
Chapter 3

Decompositions of graphs

3.1 Why graphs?
A wide range of problems can be expressed with clarity and precision in the concise pictorial
language of graphs. For instance, consider the task of coloring a political map. What is the
minimum number of colors needed, with the obvious restriction that neighboring countries
should have different colors? One of the difficulties in attacking this problem is that the map
itself, even a stripped-down version like Figure 3.1(a), is usually cluttered with irrelevant
information: intricate boundaries, border posts where three or more countries meet, open
seas, and meandering rivers. Such distractions are absent from the mathematical object of
Figure 3.1(b), a graph with one vertex for each country (1 is Brazil, 11 is Argentina) and edges
between neighbors. It contains exactly the information needed for coloring, and nothing more.
The precise goal is now to assign a color to each vertex so that no edge has endpoints of the
same color.

Graph coloring is not the exclusive domain of map designers. Suppose a university needs
to schedule examinations for all its classes and wants to use the fewest time slots possible.
The only constraint is that two exams cannot be scheduled concurrently if some student will
be taking both of them. To express this problem as a graph, use one vertex for each exam and
put an edge between two vertices if there is a conflict, that is, if there is somebody taking both
endpoint exams. Think of each time slot as having its own color. Then, assigning time slots is
exactly the same as coloring this graph!

Some basic operations on graphs arise with such frequency, and in such a diversity of con-
texts, that a lot of effort has gone into finding efficient procedures for them. This chapter is
devoted to some of the most fundamental of these algorithms—those that uncover the basic
connectivity structure of a graph.

Formally, a graph is specified by a set of vertices (also called nodes) V and by edges E
between select pairs of vertices. In the map example, V = {1, 2, 3, . . . , 13} and E includes,
among many other edges, {1, 2}, {9, 11}, and {7, 13}. Here an edge between x and y specifically
means “x shares a border with y.” This is a symmetric relation—it implies also that y shares
a border with x—and we denote it using set notation, e = {x, y}. Such edges are undirected

91

92 Algorithms

Figure 3.1 (a) A map and (b) its graph.

(a) (b)

23
45

6

12

1

8

7

9

13
11

10

and are part of an undirected graph.
Sometimes graphs depict relations that do not have this reciprocity, in which case it is

necessary to use edges with directions on them. There can be directed edges e from x to y
(written e = (x, y)), or from y to x (written (y, x)), or both. A particularly enormous example
of a directed graph is the graph of all links in the World Wide Web. It has a vertex for each
site on the Internet, and a directed edge (u, v) whenever site u has a link to site v: in total,
billions of nodes and edges! Understanding even the most basic connectivity properties of the
Web is of great economic and social interest. Although the size of this problem is daunting,
we will soon see that a lot of valuable information about the structure of a graph can, happily,
be determined in just linear time.

3.1.1 How is a graph represented?
We can represent a graph by an adjacency matrix; if there are n = |V | vertices v1, . . . , vn, this
is an n× n array whose (i, j)th entry is

aij =

{
1 if there is an edge from vi to vj

0 otherwise.

For undirected graphs, the matrix is symmetric since an edge {u, v} can be taken in either
direction.

The biggest convenience of this format is that the presence of a particular edge can be
checked in constant time, with just one memory access. On the other hand the matrix takes

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 93

up O(n2) space, which is wasteful if the graph does not have very many edges.
An alternative representation, with size proportional to the number of edges, is the adja-

cency list. It consists of |V | linked lists, one per vertex. The linked list for vertex u holds the
names of vertices to which u has an outgoing edge—that is, vertices v for which (u, v) ∈ E.
Therefore, each edge appears in exactly one of the linked lists if the graph is directed or two
of the lists if the graph is undirected. Either way, the total size of the data structure is O(|E|).
Checking for a particular edge (u, v) is no longer constant time, because it requires sifting
through u’s adjacency list. But it is easy to iterate through all neighbors of a vertex (by run-
ning down the corresponding linked list), and, as we shall soon see, this turns out to be a very
useful operation in graph algorithms. Again, for undirected graphs, this representation has a
symmetry of sorts: v is in u’s adjacency list if and only if u is in v’s adjacency list.

How big is your graph?
Which of the two representations, adjacency matrix or adjacency list, is better? Well, it de-
pends on the relationship between |V |, the number of nodes in the graph, and |E|, the num-
ber of edges. |E| can be as small as |V | (if it gets much smaller, then the graph degenerates—
for example, has isolated vertices), or as large as |V |2 (when all possible edges are present).
When |E| is close to the upper limit of this range, we call the graph dense. At the other
extreme, if |E| is close to |V |, the graph is sparse. As we shall see in this chapter and the
next two chapters, exactly where |E| lies in this range is usually a crucial factor in selecting
the right graph algorithm.

Or, for that matter, in selecting the graph representation. If it is the World Wide Web
graph that we wish to store in computer memory, we should think twice before using an
adjacency matrix: at the time of writing, search engines know of about eight billion vertices
of this graph, and hence the adjacency matrix would take up dozens of millions of terabits.
Again at the time we write these lines, it is not clear that there is enough computer memory
in the whole world to achieve this. (And waiting a few years until there is enough memory
is unwise: the Web will grow too and will probably grow faster.)

