Stretch Theorem (Repeat Theorem) Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Stretch Theorem (Repeat Theorem)



Theorem: For all $ x\in{\bf C}^N$,

$\displaystyle \zbox {\hbox{\sc Stretch}_L(x) \;\longleftrightarrow\;\hbox{\sc Repeat}_L(X).}
$



Proof: Recall the stretch operator:

$\displaystyle \hbox{\sc Stretch}_{L,m}(x) \isdef
\left\{\begin{array}{ll}
x(m/...
...m/L=\mbox{integer} \\ [5pt]
0, & m/L\neq \mbox{integer} \\
\end{array}\right.
$

Let $ y\isdeftext \hbox{\sc Stretch}_L(x)$, where $ y\in{\bf C}^M$, $ M=LN$. Also define the new denser frequency grid associated with length $ M$ by $ \omega^\prime_k \isdeftext 2\pi k/M$, and define $ \omega_k=2\pi k/N$ as usual. Then

$\displaystyle Y(k) \isdef \sum_{m=0}^{M-1} y(m) e^{-j\omega^\prime_k m}
= \sum_{n=0}^{N-1}x(n) e^{-j\omega^\prime_k nL}$   $\displaystyle \mbox{($n\isdef m/L$).}$

But

$\displaystyle \omega^\prime_k L \isdef \frac{2\pi k}{M} L = \frac{2\pi k}{N} = \omega_k .
$

Thus, $ Y(k)=X(k)$, and by the modulo indexing of $ X$, $ L$ copies of $ X$ are generated as $ k$ goes from 0 to $ M-1 = LN-1$.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]