12 Programs with functions
and arrays

This chapter has a few examples that show some of the things that you can do using
functions and arrays. A couple are small demonstration programs. Some, like the first
example are dlightly different. These examples—"curses', "menus’, and "keywords' —
entail the development of useful group of functions. These groups of functions can be
used a bit like little private libraries in future examples.

121 CURSES

Curses?

Yes, well programs and curses are strongly associated but this is something
different. On Unix, thereis alibrary called "curses'. It alows programs to produce
crude "graphical" outputs using just low "cost cursor addressable" screens. These
graphics are the same quality as the character based function plotting illustrated in
10.11.2. Unix's curses library is actually quite elaborate. It even allows you to fake a
"multi-windowing" environment on a terminal screen. Our curses are less vehement,
they provide just a package of useful output functions.

These functions depend on our ability to treat the computer screen (or just a single
window on the screen) as a "cursor addressable terminal screen”. Basically, this means
that this screen (or window) can be treated as a two-dimensional array of individually
selectable positions for displaying characters (the array dimension will be up to 25 rows
by 80 columns, usually a bit smaller). The run-time support library must provide a
got oxy() functionand aput character () function. Special character oriented input
functions must also be used.

Such facilities are available through the run time support libraries provided with
Symantec C++ for PowerPC, and Borland's IDE. In the Borland system, if you want
cursor addressing facilities you have to create your project as either a "DOS Standard"

12

" Cursor
addressable" screens
and windows

Run-time support in
common | DEs

356

Programs with functions and arrays

Separate header and
implementation files

project, or an "EasyWin" project (there are slight restrictions on EasyWin and cursor
graphics).

Naturally, the run-time support libraries in Symantec and Borland differ. So here we
have to develop code that will contain conditional compilation directives so that
appropriate code is produced for each different environment.

This code is to be in a separate file so that it can be used in different programs that
require simple graphics output. Actually, there will be two files. Like the standard
libraries, our curses "package" will consist of an implementation file with the
definitions of the functions and a header file. The header file contains just the function
prototypes and some constants. This header will be #included into the programs that
need to use the curses display facilities.

We will need a small program to test the library. A "drawing program" would do.
This could start by displaying a blank window with a "pen position" shown by a
character such as a™'. Keyed commands would allow the user to move the pen up,
down, left and right; other commands could let the "ink" to be changed from a drawing
pattern (‘#) to the background ('."). This would allow creation of pictures like that
shownin Figure 12.1.

Figure 12.1 Picture produced using the cursor graphics package.

The IDE projects for programs built using the curses functions will have to identify
the CG.cp ("Curses Graphics") file as one of the constituent files along with the normal
main.cp. However, the header file, CG.h, will not be explicitly listed among the project
files.

As noted earlier, the curses functions depend on a system's library that contains
primitives like a got oxy() function. IDEs normally have two groups of libraries —
those that always get checked when linking a program, and those that are only checked
when explicitly identified to the linker. In both the Symantec and Borland IDEs, the
special run-time routines for cursor addressing are in files separate from the more
common libraries. However, in both Symantec 8 and Borland, this extra library file is

Curses example 357

among those checked automatically. In Symantec 7, the library with the cursor routines
has to be explicitly made part of the project. If you do get linking errors when you try
to build these programs, you will have to check the detailed documentation on your IDE
to find how to add non-standard libraries to the set used by the linking loader.

Figure 12.2 illustrates how these programs will be constructed. A program using the
curses routines will have at least two source files specified in its project; in the figure
they are test.cp (which will contain mai n() and other functions) and CG.cp. Both
these source files #include the CG.h routine. The CG.cp file also contains #include
statements that get the header files defining the run-time support routines that it uses
(indicated by the file console.h in the figure). The compiler will produce the linkable
files test.0 and CG.o. The linking loader combines these, and then adds all necessary
routines from the normally scanned libraries and from any specifically identified

additional libraries.
#include

console.h

[non-standard
library routines

standard library
routines

#include

Linking Loader

Program in memory

Figure 12.2 Creating a program from multiple files

358

Programs with functions and arrays

Curses functions

The curses functions present the applications programmer with a simple window
environment as shown in Figure 12.3. Characters are displayed by moving a"cursor" to
a specific row and column position and then outputting a single character. If there are
no intervening cursor movements, successive output characters will go in successive
columns of the current row. (Output to the last column or last row of the screen should
be avoided as it may cause unwanted scrolling of the display.)

As shown in Figure 12.3, the screen is normally divided into a work area (which
may be marked out by some perimeter border characters), and afew rows at the bottom
of the screen. These last few rows are used for things such as prompt line and data
input area.

Input is usually restricted to reading single characters. Normally, an operating
system will collect all charactersinput until a newline is entered; only then can the data
be read by a program. This is not usually what one wants in an interactive program.
So, instead, the operating system is told to return individual characters as they are
entered.

Cursor position, place where next
output character will appear

<— =80 columns

rows

E\ \
Prompt line and

Work area
command entry approx. 20x80

Outline of window
or screen

Figure 12.3 Curses model for an output window.

Often interactive programs need to display data that change. A program may need
to arrange to pause for a bit so that the user can interpret one lot of data on the screen

Curses example 359

before the display gets changed to show something else. Consequently, curses

packages generally include adel ay() function.

8

9

A curses package will have to provide at least the following:

Details of the width and height of the effective display area.

Aninitialize function.

In many environments, special requests have to be made to the operating system to
change the way in which the terminal is controlled. These requests should go in an
initialize function.

A reset function.

This would make the equivalent request to the operating system to put the terminal
back into normal mode.

A clear window function.

Thiswill clear all rows and columns of the display area, setting them to achosen
"background" character.

A frame window function.

Clears the window, then fillsin the perimeter (asin the example shown in Figure
12.1).

A move cursor function.

Thiswill usethe IDE's got oxy() function to select the screen position for the
next character drawn ("positioning the cursor").

A put character function
Output a chosen character at the cursor's current position.
A prompt function that outputs a string on the prompt line.

A get character routine that returns the next character entered.

10 A delay function that can cause adelay of a specified number of seconds.

Prototypes of these functions are defined in the CG.h header file:

#i fndef _ OGSTUFF__
#define _ OGSTUFF__

Minimal
functionality required
in a curses package

CG.h

360

Programs with functions and arrays

/*
Routines for a "cursor graphics" package.

These routines provide a consistent interface, there are
differing inplenmentations for Intel (Borland) and PPC

(Symant ec)

pl at f or s.

This cursor graphics package is mnimalist, it doesn't attenpt
any optim zations.

The wi ndows avail able for cursor graphics are usually 25 |ines
by 80 colums. Since output to the last line or last colum
can sonetimes cause undesired scrolling, a snaller wrk area is
def i ned.

*/

const int GG WDITH = 78;
const int OG HEl GHT = 20;
const int OG PROWPTLI NE = 24;

/*

Initialize --- call before using cursor screen.
Reset --- call when finished.

*/

void GG lnitialize();
voi d OG Reset ();

/*

Moverrent and out put

*/

void GG MveQursor(int x, int y);

voi d GG Put Character(char ch);

void GG Put Character(char ch, int x, int y);
void GG d earWndow(char background ="' ');

void GG FrameW ndow(char background ="' ');
/*

Del ay for graphics effects

*

/

void GG Del ay(int seconds);

/*

Pronpting and getting i nput

*

/

void GG Pronpt (const char pronpt[]);
char GG Get Char ();

#endi f

Curses example 361

This file organization illustrates "good style" for a package of related routines.
Firstly, the entire contents a bracketed by a conditional compilation directive:

#ifndef _ OGSTUFF__
#define _ OGSTUFF__

#endi f

This mechanism is used to avoid compilation errors if the same header file gets
#included more than once. Before the file is read, the compile time "variable"
__OGSTUFF__ will be undefined, so #i f ndef ("if not defined") is true and the rest of
the file is processed. The first operation defines the "compile time variable"
__CGSTUFF__; if thefileis read again, the contents are skipped. If you don't have such
checks, then multiple inclusions of the file lead to compilation errors relating to
redefinition of constants like CG_ W DTH. (In larger programs, it is easy to get headers
multiply included because header files may themselves have #include statements and so
aparticular file may get referenced in severa places.)

A second stylistic feature that you should follow is illustrated by the naming of
constants and functions. All constants and functions start with the character sequence
CG_; thisidentifies them as belonging to this package. Naming conventions such as this
make it much easier for people working with large programs that are built from many
separate source files. When they see afunction called in some code, the function name
indicates the "package" where that it is defined.

The functions are provided by this curses package are grouped so as to make it
easier for a prospective user to get an idea of what the package provides. Where
appropriate, default argument values are defined.

Run time support from IDEs

The different devel opment environments provide slightly different versions of the same
low-level support functions. Although the functions are provided, there is little in the
IDES documentation to indicate how they should be used. The Borland Help system
and manuals do at least provide full details of the individual functions.

In the Borland environment, the header file conio.h contains prototypes for a number
of functions including:

i nt getche(void); /1 get and echo character
voi d gotoxy(int x,int y); /1 position cursor
int putch(int ch); // put character

Directives to protect
against " multiple
include" errors

Naming conventions

Run-time support
functions of the IDEs

362

Programs with functions and arrays

Delaysin programs

These specialized calls work directly with the DOS operating system and do not require
any special changes to "modes’ for keyboards or terminals. Borland "DOS/Standard"
applicationscan usea sl eep() function defined in dos.h.

In the Symantec environment, the header file console.h contains a prototype for

void cgotoxy(int x, int y, FILE *); // position cursor

(the FI LE* argument actually is set to a system provided variable that identifies the
window used for output by a Symantec program). The prototype for the sl eep()
function is in unix.h, and the file stdio.h contains prototypes for some other functions
for getting (f get c()) and putting (f put c() and ffl ush())individua characters. The
handling of input requires special initializing calls to switch the input mode so that
characters can be read immediately.

The best way to "pause" a program to allow a user to see some output is to make a
call to a system provided function. Following Unix, most operating systems provide a
sl eep() call that suspends a program for a specified number of seconds; while the
program is suspended, the operating system runs other programs or deals with
background housekeeping tasks. Sometimes, such a system call is not available; the
Borland "EasyWin" environment is one such case. EasyWin programs are not
permitted to use the DOS sl eep() function.

If you need a delay in a program and don't have a sl eep() function, or you need a
delay shorter than one second, then you have a couple of alternatives. Both keep the
program busy using the CPU for a specified time.

The more general approach is to use a compute loop:

voi d del ay(i nt seconds)

const |ong fudgefactor = 5000;
doubl e x;
I ong |'i m= seconds*fudgefactor;
whi | e(linp0) {
x =1.0/1lim
lim-;
}
}

Theideaisthat the calculation involving floating point division will take the CPU some
microseconds; so aloop with thousands of divisions will take a measurable time. The
f udgef act or isthen adjusted empirically until appropriate delays are obtained.

There are a couple of problems. You have to change the f udgef act or whenyou
move to a machine with a different CPU speed. Y ou may get caught by an optimising
compiler. A good optimising compiler will note that the value of x in the above codeis
never used; so it will eliminate the assignment to x. Then it will note that the loop has
essentially no body. So it eliminates the loop. The assignment to | i m can then be
omitted; allowing the optimising compiler to reduce the function to voi d del ay(i nt)

Curses example 363

{ } which doesn't have quite the same properties. The compilers you usualy use are
much less aggressive about optimizing code so computational loops often work.