With adjacency lists, representing the World Wide Web becomes feasible: there are only
a few dozen billion hyperlinks in the Web, and each will occupy a few bytes in the adjacency
list. You can carry a device that stores the result, a terabyte or two, in your pocket (it may
soon fit in your earring, but by that time the Web will have grown too).

The reason why adjacency lists are so much more effective in the case of the World Wide
Web is that the Web is very sparse: the average Web page has hyperlinks to only about half
a dozen other pages, out of the billions of possibilities.

3.2 Depth-first search in undirected graphs
3.2.1 Exploring mazes
Depth-first search is a surprisingly versatile linear-time procedure that reveals a wealth of
information about a graph. The most basic question it addresses is,

94 Algorithms

Figure 3.2 Exploring a graph is rather like navigating a maze.

A

C

B

F

D

H I J

K

E

G

L

H

G

DA

C

F
K
L

J

I

B

E

What parts of the graph are reachable from a given vertex?

To understand this task, try putting yourself in the position of a computer that has just been
given a new graph, say in the form of an adjacency list. This representation offers just one
basic operation: finding the neighbors of a vertex. With only this primitive, the reachability
problem is rather like exploring a labyrinth (Figure 3.2). You start walking from a fixed place
and whenever you arrive at any junction (vertex) there are a variety of passages (edges) you
can follow. A careless choice of passages might lead you around in circles or might cause you
to overlook some accessible part of the maze. Clearly, you need to record some intermediate
information during exploration.

This classic challenge has amused people for centuries. Everybody knows that all you
need to explore a labyrinth is a ball of string and a piece of chalk. The chalk prevents looping,
by marking the junctions you have already visited. The string always takes you back to the
starting place, enabling you to return to passages that you previously saw but did not yet
investigate.

How can we simulate these two primitives, chalk and string, on a computer? The chalk
marks are easy: for each vertex, maintain a Boolean variable indicating whether it has been
visited already. As for the ball of string, the correct cyberanalog is a stack. After all, the exact
role of the string is to offer two primitive operations—unwind to get to a new junction (the
stack equivalent is to push the new vertex) and rewind to return to the previous junction (pop
the stack).

Instead of explicitly maintaining a stack, we will do so implicitly via recursion (which
is implemented using a stack of activation records). The resulting algorithm is shown in
Figure 3.3.1 The previsit and postvisit procedures are optional, meant for performing
operations on a vertex when it is first discovered and also when it is being left for the last
time. We will soon see some creative uses for them.

1As with many of our graph algorithms, this one applies to both undirected and directed graphs. In such cases,
we adopt the directed notation for edges, (x, y). If the graph is undirected, then each of its edges should be thought
of as existing in both directions: (x, y) and (y, x).

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 95

Figure 3.3 Finding all nodes reachable from a particular node.
procedure explore(G, v)
Input: G = (V,E) is a graph; v ∈ V
Output: visited(u) is set to true for all nodes u reachable from v

visited(v) = true
previsit(v)
for each edge (v, u) ∈ E:

if not visited(u): explore(u)
postvisit(v)

More immediately, we need to confirm that explore always works correctly. It certainly
does not venture too far, because it only moves from nodes to their neighbors and can therefore
never jump to a region that is not reachable from v. But does it find all vertices reachable
from v? Well, if there is some u that it misses, choose any path from v to u, and look at the
last vertex on that path that the procedure actually visited. Call this node z, and let w be the
node immediately after it on the same path.

z wv u

So z was visited but w was not. This is a contradiction: while the explore procedure was at
node z, it would have noticed w and moved on to it.

Incidentally, this pattern of reasoning arises often in the study of graphs and is in essence
a streamlined induction. A more formal inductive proof would start by framing a hypothesis,
such as “for any k ≥ 0, all nodes within k hops from v get visited.” The base case is as usual
trivial, since v is certainly visited. And the general case—showing that if all nodes k hops
away are visited, then so are all nodes k + 1 hops away—is precisely the same point we just
argued.

Figure 3.4 shows the result of running explore on our earlier example graph, starting
at node A, and breaking ties in alphabetical order whenever there is a choice of nodes to
visit. The solid edges are those that were actually traversed, each of which was elicited by
a call to explore and led to the discovery of a new vertex. For instance, while B was being
visited, the edge B − E was noticed and, since E was as yet unknown, was traversed via a
call to explore(E). These solid edges form a tree (a connected graph with no cycles) and are
therefore called tree edges. The dotted edges were ignored because they led back to familiar
terrain, to vertices previously visited. They are called back edges.

96 Algorithms

Figure 3.4 The result of explore(A) on the graph of Figure 3.2.

I

E

J

C

F

B

A

D

G

H

Figure 3.5 Depth-first search.
procedure dfs(G)

for all v ∈ V :
visited(v) = false

for all v ∈ V :
if not visited(v): explore(v)

3.2.2 Depth-first search
The explore procedure visits only the portion of the graph reachable from its starting point.
To examine the rest of the graph, we need to restart the procedure elsewhere, at some vertex
that has not yet been visited. The algorithm of Figure 3.5, called depth-first search (DFS),
does this repeatedly until the entire graph has been traversed.

