
Chapter 1

Algorithms with numbers

One of the main themes of this chapter is the dramatic contrast between two ancient problems
that at first seem very similar:

Factoring: Given a number N , express it as a product of its prime factors.
Primality: Given a number N , determine whether it is a prime.

Factoring is hard. Despite centuries of effort by some of the world’s smartest mathemati-
cians and computer scientists, the fastest methods for factoring a number N take time expo-
nential in the number of bits of N .

On the other hand, we shall soon see that we can efficiently test whether N is prime!
And (it gets even more interesting) this strange disparity between the two intimately related
problems, one very hard and the other very easy, lies at the heart of the technology that
enables secure communication in today’s global information environment.

En route to these insights, we need to develop algorithms for a variety of computational
tasks involving numbers. We begin with basic arithmetic, an especially appropriate starting
point because, as we know, the word algorithms originally applied only to methods for these
problems.

1.1 Basic arithmetic
1.1.1 Addition
We were so young when we learned the standard technique for addition that we would scarcely
have thought to ask why it works. But let’s go back now and take a closer look.

It is a basic property of decimal numbers that

The sum of any three single-digit numbers is at most two digits long.

Quick check: the sum is at most 9 +9 + 9 = 27, two digits long. In fact, this rule holds not just
in decimal but in any base b ≥ 2 (Exercise 1.1). In binary, for instance, the maximum possible
sum of three single-bit numbers is 3, which is a 2-bit number.
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Bases and logs
Naturally, there is nothing special about the number 10—we just happen to have 10 fingers,
and so 10 was an obvious place to pause and take counting to the next level. The Mayans
developed a similar positional system based on the number 20 (no shoes, see?). And of course
today computers represent numbers in binary.

How many digits are needed to represent the number N ≥ 0 in base b? Let’s see—with k
digits in base b we can express numbers up to bk−1; for instance, in decimal, three digits get
us all the way up to 999 = 103 − 1. By solving for k, we find that dlogb(N + 1)e digits (about
logbN digits, give or take 1) are needed to write N in base b.

How much does the size of a number change when we change bases? Recall the rule for
converting logarithms from base a to base b: logbN = (logaN)/(loga b). So the size of integer
N in base a is the same as its size in base b, times a constant factor loga b. In big-O notation,
therefore, the base is irrelevant, and we write the size simply as O(logN). When we do not
specify a base, as we almost never will, we mean log2N .

Incidentally, this function logN appears repeatedly in our subject, in many guises. Here’s
a sampling:

1. logN is, of course, the power to which you need to raise 2 in order to obtain N .

2. Going backward, it can also be seen as the number of times you must halve N to get
down to 1. (More precisely: dlogNe.) This is useful when a number is halved at each
iteration of an algorithm, as in several examples later in the chapter.

3. It is the number of bits in the binary representation ofN . (More precisely: dlog(N+1)e.)

4. It is also the depth of a complete binary tree with N nodes. (More precisely: blogNc.)

5. It is even the sum 1 + 1
2 + 1

3 + · · ·+ 1
N , to within a constant factor (Exercise 1.5).

This simple rule gives us a way to add two numbers in any base: align their right-hand
ends, and then perform a single right-to-left pass in which the sum is computed digit by
digit, maintaining the overflow as a carry. Since we know each individual sum is a two-digit
number, the carry is always a single digit, and so at any given step, three single-digit numbers
are added. Here’s an example showing the addition 53 + 35 in binary.

Carry: 1 1 1 1
1 1 0 1 0 1 (53)
1 0 0 0 1 1 (35)

1 0 1 1 0 0 0 (88)

Ordinarily we would spell out the algorithm in pseudocode, but in this case it is so familiar
that we do not repeat it. Instead we move straight to analyzing its efficiency.

Given two binary numbers x and y, how long does our algorithm take to add them? This
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is the kind of question we shall persistently be asking throughout this book. We want the
answer expressed as a function of the size of the input: the number of bits of x and y, the
number of keystrokes needed to type them in.

Suppose x and y are each n bits long; in this chapter we will consistently use the letter n
for the sizes of numbers. Then the sum of x and y is n+1 bits at most, and each individual bit
of this sum gets computed in a fixed amount of time. The total running time for the addition
algorithm is therefore of the form c0 +c1n, where c0 and c1 are some constants; in other words,
it is linear. Instead of worrying about the precise values of c0 and c1, we will focus on the big
picture and denote the running time as O(n).

Now that we have a working algorithm whose running time we know, our thoughts wander
inevitably to the question of whether there is something even better.

Is there a faster algorithm? (This is another persistent question.) For addition, the answer
is easy: in order to add two n-bit numbers we must at least read them and write down the
answer, and even that requires n operations. So the addition algorithm is optimal, up to
multiplicative constants!

Some readers may be confused at this point: Why O(n) operations? Isn’t binary addition
something that computers today perform by just one instruction? There are two answers.
First, it is certainly true that in a single instruction we can add integers whose size in bits
is within the word length of today’s computers—32 perhaps. But, as will become apparent
later in this chapter, it is often useful and necessary to handle numbers much larger than
this, perhaps several thousand bits long. Adding and multiplying such large numbers on real
computers is very much like performing the operations bit by bit. Second, when we want to
understand algorithms, it makes sense to study even the basic algorithms that are encoded
in the hardware of today’s computers. In doing so, we shall focus on the bit complexity of the
algorithm, the number of elementary operations on individual bits—because this account-
ing reflects the amount of hardware, transistors and wires, necessary for implementing the
algorithm.

1.1.2 Multiplication and division

Onward to multiplication! The grade-school algorithm for multiplying two numbers x and y
is to create an array of intermediate sums, each representing the product of x by a single digit
of y. These values are appropriately left-shifted and then added up. Suppose for instance that
we want to multiply 13× 11, or in binary notation, x = 1101 and y = 1011. The multiplication
would proceed thus.
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1 1 0 1
× 1 0 1 1

1 1 0 1 (1101 times 1)
1 1 0 1 (1101 times 1, shifted once)

0 0 0 0 (1101 times 0, shifted twice)
+ 1 1 0 1 (1101 times 1, shifted thrice)

1 0 0 0 1 1 1 1 (binary 143)

In binary this is particularly easy since each intermediate row is either zero or x itself, left-
shifted an appropriate amount of times. Also notice that left-shifting is just a quick way to
multiply by the base, which in this case is 2. (Likewise, the effect of a right shift is to divide
by the base, rounding down if needed.)

The correctness of this multiplication procedure is the subject of Exercise 1.6; let’s move
on and figure out how long it takes. If x and y are both n bits, then there are n intermediate
rows, with lengths of up to 2n bits (taking the shifting into account). The total time taken to
add up these rows, doing two numbers at a time, is

O(n) +O(n) + · · · +O(n)︸ ︷︷ ︸
n− 1 times

,

which is O(n2), quadratic in the size of the inputs: still polynomial but much slower than
addition (as we have all suspected since elementary school).

But Al Khwarizmi knew another way to multiply, a method which is used today in some
European countries. To multiply two decimal numbers x and y, write them next to each
other, as in the example below. Then repeat the following: divide the first number by 2,
rounding down the result (that is, dropping the .5 if the number was odd), and double the
second number. Keep going till the first number gets down to 1. Then strike out all the rows
in which the first number is even, and add up whatever remains in the second column.

11 13
5 26
2 52 (strike out)
1 104

143 (answer)

But if we now compare the two algorithms, binary multiplication and multiplication by re-
peated halvings of the multiplier, we notice that they are doing the same thing! The three
numbers added in the second algorithm are precisely the multiples of 13 by powers of 2 that
were added in the binary method. Only this time 11 was not given to us explicitly in binary,
and so we had to extract its binary representation by looking at the parity of the numbers ob-
tained from it by successive divisions by 2. Al Khwarizmi’s second algorithm is a fascinating
mixture of decimal and binary!
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Figure 1.1 Multiplication à la Français.
function multiply(x, y)
Input: Two n-bit integers x and y, where y ≥ 0
Output: Their product

if y = 0: return 0
z = multiply(x, by/2c)
if y is even:

return 2z
else:

return x+ 2z

The same algorithm can thus be repackaged in different ways. For variety we adopt a
third formulation, the recursive algorithm of Figure 1.1, which directly implements the rule

x · y =

{
2(x · by/2c) if y is even

x+ 2(x · by/2c) if y is odd.

Is this algorithm correct? The preceding recursive rule is transparently correct; so check-
ing the correctness of the algorithm is merely a matter of verifying that it mimics the rule and
that it handles the base case (y = 0) properly.

How long does the algorithm take? It must terminate after n recursive calls, because at
each call y is halved—that is, its number of bits is decreased by one. And each recursive call
requires these operations: a division by 2 (right shift); a test for odd/even (looking up the last
bit); a multiplication by 2 (left shift); and possibly one addition, a total of O(n) bit operations.
The total time taken is thus O(n2), just as before.

Can we do better? Intuitively, it seems that multiplication requires adding about n multi-
ples of one of the inputs, and we know that each addition is linear, so it would appear that n2

bit operations are inevitable. Astonishingly, in Chapter 2 we’ll see that we can do significantly
better!