An aternative isto use system functionslike Ti ckCount er () (see 10.10). If your
system has Ti ckCount er () function that returns " seconds since machine switched on",
you can achieve adelay using code like:

voi d del ay(int seconds)

long Iim= TickGCounter() + seconds;
whil e(TickCounter() < 1im

}

(The function call in the loop will inhibit an optimising compiler, it won't try to change
this code). Most compilers will give awarning about the empty body in the while loop;
but it is exactly what we would need here.

Implementation of curses functions

The code to handle the cursor graphics functions is simple; it is largely comprised of
calls to the run-time support functions. This code makes fairly heavy use of conditional
compilation directives that select the specific statements required. The choice amongst
alternatives is made by #defining one of the compiler time constants SYMANTEC,
DOS, or EASYWIN.

Thefirst part of the file #includes the appropriate system header files:

| * First part of CG.cp,
I npl enent ati on of Qursor @ aphics for Symantec 8 #including selected
and Borland (either DO5 standard or EasyWn) headers
Versions conpiled are controlled by conpile tine #defines

SYMANTEC for Mac/ PC

DO

EASYW N

*/
#defi ne SYMANTEC

#i f defi ned(SYNANTEC)

/*

stdio is needed for fputc etc;

console is Symantec's set of functions |ike gotoxy
uni x for sleep function

*/

#i ncl ude <stdio. h>

#i ncl ude <consol e. h>

#i ncl ude <uni x. h>

364 Programs with functions and arrays

#endi f

f defi ned(DOB)

/*

coni o has Borland' s cursor graphics primtives
dos needed for sleep function

*/

#i ncl ude <coni o. h>

#i ncl ude <dos. h>

#endi f

#i f defi ned(EASYWN)

/*

Still need conio, but can't use sleep, achieve del ay by
al ternative mechani sm

*/

#i ncl ude <coni o. h>

#endi f

#i ncl ude "G h"

All version need to include CG.h with its definitions of the constants that determine the
alowed width and height of the display area.

The various functionsin the package are then defined. In some versions, the body of
afunction may be empty.

File CG.cp, void GG Initialize()
Initialize() and
Reset() functions #i f defi ned(SYVANTEC)
/*
Have to change the "nmode" for the 'consol e’ screen.
Putting it in C CBREAK all ows characters to be read one by one
as they are typed
*/
cset mode(C_CBREAK, stdin);
el se
/*
No special initializations are needed for Borland environments
*/
#endi f
}

void GG Reset ()

{
#i f defi ned(SYMANTEC)
cset mode(C_ ECHQ stdin);
#endi f
}

Curses example

365

The MoveCursor () function makes the call to the appropriate run-time support
routine. Note that you cannot predict the behaviour of the run-time routine if you try to
move the cursor outside of the screen areal The run-time routine might well crash the
system. Consequently, this MoveQur sor () function has to constrain the arguments to

fit within the allowed range:

void GG MoveQursor (int X,

1) ?21: x

y=(y<1 ?21:y;

#i f defi ned(SYMANTEC)
cgot oxy(X, Yy, stdout);
#el se
got oxy(X, y);
#endi f
}

G WDTH 2 GG WDTH : x;

y = (y > OGHEIGHT) ? OG HEIGHT : y;

int y)

Function Put Char acter ()

is "overloaded". Two versions are provided with

slightly different argument lists. The first outputs a character at the current position.
The second does a move to an explicit position before outputting the character. Note
that the second function calls the more primitive MveCursor() and
Put Char act er (char) routines and does not duplicate any of their code. Thisis
deliberate. If it is necessary to change some detail of movement or character output, the
change need be made at only one place in the code.

{

#i f defi ned(SYNANTEC)
fputc(ch, stdout);
fflush(stdout);

#el i f
put ch(ch);

#endi f

}

GG _MveQursor (X, Y);
GG _Put Char act er (ch);

}

voi d GG Put Char act er (char ch)

voi d GG Put Char acter(char ch,

int x, inty)

The Cl ear W ndow() function uses a double loop to fill put "background"
characters" at each position. (The run-time support routines provided by the IDES may
include additional "clear to end of screen” and "clear to end of line" functions that
might be quicker if the background character is').

File CG.cp:
MoveCursor()
function

File CG.cp,
PutCharacter()
functions

366 Programs with functions and arrays

The Fr ameW ndow() function usesd ear W ndow() and then hasloopsto draw top,
bottom, left and right edges and individual output statements to place the four corner

points.
File CG.cp voi d GG d ear Wndow(char backgr ound)
ClearWindow() and {
FrameWindow() for(int y=1;y<=0G HEl GHT; y++)
functions for(int x=1, x<=0G WDTH x++)
GG _Put Char act er (background, x, y);
}
voi d GG FraneW ndow(char backgr ound)
{
GG _d ear W ndow(backgr ound) ;
for(int x=2; x<OG WDTH x++) {
QG Put Character('-',x,1);
CG Put Character('-',x, GG HEl GHT);
}
for(int y=2; y < OG HEIGHT; y++) {
CG Put Character('|',1,y);
GG Put Character('|',CG WDTH y);
}
GG Put Character('+,1,1);
GG Put Character (' +,1, GG HEl GHT) ;
GG Put Character (' +,0G WDTH, 1) ;
GG Put Character (' + ,0G WDTH CG HEl GHT) ;
}

The Del ay() function can use the system sl eep() cal if available; otherwise it
must use something like a computational |oop:

File CG.cp, Delay() void GG Del ay(int seconds)
function {
#i f defi ned(EASYWN)
/*
The EasyWn environnent does not allow use of dos's sleep()
function.
So here do a "conputational delay”
The val ue 5000 will have to be adjusted to suit machi ne
*/
const |ong fudgefactor = 5000;
doubl e x;
| ong |'i m= seconds*fudgefactor;
whi | e(li mp0) {
x =1.0/lim
lim-;

}

#el se

Curses example 367

sl eep(seconds) ;
#endi f

}

Function Pr onpt () outputs a string at the defined prompt position. This code uses
a loop to print successive characters; your IDE's run time routines may include a "put
string” function that might be dlightly more efficient.

The Get Char () routine uses a run time support routine to read a single character
from the keyboard.

void CG Pronpt (const char pronpt[])

{
#i f defi ned(SYMANTEC)
cgot oxy(1, OG PROWPTLINE, stdout);

#el se
got oxy(1, OG PROWTLI NE);
#endi f
for(int i=0; pronpt[i] !="\0"; i++)
OG Put Character (pronpt[i]);
}

char GG Get Char ()

{
#i f defi ned(SYNANTEC)
return fgetc(stdin);
el i f
return getche();
#endi f

}

Example test program

The program to test the curses package will:

1 Display awindow with a"pen" that the user can move by keyed commands.

2 Theinitia display isto show a"framed window" with " as a background character
and the pen (indicated by a"*") located at point 10, 10 in the window. A ">' prompt
symbol should be displayed on the promptline.

3 Thepen can either bein "draw mode" or "erase mode". In"draw mode" itisto

leave atrail of '# charactersasitismoved. In"erase mode" it leaves background '.!
characters. Initially, the penisin"draw mode".

File CG.cp, Prompt()
and GetChar()
functions

368 Programs with functions and arrays

4 Theprogramisto loop reading single character commands entered at the keyboard.

The commands are:
qorQ terminate the loop and exit from the program
uorU move the pen up one row
dorD move the pen down one row
lorL move the pen left one column
rorR move the pen right one column
eorkE switch pen to erase mode
iorl switch pen to ink mode

Any other character input is to be ignored.

5 The pen movement commands are to be restricted so that the pen does not move
onto the window border.

Design
Firstiteration Thereis nothing much to thisone. The program structure will be something like:

nove pen
out put ink or background synbol at current pen position
updat e pen position, subject to restrictions
out put pen character, '*', at new pen position
nai n
initialize
loop until quit command
get command char act er
switch to select
change of pen node
novenent s
reset

The different movements al require similar processing. Rather than repeat the code
for each, afunction should be used. This function needs to update the X, y coordinate of
the pen position according to delta-x and delta-y values specified as arguments. The
various movement cases in the switch will call the "move pen" function with different
delta arguments.

Second iteration The pen mode can be handled by defining the "ink" that the pen uses. If it isin
"erase mode", theink will bea".' character; in "draw mode" the character will be '#.

The variables that define the X, y position and the ink have to be used in both nai n()
and "move pen"; the x and y coordinates are updated by both routines. The x, y values
could be made filescope — and therefore accessible to both routines. Alternatively, they

Curses example 369

could be local to mai n() but passed by reference in the call to "move pen”; the pass by
reference would allow them to be updated.

The only filescope data needed will be constants defining limits on movement and
the various characters to be used for background, pen etc. The drawing limit constants
will be defined in terms of the window-limit constantsin the #included CG.h file.

File CG.h would be the only header file that would need to be included.

The loop structure and switch statement in main() would need a little more planning
before coding. The loop could be awhi | e (or af or) with atermination test that checks
an integer (really abool ean but we don't have those yet in most C++ implementations)
variable. Thisvariable would initialy be false (0), and would get set to true (1) when a
'quit’ command was entered.

The switch should be straightforward. The branches for the movement commands
would all contain just calls to the move pen function, but with differing delta x and
deltay arguments.

Function MovePen() will have the prototype:

void MowvePen(int& x, int&y, int dx, int dy, char ink)

The x, y coordinates are "input/output” ("value/result") arguments because the current
values are used and then updated. These must therefore be passed by reference. The
other arguments are "input” only, and are therefore passed by value.

| mplementation

Thefile test.cp starts with its one #include (no need for the usual #include <iostream.h>
etc). The CG files (CG.h and CG.cp) will have to be in the same directory as the test
program. This doesn't cause any problems in the Borland environment as you can have
aproject folder with several different target programs that share files. In the Symantec
environment, you may find it necessary to copy the CG files into the separate folders
associated with each project.

After the #include, the constants can be defined:

#i ncl ude "GG h"

const int XMN = 2;
const int XMAX = G WDTH- 1;
const int YMN = 2;
const int YMAX = OG HEl GHT-1;

const char pensym="*";
const char background ="'.";
const char drawsym="#";

Function MovePen() isstraightforward:

Third iteration

370 Programs with functions and arrays

void MwvePen(int& x, int&y, int dx, int dy, char ink)

{
GG Put Character (i nk, x, y);
X += dx;
X =(x>XMN ?x: XMN
X = (x <= XMAX) ? x @ XNMAX
y += dy;
y=(y>YMN ?y: YMN
y = (y <= YMAX) ? vy : YMAX
GG _Put Char act er (pensym X, Y) ;
}

Function mai n() beginswith declarations and the initialization steps:

int main()

{
char ink = drawsym
int x = 10;
int y = 10;

int done = 0;

GG Initialize();
GG FrameWndow('.");
GG _Put Char act er (pensym X, y) ;

Here, theloop isdoneusing f or (; ! done;) ; awhi | e loop might be more natural:

for(;!done;) {
QG Pronpt (">")
int ch;
ch = GG GetChar () ;

The switch handles the various possible commands as per specification:

swi tch(ch) {

case 'i

case 'I'’
// put pen in drawi ng node, the default
i nk = drawsym
br eak;

case 'e':

case 'E:

// put pen in erase node

Curses example 371

i nk = backgr ound;

br eak;

case 'u':

case 'U:
MovePen(x, y, 0, -1, ink);
br eak;

case 'd':

case 'D:
MovePen(x, y, 0, 1, ink);
br eak;

case '|':

case 'L':
MovePen(x, y, -1, 0, ink);
br eak;

case 'r':

case 'R:
MovePen(x, y, 1, 0, ink);
br eak;

case 'q':

case 'Q:
done = 1;
br eak;

defaul t:
br eak;
}

}
GG Reset () ;
return O;
}

12.2 HEAT DIFFUSION

Back around section 4.2.2, we left an engineer wanting to model heat diffusion in a
beam. We can now do it, or at least fake it. The engineer didn't specify the heat
diffusion formula so we'll just have to invent something plausible, get the program to
work, and then give it to him to code up the correct formula.

