
21 Collections of data
As illustrated in the "Air Traffic Controller" example in Chapter 20, arrays can be used
to store collections of data. But arrays do have limitations (e.g. you have to specify a
maximum size), and they don't provide any useful support function that might help
manage a data collection. Over the years, many different structures have been devised
for holding collections of data items. These different structures are adapted to meet
specific needs; each has associated functionality to help manage and use the collection.

For example, a simple Queue provides a structure where new data items can be
added "at the rear"; the data item "at the front" of the Queue can be removed when it is
time for it to be dealt with. You probably studied queues already today while you stood
in line to pay at the college cafeteria.

A "Priority Queue" has different rules. Queued items have associated priorities.
When an item is added to the collection, its place is determined by its priority. A real
world example is the queue in the casualty department of a busy hospital. Car crash and
gun shot patients are priority 1, they go straight to the front of the queue, patients
complaining of "heavy" pains in their chests - mild heart attacks – are priority 2 etc.

"Dynamic Arrays" and "Lists" provide different solutions to the problem of keeping
a collection of items where there are no particular access rules like those of Queue.
Items can be added at the front or rear of a list, and items can be removed from the
middle of lists. Often, lists get searched to find whether they contain a specific item;
the search is "linear" (start at the front and keep checking items until either you find the
one that is wanted or you get to the end of the list).

A "Binary Tree" is more elaborate. It provides a means for storing a collection of
data items that each include "key" values. A binary tree provides a fast search system
so you can easily find a specific data element if you know its "key".

Sections 21.1 and 21.2 illustrate a simple Queue and a "Priority Queue". These use
fixed size arrays to store (pointers to) data elements. You have to be able to plan for a
maximum number of queued items. With the "Dynamic Array", 21.3, things get a bit
more complex. A "Dynamic Array" supports "add item", "search for item", and
"remove item" operations. Like a simple Queue, the Dynamic Array uses an array of
pointers to the items for which it is responsible. If a Dynamic Array gets an "add item"

21

Standard "collection
classes"

Queue

Priority Queue

Dynamic arrays and
lists

Binary tree

Data storage

660 Collections of data

request when its array is full, it arranges to get additional memory. So it starts with an
initial array of some default size, but this array can grow (and later shrink) as needed.
With Lists, 21.4, you abandon arrays altogether. Instead, a collection is made up using
auxiliary data structures ("list cells" or "list nodes"). These list cells hold the pointers to
the data items and they can be linked together to form a representation of the list.
Binary trees, 21.5, also utilize auxiliary structures ("tree nodes") to build up a
representation of an overall data structure.

What data items get stored in these lists, queues and trees?
Ideally, it should be any data item that a programmer wants to store in them. After

all, these Queue, List, and Binary Tree structures represent general concepts (in the
preferred jargon, they are "abstract data types"). You want to be able to use code
implementing these types. You don't want to have to take outline code and re-edit it for
each specific application.

There are at least three ways in C++ in which you can get some degree of generality
in your code (code that is independent of the type of data manipulated is "generic").
The examples in this chapter use the crudest of these three approaches. Later examples
will illustrate more sophisticated techniques such as the use of (multiple) inheritance
and the use of templates. The approach used here is an older, less sophisticated (and
slightly more error prone) technique but it is also the simplest to understand.

The data items that are to be in the Queues, Lists, and Dynamic Arrays are going to
be structures that have been created in the heap. They will be accessed via pointers.
We can simply use void* pointers (pointers to data items of unspecified type). Code
written to use void* pointers is completely independent of the data items accessed via
those pointers.

The Priority Queue and Binary Tree both depend on the data items having associated
"key values" (the "keys" of the Binary Tree, the priorities of the Priority Queue). These
key values will be long integers. The interface for these classes require the user to
provide the integer key and a pointer to the associated data object.

Data items?

"Generic code"

21.1 CLASS QUEUE

When on earth would you want to model a "queue" in a computer program?
Well, it is not very often! Most of the places where queues turn up tend to be in the

underlying operating system rather than in typical applications programs. Operating
systems are full of queues of many varied kinds.

If the operating system is for a shared computer (rather than a personal computer) it
will have queues for jobs waiting to run. The computer might have one CPU and one
hundred terminals; at any particular time, there may be "requests" for CPU cycles from
many of the terminals. The operating system maintains a queue of requests and gets the
CPU to process each in turn.

Elsewhere in the operating system, there will be queues of requests for data transfers
to and from disk. There will also be queues of characters waiting to be transmitted

Queues in operating
systems

Class Queue 661

down modem lines to remote terminals or other machines, and queues of characters
already typed but not yet processed.

Outside of operating systems, queues most frequently turn up in simulations. The
real world has an awful lot of queues, and real world objects spend a lot of time
standing in queues. Naturally, such queues appear in computer simulations.

What does a queue own? A queue owns "something" that lets it keep pointers to the
queued items; these are kept in "first come, first served" order. (The "something" can
take different forms.)

A queue can respond to the following requests:

• First
Remove the front element from the queue and return it.

• Add (preferred name Append)
Add another element at the rear of the queue.

• Length
Report how many items are queued.

• Full
If the queue only has a finite amount of storage, it may get to be full, a further

Add operation would then cause some error. A queue should have a "Full"
member function that returns true if the queue is full.

• Empty
Returns true if there are no data elements queued; an error would occur if a

First operation was performed on an empty queue.

Several different data structures can be used to represent a queue in a program. This
example uses a structure known as a "circular buffer". This version of a queue is most
commonly used for tasks such as queuing characters for output devices.

The principal of a circular buffer is illustrated in Figure 21.1. A fixed sized array,
the "buffer", is used to store the data values. In this implementation, the array stores
void* pointers to other data structures that have been allocated in the heap; but if a
circular buffer were being used to queue characters going to a modem, the array would
hold the actual characters. (In Figure 21.1, the data items are shown as characters). As
well as the array, there are two integers used to index into the array; these will be
referred to as the "get-index" and the "put-index". Finally, there is a separate integer
that maintains a count of the number of items currently stored.

An Append ("put") operation puts a data item at "the end of the queue". Actually the
Append operation puts it in the array at the index position defined by fp (the put index)
and then increments the fp index and the counter (fcount). So, successive characters
fill in array elements 0, 1, 2, …. In the example shown in Figure 21.1, the array fdata
has six elements. The fp index is incremented modulo the length of the array. So, the
next element after fdata[5] is fdata[0] (this makes the index "circle round" and
hence the name "circular buffer").

A queue owns …

A queue does …

Representation:
"circular buffer"

662 Collections of data

1

fp

fg

fcount

fdata[0]

fdata[1]

fdata[2]

fdata[3]

fdata[4]

fdata[5]

0

0

0

/0

/0

/0

/0

/0

/0

Append
(put)

1

0

1

A

/0

/0

/0

/0

/0

2

0

2

A

B

/0

/0

/0

/0

2 3

3

0

3

A

B

C

/0

/0

/0

4

0

4

A

B

C

D

/0

/0

First
(get)

4

1

3

A

B

C

D

/0

/0

4 5 6

Append
(put)

Append
(put)

Append
(put)

Figure 21.1 Queue represented as a "circular buffer" and illustrative Append (put)
and First (get) actions.

The First (get) operation that removes the item from "the front of the queue" works
in a similar fashion. It uses the "get index" (fg). "First" takes the data item from
fdata[fg], updates the value of fg (modulo the array length so it too "circles around"),
and reduces the count of items stored. (The data value can be cleared from the array,
but this is not essential. The data value will be overwritten by some subsequent Append
operation.)

Obviously there are a couple of problem areas. A program might attempt a First
(get) operation on an empty queue, or might attempt to add more data to a queue that is
already full. Strictly a program using the queue should check (using the "Empty" and
"Full" operations) before performing a First or Append operation. But the code
implementing the queue still has to deal with error conditions.

When you are programming professionally, you will use the "Exception" mechanism
(described in Chapter 26) to deal with such problems. The queue code can "throw an

Error conditions

Exceptions

Class Queue 663

exception"; this action passes information back to the caller identifying the kind of error
that has occurred. But simpler mechanisms can be used for these introductory
examples; for example, the program can be terminated with an error message if an
"Append" operation is performed on a full queue.

The queue will be represented by a class. The declaration for this class (in a header
file Q.h) specifies how this queue can be used:

#ifndef __MYQ__
#define __MYQ__

#define QSIZE 6

class Queue {
public:

Queue();

void Append(void* newitem);
void *First(void);

int Length(void) const;
int Full(void) const;
int Empty(void) const;

private:
void *fdata[QSIZE];
int fp;
int fg;
int fcount;

};

inline int Queue::Length(void) const { return fcount; }
inline int Queue::Full(void) const { return fcount == QSIZE; }
inline int Queue::Empty(void) const { return fcount == 0; }
#endif

The public interface specifies a constructor (initializor), the two main operations
(Append() and First()) and the three functions that merely ask questions about the
state of the queue.

The private part of the class declaration defines the data structures used to represent
a queue. A program can have any number of Queue objects; each has its own array,
count, and array indices.

The three member functions that ask about the queue status are all simple, and are
good candidates for being inline functions. Their definitions belong in the header file
with the rest of the class declaration. These are const functions; they don't change the
state of the queue.

The other member functions would be defined in a separate Q.cp file:

#include <iostream.h>

Class declaration

public

private

inline functions

664 Collections of data

#include <stdlib.h>
#include "Q.h"

void QueueStuffed()
{

cout << "Queue structure corrupted" << endl;
cout << "Read instructions next time" << endl;
exit(1);

}

The QueueStuffed() function deals with cases where a program tries to put too
many data items in the queue or tries to take things from an empty queue. (Error
messages like these should really be sent to cerr rather than cout; but on many IDEs,
cout and cerr are the same thing.)

Queue::Queue()
{

fp = fg = fcount = 0;
}

The constructor has to zero the count and the pointers. There is no need to clear the
array; any random bits there will get overwritten by "append" operations.

void Queue::Append(void* newitem)
{

if(Full())
QueueStuffed();

fdata[fp] = newitem;
fp++;
if(fp == QSIZE)

fp = 0;
fcount++;
return;

}

The Append() function first checks that the operation is legal, using the Queue-
Stuffed() function to terminate execution if the queue is full. If there is an empty slot
in the array, it gets filled in with the address of the data item that is being queued. Then
the fcount counter is incremented and the fp index is incremented modulo the length
of the array. The code incrementing fp could have been written:

fp++;
fp = fp % QSIZE;

The code with the if() is slightly more efficient because it avoids the divide operation
needed for the modulo (%) operator (divides are relatively slow instructions).

void *Queue::First(void)

Handling errors

Constructor

Append

Class Queue 665

{
if(Empty())

QueueStuffed();
void* temp = fdata[fg];

fg++;
if(fg == QSIZE)

fg = 0;
fcount--;
return temp;

}

The First() (get) operation is very similar.

Test program

Naturally, a small test program must be provided along with a class. As explained in
the context of class Bitmap, the test program is part of the package. You develop a
class for other programmers to use. They may need to make changes or extensions.
They need to be able to retest the code. You, as a class implementor, are responsible
for providing this testing code.

These test programs need not be anything substantial. You just have to use all the
member functions of the class, and have some simple inputs and outputs that make it
easy to check what is going on. Usually, these test programs are interactive. The tester
is given a repertoire of commands; each command invokes one of the member functions
of the class under test. Here we need "add", "get", and "length" commands; these
commands result in calls to the corresponding member functions. The implementation
of "add" and "get" can exercise the Full() and Empty() functions.

We need data that can be put into the queue, and then later get removed from the
queue so that they can be checked. Often, it is necessary to have the tester enter data;
but here we can make the test program generate the data objects automatically.

The actual test program creates "Job" objects (the program defines a tiny class Job)
and adds these to, then removes these from the queue.

#include <stdlib.h>
#include <iostream.h>
#include "Q.h"

class Job {
public:

Job(int num, char sym);
void PrintOn(ostream& out);

private:
int fN;
char fC;

};

The test program is
part of the package!

