

Operation on Sets

- An operation on a set is where two sets are combined to produce a third
CSCI 1900 - Discrete Structures \quad Operations on Sets - Page 2

Union

- $A \cup B=\{\mathrm{x} \mid \mathrm{x} \in A$ or $\mathrm{x} \in B\}$
- Example:

Let $A=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{f}\}$ and $B=\{\mathrm{b}, \mathrm{d}, \mathrm{r}, \mathrm{s}\}$ $A \cup B=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{r}, \mathrm{s}\}$

- Venn diagram

CSCI 1900 - Discrete Structures

Intersection

- $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- Example:

$$
\text { Let } A=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{e}, \mathrm{f}\} \text {, }
$$

$B=\{\mathrm{b}, \mathrm{e}, \mathrm{f}, \mathrm{r}, \mathrm{s}\}$, and $C=\{\mathrm{a}, \mathrm{t}, \mathrm{u}, \mathrm{v}\}$.
$A \cap B=\{\mathrm{b}, \mathrm{e}, \mathrm{f}\}$
$A \cap C=\{a\}$
$B \cap C=\{ \}$

- Venn diagram

CSCI 1900 - Discrete Structures

Disjoint Sets

Disjoint sets are sets where the intersection results in the empty set

Not disjoint

Disjoint

Unions and Intersections Across

Multiple Sets
Both intersection and union can be performed on multiple sets
$-A \cup B \cup C=\{x \mid x \in A$ or $x \in B$ or $x \in C\}$
$-A \cap B \cap C=\{x \mid x \in A$ and $x \in B$ and $x \in C\}$

- Example:
$A=\{1,2,3,4,5,7\}, B=\{1,3,8,9\}$, and $C=$ $\{1,3,6,8\}$.
$A \cup B \cup C=\{1,2,3,4,5,6,7,8,9\}$
$A \cap B \cap C=\{1,3\}$

CSCI 1900 - Discrete Structures
Operations on Sets - Page 6

Complement

- The complement of A (with respect to the universal set U) - all elements of the universal set U that are not a member of A.
- Denoted \bar{A}
- Example: If $A=\{x \mid x$ is an integer and $x \leq 4\}$ and $U=Z$, then

Complement "With Respect to..."

- The complement of B with respect to A - all elements belonging to A, but not to B.
- It's as if U is in the complement is replaced with A.
- Denoted $A-B=\{x \mid x \in A$ and $x \in B\}$
- Example: Assume $A=\{a, b, c\}$ and $B=\{b, c, d, e\}$
$\bar{A}=\{x \mid x$ is an integer and $x>4\}$
- Venn diagram
Operations on Sets - Page 7
Cscl 1900 - Discrete Structures

Symmetric difference

- Symmetric difference - If A and B are two sets, the symmetric difference is the set of elements belonging to A or B, but not both A and B.
- Denoted $A \oplus B=\{x \mid(x \in A$ and $x \notin B)$ or $(x \in B$ and $x \notin A)\}$

- $A \oplus B=(A-B) \cup(B-A)$	
- Venn diagram	
CsCI 1900 - Discrete Structures	Operations on Sets - Page 9

$B-A=\{d, e\}$

- Venn diagram

$B-A$
CSCI 1900 - Discrete Structures

Algebraic Properties of Set Operations

- Commutative properties
$A \cup B=B \cup A$
$A \cap B=B \cap A$
- Associative properties
$A \cup(B \cup C)=(A \cup B) \cup C$
$A \cap(B \cap C)=(A \cap B) \cap C$
- Distributive properties
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$\overline{\text { CSCI } 1900 \text { - Discrete Structures } \quad \text { Operations on Sets - Page } 10}$

More Algebraic Properties of Set Operations

- Idempotent properties
$A \cup A=A$
$A \cap A=A$
- Properties of the complement
$\overline{\overline{(A)}}=A$
$A \cup \underline{A}=U$
$A \cap A=\varnothing$
$\bar{\varnothing}=U$
$\bar{U}=\varnothing$
$\overline{A \cup B}=\bar{A} \cap \overline{\bar{B}}-$ - De Morgan's law
$\overline{\mathrm{A} \cap \mathrm{B}}=\overline{\mathrm{A}} \cup \overline{\mathrm{B}}-$ - De Morgan's law
CSCI 1900 - Discrete Structures
Operations on Sets - Page 11

More Algebraic Properties of Set Operations

- Properties of a Universal Set
$A \cup U=U$
$A \cap U=A$
- Properties of the Empty Set
$A \cup \varnothing=A$ or $A \cup\}=A$
$A \cap \varnothing=\varnothing$ or $A \cap\}=\{ \}$

The Addition Principle

- The Addition Principle associates the cardinality of sets with the cardinality of their union
- If A and B are finite sets, then
$|A \cup B|=|A|+|B|-|A \cap B|$
- Let's use a Venn diagram to prove this:

The Roman Numerals indicate how many times each segment is included for the expression $|A|+|B|$

- Therefore, we need to remove one $|A \cap B|$ since it is counted twice.
$\overline{\text { CSCI } 1900 \text { - Discrete Structures } \quad \text { Operations on Sets - Page 13 }}$

Addition Principle Example

- Let $A=\{a, b, c, d, e\}$ and $B=\{c, e, f, h, k, m\}$
- $|A|=5,|B|=6$, and $|A \cap B|=|\{c, e\}|=2$
- $|A \cup B|=|\{a, b, c, d, e, f, h, k, m\}|$
$|A \cup B|=9=5+6-2$
- If $A \cap B=\varnothing$, i.e., A and B are disjoint sets, then the $|A \cap B|$ term drops out leaving $|A|+|B|$

CSCI 1900 - Discrete Structures
Operations on Sets - Page 14