Division is next. To divide an integer x by another integer y 6= 0 means to find a quotient
q and a remainder r, where x = yq + r and r < y. We show the recursive version of division in
Figure 1.2; like multiplication, it takes quadratic time. The analysis of this algorithm is the
subject of Exercise 1.8.

1.2 Modular arithmetic
With repeated addition or multiplication, numbers can get cumbersomely large. So it is for-
tunate that we reset the hour to zero whenever it reaches 24, and the month to January after
every stretch of 12 months. Similarly, for the built-in arithmetic operations of computer pro-
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Figure 1.2 Division.
function divide(x, y)
Input: Two n-bit integers x and y, where y ≥ 1
Output: The quotient and remainder of x divided by y

if x = 0: return (q, r) = (0, 0)
(q, r) = divide(bx/2c, y)
q = 2 · q, r = 2 · r
if x is odd: r = r + 1
if r ≥ y: r = r − y, q = q + 1
return (q, r)

Figure 1.3 Addition modulo 8.

0 0 0

+ =6

3
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cessors, numbers are restricted to some size, 32 bits say, which is considered generous enough
for most purposes.

For the applications we are working toward—primality testing and cryptography—it is
necessary to deal with numbers that are significantly larger than 32 bits, but whose range is
nonetheless limited.

Modular arithmetic is a system for dealing with restricted ranges of integers. We define x
modulo N to be the remainder when x is divided by N ; that is, if x = qN + r with 0 ≤ r < N ,
then xmoduloN is equal to r. This gives an enhanced notion of equivalence between numbers:
x and y are congruent modulo N if they differ by a multiple of N , or in symbols,

x ≡ y (mod N) ⇐⇒ N divides (x− y).
For instance, 253 ≡ 13 (mod 60) because 253 − 13 is a multiple of 60; more familiarly, 253
minutes is 4 hours and 13 minutes. These numbers can also be negative, as in 59 ≡ −1
(mod 60): when it is 59 minutes past the hour, it is also 1 minute short of the next hour.

One way to think of modular arithmetic is that it limits numbers to a predefined range
{0, 1, . . . , N − 1} and wraps around whenever you try to leave this range—like the hand of a
clock (Figure 1.3).

Another interpretation is that modular arithmetic deals with all the integers, but divides
them into N equivalence classes, each of the form {i + kN : k ∈ Z} for some i between 0 and
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N − 1. For example, there are three equivalence classes modulo 3:

· · · −9 −6 −3 0 3 6 9 · · ·
· · · −8 −5 −2 1 4 7 10 · · ·
· · · −7 −4 −1 2 5 8 11 · · ·

Any member of an equivalence class is substitutable for any other; when viewed modulo 3,
the numbers 5 and 11 are no different. Under such substitutions, addition and multiplication
remain well-defined:

Substitution rule If x ≡ x′ (mod N) and y ≡ y′ (mod N), then:

x+ y ≡ x′ + y′ (mod N) and xy ≡ x′y′ (mod N).

(See Exercise 1.9.) For instance, suppose you watch an entire season of your favorite television
show in one sitting, starting at midnight. There are 25 episodes, each lasting 3 hours. At what
time of day are you done? Answer: the hour of completion is (25 × 3) mod 24, which (since
25 ≡ 1 mod 24) is 1× 3 = 3 mod 24, or three o’clock in the morning.

It is not hard to check that in modular arithmetic, the usual associative, commutative, and
distributive properties of addition and multiplication continue to apply, for instance:

x+ (y + z) ≡ (x+ y) + z (mod N) Associativity
xy ≡ yx (mod N) Commutativity

x(y + z) ≡ xy + yz (mod N) Distributivity

Taken together with the substitution rule, this implies that while performing a sequence of
arithmetic operations, it is legal to reduce intermediate results to their remainders modulo
N at any stage. Such simplifications can be a dramatic help in big calculations. Witness, for
instance:

2345 ≡ (25)69 ≡ 3269 ≡ 169 ≡ 1 (mod 31).

1.2.1 Modular addition and multiplication
To add two numbers x and y modulo N , we start with regular addition. Since x and y are each
in the range 0 to N − 1, their sum is between 0 and 2(N − 1). If the sum exceeds N − 1, we
merely need to subtract offN to bring it back into the required range. The overall computation
therefore consists of an addition, and possibly a subtraction, of numbers that never exceed
2N . Its running time is linear in the sizes of these numbers, in other words O(n), where
n = dlogNe is the size of N ; as a reminder, our convention is to use the letter n to denote input
size.

To multiply two mod-N numbers x and y, we again just start with regular multiplication
and then reduce the answer modulo N . The product can be as large as (N−1)2, but this is still
at most 2n bits long since log(N − 1)2 = 2 log(N − 1) ≤ 2n. To reduce the answer modulo N , we
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Two’s complement
Modular arithmetic is nicely illustrated in two’s complement, the most common format for
storing signed integers. It uses n bits to represent numbers in the range [−2n−1, 2n−1 − 1]
and is usually described as follows:

• Positive integers, in the range 0 to 2n−1 − 1, are stored in regular binary and have a
leading bit of 0.

• Negative integers −x, with 1 ≤ x ≤ 2n−1, are stored by first constructing x in binary,
then flipping all the bits, and finally adding 1. The leading bit in this case is 1.

(And the usual description of addition and multiplication in this format is even more arcane!)

Here’s a much simpler way to think about it: any number in the range −2n−1 to 2n−1 − 1
is stored modulo 2n. Negative numbers −x therefore end up as 2n−x. Arithmetic operations
like addition and subtraction can be performed directly in this format, ignoring any overflow
bits that arise.

compute the remainder upon dividing it by N , using our quadratic-time division algorithm.
Multiplication thus remains a quadratic operation.

Division is not quite so easy. In ordinary arithmetic there is just one tricky case—division
by zero. It turns out that in modular arithmetic there are potentially other such cases as
well, which we will characterize toward the end of this section. Whenever division is legal,
however, it can be managed in cubic time, O(n3).

To complete the suite of modular arithmetic primitives we need for cryptography, we next
turn to modular exponentiation, and then to the greatest common divisor, which is the key to
division. For both tasks, the most obvious procedures take exponentially long, but with some
ingenuity polynomial-time solutions can be found. A careful choice of algorithm makes all the
difference.

1.2.2 Modular exponentiation
In the cryptosystem we are working toward, it is necessary to compute xy mod N for values of
x, y, and N that are several hundred bits long. Can this be done quickly?

The result is some number modulo N and is therefore itself a few hundred bits long. How-
ever, the raw value of xy could be much, much longer than this. Even when x and y are just
20-bit numbers, xy is at least (219)

(219)
= 2(19)(524288) , about 10 million bits long! Imagine what

happens if y is a 500-bit number!
To make sure the numbers we are dealing with never grow too large, we need to perform

all intermediate computations modulo N . So here’s an idea: calculate xy mod N by repeatedly
multiplying by x modulo N . The resulting sequence of intermediate products,

x mod N → x2 mod N → x3 mod N → · · · → xy mod N,



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 29

Figure 1.4 Modular exponentiation.
function modexp(x, y,N)
Input: Two n-bit integers x and N, an integer exponent y
Output: xy mod N

if y = 0: return 1
z = modexp(x, by/2c, N)
if y is even:

return z2 mod N
else:

return x · z2 mod N

consists of numbers that are smaller than N , and so the individual multiplications do not
take too long. But there’s a problem: if y is 500 bits long, we need to perform y − 1 ≈ 2500

multiplications! This algorithm is clearly exponential in the size of y.
Luckily, we can do better: starting with x and squaring repeatedly modulo N , we get

x mod N → x2 mod N → x4 mod N → x8 mod N → · · · → x2blog yc
mod N.

Each takes justO(log2N) time to compute, and in this case there are only log y multiplications.
To determine xy mod N , we simply multiply together an appropriate subset of these powers,
those corresponding to 1’s in the binary representation of y. For instance,

x25 = x110012 = x100002 · x10002 · x12 = x16 · x8 · x1.

A polynomial-time algorithm is finally within reach!
We can package this idea in a particularly simple form: the recursive algorithm of Fig-

ure 1.4, which works by executing, modulo N , the self-evident rule

xy =

{
(xby/2c)2 if y is even
x · (xby/2c)2 if y is odd.

In doing so, it closely parallels our recursive multiplication algorithm (Figure 1.1). For in-
stance, that algorithm would compute the product x · 25 by an analogous decomposition to the
one we just saw: x · 25 = x · 16 + x · 8 + x · 1. And whereas for multiplication the terms x · 2i

come from repeated doubling, for exponentiation the corresponding terms x2i are generated
by repeated squaring.

Let n be the size in bits of x, y, and N (whichever is largest of the three). As with multipli-
cation, the algorithm will halt after at most n recursive calls, and during each call it multiplies
n-bit numbers (doing computation modulo N saves us here), for a total running time of O(n3).

