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CHAPTER EIGHT 

Combinational Logic Applications 

Thus far, our discussion has focused on the theoretical design issues 
of computer systems. We have not yet addressed any of the actual 
hardware you might find inside a computer. This chapter changes that.  

The following sections present different applications used either as 
stand-alone circuits or integrated into the circuitry of a processor. Each 
section will begin with a definition of a problem to be addressed. From 
this, a truth table will be developed which will then be converted into 
the corresponding boolean expression and finally a logic diagram. 

8.1 Adders 
Most mathematical operations can be handled with addition. For 

example, a simple subtraction can be performed by taking the two's 
complement of a binary value, and then adding it to the binary value 
from which it was to be subtracted. Two numbers can be multiplied 
using multiple additions. Counting either up or down (incrementing or 
decrementing) can be performed with additions of 1 or -1. 

Chapter 3 showed that binary addition is performed just like decimal 
addition, the only difference being that decimal has 10 numerals while 
binary has 2. When adding two digits in decimal, a result greater than 
nine creates an "overflow", i.e., a one is added to the next position. For 
binary, a result greater than 1, e.g., 1+1=2, creates an overflow. This 
produces a sum of 0 with a carry of 1 to the next position. 

 
   1 
0  0 1 1 

+ 0  + 1 + 0 + 1 
0  1 1 10 

Figure 8-1   Four Possible Results of Adding Two Bits 

A well-defined process such as this is easily realized with digital 
logic. Figure 8-2 shows the block diagram of a system that takes two 
binary inputs, A and B, and adds them together producing a bit for the 
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sum and a bit indicating whether or not a carry occurred. This well-
known circuit is commonly referred to as a half-adder. 

 
 
 
 

Figure 8-2   Block Diagram of a Half Adder 

With two inputs, there are four possible combinations of ones and 
zeros that can be input. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-3   Four Possible States of a Half Adder 

A truth table can be derived from Figure 8-3 from which the boolean 
expressions can be developed to realize this system. 

 
A B Sum Carryout

0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

 
The simplicity of a two-input truth table makes the use of a 

Karnaugh map unnecessary. Examining the Sum column shows that we 
should have an output of one when A=0 and B=1 and when A=1 and 
B=0. This gives us the following SOP expression: 
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0 + 0 = 0 w/no carry 1 + 0 = 1 w/no carry 

0 + 1 = 1 w/no carry 1 + 1 = 0 w/a carry 
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      _       _ 
Sum = A·B + A·B 

 
Note that the output Sum is also equivalent to the 2-input XOR gate. 

For Carryout, the output equals 1 only when both A and B are equal 
to one. This matches the operation of the AND gate. 

 
Carryout = A·B 

 
Figure 8-4 presents the logic circuit for the half adder. 
 
 
 
 
 
 
 
 
 
 

Figure 8-4   Logic Circuit for a Half Adder 

The half-adder works fine if we're trying to add two bits together, a 
situation that typically occurs only in the rightmost column of a multi-
bit addition. The remaining columns are responsible for adding two bits 
along with a possible carry from a previous column.  

For example, assume we want to add two four bit numbers, A = 
01102 and B = 10112. The addition would go something like this. 

 
  1 1 1     
    0 1 1 0 
+   1 0 1 1 
  1 0 0 0 1 

 
Adding the least significant bits together is exactly like the half-

adder described above. The inputs to the half-adder are the least 
significant bits of each number, and the outputs are the least significant 
digit of the sum and a possible carry to the next column. 

A

B

Sum 

Carryout 
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What is needed for the remaining columns is an adder similar to the 
half-adder that can add two bits and the carry from the previous column 
to produce a Sum and the Carryout to the next column. Figure 8-5 
represents this operation where An is the bit in the nth position of A, Bn 
is the bit in the nth position of B, and Sn is the bit in the nth position in 
the resulting sum, S. 

 
 
 
 
 
 
 
 
 

Figure 8-5   Block Diagram of a Multi-bit Adder 

Notice that a Carryout from the addition of a pair of bits goes into the 
carry input of the addition for the next bit. We will call this input 
Carryin. This implies that we need to create a circuit that can add three 
bits, An, Bn, and the carry result from the n-1 position. This system has 
two outputs, the resulting sum and the carry to the n+1 position. The 
resulting circuit is called a full adder. A block diagram of the full adder 
is shown in Figure 8-6. 

