
Chapter 2

Divide-and-conquer algorithms

The divide-and-conquer strategy solves a problem by:

1. Breaking it into subproblems that are themselves smaller instances of the same type of
problem

2. Recursively solving these subproblems

3. Appropriately combining their answers

The real work is done piecemeal, in three different places: in the partitioning of problems
into subproblems; at the very tail end of the recursion, when the subproblems are so small
that they are solved outright; and in the gluing together of partial answers. These are held
together and coordinated by the algorithm’s core recursive structure.

As an introductory example, we’ll see how this technique yields a new algorithm for multi-
plying numbers, one that is much more efficient than the method we all learned in elementary
school!

2.1 Multiplication
The mathematician Carl Friedrich Gauss (1777–1855) once noticed that although the product
of two complex numbers

(a+ bi)(c + di) = ac− bd+ (bc+ ad)i

seems to involve four real-number multiplications, it can in fact be done with just three: ac,
bd, and (a+ b)(c+ d), since

bc+ ad = (a+ b)(c+ d)− ac− bd.

In our big-O way of thinking, reducing the number of multiplications from four to three seems
wasted ingenuity. But this modest improvement becomes very significant when applied recur-
sively.

55

56 Algorithms

Let’s move away from complex numbers and see how this helps with regular multiplica-
tion. Suppose x and y are two n-bit integers, and assume for convenience that n is a power of
2 (the more general case is hardly any different). As a first step toward multiplying x and y,
split each of them into their left and right halves, which are n/2 bits long:

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR.

For instance, if x = 101101102 (the subscript 2 means “binary”) then xL = 10112, xR = 01102,
and x = 10112 × 24 + 01102. The product of x and y can then be rewritten as

xy = (2n/2xL + xR)(2
n/2yL + yR) = 2n xLyL + 2n/2 (xLyR + xRyL) + xRyR.

We will compute xy via the expression on the right. The additions take linear time, as do the
multiplications by powers of 2 (which are merely left-shifts). The significant operations are
the four n/2-bit multiplications, xLyL, xLyR, xRyL, xRyR; these we can handle by four recursive
calls. Thus our method for multiplying n-bit numbers starts by making recursive calls to
multiply these four pairs of n/2-bit numbers (four subproblems of half the size), and then
evaluates the preceding expression in O(n) time. Writing T (n) for the overall running time
on n-bit inputs, we get the recurrence relation

T (n) = 4T (n/2) +O(n).

We will soon see general strategies for solving such equations. In the meantime, this particu-
lar one works out to O(n2), the same running time as the traditional grade-school multiplica-
tion technique. So we have a radically new algorithm, but we haven’t yet made any progress
in efficiency. How can our method be sped up?

This is where Gauss’s trick comes to mind. Although the expression for xy seems to de-
mand four n/2-bit multiplications, as before just three will do: xLyL, xRyR, and (xL +xR)(yL +yR),
since xLyR+xRyL = (xL+xR)(yL+yR)−xLyL−xRyR. The resulting algorithm, shown in Figure 2.1,
has an improved running time of1

T (n) = 3T (n/2) +O(n).

The point is that now the constant factor improvement, from 4 to 3, occurs at every level of the
recursion, and this compounding effect leads to a dramatically lower time bound of O(n1.59).

This running time can be derived by looking at the algorithm’s pattern of recursive calls,
which form a tree structure, as in Figure 2.2. Let’s try to understand the shape of this tree. At
each successive level of recursion the subproblems get halved in size. At the (log2 n)th level,

1Actually, the recurrence should read

T (n) ≤ 3T (n/2 + 1) + O(n)

since the numbers (xL + xR) and (yL + yR) could be n/2 + 1 bits long. The one we’re using is simpler to deal with
and can be seen to imply exactly the same big-O running time.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 57

Figure 2.1 A divide-and-conquer algorithm for integer multiplication.
function multiply(x, y)
Input: Positive integers x and y, in binary
Output: Their product

n = max(size of x, size of y)
if n = 1: return xy

xL, xR = leftmost dn/2e, rightmost bn/2c bits of x
yL, yR = leftmost dn/2e, rightmost bn/2c bits of y

P1 = multiply(xL, yL)
P2 = multiply(xR, yR)
P3 = multiply(xL + xR, yL + yR)

return P1 × 2n + (P3 − P1 − P2)× 2n/2 + P2

the subproblems get down to size 1, and so the recursion ends. Therefore, the height of the
tree is log2 n. The branching factor is 3—each problem recursively produces three smaller
ones—with the result that at depth k in the tree there are 3k subproblems, each of size n/2k.

For each subproblem, a linear amount of work is done in identifying further subproblems
and combining their answers. Therefore the total time spent at depth k in the tree is

3k ×O
(n

2k

)
=

(
3

2

)k

×O(n).

At the very top level, when k = 0, this works out to O(n). At the bottom, when k = log2 n,
it is O(3log2 n), which can be rewritten as O(nlog2 3) (do you see why?). Between these two
endpoints, the work done increases geometrically from O(n) to O(nlog2 3), by a factor of 3/2 per
level. The sum of any increasing geometric series is, within a constant factor, simply the last
term of the series: such is the rapidity of the increase (Exercise 0.2). Therefore the overall
running time is O(nlog2 3), which is about O(n1.59).

In the absence of Gauss’s trick, the recursion tree would have the same height, but the
branching factor would be 4. There would be 4log2 n = n2 leaves, and therefore the running
time would be at least this much. In divide-and-conquer algorithms, the number of subprob-
lems translates into the branching factor of the recursion tree; small changes in this coefficient
can have a big impact on running time.

A practical note: it generally does not make sense to recurse all the way down to 1 bit. For
most processors, 16- or 32-bit multiplication is a single operation, so by the time the numbers
get into this range they should be handed over to the built-in procedure.

Finally, the eternal question: Can we do better? It turns out that even faster algorithms
for multiplying numbers exist, based on another important divide-and-conquer algorithm: the
fast Fourier transform, to be explained in Section 2.6.

58 Algorithms

Figure 2.2 Divide-and-conquer integer multiplication. (a) Each problem is divided into three
subproblems. (b) The levels of recursion.

(a)

10110010× 01100011

1011× 0110 0010× 0011 1101× 1001

(b)

2

11 1

2

11 1

2

11 1

2

11 1

Size n

Size n/2

· · · · · ·

......

logn
levelsSize n/4

2.2 Recurrence relations

Divide-and-conquer algorithms often follow a generic pattern: they tackle a problem of size
n by recursively solving, say, a subproblems of size n/b and then combining these answers in
O(nd) time, for some a, b, d > 0 (in the multiplication algorithm, a = 3, b = 2, and d = 1). Their
running time can therefore be captured by the equation T (n) = aT (dn/be) + O(nd). We next
derive a closed-form solution to this general recurrence so that we no longer have to solve it
explicitly in each new instance.

Master theorem2 If T (n) = aT (dn/be) + O(nd) for some constants a > 0, b > 1, and d ≥ 0,

2There are even more general results of this type, but we will not be needing them.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 59

Figure 2.3 Each problem of size n is divided into a subproblems of size n/b.

Size 1

Size n/b2

Size n/b

Size n

Depth
logb n

Width alogb n = nlogb a

Branching factor a

then

T (n) =

O(nd) if d > logb a
O(nd log n) if d = logb a
O(nlogb a) if d < logb a .

This single theorem tells us the running times of most of the divide-and-conquer procedures
we are likely to use.
Proof. To prove the claim, let’s start by assuming for the sake of convenience that n is a
power of b. This will not influence the final bound in any important way—after all, n is at
most a multiplicative factor of b away from some power of b (Exercise 2.2)—and it will allow
us to ignore the rounding effect in dn/be.

Next, notice that the size of the subproblems decreases by a factor of b with each level
of recursion, and therefore reaches the base case after logb n levels. This is the height of
the recursion tree. Its branching factor is a, so the kth level of the tree is made up of ak

subproblems, each of size n/bk (Figure 2.3). The total work done at this level is

ak ×O
(n
bk

)d
= O(nd)×

(a
bd

)k
.

As k goes from 0 (the root) to logb n (the leaves), these numbers form a geometric series with

60 Algorithms

ratio a/bd. Finding the sum of such a series in big-O notation is easy (Exercise 0.2), and comes
down to three cases.