Figure 12.4 illustrates the system the engineer wanted to study. A flame isto heat
the mid point of a steel beam (of undefined thickness), the edges of which are held at
ambient temperature. The heat diffusion is to be studied as a two dimensional system.
The study uses a grid of rectangles representing areas of the beam, the temperatures in
each of these rectangles are to be estimated. The grid can obviously be represented in
the program by two dimensional array.

372 Programs with functions and arrays

The system model assumes that the flame is turned on and immediately raises the
temperature of the centre point to flame temperature. This centre point remains at this
temperature for the duration of the experiment.

Flame at almost 1000°C
Edges at 25 °C

e ° /

Grid on which temperatures will be modelled:

t ypedef double Gid[51][15];

Figure 12.4 The heat diffusion experiment.

Thermal conduction soon raises the temperature of the eight immediately
neighboring grid square. In turn they warm their neighbors. Gradually the centre point
gets to be surrounded by a hot ring, which in turn is surrounded by a warm ring.
Eventually, the system comes to equilibrium.

The program is to display these changes in temperature as the system evolves. The
temperatures at the grid squares are to be plotted using different characters to represent
different temperatures ranges. Thus, '# could represent temperatures in excess of
900°C, '@ for temperatures from 800 to 899°C and so forth. Figure 12.5 illustrates
such plots.

The model for the heat diffusion is simple. (But it doesn't represent the real
physics!) An iterative process models the changes of temperatures in unit time
intervals. The temperature at each grid point increases or decreases so that is closer to
the average of the surrounding eight grid points. For example, consider a point adjacent
to the spot that is being heated, just after the flameis turned on:

25 25 25 25 25
25 25 25 25 25
25 25 1000 25 ...
25 25 25 25 ..

Heat diffusion example 373

10 iterations 60 iterations

Figure 12.5 Temperature plots for the heat diffusion example.

The average of its eight neighbors is 146.8 ((1000 + 7*125)/8). So, this points
temperature should increase toward this average. The rate at which it approaches the
average depends on the thermal conductivity of the material; it can be defined by a
formulalike:

new tenp = conduct * average + (1 - conduct)* current

with the value of conduct being afraction, e.g. 0.33. If the formulais defined like this,
the new temperature for the marked point would be 65.1. This results in the
temperature distribution

25 25 25 25 25
25 65 65 65 25
25 65 1000 65 ...
25 65 65 65 ..

(The centre point is held at 1000°C by the flame.) On the next iteration, the average
temperature of this point's neighbors would be 156.8, and its temperature would
increase to 95°C.

This process has to be done for all points on the grid. Note that this will require two
copies of the grid data. One will hold the existing temperatures so that averages can be
computed; the second is filled in with the new values. You can't do this on the same
grid because if you did then when you updated one point you would change
inappropriately the environment seen by the next point.

Once the values have been completed, they can be displayed. Changes in single
iterations are small, so normally plots are needed after a number iterative cycles have

374

Programs with functions and arrays

Firstiteration

Second iteration

been completed. The "plotting" could use the cursor graphics package just
implemented or standard stream output. The plot simply requires a double loop to print
the values in each grid point. The values can be converted into characters by dividing
the range (1000 - 25) into ten intervals, finding the interval containing a given
temperature and using a plotting character selected to represent that temperature
interval.

Specification
The program to model atwo dimensional heat diffusion experiment:

1 The program will model the process using atwo dimensional array whose bounds
are defined by constants. Other constants in the program will specify the ambient
and flame temperatures, and a factor that determines the "thermal conductivity" of
the material.

2 Theprogram will prompt the user for the number of iterations to be performed and
the frequency of displays.

3 Once modelling starts, the temperature of the centre point is held at the "flame
temperature”, while the perimeter of the surface is held at ambient temperature.

4 In each iteration, the temperatures at each grid point (i.e. each array element) will
be updated using the formul ae described in the problem introduction.

5 Displayswill show the temperature at the grid points using different charactersto
represent each of ten possible temperature ranges.

Design
The program structure will be something like:

mai n
get iteration limt
get print frequency
initialize grid
| oop
update values in grid to reflect heat diffusion
if time to print, show current val ues

Naturally, this breaks down into subroutines. Function I nitialize() isaobvious,
asare Heat Di f fuse() and Show().

Initialize

Heat diffusion example 375

doubl e I oop sets all tenperatures to "anbient”
tenperature of centre point set to "flane"

Show
doubl e | oop
for each row do
for each columm do
get tenperature code character
for this grid point
out put charact er
new i ne

Heat D f f use
get copy of grid val ues
doubl e | oop
for each row do
for each col do
usi ng copy work out average tenp.
of environment of grid pt.
cal cul ate new tenp based on current
and envi r onnent
store in grid
reset centre point to flane tenperature

Whilelnitialize() is codeable, both Show() and HeatDiffuse() require
additional auxiliary functions. Operations like "get temperature code character" are too
complex to expand in line.
Additional functions have to be defined to handle these operations: Third iteration

CodeTenper at ur e

/1 find range that includes tenperature to be coded

set value to represent anbient + 0.1 * range

i ndex = 0;

whil e value < tenp
i ndex++, val ue += 0. 1*range

use index to access array of characters representing
the different tenperature ranges

Copy orid
doubl e loop filling copy fromoriginal

New t enper at ur e
formul a given conductivity*environment + (1- cond)*current

Average of nei ghbors
find average of tenperatures in three neighbors in row
above, three neighbors in row below, and |eft, right
nei ghbor s

376

Programs with functions and arrays

Final stages

While most of these functions are fairly straightforward, the "average of neighbors"
does present problems. For grid point r, ¢, you want:

glr-1][c-1] + g[r-1][c]+ g[r-1][c+l] +
glrlfc-1] + g[r][c+l] +
glr+1][c-1] + glr+1][c]+ g[r+1][c+1]

But what do you do if r == 0? Thereisno -1 row.

The code must deal with the various special cases when the point is on the edge and
there is either no adjacent row or no adjacent column. Obviously, some moderately
complex conditional tests must be applied to eliminate these cases.

Anything that is "moderately complex" should be promoted into a separate function!
An approach that can be used hereisto have a Tenper at ur eAt () function that is given
arow, column position. If the position is within the grid, it returns that temperature.
Otherwise it returns "ambient temperature”. The "average of neighbors' function can
usethis Tenper at ur eAt () auxiliary function rather than accessing the grid directly.

Tenper at ur eAt (row, col)
if rowoutside grid
return anbi ent
if col outside grid

return anbi ent
return grid[r][c]

Aver age of nei ghbors(row, col)
ave = - grid[row[col]
for r=row1 to row+l
for col =col-1to col+1
ave += TenperatureAt (r,c)
return ave/ 8

The sketch for the revised "Average of Neighbors" uses a double loop to run though
nine sgquares on the grid. Obviously that includes the temperature at the centre point
when just want to consider its neighbors; but this value can be subtracted away.

All that remains is to decide on function prototypes, shared data, and so forth. Asin
earlier examples, the function prototypes are simplified if we use a typedef to define
"Grid" to mean an array of doubles:

typedef doubl e G id[kW DTH [KLENGTH ;

The prototypes are:

char CodeTenper at ur e(doubl e tenp);
void Show(const Gid g);

void Copy@Gid(Q@id dest, const Gid src);

Heat diffusion example 377

doubl e TenperatureAt(const Qid g, int row int col);

doubl e Average™ Nei ghbors(const Gid g, int row, int col);

doubl e NewTenper at ur e(doubl e currenttenp, doubl e envtenp);

void HeatD ffuse(@id g);

void Initialize(Qid g);

int main();
The main Gri d variable could have been made filescope and shareable by all the
functions but it seemed more appropriate to define it as local to main and pass it to the
other functions. The const qualifier is used on the Gri d argument to distinguish those
functionsthat treat it as read only from those that modify it.

There should be no filescope variables, just a few constants. This version of the
program uses stream output to display the results so #includes <iostream.h>.

Implementation

The file starts with the #includes and constants. The array Tenper at ur eSynbol s[]
has increasingly 'dense’ characters to represent increasingly high temperatures.

#i ncl ude <i ostream h>
#i ncl ude <assert. h>

const int kWDIH = 15;
const int KLENGIH = 51;

const doubl e KAMBI ENT = 25;

const doubl e KFLAMVE = 1000;

const doubl e KRANGE = kFLAME - kAMBI ENT;
const doubl e KSTEP = KRANGE / 10.0;

const doubl e KCONDUCT = 0. 33;

const int kM DX
const int kM DY

KLENGTH / 2;
kWDTH / 2;

const char TenperatureSynbol s[] = {
I')I-'lI+'|I='|I*‘|IH|I&|I$IyI@yI#I
b

typedef double Gid[kWDTH [kLENGTH ;

378 Programs with functions and arrays

Function CodeTenper at ure() sets the initial range to (25, 120) and keeps
incrementing until the range includes the specified temperature. This should result in
anindex inrange 0 .. 9 which can be used to access the Tenper at ur eSynbol s[] array.

char CodeTenper at ur e(doubl e t enp)

t
int i =0;
doubl e t = kAMBI ENT + kSTEP;
while(t <temp) { i++ t += kSTEP, }
assert (i < (sizeof (Tenperat ureSynbol s)/si zeof (char)));
return Tenperat ureSynbol s[i];
}

Both Show() and CopyGrid() use similar double loops to work through all
elements of the array, in one case printing characters and in the other copying values.
Show() outputs a \f' or "form feed" character. This should clear the window (screen)
and cause subsequent output to appear at the top of the window. This is more
convenient for this form of display than normal scrolling.