Include the standard
header

Class Job: just for
testing the queue

666 Collections of data

Job::Job(int num, char sym)
{

fN = num; fC = sym;
}

void Job::PrintOn(ostream& out)
{

out << "Job #" << fN << ", activity " << fC << endl;
}

int main()
{

int n = 0;
Job *j = NULL;
Job *current = NULL;
Queue theQ;

for(int done = 0; !done ;) {
char command;
cout << ">";
cin >> command;
switch(command) {

case 'q': done = 1;
break;

case 'l' : cout << "Queue length now " <<
theQ.Length() << endl;

break;
case 'a' :

j = new Job(++n, (rand() % 25) + 'A');
cout << "Made new job "; j->PrintOn(cout);
if(theQ.Full()) {

cout << "But couldn't add it to queue"
" so got rid of it";

cout << endl;
delete j;
}

else {
theQ.Append(j);
cout << "Queued" << endl;
}

j = NULL;
break;

case 'g':
if(theQ.Empty())

cout << "Silly, the queue is empty"
<< endl;

else {
if(current != NULL)

delete current;
current = (Job*) theQ.First();
cout << "Got ";

The test program

Make a Queue object

Loop until a quit
command entered

Test Length()

Test Full() and
Append()

Test Empty() and
First()

Class Queue 667

current->PrintOn(cout);
}

break;
case 'c':

if(current != NULL) {
cout << "Current job is ";
current->PrintOn(cout);
}

else cout << "No current job" << endl;
break;

case '?':
cout << "Commands are:" << endl;
cout << "\tq Quit\n\ta Add to queue\t" << endl;
cout << "\tc show Current job\n"

\tg Get job at front of queue" << endl;
cout << "\tl Length of queue\n" << endl;
break;

default:
;
}

}
return EXIT_SUCCESS;

}

A quick test produced the following:

>a
Made new job Job #1, activity T
Queued
>a
Made new job Job #2, activity N
Queued
>c
No current job
>g
Got Job #1, activity T
>l
Queue length now 1
>a
Made new job Job #3, activity G
Queued

Recording of test run

21.2 CLASS PRIORITYQUEUE

Priority queues are almost as rare as simple queues. They turn up in similar
applications – simulations, low-level operating system's code etc. Fortuitously, they
have some secondary uses. The priority queue structure can be used as the basis of a
sorting mechanism that is quite efficient; it is a reasonable alternative to the Quicksort

668 Collections of data

function discussed in Chapter 13. Priority queues also appear in the implementation of
some "graph" algorithms such as one that finds the shortest path between two points in
a network (such graph algorithms are outside the scope of this text, you may meet them
in more advanced courses on data structures and algorithms).

As suggested in the introduction to this chapter, a priority queue would almost
certainly get used in a simulation of a hospital's casualty department. Such simulations
are often done. They allow administrators to try "What if …?" experiments; e.g. "What
if we changed the staffing so there is only one doctor from 8am to 2pm, and two doctors
from 2pm till 9pm?". A simulation program would be set up to represent this situation.
Then a component of the program would generate "incoming patients" with different
problems and priorities. The simulation would model their movements through
casualty from admission through queues, until treatment. These "incoming patients"
could be based on data in the hospital's actual records. The simulation would show how
long the queues grew and so help determine whether a particular administrative policy
is appropriate. (The example in Chapter 27 is a vaguely similar simulation, though not
one that needs a priority queue.)

The objects being queued are again going to be "jobs", but they differ slightly from
the last example. These jobs are defined by a structure:

struct Job {
long prio;
char name[30];

};

(this simple struct is just to illustrate the working of the program, the real thing would
be much larger with many more data fields). The prio data member represents the
priority; the code here will use small numbers to indicate higher priority.

You can implement a very simple form of priority queue. For example:

class TrivialPQ {
public:

TrivialPQ();
Job First();
void Insert(const Job& j);

private:
Job fJobs[kMAXSIZE];
int fcount;

};

A TrivialPQ uses an array to store the queued jobs. The entries in this array are kept
ordered so that the highest priority job is in element 0 of the array.

If the entries are to be kept ordered, the Insert() function has to find the right
place for a new entry and move all less urgent jobs out the way:

void TrivialPQ::Insert(const Job& j)
{

A over simple priority
queue!

Class PriorityQueue 669

int pos = 0;
while((pos < fcount) && (fJobs[pos].prio < j.prio)) pos++;
// j should go at pos
// less urgent jobs move up to make room
for(int i = fcount; i> pos; i--)

fJobs[i] = fJobs[i-1];
fJobs[pos] = j;
fcount++;

}

Similarly, the First() function can shuffle all the lower priority items up one slot after
the top priority item has been removed:

Job TrivialPQ::First()
{

Job j = fJobs[0];
for(int i = 1; i < fcount; i++)

fJobs[i-1] = fJobs[i];
fcount--;
return j;

}

The class TrivialPQ does define a workable implementation of a priority queue.
The trouble is the code is rather inefficient. The cost is O(N) where N is the number of
jobs queued (i.e. the cost of operations like First() and Insert() is directly
proportional to N). This is obvious by inspection of First(); it has to move the N-1
remaining items down one slot when the front element is removed. On average, a new
Job being inserted will go somewhere in the middle. This means the code does about
N/2 comparisons while finding the place, then N/2 move operations to move the others
out of the way.

You could obviously reduce the cost of searching to find the right place. Since Jobs
in the fJobs array are in order, a binary search mechanism could be used. (Do you still
remember binary search from Chapter 13?) This would reduce the search costs to
O(lgN) but the data shuffling steps would still be O(N).

If you could make the data shuffling steps as efficient as the search, then the overall
cost would be introduced to lgN. It doesn't make that much difference if the queues are
short and the frequency of calls is low (when N≈10, then O(lgN)/O(N) ≈ 3/10.) If the
queues are long, or operations on the queue are very frequent, then changing to a
O(lgN) algorithm gets to be important (when N≈1000, then O(lgN)/O(N) ≈ 10/1000.).

There is an algorithm that makes both searching and data shuffling operations have
costs that are O(lgN). The array elements, the Jobs, are kept "partially ordered". The
highest priority job will be in the first array element; the next two most urgent jobs will
be in the second and third locations, but they won't necessarily be in order. When the
most urgent job is removed, the next most urgent pops up from the second or the third
location; in turn, it is replaced by some other less urgent job. Once all the changes have
been made, the partial ordering condition will still hold. The most urgent of the

Cost is O(N)

An alternative O(lgN)
algorithm

670 Collections of data

remaining jobs will be in the first array element, with the next two most urgent jobs in
the successive locations.

The algorithm is quite smart in that in manages to keep this partial ordering of the
data with a minimum number of comparison and data shuffling steps. Figures 21.2
illustrates the model used to keep the data "partially ordered".

You should imagine the data values placed in storage elements that are arranged in a
branching "tree"-like manner. Like most of the "trees" that appear in illustrations of
data structures, this tree "grows" downwards. The topmost "node" (branch point) is the
"root". It contains the data value with the most urgent priority (smallest "prio" value).

2

3

29

17

19 49 39

31

1

2 3

4 5 6 7

8

1 2
2 3
3 17
4 29
5 19
6 49
7 39
8 31

Index Content"Tree" structure:

Figure 21.2 "Tree" of partially ordered values and their mapping into an array.

Each "node" in the tree can have up to two nodes in the level below it. (These are
referred to as its "child nodes"; the terminology is very mixed up!) A node with no
children is a "leaf".

At every level, the data value stored in a node is smaller than the data values stored
in its children. As shown in Figure 21.2, you have the first node holding the value 2,
the second and third nodes hold the values 3 and 17. The second node, the one with the
3 has children that hold the values 29 and 19 and so on.

This particular tree isn't allowed to grow arbitrarily. The fourth and fifth nodes
added to the tree become children of the second node; the sixth and seventh additions
are children of the third node. The eight to fifteenth nodes inclusive form the next level
of this tree; with the 8th and 9th "children" of node 4 and so on.

Most of the "trees" that you will meet as data structures are built by allocating
separating node structs (using the new operator) and linking them with pointers. This
particular form of tree is exceptional. The restrictions on its shape mean that it can be
mapped onto successive array elements, as also suggested in Figure 21.2

The arrangement of data values in successive array entries is:

Trees, roots, and tree-
nodes

Child nodes and
leaves

"Tree" structure can
be stored in an array

Class PriorityQueue 671

(#1, 2) (#2, 3) (#3, 17) (#4, 29) (#5, 19) (#6, 49) (#7, 39)
(#8, 31)

The values are "partially sorted", the small (high priority) items are near the top of the
array while the large values are at the bottom. But the values are certainly not in sorted
order (e.g. 19 comes after 29).

The trick about this arrangement is that when a new data value is added at the end, it
doesn't take very much work to rearrange data values to restore the partial ordering.
This is illustrated in Figure 21.3 and 21.4.

Figure 21.3 illustrates the situation immediately after a new data value, with priority
5, has been added to the collection. The collection is no longer partially ordered. The
data value in node 4, 29, is no longer smaller than the values held by its children.

2

3

29

17

19 49 39

31

1

2 3

4 5 6 7

8

1 2
2 3
3 17
4 29
5 19
6 49
7 39
8 31
9 5

Index Content

9

5 New value, added at end,
disrupts partial ordering

Figure 21.3 Addition of data element disrupts the partial ordering.

The partial ordering condition can be restored by letting the new data value work its
way up the branches that link its starting position to the root. If the new value is
smaller than the value in its "parent node", the two values are exchanged.

In this case, the new value in node 9 is compared with the value in its parent node,
node 4. As the value 5 is smaller than 29, they swap. The process continues. The
value 5 in node 4 is compared with the value in its parent node (node 2). Here the
comparison is between 3 and 5 and the smaller value is already in the lower node, so no
changes are necessary and the checking procedure terminates. Figure 21.4 illustrates
the tree and array with the partial ordering reestablished.

Note that the newly added value doesn't get compared with all the other stored data
values. It only gets compared with those along its "path to root".

672 Collections of data

2

3 17

19 49 39

31

1

2 3

4 5 6 7

8

1 2
2 3
3 17
4 5
5 19
6 49
7 39
8 31
9 29

Index Content

9

5

29

Figure 21.4 Restoration of the partial ordering.

If the newly added value was smaller than any already in the storage structure, e.g.
value 1, it would work its way all the way up until it occupied the root-node in array
element 1. In this "worst case", the number of comparison and swap steps would then
be the same as the number of links from the root to the leaf.

Using arguments similar to those presented in Chapter 13 (when discussing binary
search and Quicksort), you can show that the maximum number of links from root to
leaf will be proportional to lgN where N is the number of data values stored in the
structure. So, the Insert operation has a O(lgN) time behaviour.

When the "first" (remove) operation is performed, the top priority item gets
removed. One of the other stored data values has to replace the data value removed
from the root node. As illustrated in Figure 21.5; the restoration scheme starts by
"promoting" the data value from the last occupied node.

Of course, this destroys the partial ordering. The value 29 now in the root node
(array element 1) is no longer smaller than the values in both its children.

So, once again a process of rearrangement takes place. Starting at the root node, the
data value in a node is compared with those in its children. The data values in parent
node and a child node are switched as needed. So, in this case, the value 29 in node 1
switches places with the 3 in node 2. The process is then repeated. The value 29 now
in node 2 is switched for the value 5 in node 4. The switching process can then
terminate because partial ordering has again been restored.

As in the case of insert, this tidying up after a removal only compares values down
from root to leaf. Again its cost is O(lgN).

Although a little more involved than the algorithms for TrivialPQ, the functions
needed are not particularly complex. The improved O(lgN) (as opposed to O(N))
performance makes it worth putting in the extra coding effort.

O(lgN) algorithm

Removing the top
priority item

Tidying up after
removing the first

element

Class PriorityQueue 673

2

3 17

19 49 39

31

1

2 3

4 5 6 7

8

1 29
2 3
3 17
4 5
5 19
6 49
7 39
8 31

Index Content

5

29

Highest priority item removed

3

17

19 49 39

31

1

2 3

4 5 6 7

8

1 3
2 5
3 17
4 29
5 19
6 49
7 39
8 31

Index Content

5

29

Partial ordering restored

Figure 21.5 Removal of top priority item followed by restoration of partial ordering.

Values get entered in random order, but they will be removed in increasing order.
You can see that the priority queue could be used to sort data. You load up the priority
queue with all the data elements (using for "priorities" the key values on which you
want the data elements sorted). Once they are all loaded, you keep removing the first
element in the priority queue until it becomes empty. The values come out sorted.

This particular sorting algorithm is called "heapsort". Its efficiency is O(NlgN)
(roughly, you are doing O(lgN) insert and remove operations for each of N data
elements). Heapsort and Quicksort have similar performances; different degrees of

"Heapsort"

674 Collections of data

ordering in the initial data may slightly favour one algorithm relative to the other. Of
course, heapsort has the extra space overhead of the array used to represent the queue.

The name "heap" in heapsort is somewhat unfortunate. It has nothing to do with
"the Heap" used for free storage allocation.