 
 
 
 
 
 

Figure 8-6   Block Diagram of a Full Adder 

With three inputs, there are 23 = 8 possible combinations of ones and 
zeros that could be input to our full adder. Table 8-1 below lists these 
combinations along with the results of their addition which range from 
0 to 310. 
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Table 8-1   Addition Results Based on Inputs of a Full Adder 

Inputs Result 
A B Carryin Decimal Binary 
0 0 0 010 002 
0 0 1 110 012 
0 1 0 110 012 
0 1 1 210 102 
1 0 0 110 012 
1 0 1 210 102 
1 1 0 210 102 
1 1 1 310 112 

 
The two-digit binary result in the last column of this table can be 

broken into its components, the sum and a carry to the next bit position. 
This gives us two truth tables, one for the Sum and one for the Carryout. 

Table 8-2   Sum and Carryout Truth Tables for a Full Adder 

A B Carryin Sum  A B Carryin Carryout 
0 0 0 0  0 0 0 0 
0 0 1 1  0 0 1 0 
0 1 0 1  0 1 0 0 
0 1 1 0  0 1 1 1 
1 0 0 1  1 0 0 0 
1 0 1 0  1 0 1 1 
1 1 0 0  1 1 0 1 
1 1 1 1  1 1 1 1 

 
With three inputs, a Karnaugh map can be use to create the logic 

expressions. One Karnaugh map will be needed for each output of the 
circuit. Figure 8-7 presents the Karnaugh maps for the Sum and the 
Carryout outputs of our full adder where Cin represents the Carryin input. 

The Carryout Karnaugh map has three rectangles, each containing 
two cells and all three overlapping on the cell defined by A=1, B=1, 
and Cin=1. By using the process presented in Chapter 7, we can derive 
the three products for the SOP expression defining Carryout. 
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Figure 8-7   Sum and Carryout Karnaugh Maps for a Full Adder 

 
Rectangle 1: A B Cin  
 0 1 1 B·Cin 
 1 1 1  
     
Rectangle 2: A B Cin  
 1 1 0 A·B 
 1 1 1  
     
Rectangle 3: A B Cin  
 1 1 1 A·Cin 
 1 0 1  

 
Carryout = B·Cin + A·B + A·Cin 

 
The Karnaugh map for the Sum output is less promising. In fact, 

there is no way to make a more complex 3-input Karnaugh map than 
the one that exists for the Sum of the full adder. The addition or 
removal of a '1' in any cell of the map will result in a simpler 
expression. The four single-cell rectangles result in the four products of 
the SOP expression for the Sum output shown below. 

      _ _      _   __               _ __ 
Sum = A·B·Cin + A·B·Cin + A·B·Cin + A·B·Cin 
 
Figure 8-8 presents the circuit for the full adder. 
 

  Sum    Carryout 
 Cin    Cin  

AB  0 1  AB  0 1 
 00 0 1  00 0 0 
 01 1 0  01 0 1 
 11 0 1  11 1 1 
 10 1 0  10 0 1 
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Figure 8-8   Logic Circuit for a Full Adder 

Now we have the building blocks to create an adder of any size. For 
example, a 16-bit adder is made by using a half adder for the least 
significant bit followed by fifteen full adders daisy-chained through 
their carries for the remaining fifteen bits. 

This method of creating adders has a slight drawback, however. Just 
as with the addition of binary numbers on paper, the sum of the higher-
order bits cannot be determined until the carry from the lower-order 
bits has been calculated and propagated through the higher stages. 
Modern adders use additional logic to predict whether the higher-order 
bits should expect a carry or not well before the sum of the lower-order 
bits is calculated. These adders are called carry look ahead adders. 

8.2 Seven-Segment Displays 
Most everyone has seen a seven-segment display. It is the most 

common way to display time on a clock radio, and it is one of the 
easiest ways to implement a numeric output for a digital circuit. The 
use of seven-segment displays is so extensive that special integrated 
circuits (ICs) have been developed to take a four-bit binary numeric 
input and create the output signals necessary to drive the display. 
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 A seven-segment display consists of seven long, thin LEDs 
arranged in the pattern of an eight. Each segment is controlled 
individually so that any decimal digit can be displayed. Using a 
combination of both upper- and lower-case letters, A, B, C, D, E, and F 
can be displayed too allowing a seven-segment display to output all of 
the hexadecimal digits too. 

Figure 8-9 shows a diagram of the typical seven-segment display 
with each segment lettered for identification.  

 
 
 
 
 
 

Figure 8-9   Diagram of a Seven-Segment Display 

To make a digit appear, the user must know which segments to turn 
on and which to leave off. For example, to display a '1', we need to turn 
on segments b and c and leave the other segments off. 

