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CSCI 1900
Discrete Structures

Integers
Reading:  Kolman, Section 1.4
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Divisibility

• If one integer, n,  divides into a second 
integer, m, without producing a remainder, 
then we say that “n divides m”.

• Denoted n | m 
• If one integer, n, does not divide evenly 

into a second integer, m, i.e., m÷n 
produces a remainder, then we say that “n 
does not divide m”

• Denoted n | m
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Some Properties of Divisibility
• If n | m, then there exists a q such that m = q×n
• The absolute values of both q and n are less than 

the absolute value of m, i.e., |n| < |m| and |q| < |m|
• Examples:

4 | 24: 24 = 4×6 and both 4 and 6 are less than 24.
5 | 135: 135 = 5×27 and both 5 and 27 are less than 135

• Simple properties of divisibility (proofs on page 21)
– If a | b and a | c, then a | (b + c)
– If a | b and a | c, where b > c, then a | (b - c)
– If a | b or a | c, then a | bc
– If a | b and b | c, then a | c
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Prime Numbers

• A number p is called prime if the only 
positive integers that divide p are p and 1.

• Examples of prime numbers: 2, 3, 5, 7, 11, 
and 13.

• There is a science to determining prime 
numbers.  The following slides present 
some computer algorithms that can be 
used to determine if a number n>1 is 
prime.
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Basic Primer Number Algorithm

1. First, check if n=2.  If it is, n is prime.  
Otherwise, proceed to step 2.

2. Check to see if each integer k is a divisor 
of n where 1<k<(n-1).  If none of the 
values of k are divisors of n, then n is 
prime
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Better Prime Number Algorithm
Note that if n=mk, then either m or k is less 
than √n.  Therefore, we don't need to check 
for values of k greater than √n. 

1. First check if n=2.  If it is, n is prime.  Otherwise, 
proceed to step 2.

2. Check to see if each integer k is a divisor of n 
where 1<k<√n.  If none of the values of k are 
divisors of n, then n is prime
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Even Better Prime Number Algorithm
Note that if k | n, and k is even, then 2 | n.  
Therefore, if 2 does not divide n, then no even 
number can be a divisor of n. (If a | b and b | c, 
then a | c)
1. First check if n=2.  If it is, n is prime.  Otherwise, 

proceed to step 2.
2. Check if 2 | n.  If so, n is not prime.  Otherwise, 

proceed to step 3.
3. Check to see if each odd integer k is a divisor of n 

where 1<k<√n.  If none of the values of k are 
divisors of n, then n is prime.
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Even2 Better Prime Number Algorithm 
Note that if k | n, and d | k, then d | n.  
Therefore, if d does not divide n, then no 
multiple of d can be a divisor of n.

1. First check if n=2.  If it is, n is prime.  
Otherwise, proceed to step 2.

2. Use a sequence k = 2, 3, 5, 7, 11, 13, 17, 
… up to √n to check if k | n.  If none are the 
values of k are divisors of n, then n is 
prime.  (Note that list is a list of prime 
numbers!)
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Factoring a Number into its Primes

• Dividing a number into its multiples over and 
over again until the multiples cannot be divided 
any longer shows us that any number can 
eventually be broken down into prime numbers.

• Examples: 
9 = 3⋅3 = 32

24 = 8⋅3 = 2⋅2⋅2⋅3 = 23⋅3
315 = 3⋅105 = 3⋅3⋅35 = 3⋅3⋅5⋅7 = 32⋅5⋅7

• Basically, this means that any number can be 
broken into multiples of prime numbers.
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Factoring into Primes (continued)
Each row of the table below presents a different number 
factored into its primes.  The numbers in the columns 
represent the number of each particular prime can be 
factored out of each original value.

0001120315

000001596

100010085

0000132540

1713117532
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Factoring into Primes (continued)

• Every positive integer n > 1 can be broken 
into multiples of prime numbers.  

• n = p1
k1p2

k2p3
k3p4

k4 …ps
ks

p1 < p2 < p3 < p4 < …< ps
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Methods for Factoring
• 2 | n If least significant digit of n is divisible 

by 2 (i.e., n is even), then 2 divides n
• 3 | n If the sum of all the digits of n down 

to a single digit equals 3, 6, or 9, then 3 
divides n.  For example, is 17,587,623 
divisible by 3?