1. The ratio is less than 1.
Then the series is decreasing, and its sum is just given by its first term, O(nd).

2. The ratio is greater than 1.
The series is increasing and its sum is given by its last term, O(nlogb a):

nd
(a
bd

)logb n
= nd

(
alogb n

(blogb n)d

)
= alogb n = a(loga n)(logb a) = nlogb a.

3. The ratio is exactly 1.
In this case all O(log n) terms of the series are equal to O(nd).

These cases translate directly into the three contingencies in the theorem statement.

Binary search
The ultimate divide-and-conquer algorithm is, of course, binary search: to find a key k in a
large file containing keys z[0, 1, . . . , n− 1] in sorted order, we first compare k with z[n/2], and
depending on the result we recurse either on the first half of the file, z[0, . . . , n/2 − 1], or on
the second half, z[n/2, . . . , n− 1]. The recurrence now is T (n) = T (dn/2e)+O(1), which is the
case a = 1, b = 2, d = 0. Plugging into our master theorem we get the familiar solution: a
running time of just O(log n).

2.3 Mergesort
The problem of sorting a list of numbers lends itself immediately to a divide-and-conquer
strategy: split the list into two halves, recursively sort each half, and then merge the two
sorted sublists.

function mergesort(a[1 . . . n])
Input: An array of numbers a[1 . . . n]
Output: A sorted version of this array

if n > 1:
return merge(mergesort(a[1 . . .bn/2c]), mergesort(a[bn/2c+ 1 . . . n]))

else:
return a

The correctness of this algorithm is self-evident, as long as a correct merge subroutine is
specified. If we are given two sorted arrays x[1 . . . k] and y[1 . . . l], how do we efficiently merge
them into a single sorted array z[1 . . . k + l]? Well, the very first element of z is either x[1] or
y[1], whichever is smaller. The rest of z[·] can then be constructed recursively.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 61

Figure 2.4 The sequence of merge operations in mergesort.

2 3 10 1 6 7 135

102 53 137 1 6

2 5 3 7 13 1 610

Input: 10 2 3 1135 7 6

1 6 10 1332 5 7 .

function merge(x[1 . . . k], y[1 . . . l])
if k = 0: return y[1 . . . l]
if l = 0: return x[1 . . . k]
if x[1] ≤ y[1]:
return x[1] ◦ merge(x[2 . . . k], y[1 . . . l])

else:
return y[1] ◦ merge(x[1 . . . k], y[2 . . . l])

Here ◦ denotes concatenation. This merge procedure does a constant amount of work per
recursive call (provided the required array space is allocated in advance), for a total running
time of O(k + l). Thus merge’s are linear, and the overall time taken by mergesort is

T (n) = 2T (n/2) +O(n),

or O(n log n).

Looking back at the mergesort algorithm, we see that all the real work is done in merg-
ing, which doesn’t start until the recursion gets down to singleton arrays. The singletons are
merged in pairs, to yield arrays with two elements. Then pairs of these 2-tuples are merged,
producing 4-tuples, and so on. Figure 2.4 shows an example.

This viewpoint also suggests how mergesort might be made iterative. At any given mo-
ment, there is a set of “active” arrays—initially, the singletons—which are merged in pairs to
give the next batch of active arrays. These arrays can be organized in a queue, and processed
by repeatedly removing two arrays from the front of the queue, merging them, and putting
the result at the end of the queue.

62 Algorithms

In the following pseudocode, the primitive operation inject adds an element to the end
of the queue while eject removes and returns the element at the front of the queue.

function iterative-mergesort(a[1 . . . n])
Input: elements a1, a2, . . . , an to be sorted

Q = [] (empty queue)
for i = 1 to n:

inject(Q, [ai])
while |Q| > 1:

inject(Q,merge(eject(Q),eject(Q)))
return eject(Q)

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 63

An n log n lower bound for sorting
Sorting algorithms can be depicted as trees. The one in the following figure sorts an array of
three elements, a1, a2, a3. It starts by comparing a1 to a2 and, if the first is larger, compares
it with a3; otherwise it compares a2 and a3. And so on. Eventually we end up at a leaf, and
this leaf is labeled with the true order of the three elements as a permutation of 1, 2, 3. For
example, if a2 < a1 < a3, we get the leaf labeled “2 1 3.”

3 2 1

Yes

a2 < a3?

a1 < a2?

a1 < a3?

a2 < a3? a1 < a3?

2 3 1

2 1 3

3 1 2 1 3 2

1 2 3

No

The depth of the tree—the number of comparisons on the longest path from root to leaf,
in this case 3—is exactly the worst-case time complexity of the algorithm.

This way of looking at sorting algorithms is useful because it allows one to argue that
mergesort is optimal, in the sense that Ω(n log n) comparisons are necessary for sorting n
elements.

Here is the argument: Consider any such tree that sorts an array of n elements. Each of
its leaves is labeled by a permutation of {1, 2, . . . , n}. In fact, every permutation must appear
as the label of a leaf. The reason is simple: if a particular permutation is missing, what
happens if we feed the algorithm an input ordered according to this same permutation? And
since there are n! permutations of n elements, it follows that the tree has at least n! leaves.

We are almost done: This is a binary tree, and we argued that it has at least n! leaves.
Recall now that a binary tree of depth d has at most 2d leaves (proof: an easy induction on
d). So, the depth of our tree—and the complexity of our algorithm—must be at least log(n!).

And it is well known that log(n!) ≥ c · n log n for some c > 0. There are many ways to see
this. The easiest is to notice that n! ≥ (n/2)(n/2) because n! = 1 · 2 · · · · · n contains at least
n/2 factors larger than n/2; and to then take logs of both sides. Another is to recall Stirling’s
formula

n! ≈
√
π

(
2n+

1

3

)
· nn · e−n.

Either way, we have established that any comparison tree that sorts n elements must make,
in the worst case, Ω(n log n) comparisons, and hence mergesort is optimal!

Well, there is some fine print: this neat argument applies only to algorithms that use
comparisons. Is it conceivable that there are alternative sorting strategies, perhaps using
sophisticated numerical manipulations, that work in linear time? The answer is yes, under
certain exceptional circumstances: the canonical such example is when the elements to be
sorted are integers that lie in a small range (Exercise 2.20).

64 Algorithms

2.4 Medians
The median of a list of numbers is its 50th percentile: half the numbers are bigger than it,
and half are smaller. For instance, the median of [45, 1, 10, 30, 25] is 25, since this is the middle
element when the numbers are arranged in order. If the list has even length, there are two
choices for what the middle element could be, in which case we pick the smaller of the two,
say.

The purpose of the median is to summarize a set of numbers by a single, typical value.
The mean, or average, is also very commonly used for this, but the median is in a sense more
typical of the data: it is always one of the data values, unlike the mean, and it is less sensitive
to outliers. For instance, the median of a list of a hundred 1’s is (rightly) 1, as is the mean.
However, if just one of these numbers gets accidentally corrupted to 10,000, the mean shoots
up above 100, while the median is unaffected.

Computing the median of n numbers is easy: just sort them. The drawback is that this
takes O(n log n) time, whereas we would ideally like something linear. We have reason to be
hopeful, because sorting is doing far more work than we really need—we just want the middle
element and don’t care about the relative ordering of the rest of them.

When looking for a recursive solution, it is paradoxically often easier to work with a more
general version of the problem—for the simple reason that this gives a more powerful step to
recurse upon. In our case, the generalization we will consider is selection.

SELECTION

Input: A list of numbers S; an integer k
Output: The kth smallest element of S

For instance, if k = 1, the minimum of S is sought, whereas if k = b|S|/2c, it is the median.

A randomized divide-and-conquer algorithm for selection
Here’s a divide-and-conquer approach to selection. For any number v, imagine splitting list S
into three categories: elements smaller than v, those equal to v (there might be duplicates),
and those greater than v. Call these SL, Sv, and SR respectively. For instance, if the array

S : 2 36 5 21 8 13 11 20 5 4 1
is split on v = 5, the three subarrays generated are

SL : 2 4 1 Sv : 5 5 SR : 36 21 8 13 11 20
The search can instantly be narrowed down to one of these sublists. If we want, say, the
eighth-smallest element of S, we know it must be the third-smallest element of SR since
|SL| + |Sv| = 5. That is, selection(S, 8) = selection(SR, 3). More generally, by checking k
against the sizes of the subarrays, we can quickly determine which of them holds the desired
element:

selection(S, k) =

selection(SL, k) if k ≤ |SL|
v if |SL| < k ≤ |SL|+ |Sv|
selection(SR, k − |SL| − |Sv|) if k > |SL|+ |Sv|.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 65

The three sublists SL, Sv, and SR can be computed from S in linear time; in fact, this compu-
tation can even be done in place, that is, without allocating new memory (Exercise 2.15). We
then recurse on the appropriate sublist. The effect of the split is thus to shrink the number of
elements from |S| to at most max{|SL|, |SR|}.