The curses library could be used. The routine would then use GG Put Char act er (
char, int, int) tooutputcharactersat selected positions.

void Show(const Gid @)

{
cout << '"\f';
for(int r=0; r< KWDTH r++) {
for(int ¢ = 0; ¢ < KLENGTH c++)
cout << CodeTenperature(g[r][c]);
cout << endl;
cout << endl;
}

void Copy@id(Q@id dest, const Gid src)
{

for(int r=0;r<kWDTH r++)
for(int c=0;c<kLENGTH c++) dest[r][c] = src[r][c];
}

The Tenper at ur eAt () and Aver ager Nei ghbor s() functions are straightforward
codings of the approaches described in the design:

doubl e TenperatureAt(const Qid g, int row int col)

if(row < 0)
return KAMBI ENT;
i f(row >= kWDTH
return KAMVBI ENT;

Heat diffusion example 379

if(col <0)
return kKAMBI ENT;

i f(col >= KLENGTH)
return kKAMBI ENT;

return g[row[col];

}
doubl e Average™ Nei ghbors(const @id g, int row int col)

doubl e Average = -g[row[col];

for(int r =row- 1, r <=row+ 1; r++)
for(int ¢ =col - 1, ¢ <= col + 1; c++)
Average += TenperatureAt (g, r, c);

return Average / 8.0;

}

As explained previously, there is nothing wrong with one line functions if they help
clarify what is going on in aprogram. So function NewTenper at ur e() isjustified (you
could defineit asi nl i ne doubl e NewTenper ature() if youdidn't like paying the
cost of afunction cal):

doubl e NewTenper at ur e(doubl e currenttenp, doubl e envtenp)

{
}

return (KCONDUCT*envtenp + (1.0 - kCONDUCT) *currenttenp);

Function Heat Di f fuse() has to have a local Grid that holds the current values
while we update the main Grid. This copy is passed to CopyGri d() to befilled inwith
current values. Then get the double loop where fill in the entries of the main Grid with
new computed values. Finally, reset the centre point to flame temperature.

void HeatD ffuse(@id g)

Qid tenp;
Copy@id(tenp, g);
for(int r =0; r < kWDTH r++)
for(int ¢ = 0; c < KLENGTH c++) {

doubl e envi ronnment = Aver aged Nei ghbor s(
tenp, r, c);
doubl e current = tenp[r][c];
glr][c] = NewTenperat ure(
current, environnent);

}
g[kMDY][kM DX = KFLAVE,

380 Programs with functions and arrays

}
void Initialize(Gid g)

for(int r=0;r<kWDTH r++)
for(int c=0; c<kLENGTH c++) g[r][c] = kAMBI ENT;
g[kM DY][KM DX] = KFLAME;

The main program is again simple, with all the complex processing delegated to
other functions.

int main()

{
i nt nsteps;
int nprint;
cout << "Number of time steps to be nodelled : ";
cin >> nsteps;
cout << "Nunber of steps between printouts : ";
cin >> nprint;

Qid g;
Initialize(g);

for(int i =0, j =0; i <nsteps; i++) {
Heat Di f f use(Q);
i+

if(j==nprint) { j =0; Show(g); }
}

return O;

}

If you have a very fast computer, you may need to put a delay after the call to
Show() . However, there are enough floating point cal culations being done in the loops
to slow down the average personal computer and you should get sufficient time to view
one display before the next is generated. A suitable input data values are nst eps ==
100 andnprint == 10. The patterns get more interesting if the flame temperature is
increased to 5000°C.

12.3 MENU SELECTION

Design of asingle Many programs need to present their users with a menu of choices. This kind of
utilityroutine - commonly required functionality can be separated out into a utility routine:

int MenuSel ect(.);

Menu selection example 381

Normal requirements include printing a prompt, possibly printing the list of choices,
asking for an integer that represents the choice, validating the choice, printing error
message, handling a ? request to get the options relisted, and so forth. This function can
be packaged in alittle separately compiled file that can be linked to code that requires
menu selection facilities.

The function has to be given:

1 aninitial prompt ("Choose option for ...");

2 anindication asto whether the list of choices should be printed before waiting for
input;

3 an array with the strings defining the choices;

4 aninteger specifying the number of choices.
The code will be along the following lines:

print pronpt
if need to list options
list them
r epeat
ask for integer in specified range
deal with error inputs
deal with out of range
until valid entry

Dealing with out of range values will be simple, just requires an error message
reminding the user of the option range. Dealing with errorsis more involved.

Errors like end of file or "unrecoverable input" error are probably best dealt with by ~Design, second
returning a failure indicator to the calling program. We could simply terminate the 'teration
program; but that isn't a good choice for a utility routine. It might happen that the
calling program could have a "sensible default processing” option that it could use if
there is no valid input from the user. Decisions about terminating the program are best
left to the caller.

There will also be recoverable input errors. These will result from a user typing
alphabetic or punctuation characters when a digit was expected. These extraneous
characters should be discarded. If the first character is a'?, then the options should be
displayed.

Sorting out unrecoverable and recoverable errors is too elaborate to be expanded in
line, we need an auxiliary function. These choices lead to arefined design:

handl e error
check i nput status,
if end of file or bad then
return "give up" indicator (7?0)

382 Programs with functions and arrays

read next character
if ? then
l'ist options
renmove all input until newine
return "retry" indicator (?1)

nmenusel ect
print pronpt
if need to list options
list them
r epeat
ask for integer in specified range
read i nput

if not input good
if handle_eror !=retry
return failure
conti nue

check input against linits
if out of range
print details of range, and
"? to list options"
until valid entry
return choice

Design, third The activity "list options" turns up twice, so even though this will probably be a one
iteration o o line routine it is worth abstracting out:

list options
for each option in array
print index number, print option text

The MenuSel ect () function has to be given the prompt and the options. These will
be arrays of characters. Again it will be best if atypedef is used to introduce a name
that will allow simplification of argument lists and so forth:

const int UT_TXTLENGIH = 60;

typedef char UT_Text [UT_TXTLENGTH ;

The UT_ prefix used in these names identifies these as belonging to a "utility" group of
functions.

Conventions have to be defined for the values returned from the MenuSel ect ()
function. A value -1 can indicate failure; the calling routine should terminate the
program or find some way of managing without a user selection. Otherwise, the value
can be in the range 0 ... N-1 if there are N entries in the options table. When

Menu selection example 383

communicating with the user, the options should be listed as 1 ... N; but a zero based
representation is likely to be more convenient for the calling routine.
Hiding implementation only functions

Although there appear to be three functions, only one is of importance to other
programmers who might want to use this menu package. The"list options" and "handle
error" routines are details of the implementation and should be hidden. This can be
donein C and C++. These functions can be defined as having filescope — their names
are not known to any other part of the program.

The function prototypes can now be defined:

static void ListQotions(const UT _Text options[], int nunopts);

static int Handl eError(const UT_Text options[], int nunopts);
int UT_MenuSel ect (const UT_Text pronpt,
options[],

int nunopts,

const UT_Text

int listopts);

The two static functions are completely private to the implementation. Other
programmers never see these functions, so their names don't have to identify them as
belonging to this package of utility functions. Function MenuSel ect () and the Text
(character array) datatype are seen by other programmers so their finalised names make
clear that they belong to this package.

Implementation

Two files are needed. The "header” file describes the functions and types to other parts
of the program (and to other programmers). The implementation file contains the
function definitions.

The header file has the usua structure with the conditional compilation bracketing to
protect against being multiply included:

#i f ndef
#def i ne

ur

ur

const int UT_TXTLENGIH = 60;

typedef char UT_Text [UT_TXTLENGTH ;

int UT_MenuSel ect (const UT_Text pronpt,

options[],
int nunopt s,

const UT_Text
int listopts);

#endi f

Finalising the design

UT.h " header file"

384 Programs with functions and arrays

The implementation file will start with #includes on necessary system files and on
UT.h. The functions need the stream i/o facilities and the iomanip formatting extras:

UT.cp #i ncl ude <i ostream h>
implementation #i ncl ude <i omani p. h>

#i ncl ude " UT. h"

Function Li st Opti ons() simply loops through the option set, printing them with
numbering (starting at 1 as required for the benefit of users).

static void ListQptions(const UT Text options[], int nunmopts)

{
cout << "Choose fromthe follow ng options:" << endl;
for(int i =1; i <= nunopts; i++) {
cout << setw(4) << i << ": " << options[i-1]
<< endl ;
}
}

Function Handl eError () isonly called if something failed oninput. It checksfor
unrecoverable errors like bad input; returning a 0 "give up" result. Its next step isto
"clear" thefailureflag. If thisisnot done, none of the later operations would work.

Once the failure flag has been cleared, characters can be read from the input. These
will be the buffered characters containing whatever was typed by the user (it can't start
with adigit). If thefirst character is'?, then the options must be listed.

Theci n. get (ch) input styleis used instead of ci n >> ch because we need to
pick up the "whitespace" character '\n' that marks the end of the line. We could only
useci n >> ch if we changed the "skip whitespace mode" (as explained in Chapter 9);
but the mode would have to be reset afterwards. So, here it is easier to use the get ()
function.

static int Handl eError(const UT_Text options[], int nunopts)

if(cin.eof() || cin.bad())
return O;

cin.clear();
char ch;
cin.get(ch);
if(ch="'7")
Li st Opti ons(opti ons, nunopts);
el se
cout << "lllegal input, discarded" << endl;

while(ch !'="\n")
cin.get(ch);

Menu selection example 385

return 1;

}

Function MenuSel ect () prints the prompt and possibly gets the options listed. It
thenusesado ...whil e loop construct to get data. This type of loop is appropriate
here because we must get an input, so a loop that must be traversed at least once is
appropriate. 1f we do get bad input, choi ce will be zero at the end of loop body; but
zero isnot avalid option so that doesn't cause problems.

Thevaue of choi ce isconverted back toa0 ... N-1rangeinther et ur n statement.

int UT_MenuSel ect (const UT_Text pronpt, const UT_Text
options[],
int nunopts, int |istopts)

{
cout << pronpt << endl;
if(listopts)
Li st ptions(options, nunopts);
int choice = -1;
do {
cout << "Enter option nunber in range 1 to "
<< nunopt s
<< ", or ? for help" << endl;
cin >> choi ce;
if(lcin.good()) {
i f(!'Handl eError (options, nunopts))
return -1;
el se conti nue;
}
if(! ((choice >= 1) && (choice <= nunopts))) {
cout << choice <<
'"is not a valid option nunber,"
" type ? to get option list" << endl;
}
}
while (! ((choice >= 1) & (choice <= nunopts)));
return choice - 1;
}

A simple test program

Naturally, the code has to be checked out. A test program has to be constructed and
linked with the compiled UT.o code. The test program will #include the UT.h header

file and will define an array of UT_Text data elements that are initialized to the
possible menu choices:

386

Programs with functions and arrays

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
#i ncl ude "UT. h"

static UT_Text choices[] = {

" Sex",
"Drugs"”,
"Rock and Rol I "
b
int main()
{
int choi ce = UT_MenuSel ect ("Lifestyle?", choices, 3, 0);
swi t ch(choi ce) {
case O:
cout << "Yes, our nost popular line" << endl;
br eak;
case 1:
cout << "Not the best choice" << endl;
br eak;
case 2:
cout << "Are you sure you wouldn't prefer "
"the first option?" << endl;
br eak;
}
return BEXI T_SUGCCESS;
}

When the code has been tested, the UT files can be put aside for use in other
programs that need menus.

12.4 PICK THE KEYWORD

Although not quite as common as menu selection, many programs require users to enter
keyword commands. The program will have an array of keywords for which it has
associated action routines. The user enters a word, the program searches the table to
find the word and then uses the index to select the action. If you haven't encountered
this style of input elsewhere, you will probably have met it in one of the text oriented
adventure games where you enter commands like "Go North" or "Pick up the box".

These systems generally allow the user to abbreviate commands. If the user simply
types a couple of letters then this is acceptable provided that these form a the start of a
unique keyword. If the user entry does not uniquely identify a keyword, the program
can either reject the input and reprompt or, better, can list the choices that start with the
string entered by the user.

