

Sequences Derived from a Set

- Assume we have a set A containing n items.
- Examples include alphabet, decimal digits, playing cards, etc.
- We can produce sequences from each of these sets.
$\overline{\text { CSCI } 1900 \text { - Discrete Structures }} \quad$ Permutations - Page 2

Types of Sequences from a Set

There are a number of different ways to create a sequence from a set

- Any order, duplicates allowed
- Any order, no duplicates allowed
- Order matters, duplicates allowed
- Order matters, no duplicates allowed

Classifying Real-World Sequences

Determine size of set A and classify each of the following as one of the previously listed types of sequences

•Five card stud poker	•Windows XP CD
•Phone numbers	Key
•License plates	•Votes in a
•Lotto numbers	presidential election
$\frac{\text { •Codes for 5-digit }}{\text { •Binary numbers }}$	CSCI door locks
CSCI 1900 - Discrete Structures	Permutations - Page 4

Multiplication Principle of Counting

- The first type of sequence we will look at is where duplicates are allowed and their order matters.
- Supposed that two tasks T_{1} and T_{2} must be performed in sequence.
- If T_{1} can be performed in n_{1} ways, and for each of these ways, T_{2} can be performed in n_{2} ways, then the sequence $T_{1} T_{2}$ can be performed in $n_{1} \cdot n_{2}$ ways.

Multiplication Principle (continued)

- Extended previous example to T_{1}, T_{2}, \ldots, T_{k}
- Solution becomes $n_{1} \cdot n_{2} \cdots \cdot n_{k}$

CSCI 1900 - Discrete Structures
Permutations - Page 6

Examples of Multiplication Principle

- 8 character passwords
- First digit must be a letter
- Any character after that can be a letter or a number
$-26 * 36 * 36 * 36 * 36 * 36 * 36 * 36=$ 2,037,468,266,496
- Windows XP/2000 software keys - 25 characters of letters or numbers - 36^{25}

Calculation of the Number of Subsets

- Let A be a set with n elements: how many subsets does A have?
- Each element may either be included or not included.
- In section 1.3, we talked about the characteristic function which defines membership in a set based on a universal set
- Example:
- U=\{1,2,3,4,5,6\}
$-A=\{1,2\}, B=\{2,4,6\}$
$-f_{\mathrm{A}}=\{1,1,0,0,0,0\}, f_{\mathrm{B}}=\{0,1,0,1,0,1\}$

CSCI 1900 - Discrete Structures
Permutations - Page 9

Permutations

- The next type of sequence we will look at is where duplicates are not allowed and their order matters
- Assume A is a set of n elements
- Suppose we want to make a sequence, S, of length r where $1 \leq r \leq n$

More Examples of Multiplication Principle

- License plates of the form "ABC 123":
$-26 * 26 * 26 * 10 * 10 * 10=17,576,000$
- Phone numbers
- Three digit area code cannot begin with 0
- Three digit exchange cannot begin with 0
$-9 * 10 * 10 * 9 * 10 * 10 * 10 * 10 * 10 * 10=$ 8,100,000,000
$\overline{\text { CSCI } 1900 \text { - Discrete Structures } \quad \text { Permutations - Page } 8}$

Calculation of the Number of Subsets (continued)

- Every subset of A can be defined with a characteristic function of n elements where each element is a 1 or a 0 , i.e., each element has 2 possible values
- Therefore, there are $2 \cdot 2 \cdot 2 \cdot \ldots \cdot 2=2^{n}$ possible characteristic functions
$\overline{\text { CSCI } 1900 \text { - Discrete Structures }} \quad$ Permutations - Page 10

Multiplication Principle Versus Permutations

- If repeated elements are allowed, how many different sequences can we make?
- Process:
- Each time we select an element for the next element in the sequence, S , we have n to choose from
- This gives us $\mathrm{n} \cdot \mathrm{n} \cdot \mathrm{n} \cdot \ldots \cdot \mathrm{n}=\mathrm{n}^{r}$ possible choices

Multiplication Principle Versus Permutations (continued)

