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CSCI 1900
Discrete Structures

Sequences
Reading:  Kolman, Section 1.3
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Sequence

• A sequence is a list of objects arranged in 
a definite order

• Difference between set and sequence
– A set has no order and no duplicated 

elements
– A sequence has a specific order and 

elements may be duplicated
• Nomenclature: a1, a2, …an
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Sequence Examples

• 1, 2, 3, 2, 2, 3, 1 is a sequence, but not a 
set

• The sequences 1, 2, 3, 2, 2, 3, 1 and 2, 2, 
1, 3 are made from elements of the set 
{1, 2, 3}

• The sequences 1, 2, 3, 2, 2, 3, 1 and 2, 1, 
3, 2, 2, 3, 1 only switch two elements, but 
that alone makes them unequal
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Types of Sequences

• Sequence may stop after n steps (finite)
or go on for ever (infinite)

• Formulas can be used to describe 
sequences
– Recursive
– Explicit
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Recursive Sequences

• In a recursive sequence, the next item in the 
sequence is determined from previous values

• Difficult to determine say 100th element since 
previous 99 need to be determined first.

• Example: 
a1 = 1
a2 = 2
an = an-1 + an-2
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Explicit Sequences

• In an explicit sequence, the nth item is 
determined by a formula depending only 
on n

• Easier to determine any element
• Example: an = 2×n
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Strings
• Sequences can be made up of characters 

too
• Example:  W, a, k, e,  , u, p
• Removing the commas and you get a 

string: “Wake up”
• Strings best illustrate difference between 

sequences and sets
– a, b, a, b, a, b, a, … is a sequence, i.e., 

“abababa…” is a string
– The corresponding set is {a, b}
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Linear Array
• Principles of sequences can be applied to computers, 

specifically, arrays. There are some differences 
though.

• Sequence 
– Well-defined
– Modification of any element or its order creates new 

sequence
• Array

– May not have all elements initialized
– Modification of array by software may occur
– Even if the array has variable length, we’re ultimately limited 

to finite length
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Characteristic Functions

• A characteristic function is a function 
defining membership in a set

• fA(x) =

• Example, for the set A = {1, 4, 6}
fA(1) = 1, fA(2) = 0, fA(3) = 0, fA(4) = 1, etc.

1 if x∈A

0  if x∉A
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Programming Example
Characteristic functions may look unfamiliar, but 
consider the following code:

if (insert conditional statement here)
return (1);

else
return (0);

Example: A = {x | x > 4}

if (x > 4) return (1);
else return (0);
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Properties of Characteristic Functions
Characteristic functions of subsets satisfy the 
following properties (proofs are on page 15 of 
textbook.)

– fA∩B = fAfB; that is fA∩B(x) = fA(x)fB(x) for all x.
– fA∪B = fA + fB – fAfB; 

that is fA∪B(x) = fA(x) + fB(x) – fA(x)fB(x) for all x.
– fA⊕B = fA + fB – 2fAfB;

that is fA⊕B(x) = fA(x) + fB(x) – 2fA(x)fB(x) for all x.
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Proving Characteristic Function 
Properties

• Alternate way of doing proof is to enumerate all four 
cases and see how the result comes out

• Example: Prove fA∩B = fAfB

fA(a) = 0, fB(a) = 0, fA(a) × fB(a) = 0 × 0 = 0 = fA∩B(a)
fA(b) = 0, fB(b) = 1, fA(b) × fB(b) = 0 × 1 = 0 = fA∩B(b)
fA(c) = 1, fB(c) = 0, fA(c) × fB(c) = 1 × 0 = 0 = fA∩B(c)
fA(d) = 1, fB(d) = 1, fA(d) × fB(d) = 1 × 1 = 1 = fA∩B(d)

A Ba
bc d



3

Sequences – Page 13CSCI 1900 – Discrete Structures

Representing Sets with a Computer

• Remember that sets have no order and no 
duplicated elements.

• The general need to assign each element in a 
set to a memory location gives it order in a 
computer.