Design and implementation of class PriorityQ

What does a priority queue own? This priority queue owns an array in which it keeps
pointers to the queued items along with details of their priorities; there will also be an
integer data member whose value defines the number of items queued.

A priority queue can respond to the following requests:

• First
Remove the front element from the queue and return it.

• Add (preferred name Insert)
Insert another item into the queue at a position determined by its priority

• Length
Report how many items are queued.

• Full
As the queue only has a finite amount of storage, it may get to be full, a further

Insert operation would then cause some error. The queue has to have a "Full"
member function which returns true it is full.

• Empty
Returns true if there are no data elements queued; an error would occur if a

First operation was performed on an empty queue.

In cases like this where the algorithms are getting a little more complex, it often
helps to have some extra functions to support debugging. When building any kind of
tree or graph, you will find it useful to have some form of "print" function that can
provide structural information. As this is not part of the interface that would normally
be needed by clients, it should be implemented as conditionally compiled code.

The Insert() and First() member functions make initial changes to the data in
the array, then the "partial ordering" has to be reestablished. With Insert(), a data
element gets added at the bottom of the array and has to find its way up through the
conceptual tree structure until it gets in place. With First() a data element gets put in
at the root and has to drop down until it is in place. These rearrangements are best
handled by auxiliary private member functions (they could be done in Insert() and
First() but it is always better to split things up into smaller functions that are easier to
analyze and understand).

The storage array used by a PriorityQ will be an array of simple structs that
incorporate a void* pointer to the queued object and a long integer priority. This can
mean that the priority value gets duplicated (because it may also occur as an actual data
member within the queued object). Often though, the priority really is something that

A priority queue
owns …

A priority queue does
…

and supplementary
debugging functions

Auxiliary private
member functions

A struct to store
details of queued

objects and priorities

Class PriorityQueue 675

is only meaningful while the object is associated with the priority queue; after all,
casualty patients cease to have priorities if they get to be admitted as ward patients.

The type of struct used to store these data is only used within the priority queue
code. Since nothing else in the program need know about these structs, the struct
declaration can be hidden inside the declaration of class PriorityQ.

The "pq.h" header file with the class declaration is:

#ifndef __MYPQ__
#define __MYPQ__

#define DEBUG

#define k_PQ_SIZE 50
class PriorityQ {
public:

PriorityQ();

void Insert(void* newitem, long priority);
int Length(void) const;
int Full(void) const;
int Empty(void) const;

void *First(void);
#ifdef DEBUG

void PrintOn(ostream& out) const;
#endif
private:

void TidyUp(void);
void TidyDown(void);

struct keyeddata { long fK; void *fd; };
keyeddata fQueue[k_PQ_SIZE+1];
int fcount;

};

inline int PriorityQ::Length(void) const { return fcount; }
inline int PriorityQ::Full(void) const

{ return fcount == k_PQ_SIZE; }
inline int PriorityQ::Empty(void) const { return fcount == 0; }

#endif

Here, the token DEBUG is defined so the PrintOn() function will be included in the
generated code. (Coding is slightly easier if element zero of the array is unused; to
allow for this, the array size is k_PQ_SIZE+1.)

As in the case of class Queue, the simple member functions like Length() can be
defined as "inlines" and included in the header file.

The constructor has to zero out the count; it isn't really necessary to clear out the
array but this is done anyway:

Class declaration

Constructor

676 Collections of data

PriorityQ::PriorityQ()
{

for(int i=0; i<= k_PQ_SIZE; i++) {
fQueue[i].fd = NULL;
fQueue[i].fK = 0;
}

fcount = 0;
}

The Insert() function increments the count and adds the new queued item by
filling in the next element in the fQueue array. Function TidyUp() is then called to
restore partial ordering. First() works in an analogous way using TidyDown():.
Note that neither includes any checks on the validity of the operations; it would be
wiser to include Full() and Empty() checks with calls to an error function as was
done for class Queue.

void PriorityQ::Insert(void* newitem, long priority)
{

fcount++;
fQueue[fcount].fd = newitem;
fQueue[fcount].fK = priority;
TidyUp();

}

void *PriorityQ::First(void)
{

void *chosen = fQueue[1].fd;
fQueue[1] = fQueue[fcount];
fcount--;
TidyDown();
return chosen;

}

The PrintOn() routine has to be in "conditionally compiled" brackets. It simply
runs through the array identifying the priority of the data object in each position. This
sort of information can help when checking out the implementation:

#ifdef DEBUG
void PriorityQ::PrintOn(ostream& out) const
{

if(fcount == 0) {
cout << "Queue is empty" << endl;
return;
}

cout << "Position Item Priority" << endl;
for(int i = 1; i<= fcount; i++)
 cout << i << " " << fQueue[i].fK << endl;

Insert

First

Class PriorityQueue 677

}
#endif

The TidyUp() function implements that chase up through the "branches of the tree"
comparing the value of the data item in a node with the value of the item in its parent
node. The loop stops if a data item gets moved up to the first node, or if the parent has
a data item with a lower fK value (higher priority value). Note that you find the array
index of a node's parent by halving its own index; e.g. the node at array element 9 is at
9/2 or 4 (integer division) which is as shown in the Figures 21.3 etc.

void PriorityQ::TidyUp(void)
{

int k = fcount;
keyeddata v = fQueue[k];
for(;;) {

if(k==1) break;
int nk = k / 2;
if(fQueue[nk].fK < v.fK) break;
fQueue[k] = fQueue[nk];
k = nk;
}

fQueue[k] = v;
}

The code for TidyDown() is generally similar, but it has to check both children
(assuming that there are two child nodes) because either one of them could hold a data
item with a priority value smaller than that associated with the item "dropping down"
through levels of the "tree". (The code picks the child with the data item with the
smaller priority key and pushes the descending item down that branch.)

void PriorityQ::TidyDown(void)
{

int Nelems = fcount;
int k = 1;
keyeddata v = fQueue[k];
for(;;) {

int nk;
if(k>(Nelems/ 2)) break;
nk = k + k;
if((nk <= Nelems-1) &&

(fQueue[nk].fK > fQueue[nk+1].fK)) nk++;

if(v.fK <= fQueue[nk].fK) break;
fQueue[k] = fQueue[nk];
k = nk;
}

fQueue[k] = v;
}

Restoring partial
ordering

678 Collections of data

Test program

Once again, a small test program must be provided along with the class. This test
program first checks out whether "heapsort" works with this implementation of the
priority queue. The queue is loaded up with some "random data" entered by the user,
then the data values are removed one by one to check that they come out in order. The
second part of the test is similar to the test program for the ordinary queue. It uses an
interactive routine with the user entering commands that add things and remove things
from the queue.

The test program starts by including appropriate header files and defining a Job
struct; the priority queue will store Jobs (for this test, a Job has just a single character
array data member):

#include <stdlib.h>
#include <iostream.h>
#include "pq.h"

struct Job {
char name[30];

};

Job* GetJob()
{

cout << "job name> ";
Job *j = new Job;
cin >> j->name;
return j;

}

main()
{

PriorityQ thePQ;
int i;

/*
Code doing a "heapsort"
*/
cout << "enter data for heap sort test; -ve prio to end data"

<< endl;
for(i = 0; ; i++)
{

int prio;
cout << "job priority ";
cin >> prio;
if(prio < 0)

break;
Job* j = GetJob();
thePQ.Insert(j, prio);

Load the queue with
some data

Class PriorityQueue 679

if(thePQ.Full())
break;

}

while(!thePQ.Empty()) {
Job *j = (Job*) thePQ.First();
cout << j->name << endl;
delete j;
}

for(int done = 0; !done ;) {
Job *j;
char ch;
cout << ">";
cin >> ch;

switch(ch) {
case 'q': done = 1;

break;
case 'l' : cout << "Queue length now " << thePQ.Length()

<< endl;
break;

case 'a':
if(thePQ.Full()) cout << "Queue is full!" << endl;
else {

int prio;
cout << "priority "; cin >> prio;
j = GetJob();
thePQ.Insert(j,prio);
}

break;
case 's':

thePQ.PrintOn(cout);;
break;

case 'g':
if(thePQ.Empty()) cout << "Its empty!" << endl;
else {

j = (Job*) thePQ.First();
cout << "Removed " << j->name << endl;
delete j;
}

break;
case '?':

cout << "Commands are:" << endl;
cout << "\tq Quit\n\ta Add to queue\t" << endl;
cout << "\ts show queue status\n\tg"

"Get job at front of queue" << endl;
cout << "\tl Length of queue\n" << endl;
break;

default:
;
}

Pull the data off the
queue, hope it comes
out sorted

Interactive part
adding, removing
items etc

Type case from void*
to Job*

680 Collections of data

}

return 0;
}

Note the (Job*) type casts. We know that we put pointers to Jobs into this priority
queue but when they come back they are void* pointers. The type cast is necessary,
you can't do anything with a void*. (The type cast is also safe here; nothing else is
going to get into this queue). The code carefully deletes Jobs as they are removed from
the priority queue; but it doesn't clean up completely (there could be Jobs still in the
queue when the program exits).

…
job priority 5
job name> data5
job priority 107
job name> data107
job priority -1
data5
data11
data17
data35
data55
data92
data107
data108
>a
priority 18
job name> drunk
>a
priority 7
job name> spider-venom
>a
priority 2
job name> pain-in-chest
>a
priority 30
job name> pain-in-a---
>a
priority 1
job name> gunshot
>g
Removed gunshot
>g
Removed pain-in-chest
>g
Removed spider-venom
>g
Removed drunk
>q

Test output

Class PriorityQueue 681

21.3 CLASS DYNAMICARRAY

It is surprising how rarely dynamic arrays feature in books on data structures. A
dynamic array looks after a variable size collection of data items; thus, it performs
much the same sort of role as does a List. In many situations, dynamic arrays perform
better than lists because they incur less overhead costs.

Both "list" and "dynamic array" allow "client programs" (i.e. programs that use
instances of these classes) to:

• add data objects to the collection (as in the rest of this chapter, the data objects are
identified by their addresses and these are handled as void* pointers);

• ask for the number of objects stored;

• ask whether a particular object is in the collection;

• remove chosen objects from the collection.

In these two kinds of collection there is an implied ordering of the stored data items.
There is a "first item", a "second item" and so forth. In the simple versions considered
here, this ordering doesn't relate to any attributes of the data items themselves; the
ordering is determined solely by the order of addition. As the items are in sequence,
these collections also allow client programs to ask for the first, second, …, n -th item.

Figure 21.6 illustrates a dynamic array. A dynamic array object has a main data
block which contains information like the number of items stored, and a separate array
of pointers. The addresses of the individual data items stored in the collection are held
in this array. This array is always allocated in the heap (or simplicity, the header and
trailer information added by the run-time memory manager are not shown in
illustrations). The basic data block with the other information may be in the heap, or
may be an automatic in the stack, or may be a static variable.

As shown in Figure 21.6, the array of pointers can vary in size. It is this variation in
size that makes the array "dynamic".

When a dynamic array is created it gets allocated an array with some default number
of entries; the example in Figure 21.6 shows a default array size of ten entries. As data
objects get added to the collection, the elements of the array get filled in with data
addresses. Eventually, the array will become full.

When it does become full, the DynamicArray object arranges for another larger
array to be allocated in the heap (using operator new []). All the pointers to stored data
items are copied form the existing array to the new larger array, and then the existing
array is freed (using operator delete []). You can vary the amount of growth of the
array, for example you could make it increase by 25% each time. The simplest
implementations of a dynamic array grow the array by a specified amount, for example
the array might start with ten pointers and grow by five each time it gets filled.

"Growing the array"

682 Collections of data

fSize
fInc
fNum

fCSize
fItems

DynamicArray
structure

Auxiliary array of
pointers to data items

January

February

March

October

fSize
fInc
fNum

fCSize
fItems

DynamicArray
structure

Replacement array

January

February

March

October

Old array
"deleted"

November

10
5

10
10

10
5

11
15

Figure 21.6 A "Dynamic Array".

Stored items do get removed from the array. It isn't like a queue where only the first
item can be removed, a "remove" request will identify the item to be removed. When
an item is removed, the "gap" in the array is filled up by moving up the data items from
the later array elements. So, if the array had had seven elements, removal of the fifth
would result in the pointers in the sixth and seventh elements each moving up one
place. If lots of items are removed, it may be worth shrinking the array. "Shrinking" is
similar to "growing". The DynamicArray object again creates a new array (this time
smaller) in the heap and copies existing data into the new array. The old large array is
deleted. Typically, the array is only shrunk when a remove operation leaves a
significant number of unused elements. The array is never made smaller than the
initially allocated size.

