

Functions

- A function f is a relation from A to B where each element of A that is in the domain of f maps to exactly one element, b, in B
- Denoted $f(\mathrm{a})=\mathrm{b}$
- If an element a is not in the domain of f, then $f(a)=\varnothing$

Functions (continued)

- Since f is a relation, then it is a subset of the Cartesian Product $\mathrm{A} \times \mathrm{B}$.
- Even though there might be multiple sequence pairs that have the same element b, no two sequence pairs may have the same element a.

Functions (continued)

Also called mappings or transformations because they can be viewed as rules that assign each element of A to a single element of B.

Domain and Range of a Relation

The following definitions assume R is a relation from A to B.

- $\operatorname{Dom}(R)=$ subset of A representing elements of A the make sense for R. This is called the "domain of R."
- Ran $(R)=$ subset of B that lists all second elements of R. This is called the "range of R."

CSCI 1900 - Discrete Structures \quad Functions - Page 2

Functions Represented with Formulas

- It may be possible to represent a function with a formula
- Example: $f(x)=x^{2}$ (mapping from Z to N)
- Since function is a relation which is a subset of the Cartesian product, then it doesn't need to be represented with a formula.
- A function may just be a list of sequenced pairs

CSCI 1900 - Discrete Structures
Functions - Page 6

Functions not Representable with Formulas

- Example: A mapping from one finite set to another
$-A=\{a, b, c, d\}$ and $B=\{4,6\}$
$-f(a)=\{(a, 4),(b, 6),(c, 6),(d, 4)\}$
- Example: Membership functions
$-f(a)=\{0$ if a is even and 1 if a is odd $\}$
- $A=Z$ and $B=\{0,1\}$

Examples of Labeled Digraphs

- Distances between cities:
- vertices are cities
- edges are distances between cities
- Organizational Charts
- vertices are employees
- Trouble shooting flow chart
- State diagrams

CSCI 1900 - Discrete Structures

Identity function

- The identity function is a function on A
- Denoted 1_{A}
- Defined by $1_{A}(a)=a$
- 1_{A} is represented as a subset of $A \times A$ with the identity matrix

Labeled Digraphs

- A labeled digraph is a digraph in which the vertices or the edges or both are labelled with information from a set.
- A labeled digraph can be represented with functions
$\overline{\text { CSCI } 1900 \text { - Discrete Structures }} \quad$ Functions - Page 8

Labeled Digraphs (continued)

- If V is the set of vertices and L is the set of labels of a labelled digraph, then the labelling of V can be specified by a function $f: V \rightarrow L$ where for each $v \in V, f(v)$ is the label we wish to attach to v.
- If E is the set of edges and L is the set of labels of a labelled digraph, then the labelling of E can be specified to be a function $g: E \rightarrow L$ where for each $e \in E, g(e)$ is the label we wish to attach to v.
CSCI 1900 - Discrete Structures \quad Functions - Page 10

Composition

- If $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{C}$, then the composition of f and $g, g^{\circ} f$, is a relation.
- Let $\mathrm{a} \in \operatorname{Dom}\left(g^{\circ} f\right)$.
$-\left(g^{\circ} f\right)(\mathrm{a})=g(f(\mathrm{a}))$
- If $f(a)$ maps to exactly one element, say $b \in B$, then $g(f(\mathrm{a}))=g(\mathrm{~b})$
- If $g(b)$ also maps to exactly one element, say $c \in C$, then $g(f(a))=c$
- Thus for each $\mathrm{a} \in \mathrm{A},\left(g^{\circ} f\right)(\mathrm{a})$ maps to exactly one element of C and $g^{\circ} f$ is a function

CSCI 1900 - Discrete Structures
Functions - Page 12

Special types of functions

- f is "everywhere defined" if $\operatorname{Dom}(f)=\mathrm{A}$
- f is "onto" if $\operatorname{Ran}(f)=B$
- f is "one-to-one" if it is impossible to have $f(a)=f\left(a^{\prime}\right)$ if $a \neq a^{\prime}$, i.e., if $f(a)=f\left(a^{\prime}\right)$, then $\mathrm{a}=\mathrm{a}^{\prime}$
$f: \mathrm{A} \rightarrow \mathrm{B}$ is "invertible" if its inverse function f^{-1} is also a function. (Note, f^{-1} is simply the reversing of the ordered pairs)

CSCI 1900 - Discrete Structures Functions - Page 13

Theorems of Functions

- Let $f: A \rightarrow B$ be a function; f^{-1} is a function from B to A if and only if f is one-to-one
- If f^{-1} is a function, then the function f^{-1} is also one-to-one
- f^{-1} is everywhere defined if and only if f is onto
- f^{-1} is onto if and only if f is everywhere defined

More Theorems of Functions

- Let f be any function:
- $1_{B}{ }^{\circ} f=f$
- $f^{\circ} 1_{\mathrm{A}}=f$
- If f is a one-to-one correspondence between A and B, then
- $f-{ }^{-1} \circ f=1_{A}$
- $f{ }^{\circ} f^{-1}=1_{B}$
- Let $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{C}$ be invertible.
- $\left(g^{\circ} f\right)$ is invertible
$\cdot\left(g^{\circ} f\right)^{-1}=\left(f^{-10} g^{-1}\right)$

Finite sets

- Let A and B both be finite sets with the same number of elements
- If $f: A \rightarrow B$ is everywhere defined, then
- If f is one-to-one, then f is onto
- If f is onto, then f is one-to-one

