): ϕ

• Chi (lower case): χ

• Psi (lower case): ψ Psi (capital): Ψ

• Omega (lower case): ω Omega (capital): Ω

• non-breaking space 1 1 1 1 2 2 2 3 3 3 4 4 4 4

• Tau (lower case): τ

• bigtriangledown: 5

• oplus, exclusive or sign: ⊕

• almostequal: ≈

• approxequal, approximately equal: ∼=

• neq, not equal: 6=

• plusminus, plus or minus: ±

• cdot, centered dot, times dot: ·

• leq, less than or equal: ≤

• geq, greater than or equal: ≥

• times, times sign: ×

• registered, registration sign: R©

Another special symbol available in SubML is the 6 symbol (<angle>), used
in mathematical statements to designate an angle. This is useful for expressing
complex numbers in polar form. Take for example this impedance: 500 Ω 6 -
34.61o. By the way, the way I typeset the ”degree” symbol is with a superscript
letter ”o”.

14 CHAPTER 1. THE SUBML MARKUP LANGUAGE

Other mathematical symbols included in SubML’s vocabulary are the inte-
gration symbol (

∫
), partial derivative symbol (∂), and the infinity symbol (∞).

Here are some examples of these symbols in use:

V =
∫
Q dt + C

∂x/∂t

∞ is bigger than BIG!

Note that you cannot show upper and lower integration limits for a definite
integral using the ”

∫
” markup tag. It is useful for crude in-line formatting of an

integral equation only. If you want to show lower and upper integration limits
in a SubML document, you must use a graphic image – sorry!

For special characters used in other languages (Spanish, French, German,
etc.), the following are available in the SubML vocabulary:

• ”a” with grave (back prime): à À

• ”a” with acute (forward prime): á Á

• ”a” with circumflex (caret): â Â

• ”a” with umlaut/dieresis/tremat: ä Ä

• ”a” with tilde: ã Ã

• ”a” with ”ring” above: å. Å

• ”c” with cedilla: ç Ç

• ”e” with grave (back prime): è È

• ”e” with acute (forward prime): é É

• ”e” with circumflex (caret): ê Ê

• ”e” with umlaut/dieresis/tremat: ë Ë

• ”i” with grave (back prime): ı̀ Ì

• ”i” with acute (forward prime): ı́ Í

• ”i” with circumflex (caret): ı̂ Î

• ”i” with umlaut/dieresis/tremat: ı̈ Ï

• ”n” with tilde: ñ Ñ

• ”o” with grave (back prime): ò Ò

• ”o” with acute (forward prime): ó Ó

1.6. SPECIAL CHARACTERS 15

• ”o” with circumflex (caret): ô Ô

• ”o” with umlaut/dieresis/tremat: ö Ö

• ”o” with tilde: õ Õ

• ”u” with grave (back prime): ù Ù

• ”u” with acute (forward prime): ú Ú

• ”u” with circumflex (caret): û Û

• ”u” with umlaut/dieresis/tremat: ü Ü

• Inverted question mark ¿

• Inverted exclamation mark ¡

So, now you may impress all your Español-speaking amigos with the follow-
ing phrases in your documents:

”¿Dónde está el cuarto de baño?”

”¡Más cerveza, por favor!”

”¿Puede indicarme dónde está en el mapa?”

”Por favor, d́ıgale tu amigo que voy a llegar cinco minutos tarde.”

”Aqúı tiene mi casa.”

And when your friend asks you this . . .

”¿Qué procesador de textos usted utiliza?”

. . . you may respond with pride:

”No utilizo un procesador de textos.¡En lugar, utilizo un lenguaje
de marcas!”

16 CHAPTER 1. THE SUBML MARKUP LANGUAGE

1.7 Tex/Latex only, HTML only

Tags <tex>, </tex>, <htmlo>, </htmlo> are provided to include text from
.sml selectively only in .latex, .tex or only in .html. The <tex> </tex>
tags mark text that is only included in the .latex and .tex outputs of ”sed -
f sml2latx.sed” and ”sed -f sml2tex.sed”. Text that is only to be included in the
.html is marked of by the <htmlo>, </htmlo> tags.

This following markup is to only show text in tutorial.latex and tutorial.tex.
Following the markup, see text in tutorial.latex, tutorial.tex, but not in tuto-
rial.html

<tex>This only shows in tutorial.latex and tutorial.tex</tex>

This only shows in tutorial.latex and tutorial.tex

This following markup is to only show text in tutorial.html. Following the
markup we see the text in tutorial.html but not tutorial.latex, tutorial.tex.