The main thing a DynamicArray object owns is the array of pointers to the data
items. In addition, it needs to have integer data members that specify: initial size (this
is also the minimum size), the size of the increment, the current array size, and the
number of data elements currently stored.

You can vary the behaviours of DyanamicArrays and Lists a little. These classes
have to have functions to support at least some version of the following behaviours:

Removing items and
"Shrinking" the

array

What does a dynamic
array own?

A DynamicArray
does …

Class DynamicArray 683

• Length
Report how many items are stored in the collection.

• Add (preferred name Append)
Add another item to the collection, placing it "after" all existing items.

• Position
Find where an item is in the collection (returning its sequence number); this

function returns an error indicator if the item is not present. (This function may be
replaced by a Member function that simply returns a true or false indication of
whether an item is present).

• Nth
Get the item at a specified position in the collection (the item is not removed

from the collection by this operation).
• Remove

Removes a specified item, or removes the item at a specified position in the
collection.

Note that there is neither a "Full" nor an "Empty" function. DynamicArrays and Lists
are never full, they can always grow. If a client program needs to check for an "empty"
collection, it can just get the length and check whether this is zero.

You have to chose whether the sequence numbers for stored items start with 0 or 1.
Starting with 0 is more consistent with C/C++ arrays, but usually a 1-base is more
convenient for client applications. So, if there are N elements in the collection, the
"Position" function will return values in the range 1…N and functions like "Nth", and
"Remove" will require arguments in the range 1…N.

The remove function should return a pointer to the item "removed" from the
collection.

If desired, a debugging printout function can be included. This would print details
like the current array size and number of elements. It is also possible for the function to
print out details of the addresses of stored data items, but this information is rarely
helpful.

A declaration for a simple version of the DynamicArray class is:

#ifndef __MYDYNAM__
#define __MYDYNAM__

class DynamicArray {
public:

DynamicArray(int size = 10, int inc = 5);

int Length(void) const;
int Position(void *item) const;
void *Nth(int n) const;

void Append(void *item);

void *Remove(void *item);

File "D.h" with the
declaration of class
DynamicArray

Default parameters

684 Collections of data

void *Remove(int itempos);

private:
void Grow(int amount);

int fNum;
int fSize;
int fCSize;
int fInc;
void **fItems;

};

inline int DynamicArray::Length(void) const { return fNum; }

#endif

For a class like this, it is reasonable for the class declaration to provide default initial
values for parameters like the initial array size and the increment, so these appear in the
declaration for the constructor.

The next group of functions are all const functions; they don't change the contents of
a DynamicArray. Once again, the Length() function is simple and can be included in
the header file as an inline function.

Along with the Append() function, there are two overloaded versions of Remove();
one removes an item at a specified position in the collection, the other finds an item and
(if successful) removes it. The Append() and Remove() functions require auxiliary
"grow" and "shrink" functions. Actually, a single Grow() function will suffice, it can
be called with a positive increment to expand the array or a negative increment to
contract the array. The Grow() function is obviously private as it is merely an
implementation detail.

Most of the data members are simple integers. However, the fItems data member
that holds the address of the array of pointers is of type void**. This seemingly odd
type requires a little thought. Remember, a pointer like char* can hold the address of a
char variable or the address of the start of an array of chars; similarly an int* holds
the address of an int variable or the address of an array of ints. A void* holds an
address of something; it could be interpreted as being the address of the start of "an
array of voids" but you can't have such a thing (while there are void* variables you
can't have void variables). Here we need the address of the start of an array of void*
variables (or a single void* variable if the array size is 1). Since fItems holds the
address of a void* variable, its own type has to be void** (pointer to a pointer to
something).

The code implementing the class member functions would be in a separate "D.cp"
file. The constructor fills in the integer data members and allocates the array:

#include <stdlib.h>
#include <assert.h>
#include "D.h"

Auxiliary "Grow"
function as private

member

The "pointer to
pointer"

void** ! ?

Class DynamicArray 685

const int kLARGE = 10000;
const int kINCL = 5000;

DynamicArray::DynamicArray(int size, int inc)
{

assert((size > 1) && (size < kLARGE));
assert((inc > 1) && (inc < kINCL));

fNum = 0;
fCSize = fSize = size;
fInc = inc;

fItems = new void* [size];
}

Note that the definition does not repeat the default values for the arguments; these only
appear in the initial declaration. (The assert() checks at the start protect against silly
requests to create arrays with -1 or 1000000 elements.) The new [] operator is used to
create the array with the specified number of pointers.

Function Length() was defined as an inline. The other two const access functions
involve loops or conditional tests and so are less suited to being inline.

int DynamicArray::Position(void *item) const
{

for(int i = 0; i< fNum; i++)
if(fItems[i] == item) return i+1;

return 0;
}

void *DynamicArray::Nth(int n) const
{

if((n < 1) || (n > fNum))
return NULL;

n--;
return fItems[n];

}

The class interface defines usage in terms of indices 1…N. Of course, the
implementation uses array elements 0…N-1. These functions fix up the differences
(e.g. Nth() decrements its argument n before using it to access the array).

Both these functions have to deal with erroneous argument data. Function
Position() can return zero to indicate that the requested argument was not in the
collection. Function Nth() can return NULL if the index is out of range. Function
Position() works by comparing the address of the item with the addresses held in
each pointer in the array; if the addresses match, the item is in the array.

The Append() function starts by checking whether the current array is full; if it is, a
call is made to the auxiliary Grow() function to enlarge the array. The new item can

Constructor

686 Collections of data

then be added to the array (or the new enlarged array) and the count of stored items gets
incremented:

void DynamicArray::Append(void *item)
{

if(fNum == fCSize)
Grow(fInc);

fItems[fNum] = item;
fNum++;

}

The Grow() function itself is simple. The new array of pointers is created and the
record of the array size is updated. The addresses are copied from the pointers in the
current array to the pointers in the new array. The old array is freed and the address of
the new array is recorded.

void DynamicArray::Grow(int delta)
{

int newsize = fCSize + delta;
void **temp = new void* [newsize];
fCSize = newsize;
for(int i=0;i < fNum; i++)

temp[i] = fItems[i];
delete [] fItems;
fItems = temp;

}

The Remove(void *item) function has to find the data item and then remove it.
But function Position() already exists to find an item, and Remove(int) will
remove an item at a known position. The first Remove() function can rely on these
other functions:

void *DynamicArray::Remove(void *item)
{

int where = Position(item);
return Remove(where);

}

The Remove(int) function verifies its argument is in range, returning NULL if the
element is not in the array. If the required element is present, its address is copied into
a temporary variable and then the array entries are "closed up" to remove the gap that
would otherwise be left.

The scheme for shrinking the array is fairly conservative. The array is only shrunk if
remove operations have left it less than half full and even then it is only shrunk a little.

void *DynamicArray::Remove(int itempos)
{

"Growing" the array

Class DynamicArray 687

if((itempos < 1) || (itempos > fNum))
return NULL;

itempos--;
void *tmp = fItems[itempos];
for(int i = itempos + 1; i < fNum; i++)

fItems[i-1] = fItems[i];
fNum--;

if((fNum > fSize) && (fNum < (fCSize / 2)))
Grow(-fInc);

return tmp;
}

Test program

The test program for this class creates "book" objects and adds them to the collection.
For simplicity, "books" are just character arrays allocated in the heap. Rather than force
the tester to type in lots of data, the program has predefined data strings that can be used
to initialize the "books" that get created.

#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#include "D.h"

typedef char *Book;
Book BookStore[] = {

"The C++ Programming Language",
"Developing C++ Software",
"Algorithms in C++",
…
"Effective C++",
"Object Models, Strategies, Patterns, and Applications"

};

int Numbooks = sizeof(BookStore) / sizeof(char*);

Book PickABook(void)
{

int num;
cout << "Pick a book, any book (#1 … "

<< Numbooks << "): " << endl;
cin >> num;
while((num < 1) || (num > Numbooks)) {

cout << "Try again, enter number ";
cin.clear();
cin.ignore(100,'\n');
cin >> num;
}

Predefined data to
reduce amount of
data entry in test
program

Function that creates
a "Book" on the
heap

688 Collections of data

num--;
cout << "You picked : " << BookStore[num] << endl;
Book ptr;
ptr = new char[strlen(BookStore[num]) + 1];
strcpy(ptr, BookStore[num]);
return ptr;

}

Function PickABook() allows the tester to simply enter a number; this selects a string
from the predefined array and uses this string to initialize a dynamically created Book.

Function GetPos() is another auxiliary function used to allow the tester to enter the
sequence number of an item in the collection:

int GetPos(int max)
{

if(max < 1) {
cout << "The collection is empty!" << endl;
return 0;
}

cout << "Which item from collection? ";
int temp;
cin >> temp;
while((temp < 1) || (temp > max)) {

cout << "Position must be in range 1..." <<
 max << endl;

cin.clear();
cin.ignore(100,'\n');
cin >> temp;
}

return temp;
}

Like most such test programs, this one consists of a loop in which the user is
prompted for commands. These commands exercise the different member functions of
the class:

int main()
{

Book lastadded = NULL;
DynamicArray c1;

for(int done = 0; !done ;) {
char command;
Book ptr;
int pos;
cout << ">";
cin >> command;
switch(command) {

case 'q': done = 1; break;

Class DynamicArray 689

Check Length()case 'l' :
cout << "Collection now contains "

<< c1.Length()
<< " data items" << endl;

break;
case 'a' :

ptr = PickABook();
if(c1.Position(ptr)) {

// Note this will never happen,
// see discussion in text
cout << "You've already got that one!" << endl;
delete ptr;
}

else {
c1.Append(ptr);
cout << "Added" << endl;
lastadded = ptr;
}

break;
case 'f':

pos = GetPos(c1.Length());
if(pos > 0) {

ptr = (char*) c1.Nth(pos);
cout << pos << " : " << ptr << endl;
}

break;
case 'F':

if(lastadded == NULL)
cout << "Got to add something first" << endl;

else {
cout << "Last book added was "

<< lastadded << endl;
pos = c1.Position(lastadded);
if(pos)

cout << "That's still in the collection"
" at position "

<< pos << endl;
else

cout << "You seem to have got rid"
" of it." << endl;

}
break;

case 'r':
pos = GetPos(c1.Length());
if(pos > 0) {

ptr = (Book) c1.Remove(pos);
cout << "Removed " << ptr << " from collection"

<< endl;
cout << "Collection now has " <<

c1.Length() << " items" << endl;
delete ptr;
}

Check Append()

Check Nth()

Check Position()

Check Remove(int)

690 Collections of data

break;

case '?':
cout << "Commands are:" << endl;
cout << "\tq Quit\n\ta Add to collection\t" << endl;
cout << "\tf Find item in collection (use number)"

<< endl;
cout << "\tF Find last added item in collection"

" (use pointer)" << endl;
cout << "\tr Remove item from collection"

" (use number)" << endl;
cout << "\tl Length (size) of collection\n" << endl;
break;

default:
;
}

}
return EXIT_SUCCESS;

}

Most of the testing code should be easy to understand.
Note that function PickABook() creates a new data structure in the heap for each

call. So, if you choose book 1 ("C++ Programming Language") twice, you will get two
separate data structures in the heap, both of which contain this string. These structures
are at different addresses. The check "c1.Position(ptr)" in case 'a': will always
fail (get a zero result) because the newly allocated book isn't in the collection (even
though the collection may already contain a book with similar content). In contrast, the
test c1.Position(lastadded); in case 'F': may succeed (it will succeed if the last
book added is still in the collection because then the address in lastadded will be the
same as the address in the last of the used pointers in the array.

Function Position(void*) implements an identity check. It determines whether
the specific item identified by the argument is in the array. It does not check for an
equal item. In this context, an identity test is what is required, but sometimes it is
useful to have an equality test as well . An equality test would allow you to find
whether the array contained an item similar to the one referred to in the query.

In this simplified implementation of class DynamicArray, it is not possible to have
an equality test. You can only test two data objects for equality if you know their
structure or know of a routine for comparing them. You never know anything about a
data item pointed to by a void* so you can't do such tests.

On the whole, a DynamicArray is pretty efficient at its job. Remove operations do
result in data shuffling. Some implementations cut down on data shuffling by having
an auxiliary array of booleans; the true or false setting of a boolean indicates whether a
data element referenced by a pointer is still in the collection. When an item is removed,
the corresponding boolean is set to false. Data are only reshuffled when the array has a
significant number of "removed" items. This speeds up removals, but makes operations

Class DynamicArray 691

like Nth() more costly (as it must then involve a loop that finds the n-th item among
those not yet removed).