1.2.3 Euclid’s algorithm for greatest common divisor
Our next algorithm was discovered well over 2000 years ago by the mathematician Euclid, in
ancient Greece. Given two integers a and b, it finds the largest integer that divides both of
them, known as their greatest common divisor (gcd).
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Figure 1.5 Euclid’s algorithm for finding the greatest common divisor of two numbers.
function Euclid(a, b)
Input: Two integers a and b with a ≥ b ≥ 0
Output: gcd(a, b)

if b = 0: return a
return Euclid(b, amod b)

The most obvious approach is to first factor a and b, and then multiply together their
common factors. For instance, 1035 = 32 · 5 · 23 and 759 = 3 · 11 · 23, so their gcd is 3 · 23 = 69.
However, we have no efficient algorithm for factoring. Is there some other way to compute
greatest common divisors?

Euclid’s algorithm uses the following simple formula.

Euclid’s rule If x and y are positive integers with x ≥ y, then gcd(x, y) = gcd(x mod y, y).

Proof. It is enough to show the slightly simpler rule gcd(x, y) = gcd(x − y, y) from which the
one stated can be derived by repeatedly subtracting y from x.

Here it goes. Any integer that divides both x and y must also divide x − y, so gcd(x, y) ≤
gcd(x− y, y). Likewise, any integer that divides both x− y and y must also divide both x and
y, so gcd(x, y) ≥ gcd(x− y, y).

Euclid’s rule allows us to write down an elegant recursive algorithm (Figure 1.5), and its
correctness follows immediately from the rule. In order to figure out its running time, we need
to understand how quickly the arguments (a, b) decrease with each successive recursive call.
In a single round, arguments (a, b) become (b, a mod b): their order is swapped, and the larger
of them, a, gets reduced to a mod b. This is a substantial reduction.

Lemma If a ≥ b, then a mod b < a/2.

Proof. Witness that either b ≤ a/2 or b > a/2. These two cases are shown in the following
figure. If b ≤ a/2, then we have a mod b < b ≤ a/2; and if b > a/2, then a mod b = a− b < a/2.

���������� ��������������a a/2 b a

a mod b

b

a mod b

a/2

This means that after any two consecutive rounds, both arguments, a and b, are at the very
least halved in value—the length of each decreases by at least one bit. If they are initially
n-bit integers, then the base case will be reached within 2n recursive calls. And since each
call involves a quadratic-time division, the total time is O(n3).
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Figure 1.6 A simple extension of Euclid’s algorithm.
function extended-Euclid(a, b)
Input: Two positive integers a and b with a ≥ b ≥ 0
Output: Integers x, y, d such that d = gcd(a, b) and ax+ by = d

if b = 0: return (1, 0, a)
(x′, y′, d) = Extended-Euclid(b, amod b)
return (y′, x′ − ba/bcy′, d)

1.2.4 An extension of Euclid’s algorithm
A small extension to Euclid’s algorithm is the key to dividing in the modular world.

To motivate it, suppose someone claims that d is the greatest common divisor of a and b:
how can we check this? It is not enough to verify that d divides both a and b, because this only
shows d to be a common factor, not necessarily the largest one. Here’s a test that can be used
if d is of a particular form.

Lemma If d divides both a and b, and d = ax+ by for some integers x and y, then necessarily
d = gcd(a, b).

Proof. By the first two conditions, d is a common divisor of a and b and so it cannot exceed the
greatest common divisor; that is, d ≤ gcd(a, b). On the other hand, since gcd(a, b) is a common
divisor of a and b, it must also divide ax + by = d, which implies gcd(a, b) ≤ d. Putting these
together, d = gcd(a, b).

So, if we can supply two numbers x and y such that d = ax + by, then we can be sure
d = gcd(a, b). For instance, we know gcd(13, 4) = 1 because 13 · 1 + 4 · (−3) = 1. But when can
we find these numbers: under what circumstances can gcd(a, b) be expressed in this checkable
form? It turns out that it always can. What is even better, the coefficients x and y can be found
by a small extension to Euclid’s algorithm; see Figure 1.6.

Lemma For any positive integers a and b, the extended Euclid algorithm returns integers x,
y, and d such that gcd(a, b) = d = ax+ by.

Proof. The first thing to confirm is that if you ignore the x’s and y’s, the extended algorithm
is exactly the same as the original. So, at least we compute d = gcd(a, b).

For the rest, the recursive nature of the algorithm suggests a proof by induction. The
recursion ends when b = 0, so it is convenient to do induction on the value of b.

The base case b = 0 is easy enough to check directly. Now pick any larger value of b.
The algorithm finds gcd(a, b) by calling gcd(b, a mod b). Since a mod b < b, we can apply the
inductive hypothesis to this recursive call and conclude that the x′ and y′ it returns are correct:

gcd(b, a mod b) = bx′ + (a mod b)y′.
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Writing (a mod b) as (a− ba/bcb), we find

d = gcd(a, b) = gcd(b, a mod b) = bx′+(a mod b)y′ = bx′+(a−ba/bcb)y′ = ay′+b(x′−ba/bcy′).

Therefore d = ax+by with x = y′ and y = x′−ba/bcy′, thus validating the algorithm’s behavior
on input (a, b).
Example. To compute gcd(25, 11), Euclid’s algorithm would proceed as follows:

25 = 2 · 11 + 3

11 = 3 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

(at each stage, the gcd computation has been reduced to the underlined numbers). Thus
gcd(25, 11) = gcd(11, 3) = gcd(3, 2) = gcd(2, 1) = gcd(1, 0) = 1.

To find x and y such that 25x + 11y = 1, we start by expressing 1 in terms of the last
pair (1, 0). Then we work backwards and express it in terms of (2, 1), (3, 2), (11, 3), and finally
(25, 11). The first step is:

1 = 1− 0.

To rewrite this in terms of (2, 1), we use the substitution 0 = 2− 2 · 1 from the last line of the
gcd calculation to get:

1 = 1− (2− 2 · 1) = −1 · 2 + 3 · 1.
The second-last line of the gcd calculation tells us that 1 = 3− 1 · 2. Substituting:

1 = −1 · 2 + 3(3− 1 · 2) = 3 · 3− 4 · 2.

Continuing in this same way with substitutions 2 = 11− 3 · 3 and 3 = 25− 2 · 11 gives:

1 = 3 · 3− 4(11 − 3 · 3) = −4 · 11 + 15 · 3 = −4 · 11 + 15(25 − 2 · 11) = 15 · 25− 34 · 11.

We’re done: 15 · 25− 34 · 11 = 1, so x = 15 and y = −34.

1.2.5 Modular division
In real arithmetic, every number a 6= 0 has an inverse, 1/a, and dividing by a is the same as
multiplying by this inverse. In modular arithmetic, we can make a similar definition.

We say x is the multiplicative inverse of a modulo N if ax ≡ 1 (mod N).

There can be at most one such x modulo N (Exercise 1.23), and we shall denote it by a−1.
However, this inverse does not always exist! For instance, 2 is not invertible modulo 6: that
is, 2x 6≡ 1 mod 6 for every possible choice of x. In this case, a and N are both even and thus
then a mod N is always even, since a mod N = a − kN for some k. More generally, we can
be certain that gcd(a,N) divides ax mod N , because this latter quantity can be written in the
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form ax + kN . So if gcd(a,N) > 1, then ax 6≡ 1 mod N , no matter what x might be, and
therefore a cannot have a multiplicative inverse modulo N .

In fact, this is the only circumstance in which a is not invertible. When gcd(a,N) = 1 (we
say a and N are relatively prime), the extended Euclid algorithm gives us integers x and y
such that ax+Ny = 1, which means that ax ≡ 1 (mod N). Thus x is a’s sought inverse.

Example. Continuing with our previous example, suppose we wish to compute 11−1 mod 25.
Using the extended Euclid algorithm, we find that 15 · 25 − 34 · 11 = 1. Reducing both sides
modulo 25, we have −34 · 11 ≡ 1 mod 25. So −34 ≡ 16 mod 25 is the inverse of 11 mod 25.

Modular division theorem For any a mod N , a has a multiplicative inverse modulo N if
and only if it is relatively prime to N . When this inverse exists, it can be found in time O(n3)
(where as usual n denotes the number of bits of N ) by running the extended Euclid algorithm.

This resolves the issue of modular division: when working modulo N , we can divide by
numbers relatively prime to N—and only by these. And to actually carry out the division, we
multiply by the inverse.

Is your social security number a prime?
The numbers 7, 17, 19, 71, and 79 are primes, but how about 717-19-7179? Telling whether a
reasonably large number is a prime seems tedious because there are far too many candidate
factors to try. However, there are some clever tricks to speed up the process. For instance,
you can omit even-valued candidates after you have eliminated the number 2. You can
actually omit all candidates except those that are themselves primes.

In fact, a little further thought will convince you that you can proclaim N a prime as soon
as you have rejected all candidates up to

√
N , for if N can indeed be factored as N = K · L,

then it is impossible for both factors to exceed
√
N .

We seem to be making progress! Perhaps by omitting more and more candidate factors,
a truly efficient primality test can be discovered.

Unfortunately, there is no fast primality test down this road. The reason is that we have
been trying to tell if a number is a prime by factoring it. And factoring is a hard problem!