Our divide-and-conquer algorithm for selection is now fully specified, except for the crucial
detail of how to choose v. It should be picked quickly, and it should shrink the array substan-
tially, the ideal situation being |SL|, |SR| ≈ 1

2 |S|. If we could always guarantee this situation,
we would get a running time of

T (n) = T (n/2) +O(n),

which is linear as desired. But this requires picking v to be the median, which is our ultimate
goal! Instead, we follow a much simpler alternative: we pick v randomly from S.

Efficiency analysis

Naturally, the running time of our algorithm depends on the random choices of v. It is possible
that due to persistent bad luck we keep picking v to be the largest element of the array (or the
smallest element), and thereby shrink the array by only one element each time. In the earlier
example, we might first pick v = 36, then v = 21, and so on. This worst-case scenario would
force our selection algorithm to perform

n+ (n− 1) + (n− 2) + · · ·+ n

2
= Θ(n2)

operations (when computing the median), but it is extremely unlikely to occur. Equally un-
likely is the best possible case we discussed before, in which each randomly chosen v just
happens to split the array perfectly in half, resulting in a running time of O(n). Where, in
this spectrum from O(n) to Θ(n2), does the average running time lie? Fortunately, it lies very
close to the best-case time.

To distinguish between lucky and unlucky choices of v, we will call v good if it lies within
the 25th to 75th percentile of the array that it is chosen from. We like these choices of v
because they ensure that the sublists SL and SR have size at most three-fourths that of S (do
you see why?), so that the array shrinks substantially. Fortunately, good v’s are abundant:
half the elements of any list must fall between the 25th to 75th percentile!

Given that a randomly chosen v has a 50% chance of being good, how many v’s do we need
to pick on average before getting a good one? Here’s a more familiar reformulation (see also
Exercise 1.34):

Lemma On average a fair coin needs to be tossed two times before a “heads” is seen.

Proof. Let E be the expected number of tosses before a heads is seen. We certainly need at
least one toss, and if it’s heads, we’re done. If it’s tails (which occurs with probability 1/2), we
need to repeat. Hence E = 1 + 1

2E, which works out to E = 2.

66 Algorithms

Therefore, after two split operations on average, the array will shrink to at most three-
fourths of its size. Letting T (n) be the expected running time on an array of size n, we get

T (n) ≤ T (3n/4) +O(n).

This follows by taking expected values of both sides of the following statement:
Time taken on an array of size n
≤ (time taken on an array of size 3n/4) + (time to reduce array size to ≤ 3n/4),

and, for the right-hand side, using the familiar property that the expectation of the sum is the
sum of the expectations.

From this recurrence we conclude that T (n) = O(n): on any input, our algorithm returns
the correct answer after a linear number of steps, on the average.

The Unix sort command
Comparing the algorithms for sorting and median-finding we notice that, beyond the com-
mon divide-and-conquer philosophy and structure, they are exact opposites. Mergesort splits
the array in two in the most convenient way (first half, second half), without any regard to
the magnitudes of the elements in each half; but then it works hard to put the sorted sub-
arrays together. In contrast, the median algorithm is careful about its splitting (smaller
numbers first, then the larger ones), but its work ends with the recursive call.

Quicksort is a sorting algorithm that splits the array in exactly the same way as the me-
dian algorithm; and once the subarrays are sorted, by two recursive calls, there is nothing
more to do. Its worst-case performance is Θ(n2), like that of median-finding. But it can be
proved (Exercise 2.24) that its average case is O(n log n); furthermore, empirically it outper-
forms other sorting algorithms. This has made quicksort a favorite in many applications—
for instance, it is the basis of the code by which really enormous files are sorted.

2.5 Matrix multiplication
The product of two n×n matrices X and Y is a third n×n matrix Z = XY , with (i, j)th entry

Zij =

n∑

k=1

XikYkj.

To make it more visual, Zij is the dot product of the ith row of X with the jth column of Y :

X Y Z

i

j

(i, j)
× =

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 67

In general, XY is not the same as Y X; matrix multiplication is not commutative.
The preceding formula implies an O(n3) algorithm for matrix multiplication: there are n2

entries to be computed, and each takes O(n) time. For quite a while, this was widely believed
to be the best running time possible, and it was even proved that in certain models of com-
putation no algorithm could do better. It was therefore a source of great excitement when in
1969, the German mathematician Volker Strassen announced a significantly more efficient
algorithm, based upon divide-and-conquer.

Matrix multiplication is particularly easy to break into subproblems, because it can be
performed blockwise. To see what this means, carve X into four n/2× n/2 blocks, and also Y :

X =

[
A B
C D

]
, Y =

[
E F
G H

]
.

Then their product can be expressed in terms of these blocks and is exactly as if the blocks
were single elements (Exercise 2.11).

XY =

[
A B
C D

] [
E F
G H

]
=

[
AE +BG AF +BH
CE +DG CF +DH

]

We now have a divide-and-conquer strategy: to compute the size-n productXY , recursively
compute eight size-n/2 products AE,BG,AF,BH,CE,DG,CF,DH, and then do a few O(n2)-
time additions. The total running time is described by the recurrence relation

T (n) = 8T (n/2) +O(n2).

This comes out to an unimpressive O(n3), the same as for the default algorithm. But the
efficiency can be further improved, and as with integer multiplication, the key is some clever
algebra. It turns out XY can be computed from just seven n/2 × n/2 subproblems, via a
decomposition so tricky and intricate that one wonders how Strassen was ever able to discover
it!

XY =

[
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P1 + P5 − P3 − P7

]

where

P1 = A(F −H)

P2 = (A+B)H

P3 = (C +D)E

P4 = D(G−E)

P5 = (A+D)(E +H)

P6 = (B −D)(G+H)

P7 = (A− C)(E + F)

The new running time is
T (n) = 7T (n/2) +O(n2),

which by the master theorem works out to O(nlog2 7) ≈ O(n2.81).

68 Algorithms

2.6 The fast Fourier transform
We have so far seen how divide-and-conquer gives fast algorithms for multiplying integers
and matrices; our next target is polynomials. The product of two degree-d polynomials is a
polynomial of degree 2d, for example:

(1 + 2x+ 3x2) · (2 + x+ 4x2) = 2 + 5x+ 12x2 + 11x3 + 12x4.

More generally, if A(x) = a0 + a1x+ · · · + adx
d and B(x) = b0 + b1x+ · · · + bdx

d, their product
C(x) = A(x) · B(x) = c0 + c1x+ · · ·+ c2dx

2d has coefficients

ck = a0bk + a1bk−1 + · · ·+ akb0 =
k∑

i=0

aibk−i

(for i > d, take ai and bi to be zero). Computing ck from this formula takes O(k) steps, and
finding all 2d + 1 coefficients would therefore seem to require Θ(d2) time. Can we possibly
multiply polynomials faster than this?

The solution we will develop, the fast Fourier transform, has revolutionized—indeed,
defined—the field of signal processing (see the following box). Because of its huge impor-
tance, and its wealth of insights from different fields of study, we will approach it a little
more leisurely than usual. The reader who wants just the core algorithm can skip directly to
Section 2.6.4.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 69

Why multiply polynomials?
For one thing, it turns out that the fastest algorithms we have for multiplying integers rely
heavily on polynomial multiplication; after all, polynomials and binary integers are quite
similar—just replace the variable x by the base 2, and watch out for carries. But perhaps
more importantly, multiplying polynomials is crucial for signal processing.