21.4 CLASS LIST

A list is the hardy perennial that appears in every data structures book. It comes second
in popularity only to the "stack". (The "stack" of the data structures books is covered in
an exercise. It is not the stack used to organize stackframes and function calls; it is an
impoverished simplified variant.)

There are several slightly different forms of list, and numerous specialized list
classes that have extra functionality required for specific applications. But a basic list
supports the same functionality as does a dynamic array:

• Length
• Append
• Position
• Nth
• Remove

The data storage, and the mechanisms used to implement the functions are however
quite different.

The basics of operations on lists were explained in Section 20.6 and illustrated in
Figure 20.7. The list structure is made up from "list cells". These are small structs,
allocated on the heap. Each "list cell" holds a pointer to a stored data element and a
pointer to the next list cell. The list structure itself holds a pointer to the first list cell;
this is the "head" pointer for the list.

struct ListCell { void *fData; ListCell *fNext; };

class List {
…
private:

ListCell *fHead;
…

};

This arrangement of a "head pointer" and the "next" links makes it easy to get at the
first entry in the list and to work along the list accessing each stored element in turn.

An "append" operation adds to the end of the list. The address of the added list cell
has to be stored in the "next" link of the cell that was previously at the end of the list. If
you only have a head pointer and next links, then each "append" operation involves
searching along the list until the end is found. When the list is long, this operation gets
to be a little slow. Most implementations of the list abstract data type avoid this cost by
having a "tail" pointer in addition to the head pointer. The head pointer holds the

List cells, next
pointers, and the
head pointer

A "tail" pointer

692 Collections of data

address of the first list cell, the tail pointer holds the address of the las list cell; they will
hold the same address if the list only has one member. Maintaining both head and tail
pointers means that there is a little more "housekeeping" work to be done in functions
that add and remove items but the improved handling of append operations makes this
extra housekeeping worthwhile.

Sometimes it is worth having two list cell pointers in each list cell:

struct D_ListCell {
void *fData;
D_ListCell *fNext;
D_ListCell *fPrev;

};

These "previous" links make it as easy to move backwards toward the start of the list as
it is to move forwards toward the end of the list. In some applications where lists are
used it is necessary to move backwards and forwards within the same list. Such
applications use "doubly linked" lists. Here, the examples will consider just the singly
linked form.

The class declaration for a simple singly linked list is:

#ifndef __MYLIST__
#define __MYLIST__

class List {
public:

List();

int Length(void) const;
int Position(void *item) const;

void *Nth(int n) const;

void Append(void *item);

void *Remove(void *item);
void *Remove(int itempos);

private:
struct ListCell { void *fData; ListCell *fNext; };
int fNum;
ListCell *fHead;
ListCell *fTail;

};

inline int List::Length(void) const { return fNum; }

#endif

"Previous" links in
the list cells

File "List.h" with
class declaration

Class List 693

Apart from the constructor, the public interface for this class is identical to that of class
DynamicArray.

The struct ListCell is declared within the private part of class List. ListCells
are an implementation detail of the class; they are needed only within the List code and
shouldn't be used elsewhere.

The data members consist of the two ListCell* pointers for head and tail and fNum
the integer count of the number of stored items. You could miss out the fNum data
member and work out the length each time it is needed, but having a counter is more
convenient. The Length() function, which returns the value in this fNum field, can
once again be an inline function defined in the header file.

The remaining member functions would be defined in a separate List.cp
implementation file.

The constructor is simple, just zero out the count and set both head and tail pointers
to NULL:

#include <stdlib.h>
#include <assert.h>
#include "List.h"

List::List()
{

fNum = 0;
fHead = fTail = NULL;

}

Figure 21.7 illustrates how the first "append" operation would change a List object.
The List object could be a static, an automatic, or a dynamic variable; that doesn't
matter. The data item whose address is to be stored is assumed to be a dynamic (heap
based) variable. Initially, as shown in part 1 of Figure 21.7, the List object's fNum field
would be zero, and the two pointers would be NULL. Part 2 of the figure illustrates the
creation of a new ListCell struct in the heap; its fNext member has to be set to NULL
and its fData pointer has to hold the address of the data item.

Finally, as shown in part 3, both head and tail pointers of the List object are changed
to hold the address of this new ListCell. Both pointers refer to it because as it is the
only ListCell it is both the first and the last ListCell. The count field of the List object
is incremented.

The code implementing Append() is:

void List::Append(void *item)
{

ListCell *lc = new ListCell;
lc->fData = item;
lc->fNext = NULL;

Create new ListCell
and link to data item

694 Collections of data

0fNum

1 2

NULLfHead

NULLfTail

List
object

xxxx

Data Item

0fNum

NULLfHead

NULLfTail

List
object

xxxx

Data Item

NULL

ListCell

3

1fNum

fHead

fTail

List
object

xxxx

Data Item

NULL

ListCell

Figure 21.7 The first append operation changing a List object.

if(fHead == NULL)
fHead = fTail = lc;

else {
fTail->fNext = lc;
fTail = lc;
}

fNum++;
}

Figure 21.8 illustrates the steps involved when adding an extra item to the end of an
existing list.

Part 1 of Figure 21.8 shows a List that already has two ListCells; the fTail pointer
holds the address of the second cell.

An additional ListCell would be created and linked to the data. Then the second
cell is linked to this new cell (as shown in Part 2):

fTail->fNext = lc;

Add to an empty list

Add to end of an
existing list

Update member
count

Class List 695

xxxx

Extra Data
Item

1

2fNum

fHead

fTail

List
object

xxxx

Data Item 1

ListCell

xxxx

Data Item 2

NULL

ListCell

xxxx

Extra Data
Item

2

2fNum

fHead

fTail

List
object

xxxx

Data Item 1

xxxx

Data Item 2

NULL

xxxx

Extra Data
Item

3

3fNum

fHead

fTail

List
object

xxxx

Data Item 1

xxxx

Data Item 2

NULL

Figure 21.8 Adding an element at the tail of an existing list.

Finally, the fTail pointer and fNum count are updated as shown in Part 3 of the
figure.

The Position() function, that finds where a specific data element is stored,
involves "walking along the list" starting at the cell identified by the head pointer. The
ListCell* variable ptr is initialized with the address of the first list cell and the
position counter pos is intialized to 1. The item has been found if its address matches
the value in the fData member of a ListCell; when found, the value for pos is
returned. If the data address in the current list cell does not match, ptr is changed so

696 Collections of data

that it holds the address of the next list cell. The item will either be found, or the end of
the list will be reached. The last list cell in the list will have the value NULL in its fNext
link, this gets assigned to ptr. The test in the while clause will then terminate the loop.
As with the DynamicArray, a return value of 0 indicates that the sought item is not
present in the list.

int List::Position(void *item) const
{

ListCell *ptr = fHead;
int pos = 1;
while(ptr != NULL) {

if(ptr->fData == item) return pos;
pos++;
ptr = ptr->fNext;
}

return 0;
}

The function Nth() is left as an exercise. It also has a while loop that involves
walking along the list via the fNext links. This while loop is controlled by a counter,
and terminates when the desired position is reached.

The basic principles for removing an item from the list are illustrated in Figure 21.9.
The ListCell that is associated with the data item has first to be found. This is done
by walking along the list, in much the same way as was done the Position() function.
A ListCell* pointer, tmp, is set to point to this ListCell.

There is a slight complication. You need a pointer to the previous ListCell as well.
If you are using a "doubly linked list" where the ListCells have "previous" as well as
"next" links then getting the previous ListCell is easy. Once you have found the
ListCell that is to be unhooked from the list, you use its "previous" link to get the
ListCell before it. If you only have a singly linked list, then its slightly more
complex. The loop that walks along the list must update a "previous" pointer as well as
a pointer to the "current" ListCell

Once you have got pointer tmp to point to the ListCell that is to be removed, and
prev to point to the previous ListCell, then unhooking the ListCell from the list is
easy, you simply update prev's fNext link:

prev->fNext = tmp->fNext;

Parts 1 and 2 of Figure 21.9 shows the situation before and after the resetting of
prev's fNext link.

When you have finished unhooking the ListCell that is to be removed, you still
have to tidy up. The unhooked ListCell has to be deleted and a pointer to the
associated data item has to be returned as the result of the function.

Removing an item
from the middle of a

list

Class List 697

Data Item 1 Data Item 2

3fNum

fHead

fTail

xxxx xxxx

Data Item 3

xxxx

1

Item 2
to be removed

Data Item 1

Data Item 2

2fNum

fHead

fTail

List
object

xxxx

xxxx Data Item 3

xxxx

2

ListCell
to be deleted

tmp: pointer to ListCell
with item to be removed

prev: pointer to ListCell
before the one to be removed

Figure 21.9 Removing an item from the middle of a list.

A Remove() function has to check for special cases where the ListCell that gets
removed is the first, or the last (or the only) ListCell in the list. Such cases are special
because they make it necessary to update the List's fHead and/or fTail pointers.

If the ListCell is the first in the list (fHead == tmp) then rather than "unhooking"
it, the fHead pointer can just be set to hold the address of the next ListCell:

if(fHead == tmp)
fHead = tmp->fNext;

If the ListCell should happen to be the last one in the current list (fTail == tmp),
the List's fTail pointer needs to be moved back to point to the previous entry:

if(fTail == tmp)

Complications at the
beginning and end of
a list

Removing the first
entry

Removing the last
entry

698 Collections of data

fTail = prev;

The two versions of Remove() are similar. The functions start with the loop that
searches for the appropriate ListCell (and deal with the ListCell not being present, a
List may get asked to remove an item that isn't present). Then there is code for
unhooking the ListCell and resetting fHead and fTail pointers as required. Finally,
there is code that tidies up by deleting the discarded ListCell and returning a pointer
to the associated data item.

The following code illustrates the version that finds an item by matching its address.
The version removing the item at a specified position is left as another exercise.

void *List::Remove(void *item)
{

ListCell *tmp = fHead;
ListCell *prev = NULL;

while(tmp != NULL) {
if(tmp->fData == item) break;
prev = tmp;
tmp = tmp->fNext;
}

if(tmp == NULL)
return NULL;

if(fHead == tmp)
fHead = tmp->fNext;

else prev->fNext = tmp->fNext;

if(fTail == tmp)
fTail = prev;

fNum--;
void *dataptr = tmp->fData;
delete tmp;

return dataptr;
}

Go through the code and convince yourself that it does deal correctly with the case of a
List that only has one ListCell.

Test program

You've already seen the test program! Apart from two words, it is identical to the test
program for class DynamicArray. One word that gets changed is the definition of the
datatype for the collection. This has to be changed from

Loop to find the
right ListCell

Item to be removed
was not present

anyway
ListCell is first

ListCell in middle

Fix up if last ListCell

Tidy up

Class List 699

DynamicArray c1;

to

List c1;

The other word to change is the name of the header file that has to be #included; this
changes from "D.h" to "List.h".

The test program has to be the same. Lists and dynamic arrays are simply different
implementations of the same "collection" abstraction.

Overheads with the List implementation are significantly higher. If you just look at
the code, the overheads may not be obvious. The overheads are the extra space required
for the ListCells and the time required for calls to new and delete.

With the ListCells, a List is in effect using two pointers for each data item while
the DynamicArray managed with one. Further, each ListCell incurs the space
overhead of the storage manager's header and trailer records. In the DynamicArray , the
array allocated in the heap has a header an trailer, but the cost of these is spread out
over the ten or more pointers in that array.

The two implementations have similar costs for their Position() functions. The
Append() for a List always involves a call to new, whereas this is relatively rare for a
DynamicArray. A DynamicArray has to reshuffle more data during a Remove(); but
the loop moving pointers up one place in an array is not particularly costly. Further,
every (successful) Remove() operation on a List involves a call to delete while
delete operations are rare for a DynamicArray. The difference in the pattern of calls
to new and delete will mean that, in most cases, processing as well as space costs
favour the DynamicArray implementation of a collection.

Although DynamicArrays have some advantages, Lists are more generally used
and there are numerous special forms of list for specific applications. You had better
get used to working with them.

21.5 CLASS BINARYTREE

Just as there are many different kinds of specialized list, there are many "binary trees".
The binary tree illustrated in this section is one of the more common, and also one of
the simplest. It is a "binary search tree".