Modern cryptography, as well as the balance of this chapter, is about the following im-
portant idea: factoring is hard and primality is easy. We cannot factor large numbers,
but we can easily test huge numbers for primality! (Presumably, if a number is composite,
such a test will detect this without finding a factor.)

1.3 Primality testing

Is there some litmus test that will tell us whether a number is prime without actually trying
to factor the number? We place our hopes in a theorem from the year 1640.
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Fermat’s little theorem If p is prime, then for every 1 ≤ a < p,

ap−1 ≡ 1 (mod p).

Proof. Let S be the nonzero integers modulo p; that is, S = {1, 2, . . . , p− 1}. Here’s the crucial
observation: the effect of multiplying these numbers by a (modulo p) is simply to permute
them. For instance, here’s a picture of the case a = 3, p = 7:

6
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3

2

1 1

2

3

4

5

6

Let’s carry this example a bit further. From the picture, we can conclude

{1, 2, . . . , 6} = {3 · 1 mod 7, 3 · 2 mod 7, . . . , 3 · 6 mod 7}.

Multiplying all the numbers in each representation then gives 6! ≡ 36 ·6! (mod 7), and dividing
by 6! we get 36 ≡ 1 (mod 7), exactly the result we wanted in the case a = 3, p = 7.

Now let’s generalize this argument to other values of a and p, with S = {1, 2, . . . , p − 1}.
We’ll prove that when the elements of S are multiplied by a modulo p, the resulting numbers
are all distinct and nonzero. And since they lie in the range [1, p − 1], they must simply be a
permutation of S.

The numbers a · i mod p are distinct because if a · i ≡ a · j (mod p), then dividing both sides
by a gives i ≡ j (mod p). They are nonzero because a · i ≡ 0 similarly implies i ≡ 0. (And we
can divide by a, because by assumption it is nonzero and therefore relatively prime to p.)

We now have two ways to write set S:

S = {1, 2, . . . , p− 1} = {a · 1 mod p, a · 2 mod p, . . . , a · (p− 1) mod p}.

We can multiply together its elements in each of these representations to get

(p− 1)! ≡ ap−1 · (p− 1)! (mod p).

Dividing by (p − 1)! (which we can do because it is relatively prime to p, since p is assumed
prime) then gives the theorem.

This theorem suggests a “factorless” test for determining whether a number N is prime:
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Figure 1.7 An algorithm for testing primality.
function primality(N)
Input: Positive integer N
Output: yes/no

Pick a positive integer a < N at random
if aN−1 ≡ 1 (mod N):

return yes
else:

return no

Is aN−1 ≡ 1 mod N?Pick some a
“prime”

“composite”
Fermat’s test

Pass

Fail

The problem is that Fermat’s theorem is not an if-and-only-if condition; it doesn’t say what
happens when N is not prime, so in these cases the preceding diagram is questionable. In
fact, it is possible for a composite number N to pass Fermat’s test (that is, aN−1 ≡ 1 mod
N ) for certain choices of a. For instance, 341 = 11 · 31 is not prime, and yet 2340 ≡ 1 mod
341. Nonetheless, we might hope that for composite N , most values of a will fail the test.
This is indeed true, in a sense we will shortly make precise, and motivates the algorithm of
Figure 1.7: rather than fixing an arbitrary value of a in advance, we should choose it randomly
from {1, . . . , N − 1}.

In analyzing the behavior of this algorithm, we first need to get a minor bad case out of the
way. It turns out that certain extremely rare composite numbers N , called Carmichael num-
bers, pass Fermat’s test for all a relatively prime to N . On such numbers our algorithm will
fail; but they are pathologically rare, and we will later see how to deal with them (page 38),
so let’s ignore these numbers for the time being.

In a Carmichael-free universe, our algorithm works well. Any prime number N will
of course pass Fermat’s test and produce the right answer. On the other hand, any non-
Carmichael composite number N must fail Fermat’s test for some value of a; and as we will
now show, this implies immediately that N fails Fermat’s test for at least half the possible
values of a!

Lemma If aN−1 6≡ 1 mod N for some a relatively prime to N , then it must hold for at least
half the choices of a < N .

Proof. Fix some value of a for which aN−1 6≡ 1 mod N . The key is to notice that every element
b < N that passes Fermat’s test with respect to N (that is, bN−1 ≡ 1 mod N ) has a twin, a · b,
that fails the test:

(a · b)N−1 ≡ aN−1 · bN−1 ≡ aN−1 6≡ 1 mod N.
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Moreover, all these elements a · b, for fixed a but different choices of b, are distinct, for the
same reason a · i 6≡ a · j in the proof of Fermat’s test: just divide by a.

FailPass

The set {1, 2, . . . ,N − 1}

b
a · b

The one-to-one function b 7→ a · b shows that at least as many elements fail the test as pass it.

Hey, that was group theory!
For any integer N , the set of all numbers mod N that are relatively prime to N constitute
what mathematicians call a group:

• There is a multiplication operation defined on this set.

• The set contains a neutral element (namely 1: any number multiplied by this remains
unchanged).

• All elements have a well-defined inverse.

This particular group is called the multiplicative group of N , usually denoted Z
∗
N .

Group theory is a very well developed branch of mathematics. One of its key concepts
is that a group can contain a subgroup—a subset that is a group in and of itself. And an
important fact about a subgroup is that its size must divide the size of the whole group.

Consider now the set B = {b : bN−1 ≡ 1 mod N}. It is not hard to see that it is a subgroup
of Z

∗
N (just check that B is closed under multiplication and inverses). Thus the size of B

must divide that of Z
∗
N . Which means that if B doesn’t contain all of Z

∗
N , the next largest

size it can have is |Z∗
N |/2.

We are ignoring Carmichael numbers, so we can now assert
If N is prime, then aN−1 ≡ 1 mod N for all a < N .
If N is not prime, then aN−1 ≡ 1 mod N for at most half the values of a < N .

The algorithm of Figure 1.7 therefore has the following probabilistic behavior.

Pr(Algorithm 1.7 returns yes when N is prime) = 1

Pr(Algorithm 1.7 returns yes when N is not prime) ≤ 1

2
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Figure 1.8 An algorithm for testing primality, with low error probability.
function primality2(N)
Input: Positive integer N
Output: yes/no

Pick positive integers a1, a2, . . . , ak < N at random
if aN−1

i ≡ 1 (mod N) for all i = 1, 2, . . . , k:
return yes

else:
return no

We can reduce this one-sided error by repeating the procedure many times, by randomly pick-
ing several values of a and testing them all (Figure 1.8).

Pr(Algorithm 1.8 returns yes when N is not prime) ≤ 1

2k

This probability of error drops exponentially fast, and can be driven arbitrarily low by choos-
ing k large enough. Testing k = 100 values of a makes the probability of failure at most 2−100,
which is miniscule: far less, for instance, than the probability that a random cosmic ray will
sabotage the computer during the computation!

1.3.1 Generating random primes
We are now close to having all the tools we need for cryptographic applications. The final
piece of the puzzle is a fast algorithm for choosing random primes that are a few hundred bits
long. What makes this task quite easy is that primes are abundant—a random n-bit number
has roughly a one-in-n chance of being prime (actually about 1/(ln 2n) ≈ 1.44/n). For instance,
about 1 in 20 social security numbers is prime!

Lagrange’s prime number theorem Let π(x) be the number of primes ≤ x. Then π(x) ≈
x/(ln x), or more precisely,

lim
x→∞

π(x)

(x/ ln x)
= 1.

Such abundance makes it simple to generate a random n-bit prime:

• Pick a random n-bit number N .

• Run a primality test on N .

• If it passes the test, output N ; else repeat the process.
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Carmichael numbers
The smallest Carmichael number is 561. It is not a prime: 561 = 3 · 11 · 17; yet it fools the
Fermat test, because a560 ≡ 1 (mod 561) for all values of a relatively prime to 561. For a long
time it was thought that there might be only finitely many numbers of this type; now we
know they are infinite, but exceedingly rare.

There is a way around Carmichael numbers, using a slightly more refined primality test
due to Rabin and Miller. Write N − 1 in the form 2tu. As before we’ll choose a random
base a and check the value of aN−1 mod N . Perform this computation by first determining
au mod N and then repeatedly squaring, to get the sequence:

au mod N, a2u mod N, . . . , a2tu = aN−1 mod N.

If aN−1 6≡ 1 mod N , then N is composite by Fermat’s little theorem, and we’re done. But if
aN−1 ≡ 1 mod N , we conduct a little follow-up test: somewhere in the preceding sequence, we
ran into a 1 for the first time. If this happened after the first position (that is, if au mod N 6=
1), and if the preceding value in the list is not −1 mod N , then we declare N composite.

In the latter case, we have found a nontrivial square root of 1 modulo N : a number that
is not ±1 mod N but that when squared is equal to 1 mod N . Such a number can only exist
if N is composite (Exercise 1.40). It turns out that if we combine this square-root check with
our earlier Fermat test, then at least three-fourths of the possible values of a between 1 and
N − 1 will reveal a composite N , even if it is a Carmichael number.