A signal is any quantity that is a function of time (as in Figure (a)) or of position. It
might, for instance, capture a human voice by measuring fluctuations in air pressure close
to the speaker’s mouth, or alternatively, the pattern of stars in the night sky, by measuring
brightness as a function of angle.

a(t)

t

��������
���������� 	
 �� ��������

�
���������� �������� ��
������������� � !�!"#�#$�$%�%&'�'(�()*+�+,-�-./�/0�01�12�23�345�56�6 789�9:�:;�;<�<=�=>?�?@

a(t)

t AB CD EF GH IJ KL MN OP QRSTSUTUVW XY Z[\] ^_ `a bc defTfg hi jklTlm no

pq

t

δ(t)

(a) (b) (c)

In order to extract information from a signal, we need to first digitize it by sampling
(Figure (b))—and, then, to put it through a system that will transform it in some way. The
output is called the response of the system:

signal −→ SYSTEM −→ response

An important class of systems are those that are linear—the response to the sum of two
signals is just the sum of their individual responses—and time invariant—shifting the input
signal by time t produces the same output, also shifted by t. Any system with these prop-
erties is completely characterized by its response to the simplest possible input signal: the
unit impulse δ(t), consisting solely of a “jerk” at t = 0 (Figure (c)). To see this, first consider
the close relative δ(t − i), a shifted impulse in which the jerk occurs at time i. Any signal
a(t) can be expressed as a linear combination of these, letting δ(t − i) pick out its behavior
at time i,

a(t) =
T−1∑

i=0

a(i)δ(t − i)

(if the signal consists of T samples). By linearity, the system response to input a(t) is deter-
mined by the responses to the various δ(t− i). And by time invariance, these are in turn just
shifted copies of the impulse response b(t), the response to δ(t).

In other words, the output of the system at time k is

c(k) =

k∑

i=0

a(i)b(k − i),

exactly the formula for polynomial multiplication!

70 Algorithms

2.6.1 An alternative representation of polynomials
To arrive at a fast algorithm for polynomial multiplication we take inspiration from an impor-
tant property of polynomials.

Fact A degree-d polynomial is uniquely characterized by its values at any d + 1 distinct
points.

A familiar instance of this is that “any two points determine a line.” We will later see why
the more general statement is true (page 76), but for the time being it gives us an alternative
representation of polynomials. Fix any distinct points x0, . . . , xd. We can specify a degree-d
polynomial A(x) = a0 + a1x+ · · ·+ adx

d by either one of the following:

1. Its coefficients a0, a1, . . . , ad

2. The values A(x0), A(x1), . . . , A(xd)

Of these two representations, the second is the more attractive for polynomial multiplication.
Since the product C(x) has degree 2d, it is completely determined by its value at any 2d + 1
points. And its value at any given point z is easy enough to figure out, just A(z) times B(z).
Thus polynomial multiplication takes linear time in the value representation.

The problem is that we expect the input polynomials, and also their product, to be specified
by coefficients. So we need to first translate from coefficients to values—which is just a matter
of evaluating the polynomial at the chosen points—then multiply in the value representation,
and finally translate back to coefficients, a process called interpolation.

Interpolation

Coefficient representation
a0, a1, . . . , ad

Value representation
A(x0), A(x1), . . . , A(xd)

Evaluation

Figure 2.5 presents the resulting algorithm.
The equivalence of the two polynomial representations makes it clear that this high-level

approach is correct, but how efficient is it? Certainly the selection step and the n multiplica-
tions are no trouble at all, just linear time.3 But (leaving aside interpolation, about which we
know even less) how about evaluation? Evaluating a polynomial of degree d ≤ n at a single
point takes O(n) steps (Exercise 2.29), and so the baseline for n points is Θ(n2). We’ll now see
that the fast Fourier transform (FFT) does it in just O(n log n) time, for a particularly clever
choice of x0, . . . , xn−1 in which the computations required by the individual points overlap with
one another and can be shared.

3In a typical setting for polynomial multiplication, the coefficients of the polynomials are real numbers and,
moreover, are small enough that basic arithmetic operations (adding and multiplying) take unit time. We will
assume this to be the case without any great loss of generality; in particular, the time bounds we obtain are easily
adjustable to situations with larger numbers.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 71

Figure 2.5 Polynomial multiplication
Input: Coefficients of two polynomials, A(x) and B(x), of degree d
Output: Their product C = A ·B

Selection
Pick some points x0, x1, . . . , xn−1, where n ≥ 2d+ 1

Evaluation
Compute A(x0), A(x1), . . . , A(xn−1) and B(x0), B(x1), . . . , B(xn−1)

Multiplication
Compute C(xk) = A(xk)B(xk) for all k = 0, . . . , n− 1

Interpolation
Recover C(x) = c0 + c1x+ · · ·+ c2dx

2d

2.6.2 Evaluation by divide-and-conquer
Here’s an idea for how to pick the n points at which to evaluate a polynomial A(x) of degree
≤ n− 1. If we choose them to be positive-negative pairs, that is,

±x0,±x1, . . . ,±xn/2−1,

then the computations required for each A(xi) and A(−xi) overlap a lot, because the even
powers of xi coincide with those of −xi.

To investigate this, we need to split A(x) into its odd and even powers, for instance

3 + 4x+ 6x2 + 2x3 + x4 + 10x5 = (3 + 6x2 + x4) + x(4 + 2x2 + 10x4).

Notice that the terms in parentheses are polynomials in x2. More generally,

A(x) = Ae(x
2) + xAo(x

2),

where Ae(·), with the even-numbered coefficients, and Ao(·), with the odd-numbered coeffi-
cients, are polynomials of degree ≤ n/2 − 1 (assume for convenience that n is even). Given
paired points ±xi, the calculations needed for A(xi) can be recycled toward computing A(−xi):

A(xi) = Ae(x
2
i) + xiAo(x

2
i)

A(−xi) = Ae(x
2
i)− xiAo(x

2
i).

In other words, evaluating A(x) at n paired points ±x0, . . . ,±xn/2−1 reduces to evaluating
Ae(x) and Ao(x) (which each have half the degree of A(x)) at just n/2 points, x2

0, . . . , x
2
n/2−1.

72 Algorithms

Evaluate: A(x)
degree ≤ n − 1

Ae(x) and Ao(x)
degree ≤ n/2 − 1

at:

at: −x0 +x1 −x1 · · ·

· · ·x2
0

−xn/2−1+xn/2−1

x2
1 x2

n/2−1

+x0

Equivalently,
evaluate:

The original problem of size n is in this way recast as two subproblems of size n/2, followed
by some linear-time arithmetic. If we could recurse, we would get a divide-and-conquer pro-
cedure with running time

T (n) = 2T (n/2) +O(n),

which is O(n log n), exactly what we want.

But we have a problem: The plus-minus trick only works at the top level of the recur-
sion. To recurse at the next level, we need the n/2 evaluation points x2

0, x
2
1, . . . , x

2
n/2−1 to be

themselves plus-minus pairs. But how can a square be negative? The task seems impossible!
Unless, of course, we use complex numbers.

Fine, but which complex numbers? To figure this out, let us “reverse engineer” the process.
At the very bottom of the recursion, we have a single point. This point might as well be 1, in
which case the level above it must consist of its square roots, ±

√
1 = ±1.

−1 −i

−1

+1

+1

+i+1

...

The next level up then has ±
√

+1 = ±1 as well as the complex numbers ±
√
−1 = ±i, where i

is the imaginary unit. By continuing in this manner, we eventually reach the initial set of n
points. Perhaps you have already guessed what they are: the complex nth roots of unity, that
is, the n complex solutions to the equation zn = 1.

Figure 2.6 is a pictorial review of some basic facts about complex numbers. The third panel
of this figure introduces the nth roots of unity: the complex numbers 1, ω, ω2, . . . , ωn−1, where
ω = e2πi/n. If n is even,

1. The nth roots are plus-minus paired, ωn/2+j = −ωj.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 73

2. Squaring them produces the (n/2)nd roots of unity.

Therefore, if we start with these numbers for some n that is a power of 2, then at successive
levels of recursion we will have the (n/2k)th roots of unity, for k = 0, 1, 2, 3, All these sets
of numbers are plus-minus paired, and so our divide-and-conquer, as shown in the last panel,
works perfectly. The resulting algorithm is the fast Fourier transform (Figure 2.7).

74 Algorithms

Figure 2.6 The complex roots of unity are ideal for our divide-and-conquer scheme.

θ
Real

Imaginary

a

b

r

The complex plane
z = a+ bi is plotted at position (a, b).