A "binary search tree" is useful when:

• you have data items (structs or instances of some class) that are characterized by
unique "key" values, e.g. the data item is a "driver licence record" with the key
being the driver licence number;

When to use a binary
search tree

700 Collections of data

• you need to maintain a collection of these items, the size of the collection can not
be readily fixed in advanced and may be quite large (but not so large that the
collection can't fit in main memory);

• items are frequently added to the collection;

• items are frequently removed from the collection;

• the collection is even more frequently searched to find an item corresponding to a
given key.

The "keys" are most often just integer values, but they can be things like strings. The
requirement that keys be unique can be relaxed, but this complicates searches and
removal operations. If the keys are not unique, the search mechanism has to be made
more elaborate so that it can deal in turn with each data item whose key matches a given
search key. For simplicity, the rest of this section assumes that the keys are just long
integers and that they will be unique.

You could just use an array to store such data items (or a dynamic array so as to
avoid problems associated with not knowing the required array size). Addition of items
would be easy, but searches for items and tidying up operations after removal of items
would be "slow" (run times would be O(N) with N the number of items in the
collection). The search would be O(N) because the items wouldn't be added in any
particular order and so to find the one with a particular key you would have to start with
the first and check each in turn. (You could make the search O(lgN) by keeping the
data items sorted by their keys, but that would make your insertion costs go up because
of the need to shuffle the data.) Removal of an item would require the movement of all
subsequent pointers up one place in the array, and again would have a run time O(N).

If you simply needed to add items, and then search for them, you could use a hash
table. (Do you still remember hash tables from Chapter 18?) A "search" of a hash table
is fast, ideally it is a single operation because the key determines the location of the data
item in the table (so, ideally, search is O(1)). The keys associated with the data items
would be reduced modulo the size of the hash table to get their insertion point. As
explained in Chapter 18, key collisions would mean that some data items would have to
be inserted at places other than the location determined simply by their key. It is this
factor that makes it difficult to deal with removals. A data item that gets removed may
have been one that had caused a key collision and a consequent shift of some other data
item. It is rather easy to lose items if you try doing removals on a hash table.

Binary trees offer an alternative where insertions, searches, and removals are all
practical and all are relatively low cost. On a good day, a binary tree will give you
O(lgN) performance for all operations; the performance does deteriorate to O(N) in
adverse circumstances.

A binary search tree gets its O(lgN) performance in much the same way as we got
O(lgN) performance with binary search in a sorted array (Chapter 13). The data are
going to be organized so that testing a given search key against a value from one of the

Alternatives: a simple
array? Bit slow.

Alternatives: a hash
table?? Removals too

hard.

Binary search tree
performance

Class BinaryTree 701

data items is going to let you restrict subsequent search steps to either one of two
subtrees (subsets of the collection). One subtree will have all the larger keys, the other
subtree will have all the smaller keys. If your search key was larger than the key just
tested you search the subtree with the large keys, if your key is smaller you search the
other subtree. (If your search key was equal to the value just checked, then you've
found the data item that you wanted.)

If each such test succeeded in splitting the collection into equal sized subtree , then
the search costs would be O(lgN). In most cases, the split results in uneven sized
subtree and so performance deteriorates.

Tree structure

A binary search tree is built up from "tree-node" structures. In this section, "tree-nodes"
(tn) are defined roughly as follows:

struct tn {
long key;
void *datalink;
tn *leftlink;
tn *rightlink;

};

The tree-node contains a key and a pointer to the associated data record (as in the rest of
this chapter, it is assumed that the data records are all dynamic structures located in the
heap). Having the key in the tree-node may duplicate information in the associated data
record; but it makes coding these initial examples a little simpler. The other two
pointers are links to "the subtree with smaller keys" (leftlink) and "the subtree with
larger keys" (rightlink). (The implementation code shown later uses a slightly more
sophisticated version where the equivalent of a "tree-node" is defined by a class that has
member functions and private data members.)

The actual binary tree object is responsible for using these tn structures to build up
an overall structure for the data collection. It also organizes operations like searches. It
keeps a pointer, the "root" pointer, to the "root node" of the tree.

Figure 21.10 illustrates a simple binary search tree. The complete tree start starts
with a pointer to the "root" tree-node record. The rest of the structure is made up from
separate tree-nodes, linked via their "left link" and "right link" pointers.

The key in the root node is essentially arbitrary; it will start by being the key
associated with the first data record entered; in the example, the key in the root node is
1745.

All records associated with keys less than 1745 will be in the subtree attached via
the root node's "left link". In Figure 21.10, there is only one record associated with a
smaller key (key 1642). The tree node with key 1642 has no subtrees, so both its left
link and right link are NULL.

Simple "tree-nodes"

BinaryTree object

702 Collections of data

Key
Data Link
Left Link
Right Link

1745

1642

(some data record)

1811

1871

NULL
NULL

1791

1770

1775

1848

NULL

NULL NULL

NULL
NULL

"Root" pointer in
"binary tree" object

NULL
NULL

Figure 21.10 A "binary search tree".

All records having keys greater than 1745 must be in the right subtree. The first
entered might have been a record with key 1811. The left subtree of the tree node
associated with key 1811 will hold all records that are less than 1811 but greater than
1745. Its right subtree will hold all records associated with keys greater than 1811.

The same structuring principles apply "recursively" at every level in the tree.
The shape of the tree is determined mainly by the order in which data records are

added. If the data records are added in some "random" order, the tree will be evenly
balanced. However, it is more usual for the addition process to be somewhat orderly,
for example records entered later might tend to have larger keys than those entered
earlier. Any degree of order in the sequence of addition results in an unbalanced tree.

Class BinaryTree 703

Thus, if the data records added later do tend to have larger keys, then the "right
subtrees" will tend to be larger than the left subtrees at every level.

Searching

You can find a data record associated with a given "search key" (or determine that there
is no record with that key) by a simple recursive procedure. This procedure takes as
arguments a pointer to a subtree and the desired key value:

recursive_search(tn *sub_tree_ptr, Key search_key)
if sub_tree_ptr is NULL

return NULL;

compare_result = Compare search_key and sub_tree_ptr->Key

if(compare_result is EQUAL)
return sub_tree_ptr->Data;

else
if(compare_result is LESS)

return recursive_search(
sub_tree_ptr->left_link, search_key)

else
return recursive_search(

sub_tree_ptr->right_link, search_key)

This function would be called with the "root" pointer and the key for the desired record.
Like all recursive functions, its code needs to start by checking for termination

conditions. One possible terminating condition is that there is no subtree to check! The
function is meant to chase down the left/right links until it finds the specified key. But
if the key is not present, the function will eventually try to go down a NULL link. It is
easiest to check this at the start of the function (i.e. at the next level of recursion). If the
subtree is NULL, the key is not present so the function returns NULL.

If there is a subtree to check, the search key should be compared with the key in the
tree-node record at the "root of the current subtree". If these keys are equal, the desired
record has been found and can be returned as the result of the function.

Otherwise the function has to be called recursively to search either the left or the
right subtree as shown.

Two example searches work as follows:

recursive_search(root, 1770) recursive_search(root, 1795)

sub_tree_ptr != NULL sub_tree_ptr != NULL
compare 1770, 1745 compare 1795, 1745
result is GREATER result is GREATER
recursive_search(recursive_search(

Pseudo-code of a
recursive search
function

Termination test of
recursive search
function

Comparison of keys

Recursive call to
search either the left
or the right subtree

Program call

Execution at first
level of recursion

704 Collections of data

 right_subtree, 1770) right_subtree, 1795)

sub_tree_ptr != NULL sub_tree_ptr != NULL
compare 1770, 1811 compare 1795, 1811
result is LESS result is LESS
recursive_search(recursive_search(
 left_subtree, 1770) left_subtree, 1795)

sub_tree_ptr != NULL sub_tree_ptr != NULL
compare 1770, 1791 compare 1795, 1791
result is LESS result is GREATER
recursive_search(recursive_search(
 left_subtree, 1770) right_subtree, 1795)

sub_tree_ptr != NULL sub_tree_ptr == NULL
compare 1770, 1770 return NULL
result is EQUALS
return data for key 1770

Addition of a record

The function that adds a new record is somewhat similar to the search function. After
all, it has to "search" for the point in the tree structure where the new record can be
attached.

Of course, there is a difference. The addition process has to change the tree
structure. It actually has to replace one of the tn* (pointers to treenode) pointers.

A pointer has to be changed to hold the address of a new tree node associated with
the new data record. It could be the root pointer itself (this would be the case when the
first record is added to the tree). More usually it would be either the left link pointer, or
the right link pointer of an existing tree-node structure that is already part of the tree.

The recursive function that implements the addition process had better be passed a
reference to a pointer. This will allow the pointer to be changed.

The addition process is illustrated in Figure 21.11. The figure illustrates the addition
of a new treenode associated with key 1606. The first level of recursion would have the
addition function given the root pointer. The key in the record identified by this
pointer, 1745, is larger than the key of the record to be inserted (1606), so a recursive
call is made passing the left link of the first tree node.

The treenode identified by this pointer has key 1642, again this is larger than the key
to be inserted. So a further recursive call is made, this time passing the left link of the
treenode with key 1642.

The value in this pointer is NULL. The current tree does not contain any records with
keys less than 1642. So, this is the pointer whose value needs to be changed. It is to
point to the subtree with keys less than 1642, and there is now going to be one – the
new treenode associated with key 1606.

Execution at second
level of recursion

Execution at third
level of recursion

Execution at fourth
level of recursion

Changing an existing
pointer to refer to a

new treenode

Class BinaryTree 705

1745

1642 1811

NULL
NULL

"Root" pointer in
"binary tree" object

1606

Extra tree node
to be added

new data
record

1

1745

1642 1811

NULL
NULL

1606

Extra tree node
to be added

new data
record

2

1745

1642 1811

NULL
NULL

1606

3

Figure 21.11 Inserting a new record.

A pseudo-code outline for the addition function is:

recursive_add(a treenode pointer passed by reference ('c'),
pointer to new data item, key)

if c contains NULL

Pseudo-code of a
recursive addition
function

706 Collections of data

make a new treenode and fill in its
pointer to data and its key

change contents of pointer 'c' to hold the address
of this new treenode

return

compare_result = Compare key and c->Key

if(compare_result is EQUAL)
warn user that duplicate keys are not allowed
return without making any changes

else
if(compare_result is LESS)

return recursive_add(
sub_tree_ptr->left_link, data item, key)

else
return recursive_add(

sub_tree_ptr->right_link, data item, key)

Recursion terminates if the treenode pointer argument contains NULL. A NULL pointer is
the one that must be changed; so the function creates the new treenode, fills in its data
members, changes the pointer, and returns.

If the pointer argument identifies an existing treenode structure, then its keys must
be compared with the one that is to be inserted. If they are equal, you have a "duplicate
key"; this should cause some warning message (or maybe should throw an exception).
The addition operation should be abandoned.

In other cases, the result of comparing the keys determines whether the new record
should be inserted in the left subtree or the right subtree. Appropriate recursive calls
are made passing either the left link or the right link as the argument for the next level
of recursion.

Removal of a record

Removing a record can be trickier. As shown in Figures 21.12 and 21.13, some cases
are relatively easy.

If the record that is to be removed is associated with a "leaf node" in the tree
structure, then that leaf can simply be cut away (see Figure 21.12).

If the record is on a vine (only one subtree below its associated treenode) then its
treenode can be cut out. The treenode's only subtree can be reattached at the point
where the removed node used to be attached (Figure 21.13).

Things get difficult with "internal nodes" that have both left and right subtrees. In
the example tree, the treenodes associated with keys 1645 and 1811 are both "internal"
nodes having left and right subtrees. Such nodes cannot be cut from the tree because
this would have the effect of splitting the tree into two separate parts.

Class BinaryTree 707

Key

Data Link
Left Link

Right Link

1745

1642 1811

1871

NULL

NULL

1791

1770

1775

1848

NULL

NULL NULL

NULL

NULL

"Root" pointer in
"binary tree" object

NULL
NULL

Key

Data Link
Left Link

Right Link

1745

1642 1811

1871

NULL

NULL

1791

1770

1775

NULL

NULL NULL
NULL

"Root" pointer in
"binary tree" object

NULL
NULL

Unhook a leaf node,
replace contents of
link by NULL

Figure 21.12 Removing a "leaf node".