How fast is this algorithm? If the randomly chosen N is truly prime, which happens
with probability at least 1/n, then it will certainly pass the test. So on each iteration, this
procedure has at least a 1/n chance of halting. Therefore on average it will halt within O(n)
rounds (Exercise 1.34).

Next, exactly which primality test should be used? In this application, since the numbers
we are testing for primality are chosen at random rather than by an adversary, it is sufficient
to perform the Fermat test with base a = 2 (or to be really safe, a = 2, 3, 5), because for
random numbers the Fermat test has a much smaller failure probability than the worst-case
1/2 bound that we proved earlier. Numbers that pass this test have been jokingly referred
to as “industrial grade primes.” The resulting algorithm is quite fast, generating primes that
are hundreds of bits long in a fraction of a second on a PC.

The important question that remains is: what is the probability that the output of the al-
gorithm is really prime? To answer this we must first understand how discerning the Fermat
test is. As a concrete example, suppose we perform the test with base a = 2 for all numbers
N ≤ 25×109. In this range, there are about 109 primes, and about 20,000 composites that pass
the test (see the following figure). Thus the chance of erroneously outputting a composite is
approximately 20,000/109 = 2 × 10−5. This chance of error decreases rapidly as the length of
the numbers involved is increased (to the few hundred digits we expect in our applications).
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Randomized algorithms: a virtual chapter
Surprisingly—almost paradoxically—some of the fastest and most clever algorithms we have
rely on chance: at specified steps they proceed according to the outcomes of random coin
tosses. These randomized algorithms are often very simple and elegant, and their output is
correct with high probability. This success probability does not depend on the randomness
of the input; it only depends on the random choices made by the algorithm itself.

Instead of devoting a special chapter to this topic, in this book we intersperse randomized
algorithms at the chapters and sections where they arise most naturally. Furthermore,
no specialized knowledge of probability is necessary to follow what is happening. You just
need to be familiar with the concept of probability, expected value, the expected number
of times we must flip a coin before getting heads, and the property known as “linearity of
expectation.”

Here are pointers to the major randomized algorithms in this book: One of the earliest
and most dramatic examples of a randomized algorithm is the randomized primality test of
Figure 1.8. Hashing is a general randomized data structure that supports inserts, deletes,
and lookups and is described later in this chapter, in Section 1.5. Randomized algorithms
for sorting and median finding are described in Chapter 2. A randomized algorithm for the
min cut problem is described in the box on page 150. Randomization plays an important role
in heuristics as well; these are described in Section 9.3. And finally the quantum algorithm
for factoring (Section 10.7) works very much like a randomized algorithm, its output being
correct with high probability—except that it draws its randomness not from coin tosses, but
from the superposition principle in quantum mechanics.

Virtual exercises: 1.29, 1.34, 2.24, 9.8, 10.8.

1.4 Cryptography
Our next topic, the Rivest-Shamir-Adelman (RSA) cryptosystem, uses all the ideas we have
introduced in this chapter! It derives very strong guarantees of security by ingeniously ex-
ploiting the wide gulf between the polynomial-time computability of certain number-theoretic
tasks (modular exponentiation, greatest common divisor, primality testing) and the intractabil-
ity of others (factoring).
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The typical setting for cryptography can be described via a cast of three characters: Alice
and Bob, who wish to communicate in private, and Eve, an eavesdropper who will go to great
lengths to find out what they are saying. For concreteness, let’s say Alice wants to send a
specific message x, written in binary (why not), to her friend Bob. She encodes it as e(x),
sends it over, and then Bob applies his decryption function d(·) to decode it: d(e(x)) = x. Here
e(·) and d(·) are appropriate transformations of the messages.

Eve

BobAlice
Encoder Decoderx x = d(e(x))

e(x)

Alice and Bob are worried that the eavesdropper, Eve, will intercept e(x): for instance, she
might be a sniffer on the network. But ideally the encryption function e(·) is so chosen that
without knowing d(·), Eve cannot do anything with the information she has picked up. In
other words, knowing e(x) tells her little or nothing about what x might be.

For centuries, cryptography was based on what we now call private-key protocols. In such
a scheme, Alice and Bob meet beforehand and together choose a secret codebook, with which
they encrypt all future correspondence between them. Eve’s only hope, then, is to collect some
encoded messages and use them to at least partially figure out the codebook.

Public-key schemes such as RSA are significantly more subtle and tricky: they allow Alice
to send Bob a message without ever having met him before. This almost sounds impossible,
because in this scenario there is a symmetry between Bob and Eve: why should Bob have
any advantage over Eve in terms of being able to understand Alice’s message? The central
idea behind the RSA cryptosystem is that using the dramatic contrast between factoring and
primality, Bob is able to implement a digital lock, to which only he has the key. Now by
making this digital lock public, he gives Alice a way to send him a secure message, which only
he can open. Moreover, this is exactly the scenario that comes up in Internet commerce, for
example, when you wish to send your credit card number to some company over the Internet.

In the RSA protocol, Bob need only perform the simplest of calculations, such as multi-
plication, to implement his digital lock. Similarly Alice and Bob need only perform simple
calculations to lock and unlock the message respectively—operations that any pocket com-
puting device could handle. By contrast, to unlock the message without the key, Eve must
perform operations like factoring large numbers, which requires more computational power
than would be afforded by the world’s most powerful computers combined. This compelling
guarantee of security explains why the RSA cryptosystem is such a revolutionary develop-
ment in cryptography.
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An application of number theory?
The renowned mathematician G. H. Hardy once declared of his work: “I have never done
anything useful.” Hardy was an expert in the theory of numbers, which has long been re-
garded as one of the purest areas of mathematics, untarnished by material motivation and
consequence. Yet the work of thousands of number theorists over the centuries, Hardy’s in-
cluded, is now crucial to the operation of Web browsers and cell phones and to the security
of financial transactions worldwide.

1.4.1 Private-key schemes: one-time pad and AES
If Alice wants to transmit an important private message to Bob, it would be wise of her to
scramble it with an encryption function,

e : 〈messages〉 → 〈encoded messages〉.
Of course, this function must be invertible—for decoding to be possible—and is therefore a
bijection. Its inverse is the decryption function d(·).

In the one-time pad, Alice and Bob meet beforehand and secretly choose a binary string
r of the same length—say, n bits—as the important message x that Alice will later send.
Alice’s encryption function is then a bitwise exclusive-or, er(x) = x ⊕ r: each position in the
encoded message is the exclusive-or of the corresponding positions in x and r. For instance, if
r = 01110010, then the message 11110000 is scrambled thus:

er(11110000) = 11110000 ⊕ 01110010 = 10000010.

This function er is a bijection from n-bit strings to n-bit strings, as evidenced by the fact that
it is its own inverse!

er(er(x)) = (x⊕ r)⊕ r = x⊕ (r ⊕ r) = x⊕ 0 = x,

where 0 is the string of all zeros. Thus Bob can decode Alice’s transmission by applying the
same encryption function a second time: dr(y) = y ⊕ r.

How should Alice and Bob choose r for this scheme to be secure? Simple: they should pick
r at random, flipping a coin for each bit, so that the resulting string is equally likely to be any
element of {0, 1}n. This will ensure that if Eve intercepts the encoded message y = er(x), she
gets no information about x. Suppose, for example, that Eve finds out y = 10; what can she
deduce? She doesn’t know r, and the possible values it can take all correspond to different
original messages x:

00

01

10

11

x

10

e11

e01

e00

y

e10
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So given what Eve knows, all possibilities for x are equally likely!
The downside of the one-time pad is that it has to be discarded after use, hence the name.

A second message encoded with the same pad would not be secure, because if Eve knew x⊕ r
and z ⊕ r for two messages x and z, then she could take the exclusive-or to get x ⊕ z, which
might be important information—for example, (1) it reveals whether the two messages begin
or end the same, and (2) if one message contains a long sequence of zeros (as could easily be
the case if the message is an image), then the corresponding part of the other message will be
exposed. Therefore the random string that Alice and Bob share has to be the combined length
of all the messages they will need to exchange.

The one-time pad is a toy cryptographic scheme whose behavior and theoretical properties
are completely clear. At the other end of the spectrum lies the advanced encryption standard
(AES), a very widely used cryptographic protocol that was approved by the U.S. National
Institute of Standards and Technologies in 2001. AES is once again private-key: Alice and
Bob have to agree on a shared random string r. But this time the string is of a small fixed
size, 128 to be precise (variants with 192 or 256 bits also exist), and specifies a bijection er

from 128-bit strings to 128-bit strings. The crucial difference is that this function can be used
repeatedly, so for instance a long message can be encoded by splitting it into segments of 128
bits and applying er to each segment.

The security of AES has not been rigorously established, but certainly at present the gen-
eral public does not know how to break the code—to recover x from er(x)—except using tech-
niques that are not very much better than the brute-force approach of trying all possibilities
for the shared string r.

1.4.2 RSA
Unlike the previous two protocols, the RSA scheme is an example of public-key cryptography:
anybody can send a message to anybody else using publicly available information, rather like
addresses or phone numbers. Each person has a public key known to the whole world and a
secret key known only to him- or herself. When Alice wants to send message x to Bob, she en-
codes it using his public key. He decrypts it using his secret key, to retrieve x. Eve is welcome
to see as many encrypted messages for Bob as she likes, but she will not be able to decode
them, under certain simple assumptions.