1 + 7 + 5 + 8 + 7 + 6 + 2 + 3 = 39
3 + 9 = 12
1 + 2 = 3 YES!  3 divides 17,587,623
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Methods for Factoring (continued)

• Does 7 divide n?
– Remove least significant digit (one’s place) 

from n and multiply it by two.
– Subtract the doubled number from the 

remaining digits.
– If result is divisible by 7, then original number 

was divisible by 7
– Repeat if unable to determine from result.
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Methods for Factoring (continued)

Examples of checking for divisibility by 7

• 1,876 187 – 12 = 175 17 – 10 = 7 

• 4,923 492 – 6 = 486 48 – 12 = 36 ×
• 34,461 3,446 – 2 = 3,444 

344 – 8 = 336 33 – 12 = 21 
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Methods for Factoring (continued)

• Does 11 divide n?
– Starting with the most significant digit of n, 

adding the first digit, subtracting the next digit, 
adding the third digit, subtracting the fourth, 
and so on.  If the result is 0 or a multiple of 11, 
then the original number is divisible by 11.

– Repeat if unable to determine from result.
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Methods for factoring (continued)

Examples of checking for divisibility by 11

• 285311670611 2 – 8 + 5 – 3 + 1 – 1 + 6 
– 7 + 0 – 6 + 1 – 1 = –11 

• 279048 2 – 7 + 9 – 0 + 4 – 8 = 0 
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Methods for Factoring (continued)

• Does 13 divide n? 
– Delete the last digit (one’s place) from n.
– Subtract nine times the deleted digit from the 

remaining number. 
– If what is left is divisible by 13, then so is the 

original number.
– Repeat if unable to determine from result.
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General Observation of Integers

• If n and m are integers and n > 0, we can 
write m = qn + r for integers q and r with 
0 < r < n.

• For specific integers m and n, there is only 
one set of values for q and for r.

• If r = 0, then m is a multiple of n, i.e., n | m.  
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Examples of m = qn + r

• If n is 3 and m is 16, then 16 = 5(3) + 1 so 
q = 5 and r = 1

• If n is 10 and m is 3, then 3 = 0(10) + 3 so 
q = 0 and r = 3

• If n is 5 and m is –11, then – 11 = – 3(5) + 
4 so q = – 3 and r = 4
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Greatest Common Divisor

• If a, b, and k are in Z+, and k | a and k | b, 
we say that k is a common divisor.

• If d is the largest such k, d is called the 
greatest common divisor (GCD).

• d is a multiple of every k, i.e., every k 
divides d.
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GCD Example

Find the GCD of 540 and 315:
• 540 = 22 ⋅ 33 ⋅ 5
• 315 = 32 ⋅ 5 ⋅ 7
• 540 and 315 share the divisors 3, 32, 5, 3⋅5, and 

32⋅5 (Look at it as the number of possible ways 
to combine 3, 3, and 5)

• The largest is the GCD 32⋅5 = 45
• 315÷45 = 7 and 540÷45=12
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Theorems of the GCD
Assume d is GCD(a, b)
• d = sa + tb for some integers s and t. (s and t are 

not necessarily positive.)
• If c is any other common divisor of a and b, then 

c | d
• If d is the GCD(a, b), then d | a and d | b
• Assume d is the GCD(a, b).  If c | a and c | b, 

then c | d
• There is a horrendous proof of these theorems 

on page 22 of our textbook.  You are not 
responsible for this proof!
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GCD Theorem

• If a and b are in Z+, a>b, then GCD(a,b) = 
GCD(a, a+b)

• If c divides a and b, it divides a+b (this is from 
the earlier “divides” theorems)

• Since b = a-(a-b) = -a+(a+b), then a common 
divisor of a and (a+b) also divides a and b

• Since all c that divide a or b must also divide b 
and b+a, then they have the same complete set 
of divisors and therefore the same GCD.
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Euclidean Algorithm
• The Euclidean Algorithm is a recursive algorithm that 

can be used to find GCD (a, b)
• It is based on the fact that for any two integers, 

a > b, there exists a k and r such that:

a = k⋅b + r

• Since if a | b and a | c, then a | (b + c), then we know 
that the GCD (a,b) must also divide r.  Therefore, the 
GCD (a,b) = GCD(b,r)
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Euclidean Algorithm Process

• For two integers a and b where a > b > 0
a = k1b + r1, where k1 is in Z+ and 0 < r1 < b

• If r1 = 0, then b | a and b the is GCD(a, b)
• If r1 ≠ 0, then if some integer n divides a and b, 

then it must also divide r1. Similarly, if n divides b 
and r1, then it must divide a.