Thefunction Pi ckkeyWrd() will needto begiven:

Pick the keyword example 387

1 aninitia prompt;
2 anarray with the keywords;

3 aninteger specifying the number of keyword choices.
The code will be along the following lines:

print pronpt
| oop
read i nput
search array for an exactly matched keyword
if find match
return index of keyword
search array for partial natches
if none,
(maybe) warn user that there is no match
start |oop again!
if single partial match,
(maybe) identify natched keyword to user
return index of keyword
list all partially matching keywords

The "search array for ..." steps are obvious candidates for being promoted into Design, second
separate auxiliary functions. The search for an exact match can use the st rcnp() 'teration
function from the string library to compare the data entered with each of the possible
keywords. A partial match can be found using st rncnp() , the version of the function
that only checks a specified number of characters; st rncnp() can be called asking it to
compare just the number of charactersin the partial word entered by the user.

Partial matching gets used twice. First, a search is made to find the number of
keywords that start with the characters entered by the user. A second search may then
get made to print these partial matches. The code could be organized so that a single
function could fulfil both roles (an argument would specify whether the partially
matched keywords were to be printed). However, it is slightly clearer to have two
functions.

The searches through the array of keywords will have to be "linear". The search will
start at element 0 and proceed through to element N-1.

Thus, we get to the second more detailed design:

Fi ndExact Mat ch
for each keyword in array do
if strcnp() nmatches keyword & i nput
return index
return -1 failure indicator

Count Par ti al Mat ches
count =0

388 Programs with functions and arrays

for each keyword in array do
if strncnp() matches input & start of keyword
i ncrement count
return count

PrintParti al Mat ches
for each keyword in array do
if strncnp() matches input & start of keyword
print keyword

Pi ckkeyWrd
print pronpt
| oop
read i nput

mm = Fi ndExact Mat ch(..)
i f (mMP=0)
return mm

partial _count = CountParti al Mat ches(..)

if partial _count == 0,
(maybe) warn user that there is no match
start | oop again!

if partial _count == 1,
(maybe) identify natched keyword to user
return index of keyword ????

PrintPartial Mat ches(..)

The sketch outline for themain Pi ckKeyWor d() routine reveals a problem with the
existing Count Parti al Mat ches() function. We realy need more than just a count.
We need acount and an index. Maybe Count Parti al Mat ches() could take an extra
output argument (i nt & —integer reference) that would be set to contain the index of the

(last) of the matching keywords.

Design, third We have to decide what "keywords" are, and what the prompt argument should be.
iteralion - The prompt could be made a UT_Text , the same "array of =60 characters' used in the
MenuSelect() example. The keywords could also be UT_Text s but given that most

words are less than 12 characters long, an allocation of 60 is overly generous. Maybe a

new character array type should be used

const int UT_WRDLENGTH = 15;

typedef char UT_WORO UT_WRDLENGTH] ;

The Pi ckkeyWord() function might as well become another "utility" function and so

can share the UT_ prefix.

Pick the keyword example 389

As in the case of MenuSelect(), although there four functions, only one is of
importance to other programmers who might want to use this keyword matching
package. The auxiliary Fi ndExact Mat ch() and related functions are details of the
implementation and should be hidden. As before, these functions can be defined as
having filescope — their names are not known to any other part of the program.
The function prototypes can now be defined: Finalising the design

static int Fi ndExactMatch(const UT_Word keyws[], int nkeys,
const UT_Word input);

static int CountPartial Mat ches(const UT_Wrd keyws[], int
nkeys,
const UT_Word input, int& |astmatch);

static void PrintPartial Mat ches(const UT_Wird keyws[],
i nt nkeys, const UT_Wrd input);

int UT_Pi ckkeyWrd(const UT_Text pronpt,
const UT Word keywords[], int nkeys);

These functions can go in the same UT.cp file as the MenuSel ect () group of
functions.

Implementation

The header file UT.h has now to include additional declarations:

const int UT_TXTLENGIH = 60;
const int UT_WRDLENGIH = 15;

typedef char UT_Word[UT_WRDLENGTH] ;
typedef char UT_Text [UT_TXTLENGTH ;

int UT_MenuSel ect (const UT_Text prompt, const UT_Text
options[],

int nunopts, int listopts);
int UT_Pi ckkeyWrd(const UT_Text pronpt,

const UT_Word keywords[], int nkeys);

The implementation in UT.cp is straightforward. Function Fi ndExact Mat ch() has
a simple loop with the call to strcnp(). Functionstrcnp() returns O if the two
stringsthat it is given are equal.

static int FindExactMatch(const UT_Word keyws[], int nkeys,
const UT_Wrd i nput)

for(int i =0; i < nkeys; i++)

390 Programs with functions and arrays

i f(0 == strcnp(input, keyws[i]))
return i;
return -1,

}

Functions Count Par ti al Mat ches() and Print Parti al Mat ches() both use
strlen() togetthenumber of charactersinthe user input and st rncnp() to compare
substrings of the specified length. The count routine has its reference argument
| ast mat ch that it can use to return the index of the matched string.

int CountPartial Mat ches(const UT_Word keyws[], int nkeys,
const UT_Word input, int& |astmatch)

{
int count = O;
int len = strlen(input);
| astmatch = -1;
for(int i =0; i < nkeys; i++)
i f(0 == strncnp(input, keyws[i], len)) {
count ++;
|astmatch = i;
}
return count;
}

void PrintPartial Mat ches(const UT_Wrd keyws[], int nkeys,
const UT_Wrd input)

{
cout << "Possible matching keywords are:" << endl;
int len = strlen(input);
for(int i =0; i < nkeys; i++)
if(0 == strncnp(input, keyws[i], len))
cout << keyws[i] << endl;
}

The only point of note in the PickkKeyWord() function is the "forever" loop —
for(;;) { ...}. Wedon't want the function to return until the user has entered a valid
keyword.

int UT_Pi ckkeyWrd(const UT_Text pronpt,
const UT_Wrd keywords[], int nkeys)

{
cout << pronpt;
for(;;) {
UT_Wrd input;

cin >> input;

i nt mm = Fi ndExact Mat ch(keywor ds, nkeys, input);
i f (MP=0)
return mm

Pick the keyword example 391

int match;
int partial_count =
Count Parti al Mat ches(keywor ds,
nkeys, input, match);

if(partial _count == 0) {
cout << "There are no keywords like "
<< input << endl;

conti nue;
}
if(partial _count == 1) {
cout << "i.e. " << keywords[match] << endl;
return match;
}
Print Parti al Mat ches(keywords, nkeys, input);

}

A simple test program

Asusual, we need a simple test program to exercise the functions just coded:

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
#i ncl ude "UT. h"

static UT_Wrd commands[] = {
"Quit",
"North",
"Sout h",
"East",
"Vest ",
"SW
h

const int nunkeys = sizeof (conmands)/si zeof (UT_Wrd);
int main()
cout << "You have dropped into a maze" << endl;
int quit = 0;

while(lquit) {
cout << "Fromthis room passages |ead "

392

Programs with functions and arrays

"in all directions" << endl;
int choice = UT_Pi ckkeyWrd(">", coomands, nunkeys);
swi t ch(choi ce) {

case 1:
case 3: cout << "You struggle along a steep and"
"narrow passage" << endl;
br eak;
case 2:
case 5:
cout << "You nove quickly through a rocky"
' passage" << endl;
br eak;
defaul t:
cout << "You wal k down a slippery, dark,"
"danp, passage" << endl;
br eak;
case 0:
quit = 1;
br eak;
}

cout << "Chicken, you haven't explored the full naze"
<< endl ;
return BEXI T_SUGCCESS;

125 HANGMAN

You must know the rules of this one. One player selects a word and indicates the
number of letters, the other player guesses letters. When the second player guesses a
letter that is in the word, the first player indicates all occurrences of the letter. If the
second player guesses wrongly, the first player adds a little more to a cartoon of a
corpse hung from a gibbet. The second player wins if al letters in the word are
guessed. The first player wins if the cartoon is completed while some letters are till
not matched.

In this version, the program takes the role of player one. The program contains a
large word list from which it selects aword for the current round. It generates a display
showing the number of letters, then loops processing letters entered by the user until
either the word is guessed or the cartoon is complete. This version of the program is to
use the curses functions, and to produce a display like that shown in Figure 12.6.

Specification

Implement the hangman program; use the curses package for display and interaction.

Hangman example 393

L eSS +
gavotte

1 |

1/ |

#l | @

--H--

H

H

H

(|

#

| |

#

#

HHtHHH

B T eSS +
You | ost?

Figure 12.6 The curses based implementation of the Hangman game
Design

This program involves some higher level design decisions than earlier examples where
we could start by thinking how the code might work. Here, we have to make some
other decisions first; decisions about how to organize the collection of words used by
the program, and how to organize the program into files. (Thisis partly a consegquence
of the looser specification "implement hangman"; but, generally, as programs get more
elaborate you do tend to have to consider more general issues in the design process.)

The words used by the program might be held in a data file. The program would
open and read this file at each round, picking "at random" one of the words in the file.
However, that scheme has a couple of disadvantage. The program and vocabulary file
have to be kept together. When you think how programs get shuffled around different
disks, you will see that depending on a data file in the same directory isn't wise. Also,
the scheme makes it rather difficult to "pick at random"; until you've read the file you
don't know how many choices you've got. So, you can't pick a random number and
read that many words from the file and then take the next as the word to use in a round.
The words would have to be read into an array, and then one could be picked randomly
from the array.

If the words are all going to have to be in an array anyway, we might as well have
them as an initialized array that gets "compiled" and linked in with the code. Thisway
avoids problems about the word file getting lost. It seems best to keep this separate
from the code, it is easier to edit small files and along word list would get in the way.
So we could have one file "vocab.cp” that contains little more than an initialized array
with some common English words, and a compiler set count defining the number of
entriesin the array.

What are "words'? They small character arrays; like the UT_Word typedef in the
last example. In fact we might aswell use the UT.h header file with the definition.

Initial design

394

Programs with functions and arrays

Firstiteration
through design of
code

Thus the program is going to be built of a number of parts:

Hangm.cp
This file will contain the main() function and all the other functions defined for the

program.

vocab.cp
The file with the words.

UT.h
The header file with the typedef defining a"word" as a character array.

CG.cpand CG.h
These files contain the curses cursor graphics package.

The program will be something like:

initialize random nunber generator and cursor graphics
| oop
pi ck a word
show word as "****" giving indication of |ength
| oop
get user to guess character
check word, where character natches; change
di spl ayed word to show nmatches e.g. "**a*"
if didn't get any natch
draw one nore part of cartoon
check for loop termnation

report final wn/loss status
ask if another gane,

tidy up

Given the relative complexity of the code, this is going to require breaking down into
many separate functions. Further, the implementation should be phased with parts of
the code made to work while before other parts get implemented.

The main line shown above is too complex. It should be simplified by "abstracting

out" all details of the inner loop that plays the game. Thisreducesit to:

mai n()
Initialize()
do
Pl ayGarre()
whi l e Anot her Gare()
Ti dyUp()

Hangman example 395

This structure should be elaborated with a "reduced" version of Pl ayGane(). The
reduced version would just pick arandom word, show it a"***" wait for afew second,
and then show the actual word. This reduced version alows the basic framework of the
program to be completed and tested.

Following these decisions, the preliminary design for the code becomes: Second iteration,
design of a smplified
Anot her Gane() program

pronpt user for a yes/no reply
return true if user enters 'y’

P ayGane()
get curses w ndow di spl ayed
pi ck random word
di splay word as "****" at sone point in w ndow

111 del ay
111display actual word

The two steps marked as !!! are only for this partial implementation and will be
replaced later.

