CSCI 1900 Discrete Structures

Integers
Reading: Kolman, Section 1.4

CSCI 1900 - Discrete Structures
Integers - Page 1

Some Properties of Divisibility

- If n | m, then there exists a q such that $m=q \times n$
- The absolute values of both q and n are less than the absolute value of m, i.e., $|n|<|m|$ and $|q|<|m|$
- Examples:
$4 \mid 24: 24=4 \times 6$ and both 4 and 6 are less than 24 .
5 | 135 : $135=5 \times 27$ and both 5 and 27 are less than 135
- Simple properties of divisibility (proofs on page 21)
- If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{a} \mid \mathrm{c}$, then $\mathrm{a} \mid(\mathrm{b}+\mathrm{c})$
- If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{a} \mid \mathrm{c}$, where $\mathrm{b}>\mathrm{c}$, then $\mathrm{a} \mid(\mathrm{b}-\mathrm{c})$
- If $\mathrm{a} \mid \mathrm{b}$ or $\mathrm{a} \mid \mathrm{c}$, then $\mathrm{a} \mid \mathrm{bc}$
- If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$, then $\mathrm{a} \mid \mathrm{c}$

Basic Primer Number Algorithm

1. First, check if $n=2$. If it is, n is prime. Otherwise, proceed to step 2.
2. Check to see if each integer k is a divisor of n where $1<k \leq(n-1)$. If none of the values of k are divisors of n, then n is prime

Divisibility

- If one integer, n, divides into a second integer, m, without producing a remainder, then we say that " n divides m ".
- Denoted $\mathrm{n} \mid \mathrm{m}$
- If one integer, n, does not divide evenly into a second integer, m, i.e., $m \div n$ produces a remainder, then we say that " n does not divide m"
- Denoted $\mathrm{n} \nmid \mathrm{m}$

CSCI 1900 - Discrete Structures
Integers - Page 2

Prime Numbers

- A number p is called prime if the only positive integers that divide p are p and 1 .
- Examples of prime numbers: 2, 3, 5, 7, 11, and 13.
- There is a science to determining prime numbers. The following slides present some computer algorithms that can be used to determine if a number $n>1$ is prime.

Better Prime Number Algorithm

Note that if $n=m k$, then either m or k is less than $\sqrt{ } \mathrm{n}$. Therefore, we don't need to check for values of k greater than $\sqrt{ } n$.

1. First check if $n=2$. If it is, n is prime. Otherwise, proceed to step 2.
2. Check to see if each integer k is a divisor of n where $1<k \leq \sqrt{ } n$. If none of the values of k are divisors of n, then n is prime

Even Better Prime Number Algorithm

Note that if $k \mid n$, and k is even, then $2 \mid n$. Therefore, if 2 does not divide n, then no even number can be a divisor of n. (If $a \mid b$ and $b \mid c$, then $\mathrm{a} \mid \mathrm{c}$)

1. First check if $n=2$. If it is, n is prime. Otherwise, proceed to step 2.
2. Check if $2 \mid n$. If so, n is not prime. Otherwise, proceed to step 3.
3. Check to see if each odd integer k is a divisor of n where $1<k \leq \sqrt{ } n$. If none of the values of k are divisors of n , then n is prime.

Factoring a Number into its Primes

- Dividing a number into its multiples over and over again until the multiples cannot be divided any longer shows us that any number can eventually be broken down into prime numbers.
- Examples:
$9=3.3=3^{2}$
$24=8 \cdot 3=2 \cdot 2 \cdot 2 \cdot 3=2^{3} \cdot 3$
$315=3 \cdot 105=3 \cdot 3 \cdot 35=3 \cdot 3 \cdot 5 \cdot 7=3^{2} \cdot 5 \cdot 7$
- Basically, this means that any number can be broken into multiples of prime numbers.