 
 
 
 
 
 

Figure 8-10   A Seven-Segment Display Displaying a Decimal '1' 

This means that the binary circuit driving segment 'a' would output 0, 
the binary circuit driving segment 'b' would output 1, the binary circuit 
driving segment 'c' would output 1, the binary circuit driving segment 
'd' would output 0, and so on. Displaying the number 2 would result in 
the following: 

a

b

c

d

f

e g

a

b

c

d

f

e g



   Chapter 8: Combinational Logic Applications   149 
 

 

 
 
 
 
 
 

Figure 8-11   A Seven-Segment Display Displaying a Decimal '2' 

The binary inputs for this are a=1, b=1, c=0, d=1, e=1, f=0, and g=1. 
The digital circuitry used to drive a seven-segment display consists 

of seven separate digital circuits, one for each LED. Each circuit takes 
as its input the binary nibble that is to be displayed. For example, if the 
binary nibble 00102 = 210 is input to the digital circuitry driving the 
display, then the digital circuit for segment 'a' would output 1, the 
digital circuit for segment 'b' would output 1, the digital circuit for 
segment 'c' would output 0, and so on. Figure 8-12 shows a block 
diagram of the seven-segment display driver. 

 
 
 
 
 
 
 

Figure 8-12   Block Diagram of a Seven-Segment Display Driver 

To begin with, we need seven truth tables, one for the output of each 
circuit. The individual bits of the number to be displayed will be used 
for the inputs. Next, we need to know which segments are to be on and 
which are to be off for each digit. Figure 8-13 shows the bit patterns for 
each hexadecimal digit. 
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Figure 8-13   Segment Patterns for all Hexadecimal Digits 

Using the information from Figure 8-13, we can build the seven 
truth tables. The truth table in Figure 8-14 combines all seven truth 
tables along with a column indicating which digit is displayed for the 
corresponding set of inputs. Note that the capital letters denote the 
input signals while the lower case letters identify the segments of the 
seven-segment display. 

 

Digit: '0' 
Segments: a, b, c, d, e, f 

Digit: '1' 
Segments: b, c 

Digit: '2' 
Segments: a, b, d, e, g 

Digit: '3' 
Segments: a, b, c, d, g 

Digit: '4' 
Segments: b, c, f, g 

Digit: '5' 
Segments: a, c, d, f, g 

Digit: '6' 
Segments: a, c, d, e, f, g 

Digit: '7' 
Segments: a, b, c 

Digit: '8' 
Segments: a, b, c, d, e, f, g

Digit: '9' 
Segments: a, b, c, d, f, g 

Digit: 'A' 
Segments: a, b, c, e, f, g 

Digit: 'B' 
Segments: c, d, e, f, g 

Digit: 'C' 
Segments: a, d, e, f 

Digit: 'D' 
Segments: b, c, d, e, g 

Digit: 'E' 
Segments: a, d, e, f, g 

Digit: 'F' 
Segments: a, e, f, g 
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Inputs Segments 

A B C D 
Hex 

Value a b c d e f g 
0 0 0 0 0 1 1 1 1 1 1 0 
0 0 0 1 1 0 1 1 0 0 0 0 
0 0 1 0 2 1 1 0 1 1 0 1 
0 0 1 1 3 1 1 1 1 0 0 1 
0 1 0 0 4 0 1 1 0 0 1 1 
0 1 0 1 5 1 0 1 1 0 1 1 
0 1 1 0 6 1 0 1 1 1 1 1 
0 1 1 1 7 1 1 1 0 0 0 0 
1 0 0 0 8 1 1 1 1 1 1 1 
1 0 0 1 9 1 1 1 1 0 1 1 
1 0 1 0 A 1 1 1 0 1 1 1 
1 0 1 1 B 0 0 1 1 1 1 1 
1 1 0 0 C 1 0 0 1 1 1 0 
1 1 0 1 D 0 1 1 1 1 0 1 
1 1 1 0 E 1 0 0 1 1 1 1 
1 1 1 1 F 1 0 0 0 1 1 1 

Figure 8-14   Seven Segment Display Truth Table 

The next step is to create a Karnaugh map for each of the seven 
segments in order to determine the minimum SOP expression and 
digital circuit to be used to drive each segment. Here we will only do 
one of the circuits, segment e. Figure 8-15 takes the column for 
segment e and maps it into a four-by-four Karnaugh map. 

 
 CD     

AB  00 01 11 10 
 00 1 0 0 1 
 01 0 0 0 1 
 11 1 1 1 1 
 10 1 0 1 1 

Figure 8-15   Karnaugh Map for Segment 'e' 

Next, we need to identify the optimum set of rectangles for the 
Karnaugh map. These rectangles are shown in Figure 8-16. 
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Figure 8-16   Karnaugh Map for Segment 'e' 

Now that we have the rectangles, we can derive each product for the 
SOP expression. 