Polar coordinates: rewrite as z = r(cos θ + i sin θ) = reiθ,
denoted (r, θ).
• length r =

√
a2 + b2.

• angle θ ∈ [0, 2π): cos θ = a/r, sin θ = b/r.
• θ can always be reduced modulo 2π.

Examples: Number −1 i 5 + 5i

Polar coords (1, π) (1, π/2) (5
√

2, π/4)

(r1r2, θ1 + θ2)

(r1, θ1)

(r2, θ2)

Multiplying is easy in polar coordinates

Multiply the lengths and add the angles:
(r1, θ1)× (r2, θ2) = (r1r2, θ1 + θ2).

For any z = (r, θ),
• −z = (r, θ + π) since −1 = (1, π).
• If z is on the unit circle (i.e., r = 1), then zn = (1, nθ).

Angle 2π
n

4π
n

2π
n + π

The nth complex roots of unity
Solutions to the equation zn = 1.

By the multiplication rule: solutions are z = (1, θ), for θ a
multiple of 2π/n (shown here for n = 16).

For even n:
• These numbers are plus-minus paired: −(1, θ) = (1, θ+π).
• Their squares are the (n/2)nd roots of unity, shown here
with boxes around them.

Divide-and-conquer step

Evaluate
Ae(x), Ao(x)
at (n/2)nd
roots

Still
paired

Divide and
conquer

Paired

Evaluate A(x)
at nth roots
of unity

(n is a power of 2)

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 75

Figure 2.7 The fast Fourier transform (polynomial formulation)
function FFT(A,ω)
Input: Coefficient representation of a polynomial A(x)

of degree ≤ n− 1, where n is a power of 2
ω, an nth root of unity

Output: Value representation A(ω0), . . . , A(ωn−1)

if ω = 1: return A(1)
express A(x) in the form Ae(x

2) + xAo(x
2)

call FFT(Ae, ω
2) to evaluate Ae at even powers of ω

call FFT(Ao, ω
2) to evaluate Ao at even powers of ω

for j = 0 to n− 1:
compute A(ωj) = Ae(ω

2j) + ωjAo(ω
2j)

return A(ω0), . . . , A(ωn−1)

2.6.3 Interpolation
Let’s take stock of where we are. We first developed a high-level scheme for multiplying
polynomials (Figure 2.5), based on the observation that polynomials can be represented in
two ways, in terms of their coefficients or in terms of their values at a selected set of points.

Interpolation

Coefficient representation
a0, a1, . . . , an−1

Value representation
A(x0), A(x1), . . . , A(xn−1)

Evaluation

The value representation makes it trivial to multiply polynomials, but we cannot ignore the
coefficient representation since it is the form in which the input and output of our overall
algorithm are specified.

So we designed the FFT, a way to move from coefficients to values in time just O(n log n),
when the points {xi} are complex nth roots of unity (1, ω, ω2, . . . , ωn−1).

〈values〉 = FFT(〈coefficients〉, ω).

The last remaining piece of the puzzle is the inverse operation, interpolation. It will turn out,
amazingly, that

〈coefficients〉 =
1

n
FFT(〈values〉, ω−1).

Interpolation is thus solved in the most simple and elegant way we could possibly have hoped
for—using the same FFT algorithm, but called with ω−1 in place of ω! This might seem like a
miraculous coincidence, but it will make a lot more sense when we recast our polynomial oper-
ations in the language of linear algebra. Meanwhile, our O(n log n) polynomial multiplication
algorithm (Figure 2.5) is now fully specified.

76 Algorithms

A matrix reformulation
To get a clearer view of interpolation, let’s explicitly set down the relationship between our two
representations for a polynomial A(x) of degree ≤ n− 1. They are both vectors of n numbers,
and one is a linear transformation of the other:

A(x0)
A(x1)

...
A(xn−1)

 =

1 x0 x2
0 · · · xn−1

0

1 x1 x2
1 · · · xn−1

1
...

1 xn−1 x2
n−1 · · · xn−1

n−1

a0

a1
...

an−1

 .

Call the matrix in the middle M . Its specialized format—a Vandermonde matrix—gives it
many remarkable properties, of which the following is particularly relevant to us.

If x0, . . . , xn−1 are distinct numbers, then M is invertible.

The existence of M−1 allows us to invert the preceding matrix equation so as to express coef-
ficients in terms of values. In brief,

Evaluation is multiplication by M , while interpolation is multiplication by M−1.

This reformulation of our polynomial operations reveals their essential nature more clearly.
Among other things, it finally justifies an assumption we have been making throughout, that
A(x) is uniquely characterized by its values at any n points—in fact, we now have an explicit
formula that will give us the coefficients of A(x) in this situation. Vandermonde matrices also
have the distinction of being quicker to invert than more general matrices, in O(n2) time in-
stead of O(n3). However, using this for interpolation would still not be fast enough for us, so
once again we turn to our special choice of points—the complex roots of unity.

Interpolation resolved
In linear algebra terms, the FFT multiplies an arbitrary n-dimensional vector—which we
have been calling the coefficient representation—by the n× n matrix

Mn(ω) =

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
1 ωj ω2j · · · ω(n−1)j

...
1 ω(n−1) ω2(n−1) · · · ω(n−1)(n−1)

←− row for ω0 = 1
←− ω
←− ω2

...
←− ωj

...
←− ωn−1

where ω is a complex nth root of unity, and n is a power of 2. Notice how simple this matrix is
to describe: its (j, k)th entry (starting row- and column-count at zero) is ω jk.

Multiplication byM = Mn(ω) maps the kth coordinate axis (the vector with all zeros except
for a 1 at position k) onto the kth column of M . Now here’s the crucial observation, which we’ll

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 77

Figure 2.8 The FFT takes points in the standard coordinate system, whose axes are shown
here as x1, x2, x3, and rotates them into the Fourier basis, whose axes are the columns of
Mn(ω), shown here as f1, f2, f3. For instance, points in direction x1 get mapped into direction
f1.

FFT

x1

x3

x2

f3

f1

f2

prove shortly: the columns of M are orthogonal (at right angles) to each other. Therefore
they can be thought of as the axes of an alternative coordinate system, which is often called
the Fourier basis. The effect of multiplying a vector by M is to rotate it from the standard
basis, with the usual set of axes, into the Fourier basis, which is defined by the columns of
M (Figure 2.8). The FFT is thus a change of basis, a rigid rotation. The inverse of M is the
opposite rotation, from the Fourier basis back into the standard basis. When we write out the
orthogonality condition precisely, we will be able to read off this inverse transformation with
ease:

Inversion formula Mn(ω)−1 = 1
nMn(ω−1).

But ω−1 is also an nth root of unity, and so interpolation—or equivalently, multiplication by
Mn(ω)−1—is itself just an FFT operation, but with ω replaced by ω−1.

Now let’s get into the details. Take ω to be e2πi/n for convenience, and think of the columns
of M as vectors in C

n. Recall that the angle between two vectors u = (u0, . . . , un−1) and
v = (v0, . . . , vn−1) in C

n is just a scaling factor times their inner product

u · v∗ = u0v
∗
0 + u1v

∗
1 + · · ·+ un−1v

∗
n−1,

where z∗ denotes the complex conjugate4 of z. This quantity is maximized when the vectors
lie in the same direction and is zero when the vectors are orthogonal to each other.

The fundamental observation we need is the following.

Lemma The columns of matrix M are orthogonal to each other.

Proof. Take the inner product of any columns j and k of matrix M ,

1 + ωj−k + ω2(j−k) + · · ·+ ω(n−1)(j−k).

4The complex conjugate of a complex number z = reiθ is z∗ = re−iθ. The complex conjugate of a vector (or
matrix) is obtained by taking the complex conjugates of all its entries.

78 Algorithms

This is a geometric series with first term 1, last term ω(n−1)(j−k), and ratio ω(j−k). Therefore it
evaluates to (1− ωn(j−k))/(1 − ω(j−k)), which is 0—except when j = k, in which case all terms
are 1 and the sum is n.

The orthogonality property can be summarized in the single equation

MM∗ = nI,

since (MM ∗)ij is the inner product of the ith and jth columns of M (do you see why?). This
immediately implies M−1 = (1/n)M ∗: we have an inversion formula! But is it the same for-
mula we earlier claimed? Let’s see—the (j, k)th entry of M ∗ is the complex conjugate of the
corresponding entry of M , in other words ω−jk. Whereupon M ∗ = Mn(ω−1), and we’re done.