The first step in analyzing the running time of DFS is to observe that each vertex is
explore’d just once, thanks to the visited array (the chalk marks). During the exploration
of a vertex, there are the following steps:

1. Some fixed amount of work—marking the spot as visited, and the pre/postvisit.

2. A loop in which adjacent edges are scanned, to see if they lead somewhere new.

This loop takes a different amount of time for each vertex, so let’s consider all vertices to-
gether. The total work done in step 1 is then O(|V |). In step 2, over the course of the entire
DFS, each edge {x, y} ∈ E is examined exactly twice, once during explore(x) and once dur-
ing explore(y). The overall time for step 2 is therefore O(|E|) and so the depth-first search

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 97

Figure 3.6 (a) A 12-node graph. (b) DFS search forest.

(a)
A B C D

E F G H

I J K L

(b) A

B E

I

J G

K

FC

D

H

L

1,10

2,3

4,9

5,8

6,7

11,22 23,24

12,21

13,20

14,17

15,16

18,19

has a running time of O(|V | + |E|), linear in the size of its input. This is as efficient as we
could possibly hope for, since it takes this long even just to read the adjacency list.

Figure 3.6 shows the outcome of depth-first search on a 12-node graph, once again break-
ing ties alphabetically (ignore the pairs of numbers for the time being). The outer loop of DFS
calls explore three times, on A, C, and finally F . As a result, there are three trees, each
rooted at one of these starting points. Together they constitute a forest.

3.2.3 Connectivity in undirected graphs
An undirected graph is connected if there is a path between any pair of vertices. The graph
of Figure 3.6 is not connected because, for instance, there is no path from A to K. However, it
does have three disjoint connected regions, corresponding to the following sets of vertices:

{A,B,E, I, J} {C,D,G,H,K,L} {F}

These regions are called connected components: each of them is a subgraph that is internally
connected but has no edges to the remaining vertices. When explore is started at a particular
vertex, it identifies precisely the connected component containing that vertex. And each time
the DFS outer loop calls explore, a new connected component is picked out.

Thus depth-first search is trivially adapted to check if a graph is connected and, more
generally, to assign each node v an integer ccnum[v] identifying the connected component to
which it belongs. All it takes is

procedure previsit(v)
ccnum[v] = cc

where cc needs to be initialized to zero and to be incremented each time the DFS procedure
calls explore.

98 Algorithms

3.2.4 Previsit and postvisit orderings
We have seen how depth-first search—a few unassuming lines of code—is able to uncover the
connectivity structure of an undirected graph in just linear time. But it is far more versatile
than this. In order to stretch it further, we will collect a little more information during the ex-
ploration process: for each node, we will note down the times of two important events, the mo-
ment of first discovery (corresponding to previsit) and that of final departure (postvisit).
Figure 3.6 shows these numbers for our earlier example, in which there are 24 events. The
fifth event is the discovery of I. The 21st event consists of leaving D behind for good.

One way to generate arrays pre and postwith these numbers is to define a simple counter
clock, initially set to 1, which gets updated as follows.

procedure previsit(v)
pre[v] = clock
clock = clock + 1

procedure postvisit(v)
post[v] = clock
clock = clock + 1

These timings will soon take on larger significance. Meanwhile, you might have noticed from
Figure 3.4 that:

Property For any nodes u and v, the two intervals [pre(u),post(u)] and [pre(v),post(v)] are
either disjoint or one is contained within the other.

Why? Because [pre(u),post(u)] is essentially the time during which vertex u was on the
stack. The last-in, first-out behavior of a stack explains the rest.

3.3 Depth-first search in directed graphs

3.3.1 Types of edges
Our depth-first search algorithm can be run verbatim on directed graphs, taking care to tra-
verse edges only in their prescribed directions. Figure 3.7 shows an example and the search
tree that results when vertices are considered in lexicographic order.

In further analyzing the directed case, it helps to have terminology for important relation-
ships between nodes of a tree. A is the root of the search tree; everything else is its descendant.
Similarly, E has descendants F , G, and H, and conversely, is an ancestor of these three nodes.
The family analogy is carried further: C is the parent of D, which is its child.

For undirected graphs we distinguished between tree edges and nontree edges. In the
directed case, there is a slightly more elaborate taxonomy:

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 99

Figure 3.7 DFS on a directed graph.

AB C

F DE

G H

A

H

B C

E D

F

G

12,15

13,14

1,16

2,11

4,7

5,6

8,9

3,10

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant
in the DFS tree.

Back edges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they
therefore lead to a node that has already been completely
explored (that is, already postvisited).

Ba
ck

Forward

Cross

Tree

A

B

C D

DFS tree

Figure 3.7 has two forward edges, two back edges, and two cross edges. Can you spot them?

Ancestor and descendant relationships, as well as edge types, can be read off directly
from pre and post numbers. Because of the depth-first exploration strategy, vertex u is an
ancestor of vertex v exactly in those cases where u is discovered first and v is discovered
during explore(u). This is to say pre(u) < pre(v) < post(v) < post(u), which we can
depict pictorially as two nested intervals:

u v v u

The case of descendants is symmetric, since u is a descendant of v if and only if v is an an-
cestor of u. And since edge categories are based entirely on ancestor-descendant relationships,

100 Algorithms

it follows that they, too, can be read off from pre and post numbers. Here is a summary of
the various possibilities for an edge (u, v):

pre/post ordering for (u, v) Edge type

u v v u
Tree/forward

v u u v

Back

v uv u
Cross

You can confirm each of these characterizations by consulting the diagram of edge types. Do
you see why no other orderings are possible?