Function Anot her Gane() can be coded using the CG functions like CG_Pr onpt ()
and OG_Get Char (), so it doesn't require further decomposition into simpler functions.
However, a number of additional functions will be required to implement even the
partial Pl ayGane() .

These functions obviously include a "display word" function and a "pick random
word" function. Thereis aso the issue of how the program should record the details of
the word to be guessed and the current state of the users guess.

One approach would be to use two "words"' — gGuess and g\Wr d, and a couple of
integer counters. The "pick random word" function could select a word from the
vocabulary, record its length in one of the integer counters, copy the chose word into
gword andfill gGuess with the right number of *'s. The second integer counter would
record the number of characters matched. This could be used later when implementing
code to check whether the word has been guessed completely.

So, we seem to have:

Pi ckRandomr d

pi ck randomnunber i inrange 0 ... N1
where N is nunber of word in vocab
record length of vocab[i] in length

copy vocab[i] into gWwrd
fill gQuess with '*'s

ShowQuess
nove cursor to suitable point on screen
copy characters fromgQuess to screen

396

Programs with functions and arrays

Final design iteration
for simplified
program

External declarations

Showor d
nove cursor to suitable point on screen
copy characters fromgWrd to screen

The functions identified at this point are sufficiently simple that coding should be
straightforward. So, the design of this part can be finished off by resolving outstanding
issues of data organization and deciding on function prototypes.

The data consist of the four variables (two words and two integer counters) that can
be made globals. If these data are global, then the prototypes for the functions
identified so far are:

int Anot her Garre(voi d);
void Initialize(void);
void Pi ckWrd(void);
void P ayGame(void);
voi d ShowQuess(voi d);
voi d Showwrd(void);

int main()

The code in the main file Hangm.cp needs to reference the vocabulary array and
word count that are defined in the separate vocab.cp file. This is achieved by having
"external declarations" in Hangm.cp. An external declaration specifies the type and
name of avariable; it is basically a statement to the compiler "This variable is defined
in some other file. Generate code using it. Leave it to the linking loader to find the
variables and fill in the correct addresses in the generated code.”

Implementation of simplified program

The project has include the files Hangm.cp (main program etc), vocab.cp (array with
words), and CG.cp (the curses functions); the header files CG.h and UT.h are also
needed in the same directory (UT.his only being used for the definition of the UT_Wer d
type).

The file Hangm.cp will start with the #includes of the standard header files and
definitions of global variables. The program needs to use random numbers; stdlib
providestherand() andsrand() functions. Asexplainedin 10.10, asensible way of
"seeding” the random number generator is to use a value from the system's clock. The
clock functions vary between IDE's. On Symantec, the easiest function to use is
Ti ckCount () whose prototype isin events.h; in the Borland system, either the function
tinme() orclock() might beused, their prototypes arein time.h. The header ctypeis
#included although it isn't required in the simplified program.

#i ncl ude <stdlib. h>

#i ncl ude <ctype. h>

#i ncl ude <string. h>

/1 change events.h to time.h for Borl and

Hangman example 397

#i ncl ude <events. h>
#i ncl ude "GG h"
#i ncl ude "UT. h"

Here are the extern declarations naming the variables defined in the separate vocab.cp

file:

extern UT_Wrd vocab[];
extern int nunwords;

and these are the global variables:

UT_Word gQuess;
UT_Word gWrd,;
i nt gLength;
i nt ghat ched;

Thefunctions I ni ti al i ze(), Anot her Gane() , ShowQuess()
al simple:

void Initialize(void)

{
GG lnitialize();
/1 change to srand(time(NULL)); on Borland
srand(Ti ckCount ());
}
i nt Anot her Garre(voi d)
{
GG _Pronpt (" Anot her Gane?");
char ch = GG Get Char ();
GG _Pronpt (" ")
return ((ch ="y') || (ch ="Y));
}
voi d ShowQuess(voi d)
{
const xQuess = 6;
const yQuess = 4,
OG_MoveQur sor (xQuess, yQuess);
for(int i=0;i<gLength; i++)
GG Put Char acter (gQuess[i]);
}
voi d Showr d(voi d)
{
const xQ@Quess = 6;
const yQuess = 4;

and Showver d()

ae

398 Programs with functions and arrays

GG _MoveQur sor (xQuess, yQuess);
for(int i=0;i<glLength; i++)
GG Put Character (gWord[i]);
}

Function Pi ckWor d() uses the random number generator to pick a number that is
converted to an appropriate range by taking its value modulo the number of possible
words. The chosen word is then copied and the guess word is filled with *'s as

required.
voi d Pi ckWrd(voi d)
{
int choice = rand() % nunmwor ds;
gLength = strlen(vocab[choi ce]);
for(int i =0; i < gLength; i++) {
gWrd[i] = vocab[choice][i];
gQuess[i] ="*";
}
gWrd[gLengt h] = gQuess[gLength] = "\0";
ghat ched = 0;
}

Function Pl ayGare() is supposed to look after a complete game. Of coursein this
simplified version, it just refreshes the curses window, picks aword, shows it as stars,
waits, and shows the word:

void P ayGare(voi d)

{
OG_Fr ameW ndow() ;
Pi ckWord();
ShowQuess() ;
GG Del ay(2);
Showér d() ;

return;

}

Function main() is complete, it shouldn't need to be changed later. The "Tidy()"
routine postulated in the original design has collapsed into the call to reset the curses
system, there didn't seem to be any other tidying to do so no need for a separate
function.

int main()

Initialize();
do {

Hangman example 399

Pl ayGane() ;
}
whi | e(Anot her Gane()) ;

GG Reset () ;
return O;

}

The other source file is vocab.cp. This should have definitions of the words and the
number of words. This file needs to #include UT.h to get the declaration of type
UT_Word. Thearray vocab[] should contain areasonable number of common words
from a standard dictionary such as the Oxford English Dictionary:

#i ncl ude "UT. h"

UT_Word vocab[] = {
"vireo",

"i nocul unt',
"ossuary",

"thuri bl e",
"jellaba",
"whi nbrel ",
"gavotte",
"cl earcol e",
"t heandri c"

h

int nunwords = sizeof (vocab)/ sizeof (UT_Wrd);

Although the vocabulary and number of words are effectively constant, they should not
be defined as const. In C++, const carries the implication of filescope and the linking
loader might not be able to match these names with the external declarations in the
Hangm.cp file.

The code as shown should be executable. It allows testing of the basic structure and
verifies that words are being picked randomly.

Designing the code to handle the user's guesses

The next step of a phased implementation would be to handle the user's guesses
(without exacting any penalties for erroneous guesses).

ThePl ayGane() function needs to be expanded to contain aloop in which the user
enters a character, the character is checked to determine whether any additional letters
have been matched, and counts and displays are updated.

This loop should terminate when all letters have been guessed. After the loop
finishesa"Y ou won" message can be displayed.

400 Programs with functions and arrays

The *'s in the gGuess word can be changed to appropriate characters as they are
matched. This will make it easy to display a partially matched word as the
ShowG@uess() function can be caled after each change is complete.

Some additional functions are needed. Function Get QuessedChar act er () should
prompt the user for a character and get input. If the character is a letter, it should be
converted to lower case and returned. Otherwise Get QuessedChar act er () should just
loop, repeating the prompt. Function CheckCharacter () should compare the
character with each letter in the gWor d word; if they match, the character should
overwrite the *' in gGuess and a count of matches should be incremented. There will
aso beaShowRresul t () function that can display a message and cause a short pause.

Get Quessed charat er
| oop
pronmpt for character
get input
if letter
convert to | ower case and return

CheckCharacter ch

count = 0
for each letter in gWrd
if letter == ch
count ++
set character in gQuess
Show Resul t

di spl ay nessage
del ay a coupl e of seconds

P ayGarre()
GG _FraneW ndow()
Pi ckVWor d()
ShowQuess()

ganeover = fal se

whi |l e not ganeover
Get guessed charact er
mat ched = CheckChar act er
i f(matched > 0)
ShowCuess
ghat ched += mat ched
ganeover = (ghatched == gLength)

Show Result "You w n"
The prototypes for the additional functions are:

i nt CheckOnhar (char ch);

Hangman example 401

char Get QuessedChar();
voi d ShowResul t (const char nsg[]);

Implementation of code for user input

The code implementing these additional and modified function functions is straight-
forward. Function Get QuessedCharacter() uses a do ... while loop to get an
alphabetic character. Function CheckChar () uses afor loop to check the match of

letters.

char Get QuessedChar ()

{

int

}

QG Prompt(" ")
GG Pronpt (">");
char ch;
do
ch = GG Get Char () ;
while (!isal pha(ch));
ch = tol ower(ch);
return ch;

CheckChar (char ch)

int count = 0;
for(int i =0; i < glLength; i++)
if((gWwrd[i] == ch) & (gQuess[i] == "*")) {
gQuess[i] = ch;
count ++;
}

return count;

voi d ShowResul t (const char nsg[])

{

}

QG _Pronpt (nsg) ;
GG Del ay(5);

The while loop in Pl ayGarme() terminates when ganeQver Man istrue. Currently,
thereis only one way that the game will be over —all the letters will have been guessed.
But we know that the implementation of the next phase will add other conditions that
could mean that the game was over.

voi d Pl ayGame(voi d)

OG_Fr ameW ndow() ;
Pi ckWord();

402

Programs with functions and arrays

ShowQuess() ;

int count = 0;
i nt ganeOver Man = 0;

whi | e(! gameQver Man) {
char ch = Get QuessedChar ();
i nt mat ched = CheckChar(ch);
if(matched > 0) {
ShowQuess() ;
ghat ched += nat ched;

}

ganeQver Man = (ghat ched == glLengt h);
}

ShowResul t (" You won");

return;

}

Again, this code is executable and a slightly larger part of the program can be tested.

Designing the code to handle incorrect guesses

The final phase of the implementation would deal with the programs handling of
incorrect guesses. Successive incorrect guesses result in display of successive
components of the cartoon of the hung man. The game ends if the cartoon is
completed.

The cartoon is made up out of parts: the frame, the horizontal beam, a support, the
rope, a head, abody, left and right arms, and left and right legs. Each of these ten parts
isto bedrawnin turn.

ThePl ayGane() function can keep track of the number of incorrect guesses; the
same information identifies the next part to be drawn. Selection of the parts can be left
to an auxiliary routine — "show cartoon part".

Each part of the cartoon is made up of a number of squares that must be filled in
with a particular character. The simplest approach would appear to be to have alittle
"fill squares" function that gets passed arrays with X, y coordinates, the number of
points and the character. Thisroutine could loop using CG_Put Char act er () to display
acharacter at each of the positions defined in the arrays given as arguments.

Details of the individual parts are best looked after by separate routines that have
their own local arrays defining coordinate data etc.

Thus, this phase of the development will have to deal with the following functions:

Fill squares
| oop

Hangman example 403

nmove cursor to position of next point defined
by x, y argunent arrays
out put charact er

Show Fr are
call Rl squares passing that function arrays
defining the points that make up the frane

Show Head
call Fill squares passing that function arrays
defining the points that make up the head

Show Cartoon part (partnunber)
swi tch on partnunber
call show frane, or show beam or
as appropriate

Function Pl ayGame() requires some further extension. |f a character didn't match,
the next cartoon part should be drawn and the count of errors should be increased.
There is an additional 1oop termination condition — error count exceeding limit. The
final display of the result should distinguish wins from losses.