CSCI 1900 - Discrete Structures
Integers - Page 9

Factoring into Primes (continued)

- Every positive integer $n>1$ can be broken into multiples of prime numbers.
- $\mathrm{n}=\mathrm{p}_{1}{ }^{\mathrm{k} 1} \mathrm{p}_{2}{ }^{\mathrm{k} 2} \mathrm{p}_{3}{ }^{\mathrm{k} 3} \mathrm{p}_{4}{ }^{\mathrm{k} 4} \ldots \mathrm{p}_{\mathrm{s}}{ }^{\mathrm{ks}}$
$\mathrm{p}_{1}<\mathrm{p}_{2}<\mathrm{p}_{3}<\mathrm{p}_{4}<\ldots<\mathrm{p}_{\mathrm{s}}$

Even ${ }^{2}$ Better Prime Number Algorithm

Note that if $k \mid n$, and $d \mid k$, then $d \mid n$ Therefore, if d does not divide n, then no multiple of d can be a divisor of n.

1. First check if $n=2$. If it is, n is prime. Otherwise, proceed to step 2.
2. Use a sequence $k=2,3,5,7,11,13,17$, \ldots up to $\sqrt{ } n$ to check if $k \mid n$. If none are the values of k are divisors of n, then n is prime. (Note that list is a list of prime numbers!)
[^0]| Factoring into Primes (continued)
 Each row of the table below presents a different number factored into its primes. The numbers in the columns represent the number of each particular prime can be factored out of each original value. | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 | 3 | 5 | 7 | 11 | 13 | 17 | |
| 540 | 2 | 3 | 1 | 0 | 0 | 0 | 0 | |
| 85 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | |
| 96 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | |
| 315 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | |
| CSCI 1900- Discrete Structures Integers - Page 10 | | | | | | | | |

Methods for Factoring

- $2 \mid n \rightarrow$ If least significant digit of n is divisible by 2 (i.e., n is even), then 2 divides n
- $3 \mid n \rightarrow$ If the sum of all the digits of n down to a single digit equals 3,6 , or 9 , then 3 divides n . For example, is $17,587,623$ divisible by 3 ?
$1+7+5+8+7+6+2+3=39$
$3+9=12$
$1+2=3 \rightarrow$ YES! 3 divides $17,587,623$

Methods for Factoring (continued)

- Does 7 divide n?
- Remove least significant digit (one's place) from n and multiply it by two.
- Subtract the doubled number from the remaining digits.
- If result is divisible by 7, then original number was divisible by 7
- Repeat if unable to determine from result.

Methods for Factoring (continued)

- Does 11 divide n ?
- Starting with the most significant digit of n, adding the first digit, subtracting the next digit, adding the third digit, subtracting the fourth, and so on. If the result is 0 or a multiple of 11, then the original number is divisible by 11.
- Repeat if unable to determine from result.

Methods for Factoring (continued)

- Does 13 divide n ?
- Delete the last digit (one's place) from n.
- Subtract nine times the deleted digit from the remaining number.
- If what is left is divisible by 13 , then so is the original number.
- Repeat if unable to determine from result.

Methods for factoring (continued)

Examples of checking for divisibility by 11

- $285311670611 \rightarrow 2-8+5-3+1-1+6$
$-7+0-6+1-1=-11 \checkmark$
- $279048 \rightarrow 2-7+9-0+4-8=0 \checkmark$
$\overline{\text { CSCI } 1900 \text { - Discrete Structures }} \quad$ Integers - Page 16

Methods for Factoring (continued)

Examples of checking for divisibility by 7

- $1,876 \rightarrow 187-12=175 \rightarrow 17-10=7 \checkmark$
- $4,923 \rightarrow 492-6=486 \rightarrow 48-12=36 \times$
- $34,461 \rightarrow 3,446-2=3,444 \rightarrow$
$344-8=336 \rightarrow 33-12=21 \checkmark$

CSCI 1900 - Discrete Structures

General Observation of Integers

- If n and m are integers and $n>0$, we can write $m=q n+r$ for integers q and r with $0 \leq r<n$.
- For specific integers m and n, there is only one set of values for q and for r.
- If $r=0$, then m is a multiple of n, i.e., $n \mid m$.