Key

Data Link
Left Link

Right Link

1745

1642 1811

1871

NULL

NULL

1791

1770

1775

1848

NULL

NULL NULL

NULL
NULL

"Root" pointer in
"binary tree" object

NULL
NULL

Key

Data Link
Left Link

Right Link

1745

1642 1811

1871

NULL

NULL

1791

1775

1848

NULL NULL

NULL
NULL

NULL
NULL

Removing a node
on a "vine"

Figure 21.13 Removing a "vine" node.

708 Collections of data

The key, and pointer to data record, can be removed from a treenode provided that
they are replaced by other appropriate data. Only the key and the pointer to data record
get changed; the existing left link and right link from the treenode are not to be
changed. The replacement key and pointer have to be data that already exist
somewhere in the tree. They have to be chosen so that the tree properties are
maintained. The replacement key must be such that it is larger than all the keys in the
subtree defined by the existing left link, and smaller than all the keys in the subtree
defined by the existing right link.

These requirements implicitly define the key (and associated pointer to data record)
that must be used to replace the data that are being removed. They must correspond to
that data record's "successor". The successor will be the (key, data record) combination
that has the smallest key that is larger than the key being deleted from an internal node.

Figure 21.14 illustrates the concept of deletion with promotion of a successor. The
(key, data) combination that is to be deleted is the entry at the root, the one with key
1745. The key has first to be found; this would be done in the first step of the process.

The next stage involves finding the successor – the (key, data) combination with the
smallest key greater than 1745. This will be the combination with key 1770. You find
it by starting down the right subtree (going to the treenode with key 1811) and then
heading down left links for as far as you can go.

The key and pointer to data record must then be copied from the successor treenode.
They overwrite the values in the starting treenode, replacing the key and data pointer
that are supposed to get deleted. Thus, in the example in Figure 21.14, the "root"
treenode gets to hold the key 1770 and a pointer to the data item associated with this
key.

Of course, key 1770 and its associated data record are now in the tree twice! They
exist in the treenode where the deleted (key, data record) combination used to be, and
they are still present in their original position. The treenode where they originally
occurred must be cut from the tree. If, as in the case shown in Figure 21.14, there is a
right subtree, this replaces the "successor treenode". This is shown in Figure 21.14,
where the treenode with key 1775 becomes the new "left subtree" of the treenode with
key 1791.

If you had to invent such an algorithm for yourself, it might be hard. But these
algorithms have been known for the last forty years (and for most of those forty years,
increasing numbers of computing science students have been given the task of coding
the algorithms again). Coding is not hard, provided the process is broken down into
separate functions.

One function will find the (key, data record) combination that is to be deleted; the
algorithm used will be similar to that used for both the search and insert operations.
Once the (key, data) combination has been found, a second function can sort out
whether the deletion involves cutting off a leaf, excising a node on a vine, or replacing
the (key, data record) by a successor. Cutting off a leaf and excising a vine node are
both straightforward operations that don't require further subroutines. If a successor has
to be promoted, it must be found and removed from its original position in the tree.

Promoting a
"successor"

Find the (key, data)
combination to be

deleted

Find the successor

Promoting the
successor

Removal of duplicate
entry

Class BinaryTree 709

Finding the
successor

1745

1642 1811

1871

NULL

NULL

1791

1770

1775

1848

NULL

NULL NULL

NULL
NULL

NULL
NULL

1745

1642 1811

1871

NULL

NULL

1791

1770

1775

1848

NULL

NULL NULL

NULL

NULL

NULL
NULL

Removal of
successor
node

1770

1642 1811

1871

NULL

NULL

1791

1770

1775

1848

NULL

NULL NULL

NULL

NULL

NULL
NULL

1770

1642 1811

1871

NULL

NULL

1791

1775

1848

NULL NULL

NULL
NULL

NULL
NULL

Moving the
data

Finding the
internal node

1 2

3 4

Figure 21.14 Removing a "internal" node and promoting a successor.

Pseudo-code for the initial search step is as follows:

recursive_remove(a treenode pointer passed by reference ('c'), key)
if c contains NULL

return NULL

Pseudo-code of a
recursive removal
function

710 Collections of data

compare_result = Compare key and c->Key

if(compare_result is EQUAL)
return result of Delete function applied 'c'

else
if(compare_result is LESS)

return recursive_remove(
sub_tree_ptr->left_link, data item, key)

else
return recursive_remove(

sub_tree_ptr->right_link, data item, key)

The function should return a pointer to the data record associated with the key that is to
be removed (or NULL if the key is not found). Like the search function, the remove
function has to check whether it has run off the end of the tree looking for a key that
isn't present; this is done by the first conditional test.

The rest of code is similar to the recursive-add function. Once again, a pointer has
to be passed by reference. The actual pointer variable passed as a reference argument
could be the root pointer for the tree (if we are deleting the root node of a tree with one
or two records); more usually, it will be either the "left link" or "right link" data
member of another treenode. The contents of this pointer may get changed. At the
stage where the search process is complete, the argument pointer will hold the address
of the treenode with the key that is to be removed. If the treenode with the "bad" key is
a leaf, the pointer should be changed to NULL. If the treenode with the bad key is a vine
node, the pointer should be changed to hold the address of that treenode's only child.
The actual changes are made in the auxiliary function Delete. But the pointer argument
has to be passed by reference to permit changes to its value.

Pseudo code for the Delete function is as follows:

delete(a treenode pointer passed by reference ('c'))
save pointer to data record associated with bad key

if treenode pointed to by c is a leaf (both subtree
links being NULL)

delete that treenode,
set c to NULL

else
if treenode pointed to by c is a vine node with only a

right subtree
set c to hold address of right subtree
delete discarded treenode;

else
similar code for c being a vine node with only a

left subtree
else

get successor (removing it from tree when found)
replace key and data pointers with values from

Passing a pointer by
reference

Determining the
deletion action

Class BinaryTree 711

successor
delete the successor treenode

return pointer to data record associated with bad key

Most of the code of Delete is made up by the conditional construct that checks for, and
deals with the different possible situations.

A pseudo code outline for the function to find the successor treenode and remove it
from its current position in the tree is:

successor(a treenode pointer passed by reference ('c'))
if c->treenode has a subtree attached to its left link

call successor recursively passing left link
else

have found successor treenode, unhook it
c changed to point to treenode's right subtree
return treenode

The BinaryTree class

More detailed outlines of the search, add, and remove operations can be found in
numerous text books; many provide Pascal or C implementations. Such
implementations have the functions as separate, independent global functions. We need
these functions packaged together as part of a BinaryTree class.

A BinaryTree object doesn't have much data, after all most of the structure
representing the tree is made up from treenodes. A BinaryTree object will own a
pointer to the "root" treenode; it is useful if it also owns a count of the number of (key,
data record) combinations currently stored in the tree.

A BinaryTree should do the following:

• "Num items" (equivalent to Length of lists etc)
Report how many items are stored in the collection.

• Add
Add another (key, data record) combination to the tree, placing it at the

appropriate position (the Add operation should return a success/failure code, giving
a failure return for a duplicate key).

• Find
Find the data record associated with a given key, returning a pointer to this

record (or NULL if the specified key is not present).
• Remove

Removes the (key, data record) combination associated with a specified key,
returning a pointer to the data record (or NULL if the specified key is not present).

What does a
BinaryTree object
own?

What does a
BinaryTree object
do?

712 Collections of data

Because the structure is moderately complex, and keeps getting rearranged, it would be
worth including a debugging output function that prints a representation of the structure
of the tree.

The discussion of operations like remove identified several additional functions, like
the one to find a treenode's successor. These auxiliary functions would be private
member functions of the class.

The declaration for the class would be in a header file:

#ifndef __MYBINY__
#define __MYBINY__

#define DEBUG

class TreeNode;

class BinaryTree
{
public:

BinaryTree();

int NumItems() const;

int Add(void* nItem, long key);
void *Find(long key);
void *Remove(long key);

#ifdef DEBUG
void PrintOn(ostream& out) const;

#endif
private:

int AuxAdd(TreeNode*& c, void* nItem, long key);
void *AuxFind(TreeNode* c, long key);
void *AuxRemove(TreeNode*& c, long key);

void *Delete(TreeNode*&c);
TreeNode *Successor(TreeNode*& c);

#ifdef DEBUG
void AuxPrint(TreeNode* c, ostream& out, int depth)

const;
#endif

TreeNode *fRoot;
int fNum;

};

inline int BinaryTree::NumItems(void) const { return fNum; }

#endif

Note the declaration:

File "biny.h"

Class BinaryTree 713

class TreeNode;

This needs to appear before class BinaryTree to allow specification of function
arguments and variables of type TreeNode* (pointer to TreeNode). The full
declaration of class TreeNode does not need to appear in the header file. Client's using
class BinaryTree will know that the tree is built up using auxiliary TreeNode objects.
However, clients themselves never need to use TreeNodes, so the declaration of the
TreeNode class can be "hidden" in the implementation file of class BinaryTree.

Some of the functions have odd looking arguments:

void *Delete(TreeNode*&c);

An expression like TreeNode*& is a little unpronounceable, but that really is the
hardest part about it. Reference arguments, like int&, were illustrated in many earlier
examples (starting with the example in section 12.8.3). We use references when we
need to pass a variable to a function that may need to change the value in the variable.
In this case the variable is of type "pointer to TreeNode" or TreeNode*. Hence, a
"pointer to a TreeNode being passed by reference" is TreeNode*&.

As is illustrated below in the implementation, the public interface functions like
Find() do very little work. Almost all the work is done by an associated private
member function (e.g. AuxFind()). The public function just sets up the initial call,
passing the root pointer to the recursive auxiliary function.

As usual, trivial member functions like NumItems() can be defined as inlines. Their
definitions go at the end of the header file.

Implementation

The implementation code would be in a separate file, biny.cp.
After the usual #includes, this file would start with the declaration of the auxiliary

TreeNode class and the definition of its member functions.

class TreeNode {
public:

TreeNode(long k, void *d);
TreeNode*& LeftLink(void);
TreeNode*& RightLink(void);
long Key(void) const;
void *Data(void) const;
void Replace(long key, void *d);

private:
long fKey;
void *fData;
TreeNode *fLeft;
TreeNode *fRight;

};

Those TreeNode*&
arguments

714 Collections of data

Class TreeNode is simply a slightly fancy version of the tn treenode struct illustrated
earlier. It packages the key, data pointer, and links and provides functions that the
BinaryTree code will need to access a TreeNode.

The function definitions would specify most (or all) as "inline":

TreeNode::TreeNode(long k,void *d)
{

fKey = k;
fData = d;
fLeft = NULL;
fRight = NULL;

}

inline long TreeNode::Key(void) const { return fKey; }
inline void *TreeNode::Data(void) const { return fData; }
inline void TreeNode::Replace(long key, void *d)

{ fKey = key; fData = d; }

When TreeNodes are created, the key and data link values will be known so these can
be set by the constructor. TreeNodes always start as leaves so the left and right links
can be set to NULL.

The Key() and Data() functions provide access to the private data. The Replace()
function is used when the contents of an existing TreeNode have to be replaced by data
values promoted from a successor TreeNode (part of the deletion process explained
earlier).

The LeftLink() and RightLink() functions return "references" to the left link
and right link pointer data members. They are the first examples that we have had of
functions that return a reference data type. Such functions are useful in situations like
this where we need in effect to get the address of a data member of a struct or class
instance.

inline TreeNode*& TreeNode::LeftLink(void) { return fLeft; }
inline TreeNode*& TreeNode::RightLink(void) { return fRight; }

The code for class BinaryTree follows the declaration and definition of the
auxiliary TreeNode class. The constructor is simple; it has merely to set the root
pointer to NULL and zero the count of data records.

