

Sample Spaces

- The set of all possible outcomes of a probabilistic experiment is called the sample space.
- Tossing a pair of dice results in one of ${ }_{7} \mathrm{C}_{2}$.

Sample Spaces (continued)

- When determining the size of the sample space, you need to be sure of the method by which the sample space is created.
- Rolling dice - duplicates allowed, order matters (multiplication principle)
- Poker - duplicates not allowed, order doesn't matter (combinations)

CSCI 1900 - Discrete Structures
Probability - Page 5

Probability Theory

There are two types of experiments:

- Deterministic - the outcome is always the same
- Probabilistic - the outcome could be any of a number of possible outcomes
Now that we know how to "count" using the multiplication principle, permutations, and combinations, we can figure out the probability of a certain outcome for probabilistic experiments.

CSCI 1900 - Discrete Structures
Probability - Page 2

Sample Spaces (continued)

The previous slide doesn't take into account the fact that in all but 6 cases, each pattern could be the result of 2 different rolls

a statement (remember that a statement is something that must be true or false).

- Poker example - a statement about a hand of poker might be that the hand contained four of a kind.
- Dice example - a statement about a roll of the dice might be that a pair came up or that the sum of the dots equals 7 .

CSCI 1900 - Discrete Structures
Probability - Page 6

Events (continued)

- The list of all possible outcomes that satisfies an event makes a set.
- The events for which a roll of dice results in a pair is $\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$.
- The events for which a roll of dice results in a sum of 7 is $\{(1,6),(2,5),(3,4),(4,3),(5,2)$, $(6,1)$ \}.

Equally Likely Outcomes

- Assuming that any outcome is equally likely, i.e., there is no bias towards a particular subset of outcomes, then the probability of any outcome from a sample space with n possible outcomes is:

$$
1 / n
$$

- The probability of an outcome from the event set, E, containing $|E|$ possible outcomes is:

$$
|E| / n
$$

CSCI 1900 - Discrete Structures

Events (continued)

- Since an event is a set, then all of the operations on sets can apply to events.
- The events for which a roll of a pair of dice is either a pair or the sum equals 7 is $\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,6)$, $(2,5),(3,4),(4,3),(5,2),(6,1)\}$.
- The events for which a roll of a pair of dice is a pair and the sum equals 7 is the empty set.

CSCI 1900 - Discrete Structur
Probability - Page 8

Poker Odds Calculation

- Total possible hands $={ }_{52} \mathrm{C}_{5}=2,598,960$
- Royal Straight Flush $\rightarrow 4$ possible hands Odds are 4 in $2,598,960 \rightarrow 1: 649,740$
- Straight Flush $\rightarrow 40$ possible hands Odds are 40 in 2,598,960 \rightarrow 1:64,974
- Four Aces $\rightarrow 48$ possible hands Odds are 48 in 2,598,960 \rightarrow 1:54,145
- Four of a kind $\rightarrow{ }_{13} \mathrm{C}_{1} \times{ }_{48} \mathrm{C}_{1}=624$ hands Odds are 624 in 2,598,960 \rightarrow 1:4,165
- Full house $\rightarrow{ }_{13} \mathrm{C}_{1} \times{ }_{4} \mathrm{C}_{3} \times{ }_{12} \mathrm{C}_{1} \times{ }_{4} \mathrm{C}_{2}=3,744$ Odds are 3,744 in $2,598,960 \rightarrow 1: 694$

CSCI 1900 - Discrete Structures
Probability - Page 10

In-Class Exercise

- Is it worth it to play PowerBALL?