3.3.2 Directed acyclic graphs
A cycle in a directed graph is a circular path v0 → v1 → v2 → · · · → vk → v0. Figure 3.7 has
quite a few of them, for example, B → E → F → B. A graph without cycles is acyclic. It turns
out we can test for acyclicity in linear time, with a single depth-first search.

Property A directed graph has a cycle if and only if its depth-first search reveals a back
edge.

Proof. One direction is quite easy: if (u, v) is a back edge, then there is a cycle consisting of
this edge together with the path from v to u in the search tree.

Conversely, if the graph has a cycle v0 → v1 → · · · → vk → v0, look at the first node on this
cycle to be discovered (the node with the lowest pre number). Suppose it is vi. All the other
vj on the cycle are reachable from it and will therefore be its descendants in the search tree.
In particular, the edge vi−1 → vi (or vk → v0 if i = 0) leads from a node to its ancestor and is
thus by definition a back edge.

Directed acyclic graphs, or dags for short, come up all the time. They are good for modeling
relations like causalities, hierarchies, and temporal dependencies. For example, suppose that
you need to perform many tasks, but some of them cannot begin until certain others are
completed (you have to wake up before you can get out of bed; you have to be out of bed, but
not yet dressed, to take a shower; and so on). The question then is, what is a valid order in
which to perform the tasks?

Such constraints are conveniently represented by a directed graph in which each task is
a node, and there is an edge from u to v if u is a precondition for v. In other words, before
performing a task, all the tasks pointing to it must be completed. If this graph has a cycle,
there is no hope: no ordering can possibly work. If on the other hand the graph is a dag,
we would like if possible to linearize (or topologically sort) it, to order the vertices one after
the other in such a way that each edge goes from an earlier vertex to a later vertex, so that
all precedence constraints are satisfied. In Figure 3.8, for instance, one valid ordering is
B,A,D,C,E, F . (Can you spot the other three?)

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 101

Figure 3.8 A directed acyclic graph with one source, two sinks, and four possible lineariza-
tions.

A

B

C

D

E

F

What types of dags can be linearized? Simple: All of them. And once again depth-first
search tells us exactly how to do it: simply perform tasks in decreasing order of their post
numbers. After all, the only edges (u, v) in a graph for which post(u) <post(v) are back
edges (recall the table of edge types on page 100)—and we have seen that a dag cannot have
back edges. Therefore:

Property In a dag, every edge leads to a vertex with a lower post number.

This gives us a linear-time algorithm for ordering the nodes of a dag. And, together with
our earlier observations, it tells us that three rather different-sounding properties—acyclicity,
linearizability, and the absence of back edges during a depth-first search—are in fact one and
the same thing.

Since a dag is linearized by decreasing post numbers, the vertex with the smallest post
number comes last in this linearization, and it must be a sink—no outgoing edges. Symmet-
rically, the one with the highest post is a source, a node with no incoming edges.

Property Every dag has at least one source and at least one sink.

The guaranteed existence of a source suggests an alternative approach to linearization:

Find a source, output it, and delete it from the graph.
Repeat until the graph is empty.

Can you see why this generates a valid linearization for any dag? What happens if the graph
has cycles? And, how can this algorithm be implemented in linear time? (Exercise 3.14.)

3.4 Strongly connected components
3.4.1 Defining connectivity for directed graphs
Connectivity in undirected graphs is pretty straightforward: a graph that is not connected
can be decomposed in a natural and obvious manner into several connected components (Fig-

102 Algorithms

Figure 3.9 (a) A directed graph and its strongly connected components. (b) The meta-graph.

(a)
A

D E

C

F

B

HG

K

L

JI

(b)

A B,E C,F

D
J,K,L
G,H,I

ure 3.6 is a case in point). As we saw in Section 3.2.3, depth-first search does this handily,
with each restart marking a new connected component.

In directed graphs, connectivity is more subtle. In some primitive sense, the directed
graph of Figure 3.9(a) is “connected”—it can’t be “pulled apart,” so to speak, without breaking
edges. But this notion is hardly interesting or informative. The graph cannot be considered
connected, because for instance there is no path from G to B or from F to A. The right way to
define connectivity for directed graphs is this:

Two nodes u and v of a directed graph are connected if there is a path from u to v
and a path from v to u.

This relation partitions V into disjoint sets (Exercise 3.30) that we call strongly connected
components. The graph of Figure 3.9(a) has five of them.

Now shrink each strongly connected component down to a single meta-node, and draw an
edge from one meta-node to another if there is an edge (in the same direction) between their
respective components (Figure 3.9(b)). The resulting meta-graph must be a dag. The reason is
simple: a cycle containing several strongly connected components would merge them all into
a single, strongly connected component. Restated,

Property Every directed graph is a dag of its strongly connected components.

This tells us something important: The connectivity structure of a directed graph is two-
tiered. At the top level we have a dag, which is a rather simple structure—for instance, it

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 103

can be linearized. If we want finer detail, we can look inside one of the nodes of this dag and
examine the full-fledged strongly connected component within.

3.4.2 An efficient algorithm
The decomposition of a directed graph into its strongly connected components is very infor-
mative and useful. It turns out, fortunately, that it can be found in linear time by making
further use of depth-first search. The algorithm is based on some properties we have already
seen but which we will now pinpoint more closely.

Property 1 If the explore subroutine is started at node u, then it will terminate precisely
when all nodes reachable from u have been visited.