BinaryTree::BinaryTree()
{

fRoot = NULL;
fNum = 0;

}

Class BinaryTree 715

The public functions Find(), Add(), and Remove() simply set up the appropriate
recursive mechanism, passing the root pointer to the auxiliary recursive function. Thus,
Find() is:

void *BinaryTree::Find(long key)
{

return AuxFind(fRoot, key);
}

the other functions are similar in form.
The AuxFind() function implements the recursive mechanism exactly as explained

earlier:

void *BinaryTree::AuxFind(TreeNode* c, long key)
{

if(c == NULL)
return NULL;

int compare = key - c->Key();

if(compare == 0)
return c->Data();

if(compare < 0)
return AuxFind(c->LeftLink(), key);

else
return AuxFind(c->RightLink(), key);

}

The AuxAdd() function implements the "recursive_add" scheme outlined above,
and includes necessary details such as the update of the count of stored data records,
and the return of a success or failure indicator:

int BinaryTree::AuxAdd(TreeNode*& c, void* nItem, long key)
{

if(c==NULL) {
c = new TreeNode(key, nItem);
fNum++;
return 1;

}

int compare = key - c->Key();

if(compare == 0) {
cout << "Sorry, duplicate keys not allowed" << endl;
return 0;
}

if(compare < 0)

Search

Addition

716 Collections of data

return AuxAdd(c->LeftLink(), nItem, key);
else

return AuxAdd(c->RightLink(),nItem, key);
}

The following three functions implement the remove mechanism. First there is the
AuxRemove() function that organizes the search for the TreeNode with the "bad" key:

void *BinaryTree::AuxRemove(TreeNode*& c, long key)
{

if(c == NULL)
return NULL;

int compare = key - c->Key();

if(compare == 0)
return Delete(c);

if(compare < 0)
return AuxRemove(c->LeftLink(), key);

else
return AuxRemove(c->RightLink(), key);

}

The Delete() function identifies the type of deletion action and makes the appropriate
rearrangements:

void *BinaryTree::Delete(TreeNode*& c)
{

void *deaddata = c->Data();
if((c->LeftLink() == NULL) && (c->RightLink() == NULL))

 { delete c; c = NULL; }
else
if(c->LeftLink() == NULL) {

TreeNode* temp = c;
c = c->RightLink();
delete temp;
}

else
if(c->RightLink() == NULL) {

TreeNode* temp = c;
c = c->LeftLink();
delete temp;
}

else {
TreeNode* temp = Successor(c->RightLink());
c->Replace(temp->Key(), temp->Data());
delete temp;
}

return deaddata;

Removal

Class BinaryTree 717

}

The Successor() function finds and unhooks a successor node:

TreeNode *BinaryTree::Successor(TreeNode*& c)
{

if(c->LeftLink() != NULL)
return Successor(c->LeftLink());

else {
TreeNode *temp = c;
c = c->RightLink();
return temp;

}
}

The print function is only intended for debugging purposes. It prints a rough
representation of a tree. For example, if given the tree of Figure 21.10, it produces the
output:

 1848
 1811
 1791
 1775
 1770
1745
 1642

With a little imagination, you should be able to see that this does represent the structure
of the tree (the less imaginative can check by reference to Figure 21.15).

Given that everything else about this tree structure is recursive, it is inevitable that
the printout function is too! The public interface function sets up the recursive process
calling the auxiliary print routine to do the work. The root pointer is passed in this
initial call.

#ifdef DEBUG
void BinaryTree::PrintOn(ostream& out) const
{

AuxPrint(fRoot, out, 0);
}

The (recursive) auxiliary print function takes three arguments – a pointer to treenode
to process, an indentation level (and also an output stream on which to print). Like all
recursive functions, it starts with a check for a terminating condition; if the function is
called with a NULL subtree, there is nothing to do and an immediate return can be made.

718 Collections of data

 1848
 1811
 1791
 1775
 1770
1745
 1642

1
8
4
8

1
8
1
1

1
7
9
1

1
7
7
5

1
7
7
0

1
7
4
5

1
6
4
2

1
8
4
8

1
8
1
1

1
7
9
1

1
7
7
5

1
7
7
0

1
7
4
5

1
6
4
2

Printout: Rotate: Imagine:

Figure 21.15 Printed representation of binary tree.

void BinaryTree::AuxPrint(TreeNode* c, ostream& out,
int depth) const

{
if(c == NULL)

return;

AuxPrint(c->RightLink(), out, depth + 2);

for(int i=0;i< depth; i++)
cout << " ";

cout << c->Key();
cout << endl;

AuxPrint(c->LeftLink(), out, depth + 2);

}
#endif

If the function has been passed a pointer to a TreeNode, processing starts by a
recursive call to deal with the right subtree (with an increased indentation specified in
the depth argument). This recursive call will get all higher valued keys printed before
the current entry. (The higher valued keys are printed first so that when you rotate the
printout they are on the right!) Once the right subtree has been dealt with, the key in the
current TreeNode is printed (the for loop arranges for the appropriate indentation on
the line). Finally, the left subtree is processed.

Deal with right
subtree

Deal with data in this
treenode

Deal with left subtree

Class BinaryTree 719

Tree traversalThe recursive AuxPrint() function gets to process every node in the tree – it is said
to perform a "tree traversal". There are many circumstances where it is useful to visit
every node and so traversal functions are generally provided for trees and related data
structures. Such functions are described briefly in the section on "Iterators" in Chapter
23.

Test Program

As with the other examples in this chapter, the class is tested using a simple interactive
program that allows data records to be added to, searched for, and removed from the
tree.

The test program starts with the usual #includes, then defines a trivial DataItem
class. The tree is going to have to hold some kind of data, class DataItem exists just so
as to have a simple example. A DataItem owns an integer key and a short name string.

#include <stdlib.h>
#include <iostream.h>
#include <string.h>
#include "biny.h"

class DataItem {
public:

DataItem(long k, char txt[]);
void PrintOn(ostream& out) const;
long K() const;

private:
long fK;
char fName[20];

};

DataItem::DataItem(long k, char txt[])
{

fK = k;
int len = strlen(txt);
len = (len > 19) ? 19 : len;
strncpy(fName, txt, len);
fName[len] = '\0';

}

void DataItem::PrintOn(ostream& out) const
{

out << fName << " : " << fK << ";" << endl;
}

inline long DataItem::K() const { return fK; }

720 Collections of data

The actual BinaryTree object has been defined as a global. Variable gTree is
initialized by an implicit call to the constructor, BinaryTree::BinaryTree() that gets
executed in "preamble" code before entry to main().

BinaryTree gTree;

The test program uses auxiliary functions to organize insertion and deletion of
records, and searches for records with given keys. Insertion involves creation of a new
DataItem, initializing it with data values entered by the user. This item is then added to
the tree. (Note, the code has a memory leak. Find it and plug it!)

void DoInsert()
{

char buff[100];
int k;
cout << "Enter key and name" << endl;
cin >> k >> buff;
DataItem *d = new DataItem(k, buff);
if(gTree.Add(d , k)) cout << "OK" << endl;
else cout << "Problems" << endl;

}

The search function gets a key from the user, and asks the tree to find the associated
DataItem. If found, a record is asked to print itself:

void DoSearch()
{

cout << "Enter search key : ";
int k;
cin >> k;
DataItem *item = (DataItem*) gTree.Find(k);
if(item == NULL) cout << "Not found " << endl;
else {

cout << "Found record : ";
item->PrintOn(cout);
}

}

Similarly, the delete function prompts for a key, and asks the tree for the record. If a
DataItem is returned, it is deleted so recovering the space that it occupied in the heap.

void DoDelete()
{

cout << "Enter key : ";
int k;
cin >> k;
DataItem *item = (DataItem*) gTree.Remove(k);
if(item == NULL) cout << "Wasn't there" << endl;

Class BinaryTree 721

else {
cout << "Removed item: " ;
item->PrintOn(cout);
cout << "Destroyed" << endl;
delete item;
}

}

The main() function has the usual interactive loop typical of these small test
programs:

int main()
{

for(int done = 0; ! done;) {
cout << ">";
char ch;
cin >> ch;
switch(ch) {

case 'q': done = 1; break;
case 's':

DoSearch();
break;

case 'i':
DoInsert();
break;

case 'd':
DoDelete();
break;

case 'p':
gTree.PrintOn(cout);
break;

case '?':
cout << "q to quit, s to Search, i to "

"Insert,d to Delete, p Print" << endl;
break;

default:
;
}

}
return EXIT_SUCCESS;

}

21.6 COLLECTION CLASS LIBRARIES

You should not need to implement the code for any of the standard collection classes.
Your IDE will come with a class library containing most of the more useful collection
classes. Actually, it is likely that your IDE comes with several class libraries, more
than one of which contains implementations of the frequently used collection classes.

722 Collections of data

"Standard Template
Library"

Your IDE may have these classes coded as "template classes". Templates are
introduced in Chapter 25. Templates offer a way of achieving "generic" code that is
more sophisticated than the void* pointer to data item used in the examples in this
chapter. In the long run, templates have advantages; they provide greater flexibility and
better type security than the simpler approaches used in this chapter. They have some
minor disadvantages; their syntax is more complex and they can complicate the
processes of compilation and linking. There is a set of template classes, the "Standard
Template Library", that may become part of "standard C++"; these classes would then
be available on all implementations. Some of the classes in the Standard Template
Library are collection classes.

Your IDE will also provide a "framework class library". A framework class library
contains classes that provide prebuilt parts of a "standard Macintosh" program (as in
Symantec's TCL2 library) or "standard Windows" program (as with Borland's OWL or
Microsoft's MFC). Framework libraries are discussed more in Chapter 31. Your IDE's
framework class library contains additional collection classes. These classes will have
some restrictions. Normally they can only be used if you are building your entire
program on top of the framework.

The IDE may have additional simpler examples of collection classes. They will be
similar to, or maybe a little more sophisticated than the examples in this chapter and in
Chapter 24. Many other libraries of useful components and collection classes are in the
public domain and are available over the Internet.

You should not write yet another slightly specialized version of "doubly linked list",
or "queue based on list". Instead, when analysing problems you should try to spot
opportunities to use existing components.

Read the problem specification. It is going to say either "get and put a file record"
(no need for collection classes), or "do something with this block of data" (arrays rather
than collection classes), or "get some items from the user and do something with them"
(probably a collection class needed).

Once you have established that the problem involves a variable number of data
items, then you know that you probably need to use a collection class. Read further.
Find how items are added to the collection, and removed. Find whether searches are
done on the collections or whether collections of different items are combined in some
way.

Once you have identified how the collection is used, you more or less know which
collection class you want. If items are frequently added to and removed from the
collection and the collection is often searched to find an item, you may be dealing with
a case that needs a binary tree. If you are building collections of different items, and
then later combining these, then you are probably going to need a list. If much of the
processing consists of gathering items then sorting them, you might be able to use a
priority queue.

For example, a problem may require you to represent polynomials like 7x3 + 6x2-
4x+5, and do symbolic arithmetic like multiplying that first polynomial by 4x2-3x+7.
These polynomials are collections (the items in the collection represent the coefficients

Use and re-use!

Collection class libraries 723

for different powers of x); they vary in size (depending on the person who types in the
examples). The collections are combined. This is going to be a case where you need
some form of list. You could implement your own; but it is much better to reuse a
prebuilt, debugged, possibly optimized version.

Initially, stick to the simple implementations of collection classes like those
illustrated in this chapter or the versions in most public domain class libraries. As you
gain confidence in programming, start to experiment with the more advanced templates
provided by your IDE.

The good programmer is not the one who can rapidly hack out yet another version of
a standard bit of code. The good programmer is the one who can build a reliable
program by combining small amounts of new application specific code with a variety of
prebuilt components.

EXERCISES

1. Implement class Stack.

A stack owns a collection of data items (void* pointers in this implementation). It supports
the following operations:

Add (preferred name "Push")
adds another element to the front of the collection;

First (preferred name "Pop")
removes most recently added element from the collection;

Length (preferred name "Size")
reports number of elements in the collection;

Full
returns true if collection is full and error would result from further Push operation;

Empty
return true if collection is empty and error would result from further Pop operation..

Your stack can use a fixed size array for storing the void* pointers, or a dynamic array or a
list. (Function Full should always return false if a list or dynamic array is used.)

2. Complete the implementation of class List by writing the Nth() and Remove(int pos)
member functions.

3. The "awful warning" exercise.

Modify the implementation of List::Remove() by changing the last part of the code
from:

fNum--;
void *dataptr = tmp->fData;
delete tmp;

724 Collections of data

return dataptr;

to

fNum--;
void *dataptr = tmp->fData;
delete prev;

return dataptr;

Note that this introduces two errors. First, there is a memory leak. The listcell pointed to by
tmp is being discarded, but as it is not being deleted it remains occupying space in the heap.

There is a much more serious error. The listcell pointed to by prev is still in use, it is still
part of the list, but this code "deletes it".

Compile and run the modified program. Test it. Are any of the outputs wrong? Does your
system "crash" with an address error?

Unless your IDE has an unusually diligent memory manager, the chances are that you will
find nothing wrong in your tests of your program. Everything will appear to work.

Things work because the listcells that have been deleted exist as "ghosts" in the heap. Until
their space gets reallocated, they still appear to be there. Their space is unlikely to be
reallocated during the course of a short test with a few dozen addition, search, and removal
operations.

Although you know the code is wrong, you will see it as working.

This should be a warning to all of us who happily say "Ah it's working!" after running a few
tests on a piece of code.