CSCI 1900 - Discrete Structures
Integers - Page 18

Examples of $m=q n+r$

- If n is 3 and m is 16 , then $16=5(3)+1$ so $q=5$ and $r=1$
- If n is 10 and m is 3 , then $3=0(10)+3$ so $q=0$ and $r=3$
- If n is 5 and m is -11 , then $-11=-3(5)+$ 4 so $q=-3$ and $r=4$

CSCI 1900 - Discrete Structures

GCD Example

Find the GCD of 540 and 315 :

- $540=2^{2} \cdot 3^{3} \cdot 5$
- $315=3^{2} \cdot 5 \cdot 7$
- 540 and 315 share the divisors $3,3^{2}, 5,3 \cdot 5$, and $3^{2} .5$ (Look at it as the number of possible ways to combine 3, 3, and 5)
- The largest is the GCD $\rightarrow 32.5=45$
- $315 \div 45=7$ and $540 \div 45=12$

GCD Theorem

- If a and b are in $Z^{+}, a>b$, then $G C D(a, b)=$ $G C D(a, a \pm b)$
- If c divides a and b, it divides $a \pm b$ (this is from the earlier "divides" theorems)
- Since $b=a-(a-b)=-a+(a+b)$, then a common divisor of a and ($a \pm b$) also divides a and b
- Since all c that divide a or b must also divide b and $b \pm a$, then they have the same complete set of divisors and therefore the same GCD.

CSCI 1900 - Discrete Structures
Integers - Page 23

Greatest Common Divisor

- If a, b, and k are in $\mathrm{Z}+$, and $\mathrm{k} \mid \mathrm{a}$ and $\mathrm{k} \mid \mathrm{b}$, we say that k is a common divisor.
- If d is the largest such k, d is called the greatest common divisor (GCD).
- d is a multiple of every k , i.e., every k divides d.

CSCI 1900 - Discrete Structures
Integers - Page 20

Theorems of the GCD

Assume d is $\operatorname{GCD}(\mathrm{a}, \mathrm{b})$

- $\mathrm{d}=\mathrm{sa}+\mathrm{tb}$ for some integers s and t . (s and t are not necessarily positive.)
- If c is any other common divisor of a and b, then $\mathrm{c} \| \mathrm{d}$
- If d is the $\operatorname{GCD}(a, b)$, then $d \mid a$ and $d \mid b$
- Assume d is the $\operatorname{GCD}(a, b)$. If $c \mid a$ and $c \mid b$, then c \| d
- There is a horrendous proof of these theorems on page 22 of our textbook. You are not responsible for this proof!

CSCI 1900 - Discrete Structures
Integers - Page 22

Euclidean Algorithm

- The Euclidean Algorithm is a recursive algorithm that can be used to find GCD (a, b)
- It is based on the fact that for any two integers, $a>b$, there exists a k and r such that:

$$
a=k \cdot b+r
$$

- Since if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$, then we know that the GCD (a, b) must also divide r. Therefore, the $\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\operatorname{GCD}(\mathrm{b}, \mathrm{r})$

CSCI 1900 - Discrete Structures
Integers - Page 24

Euclidean Algorithm Process

- For two integers a and b where $\mathrm{a}>\mathrm{b}>0$ $a=k_{1} b+r_{1}$, where k_{1} is in $Z+a n d 0 \leq r_{1}<b$
- If $r_{1}=0$, then $b \mid a$ and b the is $\operatorname{GCD}(a, b)$
- If $r_{1} \neq 0$, then if some integer n divides a and b, then it must also divide r_{1}. Similarly, if n divides b and r_{1}, then it must divide a.
- Go back to top substituting b for a and r_{1} for b. Repeat until $r_{n}=0$ and k_{n} will be GCD
CSCI 1900 - Discrete Structures \quad Integers - Page 25

Deriving the LCM

- We can obtain LCM from a, b, and GCD (a, b)
- For any integers a and b, we can write $a=p_{1}{ }^{a 1}$ $p_{2}{ }^{\mathrm{a} 2} \ldots \mathrm{p}_{\mathrm{k}}^{\mathrm{ak}}$ and $\mathrm{b}=\mathrm{p}_{1}{ }^{\mathrm{b} 1} \mathrm{p}_{2}{ }^{\mathrm{b} 2} \ldots \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{bk}}$
- $\operatorname{GCD}(a, b)=p_{1}^{\min (a 1, b 1)} p_{2}^{\min (a 2, b 2)} \ldots p_{k}^{\min (a k, b k)}$
- $\operatorname{LCM}(a, b)=p_{1}$ max (a1,b1) $p_{2}{ }^{\max (a 2, b 2)} \ldots p_{k}^{\max (a k, b k)}$
- Since, $\operatorname{GCD}(a, b) \cdot \operatorname{LCM}(a, b)=p_{1}^{(a 1+b 1)} p_{2}^{(a 2+b 2)}$ $\ldots \mathrm{p}_{\mathrm{k}}{ }^{(\mathrm{ak}+\mathrm{bk})}$
$=p_{1}^{a 1} p_{1}{ }^{\text {b1 }} p_{2}{ }^{a 2} p_{2}{ }^{b 2} \ldots p_{k}{ }^{a k} p_{k}{ }^{b k}$
- Therefore, $\operatorname{LCM}(a, b)=a \cdot b / G C D(a, b)$

