
1

Sequences – Page 1CSCI 1900 – Discrete Structures

CSCI 1900
Discrete Structures

Sequences
Reading: Kolman, Section 1.3

Sequences – Page 2CSCI 1900 – Discrete Structures

Sequence

• A sequence is a list of objects arranged in
a definite order

• Difference between set and sequence
– A set has no order and no duplicated

elements
– A sequence has a specific order and

elements may be duplicated
• Nomenclature: a1, a2, …an

Sequences – Page 3CSCI 1900 – Discrete Structures

Sequence Examples

• 1, 2, 3, 2, 2, 3, 1 is a sequence, but not a
set

• The sequences 1, 2, 3, 2, 2, 3, 1 and 2, 2,
1, 3 are made from elements of the set
{1, 2, 3}

• The sequences 1, 2, 3, 2, 2, 3, 1 and 2, 1,
3, 2, 2, 3, 1 only switch two elements, but
that alone makes them unequal

Sequences – Page 4CSCI 1900 – Discrete Structures

Types of Sequences

• Sequence may stop after n steps (finite)
or go on for ever (infinite)

• Formulas can be used to describe
sequences
– Recursive
– Explicit

Sequences – Page 5CSCI 1900 – Discrete Structures

Recursive Sequences

• In a recursive sequence, the next item in the
sequence is determined from previous values

• Difficult to determine say 100th element since
previous 99 need to be determined first.

• Example:
a1 = 1
a2 = 2
an = an-1 + an-2

Sequences – Page 6CSCI 1900 – Discrete Structures

Explicit Sequences

• In an explicit sequence, the nth item is
determined by a formula depending only
on n

• Easier to determine any element
• Example: an = 2×n

2

Sequences – Page 7CSCI 1900 – Discrete Structures

Strings
• Sequences can be made up of characters

too
• Example: W, a, k, e, , u, p
• Removing the commas and you get a

string: “Wake up”
• Strings best illustrate difference between

sequences and sets
– a, b, a, b, a, b, a, … is a sequence, i.e.,

“abababa…” is a string
– The corresponding set is {a, b}

Sequences – Page 8CSCI 1900 – Discrete Structures

Linear Array
• Principles of sequences can be applied to computers,

specifically, arrays. There are some differences
though.

• Sequence
– Well-defined
– Modification of any element or its order creates new

sequence
• Array

– May not have all elements initialized
– Modification of array by software may occur
– Even if the array has variable length, we’re ultimately limited

to finite length

Sequences – Page 9CSCI 1900 – Discrete Structures

Characteristic Functions

• A characteristic function is a function
defining membership in a set

• fA(x) =

• Example, for the set A = {1, 4, 6}
fA(1) = 1, fA(2) = 0, fA(3) = 0, fA(4) = 1, etc.

1 if x∈A

0 if x∉A

Sequences – Page 10CSCI 1900 – Discrete Structures

Programming Example
Characteristic functions may look unfamiliar, but
consider the following code:

if (insert conditional statement here)
return (1);

else
return (0);

Example: A = {x | x > 4}

if (x > 4) return (1);
else return (0);

Sequences – Page 11CSCI 1900 – Discrete Structures

Properties of Characteristic Functions
Characteristic functions of subsets satisfy the
following properties (proofs are on page 15 of
textbook.)

– fA∩B = fAfB; that is fA∩B(x) = fA(x)fB(x) for all x.
– fA∪B = fA + fB – fAfB;

that is fA∪B(x) = fA(x) + fB(x) – fA(x)fB(x) for all x.
– fA⊕B = fA + fB – 2fAfB;

that is fA⊕B(x) = fA(x) + fB(x) – 2fA(x)fB(x) for all x.

Sequences – Page 12CSCI 1900 – Discrete Structures

Proving Characteristic Function
Properties

• Alternate way of doing proof is to enumerate all four
cases and see how the result comes out

• Example: Prove fA∩B = fAfB

fA(a) = 0, fB(a) = 0, fA(a) × fB(a) = 0 × 0 = 0 = fA∩B(a)
fA(b) = 0, fB(b) = 1, fA(b) × fB(b) = 0 × 1 = 0 = fA∩B(b)
fA(c) = 1, fB(c) = 0, fA(c) × fB(c) = 1 × 0 = 0 = fA∩B(c)
fA(d) = 1, fB(d) = 1, fA(d) × fB(d) = 1 × 1 = 1 = fA∩B(d)

A Ba
bc d

3

Sequences – Page 13CSCI 1900 – Discrete Structures

Representing Sets with a Computer

• Remember that sets have no order and no
duplicated elements.

• The general need to assign each element in a
set to a memory location gives it order in a
computer.

• We can use the characteristic function to define
a set using a computer.

