

Cartesian Product Example

- If $A=\{1,2,3\}$ and $B=\{a, b, c\}$, find $A \times B$
- $A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b)$, $(2, c),(3, a),(3, b),(3, c)\}$

Cartesian Product

- If $A_{1}, A_{2}, \ldots, A_{m}$ are nonempty sets, then the Cartesian Product of them is the set of all ordered m-tuples $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, where $a_{i} \in A_{i}, i=1,2, \ldots m$.
- Denoted $A_{1} \times A_{2} \times \ldots \times A_{m}=$ $\left\{\left(a_{1}, a_{2}, \ldots, a_{m}\right) \mid a_{i} \in A_{i}, i=1,2, \ldots m\right\}$

CSCI 1900 - Discrete Structures
Relations - Page 2

Using Matrices to Denote Cartesian Product

- For Cartesian Product of two sets, you can use a matrix to find the sets.
- Example: Assume $A=\{1,2,3\}$ and $B=\{a, b, c\}$. The table below represents $A \times B$.

Subsets of the Cartesian Product

- Many of the results of operations on sets produce subsets of the Cartesian Product set
- Relational database
- Each column in a database table can be considered a set
- Each row is an m-tuple of the elements from each column or set
- No two rows should be alike

CSCI 1900 - Discrete Structures
Relations - Page 6

Relations

- A relation, R, is a subset of a Cartesian Product that uses a definition to state whether an m-tuple is a member of the subset or not
- Terminology: Relation \boldsymbol{R} from \boldsymbol{A} to \boldsymbol{B}
- $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{B}$
- Denoted " $x R$ " " where $x \in A$ and $y \in B$ and x has a relation with y
- If x does not have a relation with y, denoted

$$
x \text { 央 y }
$$

CSCI 1900 - Discrete Structures

Relations Across Same Set

- Relations may be from one set to the same set, i.e., A = B
- Terminology: Relation R on A $R \subseteq A \times A$

Relation Example

- A is the set of all students and B is the set of all courses
- A relation R may be defined as the course is required

Paul Giblock R CSCI 2710
Danny Camper \mathbb{R} CSCI 2710

CSCI 1900 - Discrete Structures Relations - Page

Relation on a Single Set Example

- A is the set of all courses
- A relation R may be defined as the course is a prerequisite
- CSCI 2150 R CSCI 3400
- $\mathrm{R}=\{(\mathrm{CSCl} 2150, \mathrm{CSCl} 3400)$, (CSCI 1710, CSCI 2910), (CSCI 2800, CSCI 2910), ...\}

CSCI 1900 - Discrete Structures

Example: Features of Digital Cameras

- Megapixels $=\{<2,3$ to $4,>5\}$
- battery life $=\{<200$ shots, 200 to 400 shots, >400 shots\}
- optical zoom $=\{n o n e, 2 X$ to $3 X, 4 X$ or better\}
- storage capacity $=\{<32 \mathrm{MB}, 32 \mathrm{MB}$ to $128 \mathrm{MB},>128 \mathrm{MB}\}$
- price = Z+

CSCI 1900 - Discrete Structures
Relations - Page 11

Digital Camera Example (continued)

Possible relations might be:

- Priced below \$X
- above a certain megapixels
- a combination of price below \$X and optical zoom of 4X or better

Theorems of Relations

- Let R be a relation from A to B, and let A_{1} and A_{2} be subsets of A
- If $A_{1} \subseteq A_{2}$, then $R\left(A_{1}\right) \subseteq R\left(A_{2}\right)$
$-R\left(A_{1} \cup A_{2}\right)=R\left(A_{1}\right) \cup R\left(A_{2}\right)$

$$
-R\left(A_{1} \cap A_{2}\right) \subseteq R\left(A_{1}\right) \cap R\left(A_{2}\right)
$$

- Let R and S be relations from A to B. If $R(a)=S(a)$ for all a in A, then $R=S$.

Example of Using a Matrix to Denote a Relation

- Using the previous example where $A=\{1,2,3\}$ and $B=\{a, b, c\}$. The matrix below represents the relation $R=\{(1, a),(1, c),(2, c),(3, a),(3, b)\}$.

Matrix of a Relation

- We can represent a relation between two finite sets with a matrix
- $M_{R}=\left[m_{i j}\right]$, where

$$
m_{i j}=\left\{\begin{array}{l}
1 \text { if }\left(a_{i}, b_{j}\right) \in R \\
0 \text { if }\left(a_{i}, b_{j}\right) \notin R
\end{array}\right.
$$

CSCI 1900 - Discrete Structures

Digraph of a Relation

- Let R be a relation on A
- We can represent R pictorially as follows - Each element of A is a circle called a vertex
- If a_{i} is related to a_{j}, then draw an arrow from the vertex a_{i} to the vertex a_{j}
- In degree = number of arrows coming into a vertex
- Out degree = number of arrows coming out of a vertex

Representing a Relation

The following three representations depict the same relation on $A=\{1,2,3\}$.
$\left.\begin{array}{l}\mathrm{R}=\{(1,1),(1,3),(2,3),(3,2),(3,3)\} \\ 0 \\ 0\end{array} \frac{1}{1} \begin{array}{lll}1\end{array}\right]$

