CSCI 2710 - Discrete Structures

Identifying Properties of Relations

Property	Definition	Identification with a matrix	Identification with a digraph
Reflexive	A relation R on a set A is reflexive if (a, a) $\in \mathrm{R}$ for all $\mathrm{a} \in \mathrm{A}$.	All 1's on the main diagonal	Every vertex has a cycle of length 1
Irreflexive	A relation R on a set A is irreflexive if $(a, a) \notin R$ for all $a \in A$.	All 0's on the main diagonal	No vertex has a cycle of length 1
Symmetric	A relation R on a set A is symmetric if whenever $(a, b) \in R$, then $(b, a) \in R$.	The matrix is symmetric across the main diagonal	Every edge is undirected, i.e., it goes both ways.
Asymmetric	A relation R on a set A is asymmetric if whenever $(a, b) \in R$, then $(b, a) \notin R$.	All 0's on the main diagonal and every 1 in the matrix is paired with a 0 opposite it across the main diagonal.	No cycles of length 1 and every edge is directed, i.e., no edge can be paired with an equal edge in the opposite direction.
Antisymmetric	A relation R on a set A is antisymmetric if whenever $(a, b) \in R$ and $(b, a) \in R$, then $\mathrm{a}=\mathrm{b}$.	1's may exist on the main diagonal, but every 1 in the matrix is paired with a 0 opposite it across the main diagonal.	Cycles of length 1 are allowed, but every edge is directed, i.e., no edge can be paired with an equal edge in the opposite direction.
Transitive	A relation R on a set A is transitive if when $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.	Not obvious: If $\mathrm{a}_{\mathrm{ij}}=1$ and $\mathrm{a}_{\mathrm{jk}}=1$, then a_{ik} must equal 1.	Every path of length two must be "matched" with a path of length one.