<htmlo>This only shows in tutorial.html</htmlo>

Given both a portrait and landscape version on a same-size image, a practical
application of the <tex>, <htmlo> tags is to selectively direct those images to
tutorial.latex or tutorial.html. We do not actually do this in tutorial.sml, but
show the markup. For example, we wish to send the landscape version of a
big image to the html version of our book so that readers do no have to rotate
their monitors. This landscape is too big for our .latex, .tex, .ps, .pdf 6-inch
wide book pages. We cannot reduce the size of the landscape, which would
be unreadable. So, we rotate our big landscape to a portrait. It started out
4-inches tall and is now 4-inches wide. It fits side ways nicely on a book page.
We have not reduced the size, just rotated it. A book reader can easily rotate
the book to view the large image.

<htmlo></htmlo>

<tex></tex>

1.8. HYPERLINKS AND TARGETS 17

1.8 Hyperlinks and targets

link at end of this section.

sample target located here, jump here from a link (Click) near the bottom
of this section

The <url>, </url> tags provide clickable links to URLs in both the html
and pdf versions of a document. The pdf is derived from LaTeX. Internal links
are provided by <hyperlink>, </hyperlink> tags, which link to targets defined
by the <hypertarget>, </hypertarget> tags. The syntax for these tags takes
the following form:

<url>url link[text]</url>

<hyperlink>link[text]</hyperlink>

<hypertarget>link[optional text]</hypertarget>

The ”link” for <hyperlink> must match the ”link” at the <hypertarget>
to actually jump there on clicking. The links for <hypertarget> in the case
of multiple targets needs to be unique– no two targets the same. The ”link”
for<hyperlink> and <hypertarget> may not contain any underscores, eg., in-
visible link. Though, it works in html, the pdf links will be dead. And, no
errors are generated. The <url> and <hyperlink> text will appear colored in
both html and pdf when viewed. The <hypertarget> text is not colored, and
is optional.

The following markup provides an external link to a URL in both html and
pdf documents:

Go to

<url>http:www.ibiblio.org/obp/electricCircuits/index.htm[Lessons in

Electric Circuits]</url>

to learn about electricity.

Go to Lessons in Electric Circuits to learn about electricity.

Why are there no quotes around the URL above? While the quotes are
needed in html code, they are not used in LATEX. Therefore, we do not include
them here. They are added by the sml2html.sed script to the html document.

Click this link to jump to invisible target at end of section. At the top of
this section click on ”link at” to also jump to the end of the section.

The following markup provides the link below it to the top of this section:

<hyperlink>LINK[Click]</hyperlink> to go to target at top of section.

Click to go to target at top of section.

Here is the markup for an ”invisible” target at the end of this section:

<hyperlink>invisibleTarget[]</hyperlink>

http:www.ibiblio.org/obp/electricCircuits/index.htm

18 CHAPTER 1. THE SUBML MARKUP LANGUAGE

1.9 Bibliography and citations

The <thebibliography>,</thebibliography> tags mark a section of text to be
treated as a list of bibliographic references. Contained therein are individual
bibliographic entries delimited by <bibitem></bibitem> tags. Theses entries
may be referenced from the body of the main text by <cite></cite> tags. The
syntax of these tags is as follows:
<thebibliography>

<bibitem[ref]text</bibitem>

<bibitem[ref2]text2</bibitem>

</thebibliography>

The purpose of this paragraph is to reference the bibliography below. This
paragraph is broken into several lines terminated by a return.[2] You should
skip to the bibliography and look at the first entry, here.[1] The second entry in
the bibliography is here.[3] Note that the fourth bibitem contains a url to link
to home of this project.[4]

The bracketed reference, [ref], in the bibitem needs to be matched by the
corresponding citation reference <cite>ref</cite> in the body of the text. See
above and below. In LaTeX, this is usually an easy to remember mnemonic.
This is replaced by bracketed a number, eg. [2], in the processed LaTeX version
of the document. However, the html version of the document will not have num-
bers unless the reference is a number, eg. <cite>4</cite>. The bibliography in
html is a numbered list. However, these numbers do not necessarily correspond
to the sml bibitem reference. Use numbers instead of mnemonics in the bibitem
reference for numbers in the html.[4].