The RSA scheme is based heavily upon number theory. Think of messages from Alice to
Bob as numbers modulo N ; messages larger than N can be broken into smaller pieces. The
encryption function will then be a bijection on {0, 1, . . . , N − 1}, and the decryption function
will be its inverse. What values of N are appropriate, and what bijection should be used?

Property Pick any two primes p and q and let N = pq. For any e relatively prime to (p −
1)(q − 1):

1. The mapping x 7→ xe mod N is a bijection on {0, 1, . . . , N − 1}.

2. Moreover, the inverse mapping is easily realized: let d be the inverse of e modulo (p −
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1)(q − 1). Then for all x ∈ {0, . . . , N − 1},

(xe)d ≡ x mod N.

The first property tells us that the mapping x 7→ xe mod N is a reasonable way to encode
messages x; no information is lost. So, if Bob publishes (N, e) as his public key, everyone else
can use it to send him encrypted messages. The second property then tells us how decryption
can be achieved. Bob should retain the value d as his secret key, with which he can decode all
messages that come to him by simply raising them to the dth power modulo N .

Example. Let N = 55 = 5 · 11. Choose encryption exponent e = 3, which satisfies the condition
gcd(e, (p − 1)(q − 1)) = gcd(3, 40) = 1. The decryption exponent is then d = 3−1 mod 40 = 27.
Now for any message x mod 55, the encryption of x is y = x3 mod 55, and the decryption of y
is x = y27 mod 55. So, for example, if x = 13, then y = 133 = 52 mod 55. and 13 = 5227 mod 55.

Let’s prove the assertion above and then examine the security of the scheme.
Proof. If the mapping x 7→ xe mod N is invertible, it must be a bijection; hence statement 2
implies statement 1. To prove statement 2, we start by observing that e is invertible modulo
(p − 1)(q − 1) because it is relatively prime to this number. To see that (xe)d ≡ x mod N , we
examine the exponent: since ed ≡ 1 mod (p − 1)(q − 1), we can write ed in the form 1 + k(p −
1)(q − 1) for some k. Now we need to show that the difference

xed − x = x1+k(p−1)(q−1) − x

is always 0 modulo N . The second form of the expression is convenient because it can be
simplified using Fermat’s little theorem. It is divisible by p (since xp−1 ≡ 1 mod p) and likewise
by q. Since p and q are primes, this expression must also be divisible by their productN . Hence
xed − x = x1+k(p−1)(q−1) − x ≡ 0 (mod N), exactly as we need.

The RSA protocol is summarized in Figure 1.9. It is certainly convenient: the computa-
tions it requires of Alice and Bob are elementary. But how secure is it against Eve?

The security of RSA hinges upon a simple assumption:
Given N, e, and y = xe mod N , it is computationally intractable to determine x.

This assumption is quite plausible. How might Eve try to guess x? She could experiment
with all possible values of x, each time checking whether xe ≡ y mod N , but this would take
exponential time. Or she could try to factor N to retrieve p and q, and then figure out d by
inverting e modulo (p−1)(q−1), but we believe factoring to be hard. Intractability is normally
a source of dismay; the insight of RSA lies in using it to advantage.

1.5 Universal hashing
We end this chapter with an application of number theory to the design of hash functions.
Hashing is a very useful method of storing data items in a table so as to support insertions,
deletions, and lookups.
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Figure 1.9 RSA.
Bob chooses his public and secret keys.

• He starts by picking two large (n-bit) random primes p and q.

• His public key is (N, e) where N = pq and e is a 2n-bit number relatively prime to
(p− 1)(q − 1). A common choice is e = 3 because it permits fast encoding.

• His secret key is d, the inverse of e modulo (p − 1)(q − 1), computed using the extended
Euclid algorithm.

Alice wishes to send message x to Bob.

• She looks up his public key (N, e) and sends him y = (xe mod N), computed using an
efficient modular exponentiation algorithm.

• He decodes the message by computing yd mod N .

Suppose, for instance, that we need to maintain an ever-changing list of about 250 IP
(Internet protocol) addresses, perhaps the addresses of the currently active customers of a
Web service. (Recall that an IP address consists of 32 bits encoding the location of a computer
on the Internet, usually shown broken down into four 8-bit fields, for example, 128.32.168.80.)
We could obtain fast lookup times if we maintained the records in an array indexed by IP
address. But this would be very wasteful of memory: the array would have 232 ≈ 4 × 109

entries, the vast majority of them blank. Or alternatively, we could use a linked list of just
the 250 records. But then accessing records would be very slow, taking time proportional to
250, the total number of customers. Is there a way to get the best of both worlds, to use an
amount of memory that is proportional to the number of customers and yet also achieve fast
lookup times? This is exactly where hashing comes in.

1.5.1 Hash tables
Here’s a high-level view of hashing. We will give a short “nickname” to each of the 232 possible
IP addresses. You can think of this short name as just a number between 1 and 250 (we will
later adjust this range very slightly). Thus many IP addresses will inevitably have the same
nickname; however, we hope that most of the 250 IP addresses of our particular customers
are assigned distinct names, and we will store their records in an array of size 250 indexed by
these names. What if there is more than one record associated with the same name? Easy:
each entry of the array points to a linked list containing all records with that name. So the
total amount of storage is proportional to 250, the number of customers, and is independent
of the total number of possible IP addresses. Moreover, if not too many customer IP addresses
are assigned the same name, lookup is fast, because the average size of the linked list we have
to scan through is small.
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But how do we assign a short name to each IP address? This is the role of a hash function:
in our example, a function h that maps IP addresses to positions in a table of length about
250 (the expected number of data items). The name assigned to an IP address x is thus h(x),
and the record for x is stored in position h(x) of the table. As described before, each position
of the table is in fact a bucket, a linked list that contains all current IP addresses that map to
it. Hopefully, there will be very few buckets that contain more than a handful of IP addresses.

x

y

z

x y

z

Space of all 232 IP addresses

250 IPs

Hash table

h

of size ≈ 250

1.5.2 Families of hash functions
Designing hash functions is tricky. A hash function must in some sense be “random” (so that
it scatters data items around), but it should also be a function and therefore “consistent” (so
that we get the same result every time we apply it). And the statistics of the data items may
work against us. In our example, one possible hash function would map an IP address to the
8-bit number that is its last segment: h(128.32.168.80) = 80. A table of n = 256 buckets would
then be required. But is this a good hash function? Not if, for example, the last segment
of an IP address tends to be a small (single- or double-digit) number; then low-numbered
buckets would be crowded. Taking the first segment of the IP address also invites disaster—
for example, if most of our customers come from Asia.

There is nothing inherently wrong with these two functions. If our 250 IP addresses were
uniformly drawn from among all N = 232 possibilities, then these functions would behave
well. The problem is we have no guarantee that the distribution of IP addresses is uniform.

Conversely, there is no single hash function, no matter how sophisticated, that behaves
well on all sets of data. Since a hash function maps 232 IP addresses to just 250 names, there
must be a collection of at least 232/250 ≈ 224 ≈ 16,000,000 IP addresses that are assigned the
same name (or, in hashing terminology, “collide”). If many of these show up in our customer
set, we’re in trouble.

Obviously, we need some kind of randomization. Here’s an idea: let us pick a hash function
at random from some class of functions. We will then show that, no matter what set of 250
IP addresses we actually care about, most choices of the hash function will give very few
collisions among these addresses.

To this end, we need to define a class of hash functions from which we can pick at random;
and this is where we turn to number theory. Let us take the number of buckets to be not
250 but n = 257—a prime number! And we consider every IP address x as a quadruple x =
(x1, . . . , x4) of integers modulo n—recall that it is in fact a quadruple of integers between 0
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and 255, so there is no harm in this. We can define a function h from IP addresses to a number
mod n as follows: fix any four numbers mod n = 257, say 87, 23, 125, and 4. Now map the
IP address (x1, ..., x4) to h(x1, ..., x4) = (87x1 + 23x2 + 125x3 + 4x4) mod 257. Indeed, any four
numbers mod n define a hash function.

For any four coefficients a1, . . . , a4 ∈ {0, 1, . . . , n− 1}, write a = (a1, a2, a3, a4) and define ha

to be the following hash function:

ha(x1, . . . , x4) =

4∑

i=1

ai · xi mod n.

We will show that if we pick these coefficients a at random, then ha is very likely to be good in
the following sense.

Property Consider any pair of distinct IP addresses x = (x1, . . . , x4) and y = (y1, . . . , y4). If
the coefficients a = (a1, a2, a3, a4) are chosen uniformly at random from {0, 1, . . . , n− 1}, then

Pr {ha(x1, . . . , x4) = ha(y1, . . . , y4)} =
1

n
.

