
1

Minimal Spanning Trees – Page 1CSCI 1900 – Discrete Structures

CSCI 1900
Discrete Structures

Minimal Spanning Trees
Reading: Kolman, Section 7.5

Minimal Spanning Trees – Page 2CSCI 1900 – Discrete Structures

In-Class Exercise
A small startup
airline wants to
provide service to
the 5 cities in the
table to the right.
Allowing for multiple
connecting flights,
determine all of the
direct flights that
would be needed in
order to service all
five cities.

MileageCity 2City 1

450PittsburgChicago
300PittsburgDetroit
300ChicagoDetroit
300PittsburgPhiladelphia
700ChicagoPhiladelphia
600DetroitPhiladelphia
150PittsburgCleveland
350ChicagoCleveland
200DetroitCleveland
400PhiladelphiaCleveland

Source: http://www.usembassymalaysia.org.my/distance.html

Minimal Spanning Trees – Page 3CSCI 1900 – Discrete Structures

Undirected Graph
• If you recall from our discussion on types of

relations, a symmetric relation is one that for
every relation (a,b) that is contained in R, the
relation (b,a) is also in R.

• If the relation is represented with a matrix, this
means that the matrix is symmetric across the
main diagonal.

• In the digraph of a symmetric relation, every
edge is bidirectional, i.e., there is no defined
direction.

Minimal Spanning Trees – Page 4CSCI 1900 – Discrete Structures

Connected Relation
• A relation is connected if for every a and b in

R, there is a path from a to b.
• It is easier to see a connected relation using a

digraph than it is to describe in using words.

A

B

D

C

E

Connected

A

B

D

C

E

Not Connected

Minimal Spanning Trees – Page 5CSCI 1900 – Discrete Structures

Spanning Tree
• Textbook definition: “If R is a symmetric,

connected relation on a set A, we say that a
tree T on A is a spanning tree for R if T is a tree
with exactly the same vertices as R and which
can be obtained from R by deleting some edges
of R.” p. 275

• Basically, a undirected spanning tree is one that
connects all n elements of A with n-1 edges.

• To make a cycle connecting n elements, more
than n-1 edges will be needed. Therefore,
there are no cycles.

Minimal Spanning Trees – Page 6CSCI 1900 – Discrete Structures

Weighted Graph

In the past, we have represented a undirected
graph with unlabeled edges. It can also be
represented with a symmetric binary matrix.

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

MT =

A

B
D

C

2

Minimal Spanning Trees – Page 7CSCI 1900 – Discrete Structures

Weighted Graph (continued)

By giving the edges a numeric value indicating
some parameter in the relation between two
vertices, we have created a weighted tree.

A

B
D

C
5

3

4
7

Minimal Spanning Trees – Page 8CSCI 1900 – Discrete Structures

Weighted Graph (continued)
We can still use matrix notation to represent a
weighted graph. Replace the 1’s used to represent an
edge with the edge’s weight. A 0 indicates no edge.

0 5 3 0

5 0 4 0

3 4 0 7

0 0 7 0

MT =

Minimal Spanning Trees – Page 9CSCI 1900 – Discrete Structures

Back to In-Class Exercise
(Not drawn to scale)

Philadelphia

Pittsburg

Chicago

Cleveland

Detroit

400

200

350
150

600

700
300

300
300

450

Minimal Spanning Trees – Page 10CSCI 1900 – Discrete Structures

Minimal Spanning Tree
• Assume T represents a spanning tree for an

undirected graph.
• The total weight of the spanning tree T is the

sum of all of the weights of all of the edges of T.
• The one(s) with the minimum total weight are

called the minimal spanning tree(s).
• As suggested by the “(s)” in the above

definition, there may be a number of minimal
spanning trees for a particular undirected graph
with the same total weight.

Minimal Spanning Trees – Page 11CSCI 1900 – Discrete Structures

Algorithms for Determining the
Minimal Spanning Tree

There are two algorithms presented in our
textbook for determining the minimal
spanning tree of an undirected graph that
is connected and weighted.

– Prim’s Algorithm: process of stepping from
vertex to vertex

– Kruskal’s Algoritm: searching through edges
for minimum weights

Minimal Spanning Trees – Page 12CSCI 1900 – Discrete Structures

Prim’s Algorithm
From textbook, p. 281

Let R be a symmetric, connected relation
with n vertices.