And now we can finally step back and view the whole affair geometrically. The task we
need to perform, polynomial multiplication, is a lot easier in the Fourier basis than in the
standard basis. Therefore, we first rotate vectors into the Fourier basis (evaluation), then
perform the task (multiplication), and finally rotate back (interpolation). The initial vectors
are coefficient representations, while their rotated counterparts are value representations. To
efficiently switch between these, back and forth, is the province of the FFT.

2.6.4 A closer look at the fast Fourier transform
Now that our efficient scheme for polynomial multiplication is fully realized, let’s hone in
more closely on the core subroutine that makes it all possible, the fast Fourier transform.

The definitive FFT algorithm
The FFT takes as input a vector a = (a0, . . . , an−1) and a complex number ω whose powers
1, ω, ω2, . . . , ωn−1 are the complex nth roots of unity. It multiplies vector a by the n× n matrix
Mn(ω), which has (j, k)th entry (starting row- and column-count at zero) ωjk. The potential
for using divide-and-conquer in this matrix-vector multiplication becomes apparent when M ’s
columns are segregated into evens and odds:

=

aMn(ω)

an−1

a0

a1

a2

a3

a4

...

ωjk

k

j =

a2

a1

a3

an−1

...

a0

...
an−2

2k + 1
Column

2k

Even

ω2jk ωj · ω2jk

columns
Odd

columns

j

Row j
a2

a1

a3

an−1

...

a0

...
an−2

ω2jk

ω2jk

ωj · ω2jk

2k + 1
Column

j + n/2

2k

−ωj · ω2jk

In the second step, we have simplified entries in the bottom half of the matrix using ωn/2 = −1
and ωn = 1. Notice that the top left n/2 × n/2 submatrix is Mn/2(ω

2), as is the one on the

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 79

Figure 2.9 The fast Fourier transform
function FFT(a, ω)
Input: An array a = (a0, a1, . . . , an−1), for n a power of 2

A primitive nth root of unity, ω
Output: Mn(ω) a

if ω = 1: return a
(s0, s1, . . . , sn/2−1) = FFT((a0, a2, . . . , an−2), ω

2)

(s′0, s
′
1, . . . , s

′
n/2−1) = FFT((a1, a3, . . . , an−1), ω

2)

for j = 0 to n/2− 1:
rj = sj + ωjs′j
rj+n/2 = sj − ωjs′j

return (r0, r1, . . . , rn−1)

bottom left. And the top and bottom right submatrices are almost the same as Mn/2(ω
2),

but with their jth rows multiplied through by ωj and −ωj, respectively. Therefore the final
product is the vector

a0

a2...
an−2

a0

a2...
an−2

Mn/2

Mn/2

a1

a3...
an−1

a1

a3...
an−1

Mn/2

Mn/2

+ ωj

− ωjj + n/2

Row j

In short, the product of Mn(ω) with vector (a0, . . . , an−1), a size-n problem, can be expressed
in terms of two size-n/2 problems: the product of Mn/2(ω

2) with (a0, a2, . . . , an−2) and with
(a1, a3, . . . , an−1). This divide-and-conquer strategy leads to the definitive FFT algorithm of
Figure 2.9, whose running time is T (n) = 2T (n/2) +O(n) = O(n log n).

The fast Fourier transform unraveled

Throughout all our discussions so far, the fast Fourier transform has remained tightly co-
cooned within a divide-and-conquer formalism. To fully expose its structure, we now unravel
the recursion.

The divide-and-conquer step of the FFT can be drawn as a very simple circuit. Here is how
a problem of size n is reduced to two subproblems of size n/2 (for clarity, one pair of outputs
(j, j + n/2) is singled out):

80 Algorithms

a0
a2

a3

j + n/2

j
a1

an−1

rj+n/2FFTn/2

FFTn/2
...

...

an−2

rj

FFTn (input: a0, . . . , an−1, output: r0, . . . , rn−1)

We’re using a particular shorthand: the edges are wires carrying complex numbers from left
to right. A weight of j means “multiply the number on this wire by ωj.” And when two wires
come into a junction from the left, the numbers they are carrying get added up. So the two
outputs depicted are executing the commands

rj = sj + ωjs′j

rj+n/2 = sj − ωjs′j

from the FFT algorithm (Figure 2.9), via a pattern of wires known as a butterfly: .
Unraveling the FFT circuit completely for n = 8 elements, we get Figure 10.4. Notice the

following.

1. For n inputs there are log2 n levels, each with n nodes, for a total of n log n operations.

2. The inputs are arranged in a peculiar order: 0, 4, 2, 6, 1, 5, 3, 7.

Why? Recall that at the top level of recursion, we first bring up the even coefficients of the
input and then move on to the odd ones. Then at the next level, the even coefficients of this
first group (which therefore are multiples of 4, or equivalently, have zero as their two least
significant bits) are brought up, and so on. To put it otherwise, the inputs are arranged by
increasing last bit of the binary representation of their index, resolving ties by looking at the
next more significant bit(s). The resulting order in binary, 000, 100, 010, 110, 001, 101, 011, 111,
is the same as the natural one, 000, 001, 010, 011, 100, 101, 110, 111 except the bits are mirrored!

3. There is a unique path between each input aj and each output A(ωk).

This path is most easily described using the binary representations of j and k (shown in
Figure 10.4 for convenience). There are two edges out of each node, one going up (the 0-edge)
and one going down (the 1-edge). To get to A(ωk) from any input node, simply follow the edges
specified in the bit representation of k, starting from the rightmost bit. (Can you similarly
specify the path in the reverse direction?)

4. On the path between aj and A(ωk), the labels add up to jk mod 8.

Since ω8 = 1, this means that the contribution of input aj to output A(ωk) is ajω
jk, and

therefore the circuit computes correctly the values of polynomial A(x).

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 81

5. And finally, notice that the FFT circuit is a natural for parallel computation and direct
implementation in hardware.

Figure 2.10 The fast Fourier transform circuit.

��

��

��

��

�	

�

�

�� ��

��

��

��

��

��

��

�� !

"#

$%

&'

()

*+

,-

./

a0

a4

a2

a6

a1

a5

a7

A(ω1)

A(ω2)

A(ω3)

A(ω4)

A(ω5)

A(ω6)

A(ω7)

a3

A(ω0)

1

4

4

4

4

6

6 7

4

4

2

2
6

3

2
5

4

000

100

010

110

001

101

011

111 111

110

101

100

011

010

001

000

82 Algorithms

The slow spread of a fast algorithm
In 1963, during a meeting of President Kennedy’s scientific advisors, John Tukey, a math-
ematician from Princeton, explained to IBM’s Dick Garwin a fast method for computing
Fourier transforms. Garwin listened carefully, because he was at the time working on ways
to detect nuclear explosions from seismographic data, and Fourier transforms were the bot-
tleneck of his method. When he went back to IBM, he asked John Cooley to implement
Tukey’s algorithm; they decided that a paper should be published so that the idea could not
be patented.

Tukey was not very keen to write a paper on the subject, so Cooley took the initiative.
And this is how one of the most famous and most cited scientific papers was published in
1965, co-authored by Cooley and Tukey. The reason Tukey was reluctant to publish the FFT
was not secretiveness or pursuit of profit via patents. He just felt that this was a simple
observation that was probably already known. This was typical of the period: back then
(and for some time later) algorithms were considered second-class mathematical objects,
devoid of depth and elegance, and unworthy of serious attention.

But Tukey was right about one thing: it was later discovered that British engineers had
used the FFT for hand calculations during the late 1930s. And—to end this chapter with the
same great mathematician who started it—a paper by Gauss in the early 1800s on (what
else?) interpolation contained essentially the same idea in it! Gauss’s paper had remained a
secret for so long because it was protected by an old-fashioned cryptographic technique: like
most scientific papers of its era, it was written in Latin.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 83

Exercises
2.1. Use the divide-and-conquer integer multiplication algorithm to multiply the two binary integers

10011011 and 10111010.
2.2. Show that for any positive integers n and any base b, there must some power of b lying in the

range [n, bn].
2.3. Section 2.2 describes a method for solving recurrence relations which is based on analyzing the

recursion tree and deriving a formula for the work done at each level. Another (closely related)
method is to expand out the recurrence a few times, until a pattern emerges. For instance, let’s
start with the familiar T (n) = 2T (n/2) + O(n). Think of O(n) as being ≤ cn for some constant c,
so: T (n) ≤ 2T (n/2) + cn. By repeatedly applying this rule, we can bound T (n) in terms of T (n/2),
then T (n/4), then T (n/8), and so on, at each step getting closer to the value of T (·) we do know,
namely T (1) = O(1).