Representation of integers

- We are used to decimal, but in reality, it is only one of many ways to describe an integer
- We say that a decimal value is the "base 10 expansion of n " or the "decimal expansion of n"
- If $b>1$ is an integer, then every positive integer n can be uniquely expressed in the form: $n=d_{k} b^{k}+d_{k-1} b^{k-1}+d_{k-2} b^{k-2}+\ldots+d_{1} b^{1}+d_{0} b^{0}$ where $0 \leq d_{i}<b, i=0,1, \ldots, k$

Least Common Multiple

- If a, b, and k are in $Z+$, and $a|k, b| k$, we say that k is a common multiple of a and b.
- The smallest such k, call it c, is called the least common multiple or LCM of a and b
- We write c = LCM(a,b)

CSCI 1900 - Discrete Structures	Integers - Page 26

Mod-n function

- If z is a nonnegative integer, the mod- n function, $f_{n}(z)$, is defined as $f_{n}(z)=r$ if $z=q n+r$
- For example:
$\mathrm{f}_{3}(14)=2$ because $14=4.3+2$
$\mathrm{f}_{7}(153)=6$ because $153=21 \cdot 7+6$
$\overline{\text { CSCI } 1900 \text { - Discrete Structures }} \quad$ Integers - Page 28

Proof that There is Exactly One Base Expansion

- Proof is on bottom of page 27
- Basis of proof is that $n=d_{k} b^{k}+r$
- If $d_{k}>b^{k}$, then k was not the largest nonnegative integer so that $\mathrm{b}^{\mathrm{k}} \leq \mathrm{n}$.
- If $r \geq b^{k}$, then d_{k} isn't large enough
- Go back to 1 replacing n with r. This time, remember that $\mathrm{k}=\mathrm{k}-1$, because r must be less than b^{k}
- Repeat until $\mathrm{k}=0$.

Quick way to determine base b expansion of n

- Note that d_{0} is the remainder after dividing n by b .
- Note also that once n is divided by b, quotient is made up of:

$$
(n-r) / b=\left(d_{k} b^{k-1} d_{k-1} b^{k-2}+d_{k-2} b^{k-3+}+\ldots+d_{1}\right)
$$

Therefore, we can go back to step 1 to determine d_{1}

Example: Determine base 5 expansion of decimal 432

- $432=86 * 5+2$ (remainder is d_{0} digit)
- $86=17 * 5+1$ (remainder is d_{1} digit)
- $17=3 * 5+2$ (remainder is d_{2} digit)
- $3=0 * 5+3$ (remainder is d_{3} digit)
- $432_{10}=3212_{5}$
- Verify this using powers of 5 expansion:

$$
\begin{aligned}
& 3212_{5}=3 \cdot 5^{3}+2 \cdot 5^{2}+1 \cdot 5^{1}+2 \cdot 5^{0} \\
& \quad=3 \cdot 125+2 \cdot 25+1 \cdot 5+2 \cdot 1 \\
& \quad=375+50+5+2 \\
& \quad=423
\end{aligned}
$$

Example: Determine base 8 expansion
of decimal 704

- $704=88 * 8+0$ (remainder is d_{0} digit)
- $88=11 * 8+0$ (remainder is d_{1} digit)
- $11=1 * 8+3$ (remainder is d_{2} digit)
- $1=0 * 8+1$ (remainder is d_{3} digit)
- $704_{10}=1300_{8}$
- Verify this using powers of 8 expansion:
$3212_{5}=1 \cdot 8^{3}+3.8^{2}+0.8^{1}+0.8^{0}$
$\quad=1.512+3.64+0.8+0.1$
$\quad=512+192$
$\quad=704_{10}$

CSCI 1900 - Discrete Structures

[^0]: CSCI 1900 - Discrete Structures
 Integers - Page 8