Therefore, if we call explore on a node that lies somewhere in a sink strongly connected
component (a strongly connected component that is a sink in the meta-graph), then we will
retrieve exactly that component. Figure 3.9 has two sink strongly connected components.
Starting explore at node K, for instance, will completely traverse the larger of them and
then stop.

This suggests a way of finding one strongly connected component, but still leaves open two
major problems: (A) how do we find a node that we know for sure lies in a sink strongly con-
nected component and (B) how do we continue once this first component has been discovered?

Let’s start with problem (A). There is not an easy, direct way to pick out a node that is
guaranteed to lie in a sink strongly connected component. But there is a way to get a node in
a source strongly connected component.

Property 2 The node that receives the highest post number in a depth-first search must lie
in a source strongly connected component.

This follows from the following more general property.

Property 3 If C and C ′ are strongly connected components, and there is an edge from a node
in C to a node in C ′, then the highest post number in C is bigger than the highest post
number in C ′.

Proof. In proving Property 3, there are two cases to consider. If the depth-first search visits
component C before component C ′, then clearly all of C and C ′ will be traversed before the
procedure gets stuck (see Property 1). Therefore the first node visited in C will have a higher
post number than any node of C ′. On the other hand, if C ′ gets visited first, then the depth-
first search will get stuck after seeing all of C ′ but before seeing any of C, in which case the
property follows immediately.

Property 3 can be restated as saying that the strongly connected components can be lin-
earized by arranging them in decreasing order of their highest post numbers. This is a gen-
eralization of our earlier algorithm for linearizing dags; in a dag, each node is a singleton
strongly connected component.

Property 2 helps us find a node in the source strongly connected component of G. How-
ever, what we need is a node in the sink component. Our means seem to be the opposite of

104 Algorithms

Figure 3.10 The reverse of the graph from Figure 3.9.

A

D E

C

F

B

HG

K

L

JI

A B,E C,F

D
J,K,L
G,H,I

our needs! But consider the reverse graph GR, the same as G but with all edges reversed
(Figure 3.10). GR has exactly the same strongly connected components as G (why?). So, if we
do a depth-first search of GR, the node with the highest post number will come from a source
strongly connected component in GR, which is to say a sink strongly connected component in
G. We have solved problem (A)!

Onward to problem (B). How do we continue after the first sink component is identified?
The solution is also provided by Property 3. Once we have found the first strongly connected
component and deleted it from the graph, the node with the highest post number among
those remaining will belong to a sink strongly connected component of whatever remains of
G. Therefore we can keep using the post numbering from our initial depth-first search on GR

to successively output the second strongly connected component, the third strongly connected
component, and so on. The resulting algorithm is this.

1. Run depth-first search on GR.

2. Run the undirected connected components algorithm (from Section 3.2.3) on G, and dur-
ing the depth-first search, process the vertices in decreasing order of their post numbers
from step 1.

This algorithm is linear-time, only the constant in the linear term is about twice that of
straight depth-first search. (Question: How does one construct an adjacency list represen-
tation of GR in linear time? And how, in linear time, does one order the vertices of G by
decreasing post values?)

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 105

Let’s run this algorithm on the graph of Figure 3.9. If step 1 considers vertices in lex-
icographic order, then the ordering it sets up for the second step (namely, decreasing post
numbers in the depth-first search of GR) is: G, I, J, L,K,H,D,C, F,B,E,A. Then step 2 peels
off components in the following sequence: {G,H, I, J,K,L}, {D}, {C,F }, {B,E}, {A}.

Crawling fast
All this assumes that the graph is neatly given to us, with vertices numbered 1 to n and
edges tucked in adjacency lists. The realities of the World Wide Web are very different. The
nodes of the Web graph are not known in advance, and they have to be discovered one by
one during the process of search. And, of course, recursion is out of the question.

Still, crawling the Web is done by algorithms very similar to depth-first search. An
explicit stack is maintained, containing all nodes that have been discovered (as endpoints of
hyperlinks) but not yet explored. In fact, this “stack” is not exactly a last-in, first-out list. It
gives highest priority not to the nodes that were inserted most recently (nor the ones that
were inserted earliest, that would be a breadth-first search, see Chapter 4), but to the ones
that look most “interesting”—a heuristic criterion whose purpose is to keep the stack from
overflowing and, in the worst case, to leave unexplored only nodes that are very unlikely to
lead to vast new expanses.

In fact, crawling is typically done by many computers running explore simultaneously:
each one takes the next node to be explored from the top of the stack, downloads the http
file (the kind of Web files that point to each other), and scans it for hyperlinks. But when a
new http document is found at the end of a hyperlink, no recursive calls are made: instead,
the new vertex is inserted in the central stack.

But one question remains: When we see a “new” document, how do we know that it is
indeed new, that we have not seen it before in our crawl? And how do we give it a name, so
it can be inserted in the stack and recorded as “already seen”? The answer is by hashing.

Incidentally, researchers have run the strongly connected components algorithm on the
Web and have discovered some very interesting structure.

106 Algorithms

Exercises
3.1. Perform a depth-first search on the following graph; whenever there’s a choice of vertices, pick

the one that is alphabetically first. Classify each edge as a tree edge or back edge, and give the
pre and post number of each vertex.