M ayGare()
GG_Fr aneW ndow()
Pi ckWor d()
ShowQuess()

ganeover = fal se
count = O;
whi |l e not ganeover
Get guessed charact er
mat ched = CheckChar act er
i f(matched > 0)
ShowQuess
ghat ched += mat ched
el se
ShowCar t oonPar t
count ++

ganeover = (ghatched == gLength) || (count > limt)

i f (gMat ched== gLengt h) Show Result "You wi n"
el se

Showr d

Show Result "You | ost"

404

Programs with functions and arrays

Implementation of final part of code

The extra routines that get the cartoon parts drawn are all simple, only a couple of
representatives are shown:

void FillSquares(char fill, int num int x[], int y[])
{
for(int i =0; i <num i++) {
GG MoveQursor (x[i],y[i]);
GG Put Character (fill);
}
}
voi d ShowBean{ voi d)
{
int x[] ={ 51, 52, 53, 54, 55, 56, 57, 58 };
int y[] ={ 5 5 5 5 5 5 5 5}
int n = sizeo f(x) [sizeof (int);
F|IISquares(=,n X Y);
}
voi d ShowHead(voi d)
{
int x[] ={ 59 };
int y[] ={ 81},
int n=sizeof(x) / sizeof(int);
Fill Squares(' @, n, X, Yy);
}

voi d ShowCartoonPart (i nt partnum

swi tch(partnum {

case O:
ShowFr ane() ;
br eak;

case 1:
ShowBean() ;
br eak;

case 2:
ShowSupport () ;
br eak;

case 9:
ShowR ght Leg() ;
br eak;

}
}

Thefinal version of Pl ayGane() is

Hangman example 405

voi d Pl ayGane(voi d)

OG_Fr ameW ndow() ;
Pi ckWord();
ShowQuess() ;

int count = O;
i nt ganeQver Man = 0;

whi | e(! ganeQver Man) {
char ch = Get QuessedChar ();
int matched = CheckChar (ch);
if(matched > 0) {
ShowQuess() ;
ghat ched += nat ched;

el se {
ShowCar t oonPart (count) ;
count ++;

}
ganmeQver Man = (count >= KNMOVES)
(ghat ched == gLength);

}
i f (ghat ched==gLengt h) ShowResul t (" You won");
el se {
Showr d() ;
ShowResul t ("You | ost™);
}
return;

}

(The constant KNMOV ES = 10 gets added to the other constants at the start of the file.)
You will find that most of the larger programs that you must write will need to be Phased

implemented in phases as was done in this example. implementation
strategy

12.6 LIFE

Have you been told "Y ou are a nerd — spending too much time on your computer."?
Have you been told "Go out and get alife."?

OK. Please everyone. Get aLifeinyour computer — Conway's Life.

Conway's Life is not really a computer game. When it was first described in
Scientific American it was introduced as a "computer recreation” (Sci. Am. Oct 1970,
Feb 1971). The program models a"system™ that evolves in accord with specified rules.
The idea of the "recreation” part is that you can set up different initial states for this
"system" and watch what happens.

406

Programs with functions and arrays

The system consists of atwo-dimensional array of cells. Thisarray is, in principle,
infinite in its dimensions; of course for a computer program you must chose a finite
size. Cells contain either nothing, or a "live organism”. Each cell (array element) has
eight neighbors — three in the row above, three in the row below, aleft neighbor and a
right neighbor.

Evolution proceeds one generation at a time. The rules of the recreation specify
what happens to the contents of each cell at a change of generation. The standard rules
are:

1 Anorganisminacell "diesof loneliness' if it has less than two neighbors.
2 Anorganism "dies of overcrowding" if has four or more neighbors.
3 Anorganism survives for another generation if it has two or three neighbors.

4 Anempty cell isfilled with anew live organism if it had exactly three neighbors.

These deaths and births are coordinated. They happen simultaneously (this affects how
the simulation may be programmed).

The recreation is started by assigning an initial population of organisms to selected
cells. Most distributions are uninteresting. The majority of the population quickly die
out leaving little groups of survivors that cling tenaciously to life. But some patterns
have interesting behaviours. Figure 12.7 shows three examples — "Cheshire Cat",
"Glider", and "Tumbler"; there are others, like "glider guns' and "glider eaters' that are
illustrated in the second of the two Scientific American articles. A "Glider" moves
slowly down and rightwards; a"Cheshire Cat fades away to leavejust agrin”.

Cheshire Cat Tumbler

PR P PR RSN e SRR
...... ****......................................**.**..............
..... *....*......................................*.*...............
..... * kx *...................................*..*.*..*............
..... *....*...................................*..*.*..*............
...... ****.....................................**...**.............
P PP PR
....................... **..
....................... *...

Glider

Figure 12.7 Configurations for Conway's Life

Conway's "Life" example 407

Specification

Implement a version of Conway's Life recreation. The program should use the curses
package for display. It should start with some standard patterns present in the array.
The program should model a small number of generational turns, then ask the user
whether to continue or quit. The modelling and prompting process continues until the
user enters a quit command.

Design

This program will again have multiple source files — Life.cp and CG.cp (plus the CG.h
header). All the new code goesin the Life.cp file. The code that scans the array and
sorts out which cells are "live" at the next generation will have some points in common
with the "heat diffusion” example.

The overall structure of the program will be something like:

Initialize curses display and "life arrays"
Pl ace a few standard patterns in cells in the array
di splay starting configuration
| oop
inner-1oop repeated a snall nunber of times (=5)
work out state for next generation
di splay new state
ask user whether to continue or quit
tidy up

As always, some steps are obvious candidates for being promoted into separate
functions. These "obvious" functions include an initialization function, a to set an
initial configuration, adisplay function, a"run" function that looks after the loops, and a
function to step forward one generation.

The"life arrays' will be similar to the arrays used in the heat diffusion example. As
in that example, there have to be two arrays (at least while executing the function that
computes the new state). One array contains the current state data; these data have to be
analyzed to alow new data to be stored in the second array. Here the arrays would be
character arrays (really, one could reduce them to "bit arrays" but that is alot harder!).
A space character could represent and empty cell, a™*' or '# could mark alive cell.

This example can illustrate the use of a "three dimensional array"! We need two
nxm arrays (current generation, next generation). We can define these as a single data

aggregate:

const int kROAS = 20;
const int kQOLS = 50;

char gWrl ds[2] [kROAF] [KOCLS] ;

First Iteration

408 Programs with functions and arrays

We can use the two [kROWNE] [kOOLS] subarrays aternately. We can start with the
initial life generation in subarray gwer | ds[0], and fill ingwér | ds[1] with detailsfor
the next generation. Subarray g\Wor | ds[1] becomes the current generation that gets
displayed. At the next step, subarray gwor | ds[0] is filled in using the current
gWrl ds[1] data. ThengWorl ds[0] is the current generation and is displayed. As
each step is performed, the roles of the two subarrays switch. All the separate functions
would share the global gwr | ds data aggregate.

Second iteration Each function has to be considered in more detail, possibly additional auxiliary
thfoughpfggg; functions will beidentified. Theinitial set of functions become:
Initialize

fill both gwrld[] subarrays with spaces
(representing enpty cells)
initialize curses routines

Set starting configuration
pl ace some standard patterns
Not specified, so what patterns?
maybe a glider at one point in array, cheshire cat
sonmewher e el se.

D splay state
doubl e I oop through "current gwWrld" using
curses character display routines to plot spaces

and stars
Run
D splay current state
| oop
ask user whether to quit,
and break loop if quit command entered
loop = 5 times
step one generation forward
di spl ay new sate
Step
?
nai n()
Initialize
Set Starting Configuration
Run

reset curses

This second pass through the program design revealed a minor problem. The
specification requires "some standard patterns present in the array”; but doesn't say
what patterns! 1t isnot unusual for specifications to turn out to be incomplete. Usualy,
the designers have to go back to the people who commissioned the program to get more

Conway's "Life" example 409

details specified. In asimple case, like this, the designers can make the decisions — so
here "afew standard patterns’ means a glider and something else.

There are still major gapsin the design, so it is still too early to start coding.

The "standard patterns' can be placed in much the same way as the "cartoon
components” were added in the Hangman example. A routine, e.g. "set glider”, can
have a set of x, y points that it setsto add a glider. As more than one glider might be
reguired, this routine should take a pair of x, y values as an origin and set cells relative
to the origin.

Some of the patterns are large, and if the origin is poorly chosen it would be easy to
try to set points outside the bounds of the array. Just as in the heat diffusion example
where we needed a TemperatureAt(row, column) function that checked the row and
column values, we will here need a SetPoint(row, column) that sets a cell to live
provided that the row and column are valid.

These additions make the "set starting configuration” function into the following
group of functions:

set point (col, row
if col and row valid
add live cell to gwrld[O][row[col]

set glider (xorigin, yorigin)
have arrays of x, y val ues
for each entry in array
set point(x+xorigin, y + yorigin)

Set starting configuration
set glider
set cc .., ...

(Note, x corresponds to column, y corresponds to row so if set point isto be called with
an x, y pair then it must define the order of arguments as column, row.)

The other main gap in the second design outline was function St ep() . Itsbasic
structure can be obtained from the problem description. The entire new generation
array must be filled, so we will need a double loop (all the rows by all the columns).
The number of neighbors of each cell in current gWor | d must be calculated and used in
accord with the rules to determine whether the corresponding cell is'live' in the next
gwor I d. The rules can actually be simplified. If the neighbor count is not 2 or 3, the
cell is empty in the next generation (0, 1 imply loneliness, 4 or more imply
overcrowding). A cell with 3 neighbors will be live at next generation (either 3
neighbors and survive rule, or 3 neighbors and birth rule). A cell with 2 neighbors is
only live if the current cell is live. Using this reformulated version of the rules, the
St ep() function becomes:

Step
identify which gwrldis to be filled in

410

Programs with functions and arrays

Third iteration
through design
process

for each row
for each col
nbrs = Count |ive Neighbors of cell[row][col]
incurrent gwrld
swi t ch(nbrs)
2 newcell state = current cell state
3 newcell state = live
default new cell state = enpty
note gWrld just filled in as "current gWrld"

The Step() function and the display function both need to know which of the
gWorldsis current (i.e. isit the subarray gWor | d[0] or gwor | d[1]). Thisinformation
should be held in another global variable gCurrent. TheStep() function hasto use
the value of this variable to determine which array to fill in for the next generation, and
needs to update the value of gCur r ent once the new generation has been recorded.

We aso need a"count live neighbors" function. Thiswill be abit like the "Average
of neighbors" function in the Heat Diffusion example. It will use a double loop to run
through nine elements (a cell and its eight neighbors) and correct for the cell's own
State:

Count Nei ghbors (row, col)

count = -Live(row col)
for r =row- 1torow+ 1
for c =col - 1tocol +1

cout += Live(r,c)

Just as the Heat Diffusion example needed a Tenper at ur eAt (row, col) function
that checked for out of range row and col, hereweneed aLi ve(row, col) function.
What happens at the boundaries in a finite version of Life? One possibility is to treat
the non-existent cells (e.g. cellsin row == -1) as being always empty; thisis the version
that will be coded here. An aternative implementation of Life "wraps' the boundaries.
If you want acell in row == kROAS (i.e. you have gone off the bottom of the array),
you userow 0. If youwant acell inrow == -1, (i.e. you have gone off the top of the
array), you use row == kROWS- 1 (the bottommost row). If you "wrap" the world like
this, then gliders moving off the bottom of the array reappear at the top.

