

## Trees - Their Definition

Let $A$ be a set and let $T$ be a relation on $A$. We say that $T$ is a tree if there is a vertex $v_{0}$ with the property that there exists a unique path in $T$ from $v_{0}$ to every other vertex in $A$, but no path from $v_{0}$ to $v_{0}$.
-Kolman, Busby, and Ross, p. 254

| CSCI 1900 - Discrete Structures | Trees - Page 3 |
| :--- | :--- |

## Trees - Characteristics

If $T$ is a relation that is also a tree, then $T$ must have the following characteristics:

- There are no cycles in T
$-V_{0}$ is the only root of $T$


## Brain Teaser

Assume you are driving with your child, and he/she is screaming for the milk out of his happy meal. You haven't cleaned out the car in a while, so there are 9 milk bottles rolling around on the floorboards under your feet, one full, 8 half full and a bit foul.
Assuming you can pick up more than one bottle at a time in each hand, using your hands as balance scales, how many "balances" will it take for you to find the full bottle.

CSCI 1900 - Discrete Structures Trees - Page 2

## Trees - Our Definition

We need a way to describe a tree, specifically a "rooted" tree.

- First, a rooted tree has a single root, $v_{0}$, which is a vertex with absolutely no edges coming into it. (indegree of $v_{0}=0$ )
- Every other vertex, $v$, in the tree has exactly one path to it from $v_{0}$. (in-degree of $v=1$ )
- There may be any number of paths coming out from any vertex.
- Denoted ( $T, v_{0}$ )

| CSCI 1900 - Discrete Structures | Trees - Page 4 |
| :--- | :--- |

## Examples of Trees

Using the definitions given above, determine which of the following examples are trees and which are not.


## Is this a tree?

for $i=0$ to 256
for $j=0$ to 16 $\operatorname{array[i,j]}=i^{*} j$
next j
next i

| CSCI 1900 - Discrete Structures | Trees - Page 12 |
| :--- | :---: |



## More Definitions

- A vertex $v_{2}$ is considered a descendant of a vertex $v_{1}$ if there is a path from $v_{1}$ to $v_{2}$.
- The height of a tree is the number of the largest level.
- The vertices of a tree that have no offspring are considered leaves.
- If the vertices of a level of a tree can be ordered from left to right, then the tree is an ordered tree.


## Examples

1. If the set $A=\{a, b, c, d, e\}$ represents all of the vertices for a tree $T$, what is the maximum height of $T$ ? What is the minimum height of $T$ ?
2. If the set $A=\{a, b, c, d, e\}$ represents all of the vertices for a tree $T$ and $T$ is a complete binary tree, what is the maximum height of $T$ ?

## More Definitions

- A vertex, $v$, is considered the parent of all of the vertices connected to it by edges leaving $v$.
- A vertex, $v$, is considered the offspring of the vertex connected to the single edge entering $v$.
- A vertex, $v$, is considered the sibling of all vertices at the same level with the same parent.

| CSCI 1900 - Discrete Structures | Trees - Page 14 |
| :--- | :---: |

## More Definitions

- If every vertex of a tree has at most $n$ offspring, then the tree is considered an n-tree.
- If every vertex of a tree with offspring has exactly $n$ offspring, then the tree is considered a complete $n$-tree.
- When $\mathrm{n}=2$, this is called a binary tree.

| CSCI 1900 - Discrete Structures | Trees - Page 16 |
| :--- | :---: |

## More Examples

3. If every path from the root of a complete 4-tree has 3 levels, how many leaves does this tree have?
4. What is $n$ for the following $n$-tree? for $i=0$ to 256
for $j=0$ to 16
$\operatorname{array}[i, j]=1000 * i+j$
next j
next i

CSCI 1900 - Discrete Structures

## One More Example

5. Let T be a complete n -tree with 125 leaves.
a.) What are the possible values of $n$
b.) What are the possible values for the height of T .

CSCI 1900 - Discrete Structures
Trees - Page 19