A sample bibliography with four items follows:

Bibliography

[1] Helmut Kopka and Patrick W. Daly, A Guide to LaTeX: Document Prepa-
ration for Beginners and Advanced Users (Addison-Wesley, Reading, MA,
1999), 3rd. ed.

[2] The html sed processing only handles one citation per line. Though, LaTeX
can handle more.

[3] B. C. Freasier, C. E. Woodward, and R. J. Bearman, “Heat capacity ex-
trema on isotherms in one-dimension: Two particles interacting with the
truncated Lennard-Jones potential in the canonical ensemble,” J. Chem.
Phys. 105, 3686–3690 (1996).

[4] Kuphaldt, Tony R., Lessons in Electric Circuits in the open book
project at ibiblio.org

Note that the last entry above contains a url. The whole bibterm must be
on one line, only one return, at the end.

19

http://www.ibiblio.org/obp/electricCircuits/index.htm

20 BIBLIOGRAPHY

1.10 What SubML won’t do

SubML is designed to be a simple markup language, and as such it lacks certain
advanced features found in other, more capable languages like TEX or DocBook.
One of these missing features is tables. However, I have found that it often
works well to create a table using a graphics editor and then insert it into the
document as an image. One advantage to doing tables this way is consistency
in appearance between different outputs (TEX, HTML, etc.).

Another thing SubML makes no provision for is easy, verbatim display of
its own markup code. In order to show verbatim SubML code, you must mark
all < and > symbols with the appropriate <lt> and <gt> tags. The following
paragraph shows the markup required for this paragraph. For a really wild
experience, view the source code of this file to see how I mark up that paragraph:

<para>

Another thing SubML makes no provision for is easy, verbatim display

of its own markup code. In order to show verbatim SubML code, you

must mark all <lt> and <gt> symbols with the appropriate

<lt>lt<gt> and <lt>gt<gt> tags. The

following paragraph shows the markup required for this paragraph.

For a really wild experience, view the source code of this file to

see how I mark up <italic>that</italic> paragraph:

</para>

I could carry the recursion one step further, but that would be cruel and
unusual punishment for both of us.

1.11. HOW TO DO THE CONVERSION 21

1.11 How to do the conversion

First, you need to have sed installed and operational on your computer. Next,
be sure that all conversion scripts (sml2tex.sed, sml2html.sed, etc.) have
been installed in the same directory as the SubML document that you wish
to convert. If you wish to convert your SubML document to TEX, groff, or
some other markup language requiring further processing, you must of course
have the necessary software installed on your computer to process the markup
format(s) of choice.

For instance, if you converted your SubML document into a TEX document
using the sml2tex.sed script provided with this tutorial, but didn’t have Don-
ald Knuth’s TEX processing system installed on your computer, all the sed

script will do is produce a TEX source file: a new document marked up with
TEX commands and tags in place of SubML tags. In other words, these scripts
simply convert SubML source code into source code for other markup languages.
With the exceptions of HTML and plain ASCII text, none of the output formats
generated by these sed scripts will be ready-to-use.

If you wish to convert your source document (entitled foo.sml) to HTML,
here is what you would have to type at the command prompt:

sed -f sml2html.sed foo.sml > foo.htm

The -f option tells sed to look to file sml2html.sed for instructions rather
than take direct search-and-replace commands from the command prompt when
processing the input file foo.sml. The output file is named foo.htm.

The redirection command (>) is necessary, otherwise sed will simply send
the converted text to standard output (the computer’s command-line screen)
and all of it will flash before your very eyes instead of being saved in a file. Of
course, you can name the target file anything you wish, so long as the extension
is appropriate to the type of converted document that it is (i.e. .htm or .html
for HTML output, so that a browser will recognize the filename).

The use of standard input and standard output in a sed script allows for
great flexibility in the use of SubML. For instance, I have a book I’m writing
(Lessons In Electric Circuits), in which I’m using Makefiles to direct compilation
from SubML to LATEX and HTML. By using stdin/stdout redirection within the
Makefile commands, I’m able to prepend and append files containing special
LATEX and HTML code to the basic text (written in SubML format) to achieve
markup capabilities beyond the basic scope of SubML. For instance, I may want
to generate a coverpage for my book using a series of special LATEX commands.
SubML doesn’t specify detailed layout tags, and so I write the necessary LATEX
code in a file that gets prepended to the sed-converted output of the main text
body. Same for the generation of an index: a special file containing the necessary
LATEX commands gets appended to the very end, after sed has converted the
main body of the text. Same for navigation buttons at the beginning and end
of each HTML file generated from SubML.