In other words, the chance that x and y collide under ha is the same as it would be if each
were assigned nicknames randomly and independently. This condition guarantees that the
expected lookup time for any item is small. Here’s why. If we wish to look up x in our hash
table, the time required is dominated by the size of its bucket, that is, the number of items
that are assigned the same name as x. But there are only 250 items in the hash table, and the
probability that any one item gets the same name as x is 1/n = 1/257. Therefore the expected
number of items that are assigned the same name as x by a randomly chosen hash function
ha is 250/257 ≈ 1, which means the expected size of x’s bucket is less than 2.1

Let us now prove the preceding property.
Proof. Since x = (x1, . . . , x4) and y = (y1, . . . , y4) are distinct, these quadruples must differ in
some component; without loss of generality let us assume that x4 6= y4. We wish to compute
the probability Pr[ha(x1, . . . , x4) = ha(y1, . . . , y4)], that is, the probability that

∑4
i=1 ai · xi ≡∑4

i=1 ai · yi mod n. This last equation can be rewritten as

3∑

i=1

ai · (xi − yi) ≡ a4 · (y4 − x4) mod n (1)

Suppose that we draw a random hash function ha by picking a = (a1, a2, a3, a4) at random. We
start by drawing a1, a2, and a3, and then we pause and think: What is the probability that the
last drawn number a4 is such that equation (1) holds? So far the left-hand side of equation
(1) evaluates to some number, call it c. And since n is prime and x4 6= y4, (y4 − x4) has a

1When a hash function ha is chosen at random, let the random variable Yi (for i = 1, . . . , 250) be 1 if item i gets
the same name as x and 0 otherwise. So the expected value of Yi is 1/n. Now, Y = Y1 + Y2 + · · · + Y250 is the
number of items which get the same name as x, and by linearity of expectation, the expected value of Y is simply
the sum of the expected values of Y1 through Y250. It is thus 250/n = 250/257.
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unique inverse modulo n. Thus for equation (1) to hold, the last number a4 must be precisely
c · (y4 − x4)

−1 mod n, out of its n possible values. The probability of this happening is 1/n, and
the proof is complete.

Let us step back and see what we just achieved. Since we have no control over the set of
data items, we decided instead to select a hash function h uniformly at random from among a
family H of hash functions. In our example,

H = {ha : a ∈ {0, . . . , n− 1}4}.

To draw a hash function uniformly at random from this family, we just draw four numbers
a1, . . . , a4 modulo n. (Incidentally, notice that the two simple hash functions we considered
earlier, namely, taking the last or the first 8-bit segment, belong to this class. They are h(0,0,0,1)

and h(1,0,0,0), respectively.) And we insisted that the family have the following property:

For any two distinct data items x and y, exactly |H|/n of all the hash functions in
H map x and y to the same bucket, where n is the number of buckets.

A family of hash functions with this property is called universal. In other words, for any
two data items, the probability these items collide is 1/n if the hash function is randomly
drawn from a universal family. This is also the collision probability if we map x and y to
buckets uniformly at random—in some sense the gold standard of hashing. We then showed
that this property implies that hash table operations have good performance in expectation.

This idea, motivated as it was by the hypothetical IP address application, can of course
be applied more generally. Start by choosing the table size n to be some prime number that
is a little larger than the number of items expected in the table (there is usually a prime
number close to any number we start with; actually, to ensure that hash table operations
have good performance, it is better to have the size of the hash table be about twice as large
as the number of items). Next assume that the size of the domain of all data items isN = nk, a
power of n (if we need to overestimate the true number of data items, so be it). Then each data
item can be considered as a k-tuple of integers modulo n, and H = {ha : a ∈ {0, . . . , n− 1}k} is
a universal family of hash functions.
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Exercises
1.1. Show that in any base b ≥ 2, the sum of any three single-digit numbers is at most two digits long.
1.2. Show that any binary integer is at most four times as long as the corresponding decimal integer.

For very large numbers, what is the ratio of these two lengths, approximately?
1.3. A d-ary tree is a rooted tree in which each node has at most d children. Show that any d-ary

tree with n nodes must have a depth of Ω(logn/ log d). Can you give a precise formula for the
minimum depth it could possibly have?

1.4. Show that
log(n!) = Θ(n logn).

(Hint: To show an upper bound, compare n! with nn. To show a lower bound, compare it with
(n/2)n/2.)

1.5. Unlike a decreasing geometric series, the sum of the harmonic series 1, 1/2, 1/3, 1/4, 1/5, . . . di-
verges; that is,

∞∑

i=1

1

i
=∞.

It turns out that, for large n, the sum of the first n terms of this series can be well approximated
as

n∑

i=1

1

i
≈ lnn+ γ,

where ln is natural logarithm (log base e = 2.718 . . .) and γ is a particular constant 0.57721 . . ..
Show that

n∑

i=1

1

i
= Θ(logn).

(Hint: To show an upper bound, decrease each denominator to the next power of two. For a lower
bound, increase each denominator to the next power of 2.)

1.6. Prove that the grade-school multiplication algorithm (page 24), when applied to binary numbers,
always gives the right answer.

1.7. How long does the recursive multiplication algorithm (page 25) take to multiply an n-bit number
by an m-bit number? Justify your answer.

1.8. Justify the correctness of the recursive division algorithm given in page 26, and show that it
takes time O(n2) on n-bit inputs.

1.9. Starting from the definition of x ≡ y mod N (namely, thatN divides x−y), justify the substitution
rule

x ≡ x′ mod N, y ≡ y′ mod N ⇒ x+ y ≡ x′ + y′ mod N,

and also the corresponding rule for multiplication.
1.10. Show that if a ≡ b (mod N) and if M divides N then a ≡ b (mod M).
1.11. Is 41536 − 94824 divisible by 35?
1.12. What is 222006

(mod 3)?
1.13. Is the difference of 530,000 and 6123,456 a multiple of 31?
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1.14. Suppose you want to compute the nth Fibonacci number Fn, modulo an integer p. Can you find
an efficient way to do this? (Hint: Recall Exercise 0.4.)

1.15. Determine necessary and sufficient conditions on x and c so that the following holds: for any a, b,
if ax ≡ bx mod c, then a ≡ b mod c.

1.16. The algorithm for computing ab mod c by repeated squaring does not necessarily lead to the
minimum number of multiplications. Give an example of b > 10 where the exponentiation can
be performed using fewer multiplications, by some other method.

1.17. Consider the problem of computing xy for given integers x and y: we want the whole answer, not
modulo a third integer. We know two algorithms for doing this: the iterative algorithm which
performs y − 1 multiplications by x; and the recursive algorithm based on the binary expansion
of y.
Compare the time requirements of these two algorithms, assuming that the time to multiply an
n-bit number by an m-bit number is O(mn).

1.18. Compute gcd(210, 588) two different ways: by finding the factorization of each number, and by
using Euclid’s algorithm.

1.19. The Fibonacci numbers F0, F1, . . . are given by the recurrence Fn+1 = Fn + Fn−1, F0 = 0, F1 = 1.
Show that for any n ≥ 1, gcd(Fn+1, Fn) = 1.

1.20. Find the inverse of: 20 mod 79, 3 mod 62, 21 mod 91, 5 mod 23.
1.21. How many integers modulo 113 have inverses? (Note: 113 = 1331.)
1.22. Prove or disprove: If a has an inverse modulo b, then b has an inverse modulo a.
1.23. Show that if a has a multiplicative inverse modulo N , then this inverse is unique (modulo N ).
1.24. If p is prime, how many elements of {0, 1, . . . , pn − 1} have an inverse modulo pn?
1.25. Calculate 2125 mod 127 using any method you choose. (Hint: 127 is prime.)
1.26. What is the least significant decimal digit of 171717? (Hint: For distinct primes p, q, and any a 6≡ 0

(mod pq), we proved the formula a(p−1)(q−1) ≡ 1 (mod pq) in Section 1.4.2.)
1.27. Consider an RSA key set with p = 17, q = 23, N = 391, and e = 3 (as in Figure 1.9). What value

of d should be used for the secret key? What is the encryption of the message M = 41?
1.28. In an RSA cryptosystem, p = 7 and q = 11 (as in Figure 1.9). Find appropriate exponents d and

e.
1.29. Let [m] denote the set {0, 1, . . . ,m − 1}. For each of the following families of hash functions, say

whether or not it is universal, and determine how many random bits are needed to choose a
function from the family.

(a) H = {ha1,a2
: a1, a2 ∈ [m]}, where m is a fixed prime and

ha1,a2
(x1, x2) = a1x1 + a2x2 mod m.

Notice that each of these functions has signature ha1,a2
: [m]2 → [m], that is, it maps a pair

of integers in [m] to a single integer in [m].
(b) H is as before, except that now m = 2k is some fixed power of 2.
(c) H is the set of all functions f : [m]→ [m− 1].
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1.30. The grade-school algorithm for multiplying two n-bit binary numbers x and y consists of adding
together n copies of x, each appropriately left-shifted. Each copy, when shifted, is at most 2n bits
long.
In this problem, we will examine a scheme for adding n binary numbers, each m bits long, using
a circuit or a parallel architecture. The main parameter of interest in this question is therefore
the depth of the circuit or the longest path from the input to the output of the circuit. This
determines the total time taken for computing the function.
To add twom-bit binary numbers naively, we must wait for the carry bit from position i−1 before
we can figure out the ith bit of the answer. This leads to a circuit of depth O(m). However carry
lookahead circuits (see wikipedia.com if you want to know more about this) can add in O(logm)
depth.