T (n) ≤ 2T (n/2) + cn

≤ 2[2T (n/4) + cn/2] + cn = 4T (n/4) + 2cn

≤ 4[2T (n/8) + cn/4] + 2cn = 8T (n/8) + 3cn

≤ 8[2T (n/16) + cn/8] + 3cn = 16T (n/16) + 4cn

...

A pattern is emerging... the general term is

T (n) ≤ 2kT (n/2k) + kcn.

Plugging in k = log2 n, we get T (n) ≤ nT (1) + cn log2 n = O(n logn).

(a) Do the same thing for the recurrence T (n) = 3T (n/2) + O(n). What is the general kth term
in this case? And what value of k should be plugged in to get the answer?

(b) Now try the recurrence T (n) = T (n− 1) + O(1), a case which is not covered by the master
theorem. Can you solve this too?

2.4. Suppose you are choosing between the following three algorithms:

• Algorithm A solves problems by dividing them into five subproblems of half the size, recur-
sively solving each subproblem, and then combining the solutions in linear time.

• Algorithm B solves problems of size n by recursively solving two subproblems of size n − 1
and then combining the solutions in constant time.

• Algorithm C solves problems of size n by dividing them into nine subproblems of size n/3,
recursively solving each subproblem, and then combining the solutions in O(n2) time.

What are the running times of each of these algorithms (in big-O notation), and which would you
choose?

2.5. Solve the following recurrence relations and give a Θ bound for each of them.

(a) T (n) = 2T (n/3) + 1

(b) T (n) = 5T (n/4) + n

84 Algorithms

(c) T (n) = 7T (n/7) + n

(d) T (n) = 9T (n/3) + n2

(e) T (n) = 8T (n/2) + n3

(f) T (n) = 49T (n/25) + n3/2 logn

(g) T (n) = T (n− 1) + 2

(h) T (n) = T (n− 1) + nc, where c ≥ 1 is a constant
(i) T (n) = T (n− 1) + cn, where c > 1 is some constant
(j) T (n) = 2T (n− 1) + 1

(k) T (n) = T (
√
n) + 1

2.6. A linear, time-invariant system has the following impulse response:

�� �� �� �� �	
� � �� �� ������

� �� � ��� �� �� ! "#$ $% % &'(() *+ ,- ./ t

b(t)

t0

1/t0

(a) Describe in words the effect of this system.
(b) What is the corresponding polynomial?

2.7. What is the sum of the nth roots of unity? What is their product if n is odd? If n is even?
2.8. Practice with the fast Fourier transform.

(a) What is the FFT of (1, 0, 0, 0)? What is the appropriate value of ω in this case? And of which
sequence is (1, 0, 0, 0) the FFT?

(b) Repeat for (1, 0, 1,−1).

2.9. Practice with polynomial multiplication by FFT.

(a) Suppose that you want to multiply the two polynomials x + 1 and x2 + 1 using the FFT.
Choose an appropriate power of two, find the FFT of the two sequences, multiply the results
componentwise, and compute the inverse FFT to get the final result.

(b) Repeat for the pair of polynomials 1 + x+ 2x2 and 2 + 3x.

2.10. Find the unique polynomial of degree 4 that takes on values p(1) = 2, p(2) = 1, p(3) = 0, p(4) = 4,
and p(5) = 0. Write your answer in the coefficient representation.

2.11. In justifying our matrix multiplication algorithm (Section 2.5), we claimed the following block-
wise property: if X and Y are n× n matrices, and

X =

[
A B
C D

]
, Y =

[
E F
G H

]
.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 85

where A, B, C, D, E, F , G, and H are n/2 × n/2 submatrices, then the product XY can be
expressed in terms of these blocks:

XY =

[
A B
C D

] [
E F
G H

]
=

[
AE +BG AF +BH
CE +DG CF +DH

]

Prove this property.

2.12. How many lines, as a function of n (in Θ(·) form), does the following program print? Write a
recurrence and solve it. You may assume n is a power of 2.

function f(n)
if n > 1:

print_line(‘‘still going’’)
f(n/2)
f(n/2)

2.13. A binary tree is full if all of its vertices have either zero or two children. Let Bn denote the
number of full binary trees with n vertices.

(a) By drawing out all full binary trees with 3, 5, or 7 vertices, determine the exact values of
B3, B5, and B7. Why have we left out even numbers of vertices, like B4?

(b) For general n, derive a recurrence relation for Bn.
(c) Show by induction that Bn is Ω(2n).

2.14. You are given an array of n elements, and you notice that some of the elements are duplicates;
that is, they appear more than once in the array. Show how to remove all duplicates from the
array in time O(n log n).

2.15. In our median-finding algorithm (Section 2.4), a basic primitive is the split operation, which
takes as input an array S and a value v and then divides S into three sets: the elements less
than v, the elements equal to v, and the elements greater than v. Show how to implement this
split operation in place, that is, without allocating new memory.

2.16. You are given an infinite array A[·] in which the first n cells contain integers in sorted order and
the rest of the cells are filled with∞. You are not given the value of n. Describe an algorithm that
takes an integer x as input and finds a position in the array containing x, if such a position exists,
in O(log n) time. (If you are disturbed by the fact that the array A has infinite length, assume
instead that it is of length n, but that you don’t know this length, and that the implementation
of the array data type in your programming language returns the error message ∞ whenever
elements A[i] with i > n are accessed.)

2.17. Given a sorted array of distinct integers A[1, . . . , n], you want to find out whether there is an
index i for which A[i] = i. Give a divide-and-conquer algorithm that runs in time O(log n).

2.18. Consider the task of searching a sorted array A[1 . . . n] for a given element x: a task we usually
perform by binary search in time O(log n). Show that any algorithm that accesses the array only
via comparisons (that is, by asking questions of the form “is A[i] ≤ z?”), must take Ω(logn) steps.

2.19. A k-way merge operation. Suppose you have k sorted arrays, each with n elements, and you want
to combine them into a single sorted array of kn elements.

86 Algorithms

(a) Here’s one strategy: Using the merge procedure from Section 2.3, merge the first two ar-
rays, then merge in the third, then merge in the fourth, and so on. What is the time
complexity of this algorithm, in terms of k and n?

(b) Give a more efficient solution to this problem, using divide-and-conquer.

2.20. Show that any array of integers x[1 . . . n] can be sorted in O(n+M) time, where

M = max
i
xi −min

i
xi.

For small M , this is linear time: why doesn’t the Ω(n logn) lower bound apply in this case?
2.21. Mean and median. One of the most basic tasks in statistics is to summarize a set of observations

{x1, x2, . . . , xn} ⊆ R by a single number. Two popular choices for this summary statistic are:

• The median, which we’ll call µ1

• The mean, which we’ll call µ2

(a) Show that the median is the value of µ that minimizes the function
∑

i

|xi − µ|.

You can assume for simplicity that n is odd. (Hint: Show that for any µ 6= µ1, the function
decreases if you move µ either slightly to the left or slightly to the right.)

(b) Show that the mean is the value of µ that minimizes the function
∑

i

(xi − µ)2.

One way to do this is by calculus. Another method is to prove that for any µ ∈ R,
∑

i

(xi − µ)2 =
∑

i

(xi − µ2)
2 + n(µ− µ2)

2.

Notice how the function for µ2 penalizes points that are far from µ much more heavily than the
function for µ1. Thus µ2 tries much harder to be close to all the observations. This might sound
like a good thing at some level, but it is statistically undesirable because just a few outliers can
severely throw off the estimate of µ2. It is therefore sometimes said that µ1 is a more robust
estimator than µ2. Worse than either of them, however, is µ∞, the value of µ that minimizes the
function

max
i
|xi − µ|.