1. Choose a vertex v1 of R. Let V = {v1} and
E = { }.

2. Choose a nearest neighbor vi of V that is
adjacent to vj, vj ∈ V, and for which the edge
(vi, vj) does not form a cycle with members of
E. Add vi to V and add (vi, vj) to E.

3. Repeat Step 2 until |E| = n – 1. Then V
contains all n vertices of R, and E contains the
edges of a minimal spanning tree for R.

3

Minimal Spanning Trees – Page 13CSCI 1900 – Discrete Structures

Prim’s Algorithm in English

• The goal is to one at a time include a new
vertex by adding a new edge without
creating a cycle

• Pick any vertex to start. From it, pick the
edge with the lowest weight.

• As you add vertices, you will add possible
edges to follow to new vertices.

• Pick the edge with the lowest weight to go
to a new vertex without creating a cycle.

Minimal Spanning Trees – Page 14CSCI 1900 – Discrete Structures

In-Class Exercise (1st edge)
Pick any starting point: Detroit.
Pick edge with lowest weight: 200 (Cleveland)

Cleveland

Detroit

200

Minimal Spanning Trees – Page 15CSCI 1900 – Discrete Structures

In-Class Exercise (2nd edge)
Pick any edge connected to Cleveland or Detroit

that doesn’t create a cycle: 150 (Pittsburg)

Pittsburg

Cleveland

Detroit

200

150

Minimal Spanning Trees – Page 16CSCI 1900 – Discrete Structures

In-Class Exercise (3rd edge)
Pick any edge connected to Cleveland, Detroit,

or Pittsburg that doesn’t create a cycle: 300
(Philadelphia)

Philadelphia

Pittsburg

Cleveland

Detroit

200

150 300

Minimal Spanning Trees – Page 17CSCI 1900 – Discrete Structures

In-Class Exercise (4th edge)
Pick any edge connected to Cleveland, Detroit,

Pittsburg, or Philadelphia that doesn’t create a
cycle: 300 (Chicago) This gives us 4 edges!

Chicago

300

Philadelphia

Pittsburg

Cleveland

Detroit

200

150 300

Minimal Spanning Trees – Page 18CSCI 1900 – Discrete Structures

Kruskal’s Algorithm
From textbook, p. 284

Let R be a symmetric, connected relation
with n vertices and let S = {e1, e2, e3, …ek}
be the set of all weighted edges of R.

1. Choose an edge e1 in S of least weight. Let E
= {e1}. Replace S with S – {e1}.

2. Select an edge ei in S of least weight that will
not make a cycle with members of E. Replace
E with E ∪ {ei} and S with S – {ei}.

3. Repeat Step 2 until |E| = n – 1.

4

Minimal Spanning Trees – Page 19CSCI 1900 – Discrete Structures

Kruskal’s Algorithm in English

• The goal is to one at a time include a new
edge without creating a cycle.

• Start by picking the edge with the lowest
weight.

• Continue to pick new edges without
creating a cycle. Edges do not necessarily
have to be connected.

• Stop when you have n-1 edges.

Minimal Spanning Trees – Page 20CSCI 1900 – Discrete Structures

In-Class Exercise (1st edge)
First edge picked is lowest value of 150

(Cleveland to Pittsburg)

Pittsburg

Cleveland

150

Minimal Spanning Trees – Page 21CSCI 1900 – Discrete Structures

In-Class Exercise (2nd edge)
Next lowest edge is 200 (Cleveland to Detroit)

Pittsburg

Cleveland

Detroit

200

150

Minimal Spanning Trees – Page 22CSCI 1900 – Discrete Structures

In-Class Exercise (3rd edge)
There are a few edges of 300, but Detroit to Pittsburg
cannot be selected because it would create a cycle.
We go with Pittsburg to Philadelphia.

Philadelphia

Pittsburg

Cleveland

Detroit

200

150 300

Minimal Spanning Trees – Page 23CSCI 1900 – Discrete Structures

In-Class Exercise (4th edge)
The next lowest edge that doesn’t create a
cycle is 300 edge from Detroit to Chicago. This
is the 4th edge!

Philadelphia

Pittsburg

Cleveland

Detroit

200

150 300Chicago

300