A B C

D E F

G H I

3.2. Perform depth-first search on each of the following graphs; whenever there’s a choice of vertices,
pick the one that is alphabetically first. Classify each edge as a tree edge, forward edge, back
edge, or cross edge, and give the pre and post number of each vertex.

(a)

F

A CB

E D

G H

(b)

F

C

BA

H

G

E

D

3.3. Run the DFS-based topological ordering algorithm on the following graph. Whenever you have
a choice of vertices to explore, always pick the one that is alphabetically first.

A

C

E

D

F

B

G

H

(a) Indicate the pre and post numbers of the nodes.
(b) What are the sources and sinks of the graph?
(c) What topological ordering is found by the algorithm?
(d) How many topological orderings does this graph have?

3.4. Run the strongly connected components algorithm on the following directed graphs G. When
doing DFS on GR: whenever there is a choice of vertices to explore, always pick the one that is
alphabetically first.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 107

(i) A

B
E

G H

I

C D

F

J

(ii)

A B C

D E F

G H I

In each case answer the following questions.

(a) In what order are the strongly connected components (SCCs) found?
(b) Which are source SCCs and which are sink SCCs?
(c) Draw the “metagraph” (each meta-node is an SCC of G).
(d) What is the minimum number of edges you must add to this graph to make it strongly

connected?

3.5. The reverse of a directed graph G = (V,E) is another directed graph GR = (V,ER) on the same
vertex set, but with all edges reversed; that is, ER = {(v, u) : (u, v) ∈ E}.
Give a linear-time algorithm for computing the reverse of a graph in adjacency list format.

3.6. In an undirected graph, the degree d(u) of a vertex u is the number of neighbors u has, or equiv-
alently, the number of edges incident upon it. In a directed graph, we distinguish between the
indegree din(u), which is the number of edges into u, and the outdegree dout(u), the number of
edges leaving u.

(a) Show that in an undirected graph,
∑

u∈V d(u) = 2|E|.
(b) Use part (a) to show that in an undirected graph, there must be an even number of vertices

whose degree is odd.
(c) Does a similar statement hold for the number of vertices with odd indegree in a directed

graph?

3.7. A bipartite graph is a graphG = (V,E) whose vertices can be partitioned into two sets (V = V1∪V2

and V1 ∩ V2 = ∅) such that there are no edges between vertices in the same set (for instance, if
u, v ∈ V1, then there is no edge between u and v).

(a) Give a linear-time algorithm to determine whether an undirected graph is bipartite.
(b) There are many other ways to formulate this property. For instance, an undirected graph

is bipartite if and only if it can be colored with just two colors.
Prove the following formulation: an undirected graph is bipartite if and only if it contains
no cycles of odd length.

(c) At most how many colors are needed to color in an undirected graph with exactly one odd-
length cycle?

108 Algorithms

3.8. Pouring water. We have three containers whose sizes are 10 pints, 7 pints, and 4 pints, re-
spectively. The 7-pint and 4-pint containers start out full of water, but the 10-pint container is
initially empty. We are allowed one type of operation: pouring the contents of one container into
another, stopping only when the source container is empty or the destination container is full.
We want to know if there is a sequence of pourings that leaves exactly 2 pints in the 7- or 4-pint
container.

(a) Model this as a graph problem: give a precise definition of the graph involved and state the
specific question about this graph that needs to be answered.

(b) What algorithm should be applied to solve the problem?
(c) Find the answer by applying the algorithm.

3.9. For each node u in an undirected graph, let twodegree[u] be the sum of the degrees of u’s neigh-
bors. Show how to compute the entire array of twodegree[·] values in linear time, given a graph
in adjacency list format.

3.10. Rewrite the explore procedure (Figure 3.3) so that it is non-recursive (that is, explicitly use a
stack). The calls to previsit and postvisit should be positioned so that they have the same
effect as in the recursive procedure.

3.11. Design a linear-time algorithm which, given an undirected graph G and a particular edge e in it,
determines whether G has a cycle containing e.

3.12. Either prove or give a counterexample: if {u, v} is an edge in an undirected graph, and during
depth-first search post(u) <post(v), then v is an ancestor of u in the DFS tree.

3.13. Undirected vs. directed connectivity.

(a) Prove that in any connected undirected graph G = (V,E) there is a vertex v ∈ V whose
removal leaves G connected. (Hint: Consider the DFS search tree for G.)

(b) Give an example of a strongly connected directed graph G = (V,E) such that, for every
v ∈ V , removing v from G leaves a directed graph that is not strongly connected.

(c) In an undirected graph with 2 connected components it is always possible to make the graph
connected by adding only one edge. Give an example of a directed graph with two strongly
connected components such that no addition of one edge can make the graph strongly con-
nected.

3.14. The chapter suggests an alternative algorithm for linearization (topological sorting), which re-
peatedly removes source nodes from the graph (page 101). Show that this algorithm can be
implemented in linear time.

3.15. The police department in the city of Computopia has made all streets one-way. The mayor con-
tends that there is still a way to drive legally from any intersection in the city to any other
intersection, but the opposition is not convinced. A computer program is needed to determine
whether the mayor is right. However, the city elections are coming up soon, and there is just
enough time to run a linear-time algorithm.

(a) Formulate this problem graph-theoretically, and explain why it can indeed be solved in
linear time.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 109

(b) Suppose it now turns out that the mayor’s original claim is false. She next claims something
weaker: if you start driving from town hall, navigating one-way streets, then no matter
where you reach, there is always a way to drive legally back to the town hall. Formulate
this weaker property as a graph-theoretic problem, and carefully show how it too can be
checked in linear time.