• We can use the characteristic function to define 
a set using a computer.
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Representing Sets with a Computer 
(continued)

• Assume U defines a finite universal set U = {x1, 
x2, x3, …, xn}

• We can use characteristic function to represent 
subsets of U

• fA(x) is a sequence of 1’s and 0’s with the same 
number of elements as U

• fA(x) = 1 is in position if corresponding element 
of U, x, is a member of A

• fA(x) = 0 is in position if corresponding element 
of U, x, is not a member of A
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Representing Sets with a Computer 
Example

• U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
• fA(x) = 1, 0, 1, 0, 0, 1, 1, 0, 0, 1
• A = {0, 2, 5, 6, 9}
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More Properties of Sequences

• Any set with n elements can be arranged as a 
sequence of length n, but not vice versa.  This is 
because sets have no order and duplicates are 
not allowed.

• Each subset can be identified with its 
characteristic function as a sequence of 1’s and 
0’s.

• Characteristic function for universal set, U, is a 
sequence of all ones.
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Countable and Uncountable

• A set is countable if it corresponds to some 
sequence.
– Members of set can be arranged in a list
– Elements have position

• All finite sets are countable
• Not all infinite sets are countable, and are 

therefore uncountable
– Best example is real numbers
– E.g., what comes after 1.23534?
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Strings and Regular Expressions
• Given a set A, the set A* consists of all finite sequences of 

elements of A
• Example:

– A = alphabet = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, 
t, u, v, w, x, y, z} 

– A* = words (the finite sequences, words, in A are not written 
with commas)

– A* contains all possible words, even those that are 
unpronounceable or make no sense such as “prsartkc”

• The empty sequence or empty string is represented with Λ
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Catenation

• Two strings may be joined into a single string
• Assume w1 = s1s2s3s4…sn and w2 = t1t2t3t4…tk
• The catenation of w1 and w2 is the sequence

s1s2s3s4…snt1t2t3t4…tk
• Notation:  catenation of w1 and w2 is written as 

w1⋅w2 or w1w2
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Some Properties of Catenation

• If w1⋅w2 are elements of A*, then w1⋅w2 is an element 
of A*

• w⋅Λ = w and Λ⋅w = w
• A subset B of A* has its own set B* which contains 

sentences made up from the words of A.
• For example:

B = {John, Jane, swims, runs, well, quickly, slowly} is 
a subset of A* where A = alphabet
The element “Jane swims quickly” is an element of 
B*. 
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Regular expressions

• The following is from 
http://etext.lib.virginia.edu/helpsheets/regex.html:

"Regular expressions trace back to the work of an 
American mathematician by the name of Stephen 
Kleene (one of the most influential figures in the 
development of theoretical computer science) who 
developed regular expressions as a notation for 
describing what he called 'the algebra of regular sets.' 
His work eventually found its way into some early efforts 
with computational search algorithms, and from there to 
some of the earliest text-manipulation tools on the Unix 
platform (including ed and grep). In the context of 
computer searches, the '*' is formally known as a 'Kleene 
star.'“
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Regular Expressions (continued)

• A regular expression on a set A is a recursive formula for 
a sequence.

• It is made up of the elements of A and the symbols (, ), 
∨, *,Λ

• The symbol Λ is a regular expression
• If x ∈ A, the symbol x is a regular expression.
• If α and β are regular expressions, then the expression 

αβ is regular.
• If α and β are regular expressions, then the expression 

(α ∨ β) is regular.
• If α is a regular expression, then the expression (α)* is 

regular.
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Regular Expressions (continued)

A regular expression over A corresponds to a 
subset of A*.  This is called a regular subset of 
A* or just regular set.  These subsets are built 
based on the rules presented on the next two 
slides. (You may want to use page 18 in the 
textbook as a reference in case I got one of 
these wrong.)
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Rules of Regular Expressions

• The expression Λ corresponds to the set {Λ}, 
where Λ is the empty string in A*.

• If x∈A, then the regular expression x
corresponds to the set {x}

• If α and β are regular expressions corresponding 
to the subsets M and N of A*, then αβ
corresponds to M·N = {s·t | s ∈ M and t ∈ N}.  
Therefore, M·N is the set of all catenations of 
strings in M with strings in N.
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Rules of Regular Expressions 
(continued)

• If the regular expressions α and β correspond to 
the subsets M and N of A*, then (α ∨ β) 
corresponds to M ∪ N.

• If the regular expression α corresponds to the 
subset M of A*, then (α)* corresponds to the set 
M*.  Note that M is a set of strings from A.  
Elements from M* are finite sequences of such 
strings, and thus may themselves be interpreted 
as strings from A.  Note also that we always 
have Λ∈ M*.