22 BIBLIOGRAPHY

1.12 How mini TOC works

A mini Table of Contents (TOC) is automatically inserted after the chapter title
for (1) html, (2) LATEX which provices dvi, ps, and pdf. There is no mini TOC
support for other formats: txt, tex, or groff. This requires different packages
for (1) html, (2) LATEX. Thus, the method of generation of the mini TOC is
different for the two case. In both cases the automatic generation is initiated by
the sed command file substitution for the </chaptertitle> tag. Other features
in headers or makefiles cause the required software to generate and insert the
mini TOC after the chapter title.

In the case of html, the sml2htm.sed file contains the </chpatertitle> tag
substitution: <!—-> which flags the html for inclusion of the mini TOC. We use
a a perl script, htmltoc, modified for our requirements to htmltoc2 for placing
a mini TOC at the <!—-> tag. The original script placed the mini TOC before
the chapter title. So, we modified it to place the mini TOC at our tag, which is
after the title. The Makefile has a line calling with appropriate parameters:

./htmltoc2 -inline -noorg -toclabel " " -tocmap toc.map \
- "<\!\-\-\\-\->" AC 1.html

See the documentation for details. We added the - parameter to the htmltoc
perl script for our htmltoc2 so that it looks for the quoted tag which follows it.
In our case we want the mini TOC at the <!—-> tag, so that tag with escaping
backslashes follows.

The makefile for each book has a make target for each of the book chapters.
The chapters for which we want a mini TOC require the above htmltoc2 com-
mand in the make targets. We include it in chapter targets, 1, 2, etc., but not
the appendix targets, A1, A2, A3. Thus, all chapters but the appendices have
a mini TOC after the chapter title. Eg., see AC/Makefile targets: AC 14.html,
AC A1.latex for chapter vs appendix.

In the case of the LATEX translation, .latex, the </chaptertitle> in .sml is
replaced by /. See sml2latx.sed. This / tells LATEX where to place the mini
TOC.

Also, the header, hi.latex, contains \usepackage{} and \do to load the pack-
age and ”do” the minitable of contents respectively. The table will be placed
where the / command is encountered in the chapter text.

Nothing unusual is required of the makefile to generate the mini TOC. How-
ever, if we do not want the mini TOC in the appendices, a sed script in each
of the latex appendix targets, removes the / command from the .latex. Normal
target processing, puts a chapter mini TOC in for all chapters but appendices.
Eg., see AC/Makefile targets: lines.latex, about.latex for chapter vs appendix.

1.12.1 Table of contents - TOC

The LaTeX table of contents is due to commands in the hi.latex header file.
The command \setcounter{tocdepth}{1} limits the depth of the TOC entries
to one level below chapter. Thus, we get chapter and section entries. The file
hi appendix, inserted between the chapters and appendices by Makefile, sets the

1.12. HOW MINI TOC WORKS 23

counter to the chapter level with \settocdepth{chapter}. This leaves a single
TOC entry for each appendix. The package tocvsec2 is required to reset the
counter. See \usepackage{../bin/tocvsec2} in hi.latex

The hyperref package (hi.latex) generates a list of bookmarks along the left
side of the acrobat viewer. The depth of this bookmark TOC only extends to the
chapter level if there is a ”real” TOC. It is possible to generate expandable book-
marks to more levels, if the TOC is suppressed by removing \tableofcontents,
\setcounter{tocdepth}{1},\settocdepth{chapter}. At this time we opt for the
printed TOC over the expanded bookmark version.

	The SubML markup language
	Introduction
	Levels of sections under each chapter
	This is the first subsection (titlebar)
	This is the second subsection (titlebar)

	Gallery of inline text formatting tricks
	Sub- and super-scripting
	Boolean overline negation
	Emphasis fonts
	Special dashes

	Block formatting
	Including graphic images in a document
	Labeling a figure
	Scaling an image

	Special characters
	Tex/Latex only, HTML only
	Hyperlinks and targets
	Bibliography and citations
	What SubML won't do
	How to do the conversion
	How mini TOC works
	Table of contents - TOC