3.16. Suppose a CS curriculum consists of n courses, all of them mandatory. The prerequisite graph G
has a node for each course, and an edge from course v to course w if and only if v is a prerequisite
for w. Find an algorithm that works directly with this graph representation, and computes the
minimum number of semesters necessary to complete the curriculum (assume that a student
can take any number of courses in one semester). The running time of your algorithm should be
linear.

3.17. Infinite paths. Let G = (V,E) be a directed graph with a designated “start vertex” s ∈ V , a set
VG ⊆ V of “good” vertices, and a set VB ⊆ V of “bad” vertices. An infinite trace p of G is an infinite
sequence v0v1v2 · · · of vertices vi ∈ V such that (1) v0 = s, and (2) for all i ≥ 0, (vi, vi+1) ∈ E. That
is, p is an infinite path in G starting at vertex s. Since the set V of vertices is finite, every infinite
trace of G must visit some vertices infinitely often.

(a) If p is an infinite trace, let Inf(p) ⊆ V be the set of vertices that occur infinitely often in p.
Show that Inf(p) is a subset of a strongly connected component of G.

(b) Describe an algorithm that determines if G has an infinite trace.
(c) Describe an algorithm that determines ifG has an infinite trace that visits some good vertex

in VG infinitely often.
(d) Describe an algorithm that determines ifG has an infinite trace that visits some good vertex

in VG infinitely often, but visits no bad vertex in VB infinitely often.

3.18. You are given a binary tree T = (V,E) (in adjacency list format), along with a designated root
node r ∈ V . Recall that u is said to be an ancestor of v in the rooted tree, if the path from r to v
in T passes through u.
You wish to preprocess the tree so that queries of the form “is u an ancestor of v?” can be
answered in constant time. The preprocessing itself should take linear time. How can this be
done?

3.19. As in the previous problem, you are given a binary tree T = (V,E) with designated root node. In
addition, there is an array x[·] with a value for each node in V . Define a new array z[·] as follows:
for each u ∈ V ,

z[u] = the maximum of the x-values associated with u’s descendants.

Give a linear-time algorithm which calculates the entire z-array.
3.20. You are given a tree T = (V,E) along with a designated root node r ∈ V . The parent of any node

v 6= r, denoted p(v), is defined to be the node adjacent to v in the path from r to v. By convention,
p(r) = r. For k > 1, define pk(v) = pk−1(p(v)) and p1(v) = p(v) (so pk(v) is the kth ancestor of v).
Each vertex v of the tree has an associated non-negative integer label l(v). Give a linear-time
algorithm to update the labels of all the vertices in T according to the following rule: lnew(v) =
l(pl(v)(v)).

3.21. Give a linear-time algorithm to find an odd-length cycle in a directed graph. (Hint: First solve
this problem under the assumption that the graph is strongly connected.)

110 Algorithms

3.22. Give an efficient algorithm which takes as input a directed graph G = (V,E), and determines
whether or not there is a vertex s ∈ V from which all other vertices are reachable.

3.23. Give an efficient algorithm that takes as input a directed acyclic graph G = (V,E), and two
vertices s, t ∈ V , and outputs the number of different directed paths from s to t in G.

3.24. Give a linear-time algorithm for the following task.

Input: A directed acyclic graph G
Question: Does G contain a directed path that touches every vertex exactly once?

3.25. You are given a directed graph in which each node u ∈ V has an associated price pu which is a
positive integer. Define the array cost as follows: for each u ∈ V ,

cost[u] = price of the cheapest node reachable from u (including u itself).

For instance, in the graph below (with prices shown for each vertex), the cost values of the
nodes A,B,C,D,E, F are 2, 1, 4, 1, 4, 5, respectively.

A

B

C

D

E

F
1 5

462

3

Your goal is to design an algorithm that fills in the entire cost array (i.e., for all vertices).

(a) Give a linear-time algorithm that works for directed acyclic graphs. (Hint: Handle the
vertices in a particular order.)

(b) Extend this to a linear-time algorithm that works for all directed graphs. (Hint: Recall the
“two-tiered” structure of directed graphs.)

3.26. An Eulerian tour in an undirected graph is a cycle that is allowed to pass through each vertex
multiple times, but must use each edge exactly once.

This simple concept was used by Euler in 1736 to solve the famous Konigsberg bridge problem,
which launched the field of graph theory. The city of Konigsberg (now called Kaliningrad, in
western Russia) is the meeting point of two rivers with a small island in the middle. There are
seven bridges across the rivers, and a popular recreational question of the time was to determine
whether it is possible to perform a tour in which each bridge is crossed exactly once.

Euler formulated the relevant information as a graph with four nodes (denoting land masses)
and seven edges (denoting bridges), as shown here.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 111

Southern bank

Northern bank

Small
island

Big
island

Notice an unusual feature of this problem: multiple edges between certain pairs of nodes.

(a) Show that an undirected graph has an Eulerian tour if and only if all its vertices have even
degree. Conclude that there is no Eulerian tour of the Konigsberg bridges.

(b) An Eulerian path is a path which uses each edge exactly once. Can you give a similar
if-and-only-if characterization of which undirected graphs have Eulerian paths?

