
1

Comparing AlgorithmsCSCI 1900 – Discrete Structures

CSCI 1900
Discrete Structures

Complexity
Reading: Kolman,

Sections 4.6, 5.2, and 5.3

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Comparing Algorithms

This presentation uses an example to
present the material from the following
three sections of our text book.
– Section 4.6 – Computer Representations
– Section 5.2 – Hashing
– Section 5.3 – Comparing algorithms based on

computational method

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Example – Access Control
System

This entire lecture is based on the example
of a database listing valid student id's to be
used in an access control system. If the id
is in the database, then the student is
allowed in the door. Each method of storing
the data is compared based on the
complexity it takes to store a new record
and what it takes to search for a record.

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Unsorted lists – new record

Each time a new student id is added, simply
add it to the end of the list:

students[next_empty_entry] = NEW_ID

next_empty_entry = next_empty_entry + 1

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Unsorted lists – search records

To search for an id, simply go through the
list looking for a match

found = 0
for count=0 to (next_empty_entry-1)
if students[count] = FIND_ID

found = 1
exit for

endif
next count

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Cycle Counts

In an effort to estimate the relative speeds
of each of these situations, assume the
following cycle counts for each instruction.
– assignment/equals = 3 cycles
– increment = 1 cycle
– for loop or while loop = 3 cycles
– if = 2 cycles
– switch/case = 4 cycles

2

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Unsorted lists
Cycles for new record

To add an id, there is one assignment and
one increment for a total of 4 cycles

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Unsorted lists
Cycles for searching records

To search, assume that on average, we
have to go through half of the items before
finding a match
– 1 assignment = 3 cycles
– N/2 loops = N/2 * 3 cycles
– N/2 ifs = N/2 * 2 cycles
– 1 assignment in if = 3 cycles
– Total = (5 * N/2) + 6

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted list

The best sorted list is one where there is a
unique, sequential key that identifies the
argument to the array.

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted array lists – new record
Depending on the algorithm used to derive
the index, a sorted list that has ascending
indexes could be a bit more complex.

index=index from NEW_ID

for i=next_empty_entry to (index+1) step -1
students[i] = students[i-1]
next i
students[index] = NEW_ID
next_empty_entry = next_empty_entry + 1

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted array lists – new record
...or it could be a great deal simpler by
making the size of the array equal to the size
of the set of all possible keys.

index=index from NEW_ID

students[index] = NEW_ID

For us this isn’t practical, i.e., our array size
would need to be able to contain 109 records.

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted array lists – search records

For a sorted list that has ascending
indexes, the search algorithm is
simple.

found = 0
index=index from FIND_ID
if students[index] = FIND_ID
found = 1

end if

3

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted array lists
Cycles for adding record

To add an id, there is an assignment followed by
a for loop with, on average, N/2 loops. Inside
the for loop, there is an assignment, and since
the for loop is executed an average of N/2 times,
there are N/2 assignments. The for loop is
followed by an assignment and an increment.
This gives us a total of:

3 + (N/2*3) + (N/2*3) + 3 + 1 = 3*N + 7

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted array lists
Cycles for searching records

To find a record, there are two
assignments followed by an if and then a
possible third assignment. This gives us a
total of:

3 + 3 + 2 + 3 = 11 cycles

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted list – using pointers

We don't have a sorted index here. Our
unique key could take on any value from
000-00-0000 to 999-99-9999.

Instead, what we will do is make 10 lists,
each representing a student id that begins
with a different decimal digit.

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted lists – new record
For the case where we have created ten
lists, we’ve basically divided the unsorted list
into ten. Each time a new student id is
added, find the list it should be in, and add it
to the end of the list

index = first digit of NEW_ID
students[index, next_empty_entry[index]] =
NEW_ID

next_empty_entry[index] = next_empty_entry
[index] + 1

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted lists – search records
This is the same as finding a record in an
unsorted list except that we need to select which
list to search from.

index = first digit of FIND_ID
found = 0
for count=0 to (next_empty_entry[index]-1)

if students[index, next_empty_entry[index]] =
FIND_ID

found = 1
exit for
endif

next count

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted lists
Cycles for adding record

To add an id, there are two assignments,
index and NEW_ID, and one increment for
a total of 7 cycles

4

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Sorted lists
Cycles for search records

• This is exactly the same as for the
unsorted lists except for two things:
– We need to assign the value of index (add 3

cycles)
– The lists are about one tenth the length of the

full list
• This gives us a new total of :

1/10 * (5 * N/2) + 9

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Unbalanced lists

At ETSU, however, the list for student id’s
beginning with ‘4’ would overwhelm the
other lists, and the benefit would be
negligible.

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Hashing

In order to determine which list a student
id should be assigned to, we need to
create a function that maps each student
id to a different list in a balanced way. The
function needs to be reproducible so that
when we go to find the record, it is in the
list we originally assumed it would be in.

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Hashing

A hashing algorithm randomly assigns an
integer to one of n lists. The typical
hashing algorithm is a “mod-n” function,
i.e., a function that determines the
remainder of an integer after a division by
n. By using a mod-n function, we can
have as many lists as we want.

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Cycle count for hashing

The cycle count for hashing should be
very close to the cycle count for the sorted
list example with two difference:
– Assigning the value for index will take more

cycles because the mod-n involves division
– The number of lists is up to our selection of n.

Therefore, we could significantly shorten up
the search time if we have the memory to add
more lists.

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Linked Lists

There is a problem with the sorted and
hashed lists presented earlier. A certain
amount of memory must be allocated to
each list. For most of the lists, this is
wasted space. For some of the lists, this
may be a limiting factor forcing some
student id’s to be refused because of no
space while other lists have plenty of
space.

5

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Linked Lists (continued)

A linked list adds a second array to tell the
computer where to find the next record in
the sorted list. This way, the next element
does not have to be stored sequentially in
memory.

Comparing AlgorithmsCSCI 1900 – Discrete Structures

Linked Lists (continued)
• Corresponding index in second array indicates

index of next element in list
• If index of next element is listed as zero, that is

the end of the list
• This means that the index count must start at 1
• A separate variable must point to beginning of

list
• Sometimes a third array is added so that we

can go backwards in the list, i.e., corresponding
index in third array points to index of previous
element.

Comparing AlgorithmsCSCI 1900 – Discrete Structures

In-class exercise

• See Figures 4.30 and 4.33 from the
textbook

• Write the BASIC code to do the following:
– Add a record to a linked list
– Find a record in a linked list

• Estimate the number of cycles required for
both adding and finding a record.