• Go back to top substituting b for a and r1 for b.  
Repeat until rn = 0 and kn will be GCD
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Least Common Multiple

• If a, b, and k are in Z+, and a | k, b | k, we say 
that k is a common multiple of a and b.

• The smallest such k, call it c, is called the least 
common multiple or LCM of a and b

• We write c = LCM(a,b)
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Deriving the LCM

• We can obtain LCM from a, b, and GCD(a,b)
• For any integers a and b, we can write a = p1

a1

p2
a2 …pk

ak and b = p1
b1 p2

b2 …pk
bk

• GCD(a,b) = p1
min(a1,b1) p2

min(a2,b2) …pk
min(ak,bk)

• LCM(a,b) = p1
max(a1,b1) p2

max(a2,b2) …pk
max(ak,bk)

• Since, GCD(a,b)⋅LCM(a,b) = p1
(a1+b1) p2

(a2+b2)

…pk
(ak+bk)

= p1
a1 p1

b1 p2
a2 p2

b2 …pk
ak pk

bk

= a⋅b
• Therefore, LCM(a,b) = a⋅b/GCD(a,b)
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Mod-n function

• If z is a nonnegative integer, the mod-n function, 
fn(z), is defined as fn(z) = r if z = qn + r

• For example:
f3(14) = 2 because 14 = 4⋅3 + 2
f7(153) = 6 because 153 = 21⋅7 + 6
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Representation of integers

• We are used to decimal, but in reality, it is only 
one of many ways to describe an integer

• We say that a decimal value is the “base 10 
expansion of n” or the “decimal expansion of 
n”

• If b>1 is an integer, then every positive integer n 
can be uniquely expressed in the form:
n = dkbk + dk-1bk-1 + dk-2bk-2 + … + d1b1 + d0b0

where 0 < di < b, i = 0, 1, …, k
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Proof that There is Exactly 
One Base Expansion

• Proof is on bottom of page 27
• Basis of proof is that n = dkbk + r
• If dk > bk, then k was not the largest non-

negative integer so that bk < n.
• If r > bk, then dk isn’t large enough
• Go back to 1 replacing n with r.  This time, 

remember that k = k-1, because r must be less 
than bk

• Repeat until k=0.
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Quick way to determine base b 
expansion of n

• Note that d0 is the remainder after dividing n by b.
• Note also that once n is divided by b, quotient is 

made up of:

(n-r)/b = (dkbk-1 dk-1bk-2+ dk-2bk-3+ … + d1)

Therefore, we can go back to step 1 to determine 
d1
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Example: Determine base 5 expansion 
of decimal 432

• 432 = 86*5 + 2 (remainder is d0 digit)
• 86 = 17*5 + 1 (remainder is d1 digit)
• 17 = 3*5 + 2 (remainder is d2 digit)
• 3 = 0*5 + 3 (remainder is d3 digit)
• 43210 = 32125
• Verify this using powers of 5 expansion:

32125 = 3⋅53 + 2⋅52 + 1⋅51 + 2⋅50

= 3⋅125 + 2⋅25 + 1⋅5 + 2⋅1
= 375 + 50 + 5 + 2 
= 423
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Example: Determine base 8 expansion 
of decimal 704

• 704 = 88*8 + 0 (remainder is d0 digit)
• 88 = 11*8 + 0 (remainder is d1 digit)
• 11 = 1*8 + 3 (remainder is d2 digit)
• 1 = 0*8 + 1 (remainder is d3 digit)
• 70410 = 13008
• Verify this using powers of 8 expansion:

32125 = 1⋅83 + 3⋅82 + 0⋅81 + 0⋅80

= 1⋅512 + 3⋅64 + 0⋅8 + 0⋅1
= 512 + 192 
= 70410