(c) Can you give an analog of part (a) for directed graphs?

3.27. Two paths in a graph are called edge-disjoint if they have no edges in common. Show that in any
undirected graph, it is possible to pair up the vertices of odd degree and find paths between each
such pair so that all these paths are edge-disjoint.

3.28. In the 2SAT problem, you are given a set of clauses, where each clause is the disjunction (OR) of
two literals (a literal is a Boolean variable or the negation of a Boolean variable). You are looking
for a way to assign a value true or false to each of the variables so that all clauses are satisfied
– that is, there is at least one true literal in each clause. For example, here’s an instance of 2SAT:

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x1 ∨ x4).

This instance has a satisfying assignment: set x1, x2, x3, and x4 to true, false, false, and
true, respectively.

(a) Are there other satisfying truth assignments of this 2SAT formula? If so, find them all.
(b) Give an instance of 2SAT with four variables, and with no satisfying assignment.

The purpose of this problem is to lead you to a way of solving 2SAT efficiently by reducing it to
the problem of finding the strongly connected components of a directed graph. Given an instance
I of 2SAT with n variables and m clauses, construct a directed graph GI = (V,E) as follows.

• GI has 2n nodes, one for each variable and its negation.
• GI has 2m edges: for each clause (α ∨ β) of I (where α, β are literals), GI has an edge from

from the negation of α to β, and one from the negation of β to α.

Note that the clause (α ∨ β) is equivalent to either of the implications α ⇒ β or β ⇒ α. In this
sense, GI records all implications in I .

(c) Carry out this construction for the instance of 2SAT given above, and for the instance you
constructed in (b).

112 Algorithms

(d) Show that if GI has a strongly connected component containing both x and x for some
variable x, then I has no satisfying assignment.

(e) Now show the converse of (d): namely, that if none of GI ’s strongly connected components
contain both a literal and its negation, then the instance I must be satisfiable. (Hint: As-
sign values to the variables as follows: repeatedly pick a sink strongly connected component
of GI . Assign value true to all literals in the sink, assign false to their negations, and
delete all of these. Show that this ends up discovering a satisfying assignment.)

(f) Conclude that there is a linear-time algorithm for solving 2SAT.

3.29. Let S be a finite set. A binary relation on S is simply a collection R of ordered pairs (x, y) ∈ S×S.
For instance, S might be a set of people, and each such pair (x, y) ∈ R might mean “x knows y.”
An equivalence relation is a binary relation which satisfies three properties:

• Reflexivity: (x, x) ∈ R for all x ∈ S
• Symmetry: if (x, y) ∈ R then (y, x) ∈ R

• Transitivity: if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R

For instance, the binary relation “has the same birthday as” is an equivalence relation, whereas
“is the father of” is not, since it violates all three properties.
Show that an equivalence relation partitions set S into disjoint groups S1, S2, . . . , Sk (in other
words, S = S1 ∪ S2 ∪ · · · ∪ Sk and Si ∩ Sj = ∅ for all i 6= j) such that:

• Any two members of a group are related, that is, (x, y) ∈ R for any x, y ∈ Si, for any i.

• Members of different groups are not related, that is, for all i 6= j, for all x ∈ Si and y ∈ Sj ,
we have (x, y) 6∈ R.

(Hint: Represent an equivalence relation by an undirected graph.)

3.30. On page 102, we defined the binary relation “connected” on the set of vertices of a directed graph.
Show that this is an equivalence relation (see Exercise 3.29), and conclude that it partitions the
vertices into disjoint strongly connected components.

3.31. Biconnected components Let G = (V,E) be an undirected graph. For any two edges e, e′ ∈ E, we’ll
say e ∼ e′ if either e = e′ or there is a (simple) cycle containing both e and e′.

(a) Show that ∼ is an equivalence relation (recall Exercise 3.29) on the edges.

The equivalence classes into which this relation partitions the edges are called the biconnected
components of G. A bridge is an edge which is in a biconnected component all by itself.
A separating vertex is a vertex whose removal disconnects the graph.

(b) Partition the edges of the graph below into biconnected components, and identify the bridges
and separating vertices.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 113

C

DA B E

F G

O N M L

K J

I H

Not only do biconnected components partition the edges of the graph, they also almost partition
the vertices in the following sense.

(c) Associate with each biconnected component all the vertices that are endpoints of its edges.
Show that the vertices corresponding to two different biconnected components are either
disjoint or intersect in a single separating vertex.

(d) Collapse each biconnected component into a single meta-node, and retain individual nodes
for each separating vertex. (So there are edges between each component-node and its sep-
arating vertices.) Show that the resulting graph is a tree.

DFS can be used to identify the biconnected components, bridges, and separating vertices of a
graph in linear time.

(e) Show that the root of the DFS tree is a separating vertex if and only if it has more than one
child in the tree.

(f) Show that a non-root vertex v of the DFS tree is a separating vertex if and only if it has a
child v′ none of whose descendants (including itself) has a backedge to a proper ancestor of
v.

(g) For each vertex u define:

low(u) = min

{
pre(u)
pre(w) where (v, w) is a backedge for some descendant v of u

Show that the entire array of low values can be computed in linear time.
(h) Show how to compute all separating vertices, bridges, and biconnected components of a

graph in linear time. (Hint: Use low to identify separating vertices, and run another DFS
with an extra stack of edges to remove biconnected components one at a time.)