(a) Assuming you have carry lookahead circuits for addition, show how to add n numbers each
m bits long using a circuit of depth O((log n)(logm)).

(b) When adding three m-bit binary numbers x+ y+ z, there is a trick we can use to parallelize
the process. Instead of carrying out the addition completely, we can re-express the result as
the sum of just two binary numbers r + s, such that the ith bits of r and s can be computed
independently of the other bits. Show how this can be done. (Hint: One of the numbers
represents carry bits.)

(c) Show how to use the trick from the previous part to design a circuit of depth O(log n) for
multiplying two n-bit numbers.

1.31. Consider the problem of computing N ! = 1 · 2 · 3 · · ·N .

(a) If N is an n-bit number, how many bits long is N !, approximately (in Θ(·) form)?
(b) Give an algorithm to compute N ! and analyze its running time.

1.32. A positive integer N is a power if it is of the form qk, where q, k are positive integers and k > 1.

(a) Give an efficient algorithm that takes as input a number N and determines whether it is
a square, that is, whether it can be written as q2 for some positive integer q. What is the
running time of your algorithm?

(b) Show that if N = qk (with N , q, and k all positive integers), then either k ≤ logN or N = 1.
(c) Give an efficient algorithm for determining whether a positive integerN is a power. Analyze

its running time.

1.33. Give an efficient algorithm to compute the least common multiple of two n-bit numbers x and
y, that is, the smallest number divisible by both x and y. What is the running time of your
algorithm as a function of n?

1.34. On page 38, we claimed that since about a 1/n fraction of n-bit numbers are prime, on average
it is sufficient to draw O(n) random n-bit numbers before hitting a prime. We now justify this
rigorously.
Suppose a particular coin has a probability p of coming up heads. How many times must you
toss it, on average, before it comes up heads? (Hint: Method 1: start by showing that the correct
expression is

∑∞
i=1 i(1 − p)i−1p. Method 2: if E is the average number of coin tosses, show that

E = 1 + (1− p)E.)
1.35. Wilson’s theorem says that a number N is prime if and only if

(N − 1)! ≡ −1 (mod N).
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(a) If p is prime, then we know every number 1 ≤ x < p is invertible modulo p. Which of these
numbers are their own inverse?

(b) By pairing up multiplicative inverses, show that (p− 1)! ≡ −1 (mod p) for prime p.
(c) Show that if N is not prime, then (N − 1)! 6≡ −1 (mod N). (Hint: Consider d = gcd(N, (N −

1)!).)
(d) Unlike Fermat’s Little theorem, Wilson’s theorem is an if-and-only-if condition for primality.

Why can’t we immediately base a primality test on this rule?

1.36. Square roots. In this problem, we’ll see that it is easy to compute square roots modulo a prime p
with p ≡ 3 (mod 4).

(a) Suppose p ≡ 3 (mod 4). Show that (p+ 1)/4 is an integer.
(b) We say x is a square root of a modulo p if a ≡ x2 (mod p). Show that if p ≡ 3 (mod 4) and if

a has a square root modulo p, then a(p+1)/4 is such a square root.

1.37. The Chinese remainder theorem.

(a) Make a table with three columns. The first column is all numbers from 0 to 14. The second
is the residues of these numbers modulo 3; the third column is the residues modulo 5. What
do you observe?

(b) Prove that if p and q are distinct primes, then for every pair (j, k) with 0 ≤ j < p and
0 ≤ k < q, there is a unique integer 0 ≤ i < pq such that i ≡ j mod p and i ≡ k mod q. (Hint:
Prove that no two different i’s in this range can have the same (j, k), and then count.)

(c) In this one-to-one correspondence between integers and pairs, it is easy to go from i to (j, k).
Prove that the following formula takes you the other way:

i = {j · q · (q−1 mod p) + k · p · (p−1 mod q)} mod pq.

(d) Can you generalize parts (b) and (c) to more than two primes?

1.38. To see if a number, say 562437487, is divisible by 3, you just add up the digits of its decimal
representation, and see if the result is divisible by 3. (5 + 6 + 2 + 4 + 3 + 7 + 4 + 8 + 7 = 46, so it
is not divisible by 3.)
To see if the same number is divisible by 11, you can do this: subdivide the number into pairs of
digits, from the right-hand end (87, 74, 43, 62, 5), add these numbers, and see if the sum is divisible
by 11 (if it’s too big, repeat).
How about 37? To see if the number is divisible by 37, subdivide it into triples from the end
(487, 437, 562) add these up, and see if the sum is divisible by 37.
This is true for any prime p other than 2 and 5. That is, for any prime p 6= 2, 5, there is an integer
r such that in order to see if p divides a decimal number n, we break n into r-tuples of decimal
digits (starting from the right-hand end), add up these r-tuples, and check if the sum is divisible
by p.

(a) What is the smallest such r for p = 13? For p = 17?
(b) Show that r is a divisor of p− 1.

1.39. Give a polynomial-time algorithm for computing abc

mod p, given a, b, c, and prime p.
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1.40. Show that if x is a nontrivial square root of 1 modulo N , that is, if x2 ≡ 1 mod N but x 6≡
±1 mod N , then N must be composite. (For instance, 42 ≡ 1 mod 15 but 4 6≡ ±1 mod 15; thus 4 is
a nontrivial square root of 1 modulo 15.)

1.41. Quadratic residues. Fix a positive integer N . We say that a is a quadratic residue modulo N if
there exists x such that a ≡ x2 mod N .

(a) Let N be an odd prime and a be a non-zero quadratic residue modulo N . Show that there
are exactly two values in {0, 1, . . . , N − 1} satisfying x2 ≡ a mod N .

(b) Show that ifN is an odd prime, there are exactly (N+1)/2 quadratic residues in {0, 1, . . . , N−
1}.

(c) Give an example of positive integers a and N such that x2 ≡ a mod N has more than two
solutions in {0, 1, . . . , N − 1}.

1.42. Suppose that instead of using a composite N = pq in the RSA cryptosystem (Figure 1.9), we
simply use a prime modulus p. As in RSA, we would have an encryption exponent e, and the
encryption of a message m mod p would be me mod p. Prove that this new cryptosystem is not
secure, by giving an efficient algorithm to decrypt: that is, an algorithm that given p, e, and
me mod p as input, computes m mod p. Justify the correctness and analyze the running time of
your decryption algorithm.

1.43. In the RSA cryptosystem, Alice’s public key (N, e) is available to everyone. Suppose that her
private key d is compromised and becomes known to Eve. Show that if e = 3 (a common choice)
then Eve can efficiently factor N .

1.44. Alice and her three friends are all users of the RSA cryptosystem. Her friends have public keys
(Ni, ei = 3), i = 1, 2, 3, where as always, Ni = piqi for randomly chosen n-bit primes pi, qi. Show
that if Alice sends the same n-bit message M (encrypted using RSA) to each of her friends, then
anyone who intercepts all three encrypted messages will be able to efficiently recover M .
(Hint: It helps to have solved problem 1.37 first.)

1.45. RSA and digital signatures. Recall that in the RSA public-key cryptosystem, each user has a
public key P = (N, e) and a secret key d. In a digital signature scheme, there are two algorithms,
sign and verify. The sign procedure takes a message and a secret key, then outputs a signa-
ture σ. The verify procedure takes a public key (N, e), a signature σ, and a message M , then
returns “true” if σ could have been created by sign (when called with message M and the secret
key corresponding to the public key (N, e)); “false” otherwise.

(a) Why would we want digital signatures?
(b) An RSA signature consists of sign(M,d) = Md (mod N), where d is a secret key and N

is part of the public key. Show that anyone who knows the public key (N, e) can perform
verify((N, e),Md,M), i.e., they can check that a signature really was created by the pri-
vate key. Give an implementation and prove its correctness.

(c) Generate your own RSA modulus N = pq, public key e, and private key d (you don’t need
to use a computer). Pick p and q so you have a 4-digit modulus and work by hand. Now
sign your name using the private exponent of this RSA modulus. To do this you will need to
specify some one-to-one mapping from strings to integers in [0, N −1]. Specify any mapping
you like. Give the mapping from your name to numbers m1,m2, . . .mk, then sign the first
number by giving the value md

1 (mod N), and finally show that (md
1)

e = m1 (mod N).
(d) Alice wants to write a message that looks like it was digitally signed by Bob. She notices

that Bob’s public RSA key is (17, 391). To what exponent should she raise her message?
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1.46. Digital signatures, continued. Consider the signature scheme of Exercise 1.45.

(a) Signing involves decryption, and is therefore risky. Show that if Bob agrees to sign anything
he is asked to, Eve can take advantage of this and decrypt any message sent by Alice to Bob.

(b) Suppose that Bob is more careful, and refuses to sign messages if their signatures look
suspiciously like text. (We assume that a randomly chosen message—that is, a random
number in the range {1, . . . , N − 1}—is very unlikely to look like text.) Describe a way in
which Eve can nevertheless still decrypt messages from Alice to Bob, by getting Bob to sign
messages whose signatures look random.