The code for functions like Li ve() will besimple. It canuseaGet () functionto
access an element in the current gwor | d (the code of Get () determines whether we
are "wrapping" the gvr | d or just treating outside areas as empty). Li ve() will simply
check whether the character returned by Get () signifiesa'live cell' or an 'empty cell'.
So, no further decomposition is required.

The function prototypes and shared data can now be specified. The program needs
to have as globals an integer gCur r ent that identifieswhich gwr | d subarray is current,
and, as previously mentioned, the gWor | d data aggregate itself.

The functions are;

char Get(int row, int col);

Conway's "Life" example 411

int CountNors(int row, int col);
void D splayState(void);

void Initialize(void);

int Live(int row, int col);
voi d Run(voi d);

void SetPoint(int col, int row;
void Set@ider(int x0, int y0);
void SetStartConfig(void);

voi d Step(void);

int main();

Implementation

For the most part, the implementation code is straightforward. The files starts with the
#includes; in this case just ctype.h (need t ol ower () function when checking whether
user enters "quit command”) and the CG header for the curses functions. After the
#includes, we get the global variables (the three dimensional gWor | d aggregate etc) and
the constants.

#i ncl ude <ctype. h>
#i ncl ude " QG h"

const int kROANS = 20;
const int kOQOLS = 50;
const int kSTEPSPERCYCLE = 5;

char gWrl ds[2] [kRONE] [KCCLS] ;
int gQurrent = 0;

const char EMPTY ="' ';
const char LIVE ="'*";

Functionsi nitialize() andDi spl ayState() bothusesimilar double loopsto
work through all array elements. Note the c+1, r+1 in the call to
CG_Put Char act er () ; the arrays are zero based but the display system is one based (top
left corner issquare 1, 1 in display).

412 Programs with functions and arrays

void Initialize(void)

for(int w=0; w < 2; wH+)
for(int r = 0; r < KROAB, r++)
for(int ¢ = 0; ¢ < kOOLS; c++)
gWor | ds[wj [KRONB] [KOCLS] =
EMPTY;

GG lInitialize();
}

voi d D spl aySt at e(voi d)

for(int r = 0; r < KROAB, r++)
for(int ¢ = 0; ¢ < kQCLS; c++)
OG Put Character (gWrlds[gQurrent][r][c],
c+l, r+l);

}

Function Get () looksindexesinto the current gWor | d subarray. If "wrapping" was
needed, a r ow value less than 0 would have kROWS added before accessing the array;
similar modificationsin the other cases.

Function Li ve() isanother very small function; quite justified, itsrole is different
from Get () even if it is the only function here that uses Get () they shouldn't be

combined.

char Get(int row, int col)

if(row < 0)
return EMPTY;
i f (row >= kRONB)
return EMPTY,
if(col < 0)
return EMPTY;
i f(col >= kQOLY)
return EMPTY;
return gWrlds[gQurrent][row [col];
}
int Live(int row, int col)
{
return (LIVE == Get(row, col));
}

Function Count Nbr s() isvery similar to the Aver ageOf Nei ghbor s() function
shown earlier:

int CountNors(int row, int col)

Conway's "Life" example 413

{
int count = -Live(row,col); // Don't count self!
for(int r =row- 1;, r <=row + 1; r++)
for(int ¢ =col - 1; ¢ <=col + 1; c++)
count += Live(r,c);
return count;
}

Function St ep() usesa"tricky" way of identifying which g\Wr | d subarray should
be updated. Logically, if the current gwor | d issubarray [0] , then subarray gWor | d[1]
should be changed; but if the current gWor | d is[1] thenitisgwerl d[0] that gets
changed. Check the code and convince yourself that the funny modulo arithmetic
achievesthis:

voi d Step(void)
{

int Gher = (gQurrent + 1) %2;
for(int r = 0; r < kRONB; r++)
for(int ¢ =0; ¢ < kQQS;, c++) {
int nbrs = Count Nors(r,c);
switch(nbrs) {

case 2:
gWrlds[Cher][r][c] =
gWwrlds[gQurrent][r][c];
br eak;
case 3:
gWrlds[Gher][r][c] = LIVE
br eak;
defaul t:
= EMPTY;

gWrlds[Gher][r][c]
}

}
gQurrent = G her;
}

Function Set Poi nt () makes certain that it only accesses vaid array elements. This
function might need to be changed if "wrapping" were required.

void SetPoint(int col, int row

if(row < 0)
return;

i f (row >= kROMB)
return;

if(col <0)
return;

i f(col >= kQQLS)
return;

gWrlds[gQurrent][row [col] = LIVE

414 Programs with functions and arrays

}

Function Set G i der () usesthe same approach as the functions for drawing cartoon
parts in the Hangman example:

void Set@ider(int x0, int y0)

{
int x[] ={ 1, 2, 3, 1, 2};
int y[1] ={ 1, 2, 2, 3, 31};
int n = sizeof(x) / sizeof(int);
for(int i =0; i <n; i++)
Set Poi nt (x0 + x[i], y0O + y[i]);
}

void Set StartConfig(void)
SetQider(4,4);

}

Function Run() handles the user controlled repetition and the inner loop advancing
afew generation steps:

void Run(voi d)

char ch;
D splayState();
int quit = 0;
for(;;) {
GG Pronpt ("Cycle (Q or Quit (Q?");
ch = GG GetChar ();
ch = tol ower(ch);
if(ch="q")
br eak;
GG_Pronpt (" ")
for(int i =0; i < kSTEPSPERCYCLE; i ++) {
Step();
D spl ayState();
}
}

}
Asusual, mai n() should be basically a sequence of function calls:
int main()

Initialize();
Set Start Config();

Conway's "Life" example 415

Run() ;
GG Reset () ;
return O;
}
EXERCISES

1 Usethe curses package to implement a (fast) clock:

* *
T ST
e #.ooooo *
* # '''''''''' *
. # *
o @........ *
e @....... *
e @..... *
R @...*..

The "minutes" hand should advance every second, and the "hours" hand every minute.

2 In hisnovel "The Day of the Triffids", John Wyndham invented triffids — hybrid creatures
that are part plant, part carnivore. Triffids can't see, but they are sensitive to sound and
vibrations. They can't move fast, but they can move. They tend to move toward sources of
sounds — sources such as animals. If atriffid gets close enough to an animal, it can use a
flexible vine- like appendage to first kill the animal with a fast acting poison, and then draw
nutrients from the body of the animal

At one point in the story, thereis ablind man in afield with atriffid. The man islost
stumbling around randomly. The triffid moves (at less than one fifth of the speed of the
man), but it moves purposively toward the source of vibrations — the triffid is hunting its
lunch.

Provide a graphical simulation using the curses library.

3 Somewhere, on one of the old floppies lost in your room is a copy of a 1980s computer game
"Doctor Who and the Daleks". Don't bother to search it out. You can now write your own
version.

The game consist of a series of rounds with the human player controlling the action of
Dr. Who, and the program controlling some number of Daleks. A round is comprised on
many turns. The human player and the program take aternate turns; on its turn the program

416

Programs with functions and arrays

will move all the Daleks. Things (Daleks and Dr) can move one square vertically,
horizontally, or diagonally. Nothing can move out of the playing area. The display is
redrawn after each turn. Dr. Who's position is marked by a W, the Daleks are Ds, and
wrecked Daleks are #s.

B e TTTYTYTMYSSFTT—T————_————————— +
| |
| |
| D D |
| W # |
| D |
| |
| |
| |
e e eeeeaaaa o +
Conmmand>

The human player can enter commands that move Dr. Who (these are one character
commands, common choices of letter and directions are'q' NW, 'w' N, '€ NE, 'a W, ... with
North being up the screen).

If a Dalek moves onto the square where Dr. Who is located, the game ends. If a Dalek
moves onto a square that is occupied, it is wrecked and does not participate further in the
round. The wreckage remains for the rest of that round; other Daleks may crash into
wreckage and destroy themselves. Dr. Who can not move onto a square with wreckage.

The Daleks moves are determined algorithmically. Each Dalek will move toward the
current position of Dr. Who. The move will be vertical, horizontal, or diagonal; it is chosen
to minimize the remaining distance from the Dalek's new position to that of Dr. Who.

A round of the game starts with Dr. Who and some number of Daleks being randomly
placed on a clear playing area. (There are no constraints, Dr. Who may discover that he is
totally surrounded by Daleks; he may even start dead if a Dalek gets placed on his square.)

The human player's winning strategy is to manoeuvre Dr. Who so as to cause the
maximum number of collisions among Daleks.

The player has two other options. Dr. Who may be teleported to some random location
(command 't") so allowing escape from converging Daleks. There are no guarantees of safe
arrival; he may rematerialise on wreckage (and be killed), on a Dalek (and again be killed), or
next to a Dalek (and be killed when the Dalek moves). Once per round, Dr. Who may use a
"sonic screwdriver” that destroys Daleks in the immediate vicinity (immediate? radius 2,
radius 3, depends how generous you feel).

If Dr. Who survives a round in which all Daleks are destroyed, a new round starts.
Each new round increases the number of Daleks up to a maximum. Initially, there are three
Daleks, the maximum depends on the size of the playing area but should be around 20.

The professor who commissioned the T-cannon is disappointed at the rate of convergence and
believes that the cannoneers are doing something wrong.

Combine the code from the Tecannon example with the curses package to produce a
visual display version that the professor may watch:
The program should show the cannon ball moving from gun barrel to point of impact (getting
the successive x positionsis easy, you heed to do a bit of trigonometry to get the y positions).

Conway's "Life" example 417

*

5. Modify Conway's Life so that the playing areais "wrapped" (i.e. gliders moving off the top of
the play areareappear at the bottom etc.)

6. Implement aversion of the "Mastermind" game using the curses package.

In "Mastermind”, the program picks a four digit (or four letter code), e.g. EAHM. The
human player tries to identify the code in the minimum number of guesses. The player enters
a guess as four digits or letters. The program indicates 1) how many characters are both
correct and in the correct place, and 2) how many characters are correct but in the wrong
place (these reports do not identify which characters are the correct ones). The player isto
use these clues to help make subsequent guesses.

A display shows the history of guesses and resulting clues:

Quess# Correct Quess M spl aced letter
1 ABCD *

2 WKYZ

3 * EFGH *

4 *x EAIJ

Rules vary asto whether you can have repeated characters. Make up your own rules.
7. Build abetter curses.
The "refresh" rate when drawing to awindow is poor in the curses package given in the text.

You can make things faster by arranging that the curses package make use of a character
array screen[kHEIGHT][KWIDTH]. This is initialized to contain null characters. When
characters are drawn, a check is made against this array. If the array element corresponding
to the character position has a value that differs from the required character, then the required
character is drawn and stored in the array. However, if the array indicates that the character
on the screen is already the required character then no drawing is necessary.

8. Combinethe Life program with the initial curses drawing program to produce a system where
auser can sketch aniinitial Life configuration and then watch it evolve.

418 Programs with functions and arrays