Sequences – Page 14CSCI 1900 – Discrete Structures

Representing Sets with a Computer
(continued)

• Assume U defines a finite universal set U = {x1,
x2, x3, …, xn}

• We can use characteristic function to represent
subsets of U

• fA(x) is a sequence of 1’s and 0’s with the same
number of elements as U

• fA(x) = 1 is in position if corresponding element
of U, x, is a member of A

• fA(x) = 0 is in position if corresponding element
of U, x, is not a member of A

Sequences – Page 15CSCI 1900 – Discrete Structures

Representing Sets with a Computer
Example

• U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• fA(x) = 1, 0, 1, 0, 0, 1, 1, 0, 0, 1
• A = {0, 2, 5, 6, 9}

Sequences – Page 16CSCI 1900 – Discrete Structures

More Properties of Sequences

• Any set with n elements can be arranged as a
sequence of length n, but not vice versa. This is
because sets have no order and duplicates are
not allowed.

• Each subset can be identified with its
characteristic function as a sequence of 1’s and
0’s.

• Characteristic function for universal set, U, is a
sequence of all ones.

Sequences – Page 17CSCI 1900 – Discrete Structures

Countable and Uncountable

• A set is countable if it corresponds to some
sequence.
– Members of set can be arranged in a list
– Elements have position

• All finite sets are countable
• Not all infinite sets are countable, and are

therefore uncountable
– Best example is real numbers
– E.g., what comes after 1.23534?

Sequences – Page 18CSCI 1900 – Discrete Structures

Strings and Regular Expressions
• Given a set A, the set A* consists of all finite sequences of

elements of A
• Example:

– A = alphabet = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s,
t, u, v, w, x, y, z}

– A* = words (the finite sequences, words, in A are not written
with commas)

– A* contains all possible words, even those that are
unpronounceable or make no sense such as “prsartkc”

• The empty sequence or empty string is represented with Λ

4

Sequences – Page 19CSCI 1900 – Discrete Structures

Catenation

• Two strings may be joined into a single string
• Assume w1 = s1s2s3s4…sn and w2 = t1t2t3t4…tk
• The catenation of w1 and w2 is the sequence

s1s2s3s4…snt1t2t3t4…tk
• Notation: catenation of w1 and w2 is written as

w1⋅w2 or w1w2

Sequences – Page 20CSCI 1900 – Discrete Structures

Some Properties of Catenation

• If w1⋅w2 are elements of A*, then w1⋅w2 is an element
of A*

• w⋅Λ = w and Λ⋅w = w
• A subset B of A* has its own set B* which contains

sentences made up from the words of A.
• For example:

B = {John, Jane, swims, runs, well, quickly, slowly} is
a subset of A* where A = alphabet
The element “Jane swims quickly” is an element of
B*.

Sequences – Page 21CSCI 1900 – Discrete Structures

Regular expressions

• The following is from
http://etext.lib.virginia.edu/helpsheets/regex.html:

"Regular expressions trace back to the work of an
American mathematician by the name of Stephen
Kleene (one of the most influential figures in the
development of theoretical computer science) who
developed regular expressions as a notation for
describing what he called 'the algebra of regular sets.'
His work eventually found its way into some early efforts
with computational search algorithms, and from there to
some of the earliest text-manipulation tools on the Unix
platform (including ed and grep). In the context of
computer searches, the '*' is formally known as a 'Kleene
star.'“

Sequences – Page 22CSCI 1900 – Discrete Structures

Regular Expressions (continued)

• A regular expression on a set A is a recursive formula for
a sequence.

• It is made up of the elements of A and the symbols (,),
∨, *,Λ

• The symbol Λ is a regular expression
• If x ∈ A, the symbol x is a regular expression.
• If α and β are regular expressions, then the expression

αβ is regular.
• If α and β are regular expressions, then the expression

(α ∨ β) is regular.
• If α is a regular expression, then the expression (α)* is

regular.

Sequences – Page 23CSCI 1900 – Discrete Structures

Regular Expressions (continued)

A regular expression over A corresponds to a
subset of A*. This is called a regular subset of
A* or just regular set. These subsets are built
based on the rules presented on the next two
slides. (You may want to use page 18 in the
textbook as a reference in case I got one of
these wrong.)

Sequences – Page 24CSCI 1900 – Discrete Structures

Rules of Regular Expressions

• The expression Λ corresponds to the set {Λ},
where Λ is the empty string in A*.

• If x∈A, then the regular expression x
corresponds to the set {x}

• If α and β are regular expressions corresponding
to the subsets M and N of A*, then αβ
corresponds to M·N = {s·t | s ∈ M and t ∈ N}.
Therefore, M·N is the set of all catenations of
strings in M with strings in N.

5

Sequences – Page 25CSCI 1900 – Discrete Structures

Rules of Regular Expressions
(continued)

• If the regular expressions α and β correspond to
the subsets M and N of A*, then (α ∨ β)
corresponds to M ∪ N.

• If the regular expression α corresponds to the
subset M of A*, then (α)* corresponds to the set
M*. Note that M is a set of strings from A.
Elements from M* are finite sequences of such
strings, and thus may themselves be interpreted
as strings from A. Note also that we always
have Λ∈ M*.