(c) Show that µ∞ can be computed in O(n) time (assuming the numbers xi are small enough
that basic arithmetic operations on them take unit time).

2.22. You are given two sorted lists of size m and n. Give an O(logm + logn) time algorithm for
computing the kth smallest element in the union of the two lists.

2.23. An array A[1 . . . n] is said to have a majority element if more than half of its entries are the
same. Given an array, the task is to design an efficient algorithm to tell whether the array has a
majority element, and, if so, to find that element. The elements of the array are not necessarily
from some ordered domain like the integers, and so there can be no comparisons of the form “is
A[i] > A[j]?”. (Think of the array elements as GIF files, say.) However you can answer questions
of the form: “is A[i] = A[j]?” in constant time.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 87

(a) Show how to solve this problem in O(n log n) time. (Hint: Split the array A into two arrays
A1 and A2 of half the size. Does knowing the majority elements of A1 and A2 help you figure
out the majority element of A? If so, you can use a divide-and-conquer approach.)

(b) Can you give a linear-time algorithm? (Hint: Here’s another divide-and-conquer approach:
• Pair up the elements of A arbitrarily, to get n/2 pairs
• Look at each pair: if the two elements are different, discard both of them; if they are

the same, keep just one of them
Show that after this procedure there are at most n/2 elements left, and that they have a
majority element if and only if A does.)

2.24. On page 66 there is a high-level description of the quicksort algorithm.

(a) Write down the pseudocode for quicksort.
(b) Show that its worst-case running time on an array of size n is Θ(n2).
(c) Show that its expected running time satisfies the recurrence relation

T (n) ≤ O(n) +
1

n

n−1∑

i=1

(T (i) + T (n− i)).

Then, show that the solution to this recurrence is O(n log n).

2.25. In Section 2.1 we described an algorithm that multiplies two n-bit binary integers x and y in
time na, where a = log2 3. Call this procedure fastmultiply(x, y).

(a) We want to convert the decimal integer 10n (a 1 followed by n zeros) into binary. Here is the
algorithm (assume n is a power of 2):

function pwr2bin(n)
if n = 1: return 10102

else:
z =???
return fastmultiply(z, z)

Fill in the missing details. Then give a recurrence relation for the running time of the
algorithm, and solve the recurrence.

(b) Next, we want to convert any decimal integer x with n digits (where n is a power of 2) into
binary. The algorithm is the following:

function dec2bin(x)
if n = 1: return binary[x]
else:

split x into two decimal numbers xL, xR with n/2 digits each
return ???

Here binary[·] is a vector that contains the binary representation of all one-digit integers.
That is, binary[0] = 02, binary[1] = 12, up to binary[9] = 10012. Assume that a lookup in
binary takes O(1) time.
Fill in the missing details. Once again, give a recurrence for the running time of the algo-
rithm, and solve it.

88 Algorithms

2.26. Professor F. Lake tells his class that it is asymptotically faster to square an n-bit integer than to
multiply two n-bit integers. Should they believe him?

2.27. The square of a matrix A is its product with itself, AA.

(a) Show that five multiplications are sufficient to compute the square of a 2× 2 matrix.
(b) What is wrong with the following algorithm for computing the square of an n× n matrix?

“Use a divide-and-conquer approach as in Strassen’s algorithm, except that in-
stead of getting 7 subproblems of size n/2, we now get 5 subproblems of size n/2
thanks to part (a). Using the same analysis as in Strassen’s algorithm, we can
conclude that the algorithm runs in time O(nlog

2
5).”

(c) In fact, squaring matrices is no easier than matrix multiplication. In this part, you will
show that if n × n matrices can be squared in time S(n) = O(nc), then any two n × n
matrices can be multiplied in time O(nc).

i. Given two n× n matrices A and B, show that the matrix AB +BA can be computed in
time 3S(n) +O(n2).

ii. Given two n× n matrices X and Y , define the 2n× 2n matrices A and B as follows:

A =

[
X 0
0 0

]
and B =

[
0 Y
0 0

]
.

What is AB + BA, in terms of X and Y ?
iii. Using (i) and (ii), argue that the product XY can be computed in time 3S(2n) + O(n2).

Conclude that matrix multiplication takes time O(nc).

2.28. The Hadamard matrices H0, H1, H2, . . . are defined as follows:

• H0 is the 1× 1 matrix
[
1
]

• For k > 0, Hk is the 2k × 2k matrix

Hk =

[
Hk−1 Hk−1

Hk−1 −Hk−1

]

Show that if v is a column vector of length n = 2k, then the matrix-vector product Hkv can be
calculated using O(n log n) operations. Assume that all the numbers involved are small enough
that basic arithmetic operations like addition and multiplication take unit time.

2.29. Suppose we want to evaluate the polynomial p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n at point x.

(a) Show that the following simple routine, known as Horner’s rule, does the job and leaves the
answer in z.

z = an

for i = n− 1 downto 0:
z = zx+ ai

(b) How many additions and multiplications does this routine use, as a function of n? Can you
find a polynomial for which an alternative method is substantially better?

2.30. This problem illustrates how to do the Fourier Transform (FT) in modular arithmetic, for exam-
ple, modulo 7.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 89

(a) There is a number ω such that all the powers ω, ω2, . . . , ω6 are distinct (modulo 7). Find this
ω, and show that ω + ω2 + · · ·+ ω6 = 0. (Interestingly, for any prime modulus there is such
a number.)

(b) Using the matrix form of the FT, produce the transform of the sequence (0, 1, 1, 1, 5, 2) mod-
ulo 7; that is, multiply this vector by the matrix M6(ω), for the value of ω you found earlier.
In the matrix multiplication, all calculations should be performed modulo 7.

(c) Write down the matrix necessary to perform the inverse FT. Show that multiplying by this
matrix returns the original sequence. (Again all arithmetic should be performed modulo 7.)

(d) Now show how to multiply the polynomials x2 + x+ 1 and x3 + 2x− 1 using the FT modulo
7.

2.31. In Section 1.2.3, we studied Euclid’s algorithm for computing the greatest common divisor (gcd)
of two positive integers: the largest integer which divides them both. Here we will look at an
alternative algorithm based on divide-and-conquer.

(a) Show that the following rule is true.

gcd(a, b) =

2 gcd(a/2, b/2) if a, b are even
gcd(a, b/2) if a is odd, b is even
gcd((a− b)/2, b) if a, b are odd

(b) Give an efficient divide-and-conquer algorithm for greatest common divisor.
(c) How does the efficiency of your algorithm compare to Euclid’s algorithm if a and b are n-bit

integers? (In particular, since n might be large you cannot assume that basic arithmetic
operations like addition take constant time.)

2.32. In this problem we will develop a divide-and-conquer algorithm for the following geometric task.

CLOSEST PAIR
Input: A set of points in the plane, {p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)}
Output: The closest pair of points: that is, the pair pi 6= pj for which the distance
between pi and pj , that is, √

(xi − xj)2 + (yi − yj)2,

is minimized.

For simplicity, assume that n is a power of two, and that all the x-coordinates xi are distinct, as
are the y-coordinates.
Here’s a high-level overview of the algorithm:

• Find a value x for which exactly half the points have xi < x, and half have xi > x. On this
basis, split the points into two groups, L and R.

• Recursively find the closest pair in L and inR. Say these pairs are pL, qL ∈ L and pR, qR ∈ R,
with distances dL and dR respectively. Let d be the smaller of these two distances.

• It remains to be seen whether there is a point in L and a point in R that are less than
distance d apart from each other. To this end, discard all points with xi < x−d or xi > x+d
and sort the remaining points by y-coordinate.

• Now, go through this sorted list, and for each point, compute its distance to the seven sub-
sequent points in the list. Let pM , qM be the closest pair found in this way.

90 Algorithms

• The answer is one of the three pairs {pL, qL}, {pR, qR}, {pM , qM}, whichever is closest.

(a) In order to prove the correctness of this algorithm, start by showing the following property:
any square of size d× d in the plane contains at most four points of L.

(b) Now show that the algorithm is correct. The only case which needs careful consideration is
when the closest pair is split between L and R.

(c) Write down the pseudocode for the algorithm, and show that its running time is given by
the recurrence:

T (n) = 2T (n/2) + O(n logn).

Show that the solution to this recurrence is O(n log2 n).
(d) Can you bring the running time down to O(n log n)?