- Suppose repeated elements are not allowed, how many different sequences can we make?
- Process:
- The first selection, T_{1}, provides n choices.
- Each time we select an element after that, T_{k} where $k>1$, there is one less than there was for the previous selection, k-1.
- The last choice, T_{r}, has $n-(r-1)=n-r+1$ choices
- This gives us $n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1)$
$\overline{\text { CSCI } 1900 \text { - Discrete Structures } \quad \text { Permutations - Page } 13}$

Factorial

- For r=n, ${ }_{n} P_{n}={ }_{n} P_{r}=\mathrm{n} \cdot(\mathrm{n}-1) \cdot(\mathrm{n}-2) \cdot \ldots \cdot 2 \cdot 1$
- This number is also written as n ! and is read \boldsymbol{n} factorial
- ${ }_{n} P_{r}$ can be written in terms of factorials

$$
\begin{aligned}
& { }_{n} P_{r}=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1) \\
& { }_{n} P_{r}=\frac{n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1) \cdot(n-r) \cdot \ldots \cdot 2 \cdot 1}{(n-r) \cdot \ldots \cdot 2 \cdot 1} \\
& { }_{n} P_{r}=n!/(n-r)!
\end{aligned}
$$

Distinguishable Permutations from a Set with Repeated Elements

- Number of distinguishable permutations that can be formed from a collection of n objects where the first object appears k_{1} times, the second object k_{2} times, and so on is:

$$
\mathrm{n}!/\left(\mathrm{k}_{1}!\cdot \mathrm{k}_{2}!\cdots \mathrm{k}_{\mathrm{t}}!\right)
$$

where $\mathrm{k}_{1}+\mathrm{k}_{2}+\ldots+\mathrm{k}_{\mathrm{t}}=\mathrm{n}$

Permutations

- Notation: ${ }_{n} P_{r}$ is called number of permutations of n objects taken r at a time.
- Word scramble: How many 4 letter words can be made from the letters in "Gilbreath" without duplicate letters?

$$
{ }_{9} \mathrm{P}_{4}=9 \cdot 8 \cdot 7 \cdot 6=3,024
$$

- Example, how many 4-digit PINs can be created for the 5 button CSCI door locks?

$$
{ }_{5} \mathrm{P}_{4}=5 \cdot 4 \cdot 3 \cdot 2=120
$$

- Would adding a fifth digit give us more PINs?

CSCI 1900 - Discrete Structures Permutations - Page 14

Distinguishable Permutations from a Set with Repeated Elements

- If the set from which a sequence is being derived has duplicate elements, e.g., $\{a, b, d, d, g, h, r, r, r, s, t\}$, then straight permutations will actually count some sequences multiple times.
- Example: How many words can be made from the letters in Tarnoff?
- Problem: the f's cannot be distinguished, e.g., aorf cannot be distinguished from aorf
$\overline{\text { CSCI } 1900 \text { - Discrete Structures }} \quad$ Permutations - Page 16

Example

- How many distinguishable words can be formed from the letters of JEFF?
- Solution: $n=4, k_{j}=1, k_{e}=1, k_{f}=2$
$n!/\left(k_{\mathrm{j}}!\cdot \mathrm{k}_{\mathrm{e}}!\cdot \mathrm{k}_{\mathrm{f}}!\right)=4!/(1!1!2!)=12$
- List:

JEFF, JFEF, JFFE, EJFF, EFJF, EFFJ, FJEF, FEJF, FJFE, FEFJ, FFJE, and FFEJ

Example

- How many distinguishable words can be formed from the letters of MISSISSIPPI?
- Solution:
$\mathrm{n}=11, \mathrm{k}_{\mathrm{m}}=1, \mathrm{k}_{\mathrm{i}}=4, \mathrm{k}_{\mathrm{s}}=4, \mathrm{k}_{\mathrm{p}}=2$
$\mathrm{n}!/\left(\mathrm{k}_{\mathrm{m}}!\cdot \mathrm{k}_{\mathrm{i}}!\cdot \mathrm{k}_{\mathrm{s}}!\cdot \mathrm{k}_{\mathrm{p}}!\right)=11!/(1!4!4!2!)$ $=34,650$

CSCI 1900 - Discrete Structures

In-Class Exercises

- How many ways can you sort a deck of 52 cards?
- Compute the number of 4-digit ATM PINs where duplicate digits are allowed.
- How many ways can the letters in the word "TARNOFF" be arranged?