 
 Rectangle 1:  A B C D   _ _ 
  0 0 0 0  Product: B·D 
  1 0 0 0 
  0 0 1 0 
  1 0 1 0 

 
 Rectangle 2:  A B C D  
  1 1 0 0    
  1 1 0 1  Product: A·B 
  1 1 1 1  
  1 1 1 0 

 
 Rectangle 3:  A B C D  
  1 1 1 1    
  1 1 1 0  Product: A·C 
  1 0 1 1  
  1 0 1 0 

 
 Rectangle 4:  A B C D  
  0 0 1 0     _ 
  0 1 1 0  Product: C·D 
  1 1 1 0  
  1 0 1 0 

 
Our final SOP expression is then the OR of these four products. 

             _ _                       _ 
Segment e = (B·D) + (A·B) + (A·C) + (C·D) 

 

Rectangle 4 

Rectangle 3 

Rectangle 2 

Rectangle 1 

 CD     
AB  00 01 11 10 

 00 1 0 0 1 
 01 0 0 0 1 
 11 1 1 1 1 
 10 1 0 1 1 
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Figure 8-17 presents the digital logic that would control segment e 
of the seven-segment display. The design of the display driver is not 
complete, however, as there are six more logic circuits to design. 

 
 
 
 
 
 
 
 

Figure 8-17   Logic Circuit for Segment e of 7-Segment Display 

8.3 Active-Low Signals 
Computer systems are composed of numerous subsystems, some of 

which may be idle, some of which may be operating independent of the 
processor, and some of which may be in direct contact with the 
processor. For systems that are in direct contact with the processor, 
only one may be enabled at any one time. For example, although a 
computer system may have multiple memory devices, when a piece of 
data is stored, it is sent to only one of the modules while the other 
modules must remain idle. 

A scheme is needed to select or enable a specific device or to route 
data to an appropriate subsystem. This scheme is implemented with a 
separate binary line that is connected to each subsystem where one of 
the binary values enables the subsystem and the other binary value 
disables it, i.e., an on/off binary control. 

Our discussion previous to this suggests that the "on" signal is 
equivalent to a logic 1, but for a number of reasons, the standard 
method of enabling a device is not to send a logic 1. Instead, due to the 
nature of electronics, it is standard practice to enable devices with a 
logic 0 and disable them with a logic 1. This is called active-low 
operation, i.e., the device is active when its enable signal is low or logic 
0. The device is inactive when the enable is high or logic 1. 

There is a special notation that goes along with active-low signals. If 
you see an input to or an output from a system labeled with the NOT or 
inverter bar over it, then that signal is an active-low signal. Sometimes, 
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C 

D 

Segment e 
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the line that is drawn into or out of the system diagram will also pass 
through an inverter circle to identify the signal as active-low. For 
example, in the system shown in Figure  
8-18, the input C and the output EN are both active-low. 

 
 
 
 

Figure 8-18   Labeling Conventions for Active-Low Signals 

Many of the circuits discussed in the following sections of this 
chapter use active-low signals. Any time this happens, the notation 
shown above will be used. 

8.4 Decoders 
One application where digital signals are used to enable a device 

might be to tell that device that all of the conditions are correct for its 
operation. For example, the magnetron in a microwave is enabled when 
a number of conditions are met, i.e., when the timer is running and the 
start button is pushed and the oven door is closed. 

This method of enabling a device based on the condition of a 
number of inputs is common in digital circuits. One common 
application is in the processor’s interface to memory. It is used to 
determine which memory device will contain a piece of data. 

In the microwave example, the sentence used to describe the 
enabling of the magnetron joined each of the inputs with the word 
"and". Therefore, the enabling circuit for the magnetron should be 
realized with an AND gate as shown in Figure 8-19. 

 
 
 

Figure 8-19   Sample Circuit for Enabling a Microwave 

There are many other types of digital systems that enable a process 
based on a specific combination of ones and zeros from multiple inputs. 
For example, an automobile with a manual transmission enables the 

A DATA 
B EN 
C 

Timer
Start button
Door closed

Enable magnetron 
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starter when the clutch is pressed and the key is turned in the ignition. 
A soda drops from a vending machine when a proper amount of money 
is inserted and a button is pushed and the machine is not out of the 
selected soda. 

 
 
 

Figure 8-20   Sample Circuit for Delivering a Soda 

An AND gate outputs a one only when all of its inputs equal one. If 
one or more inputs are inverted, the output of the AND gate is one if 
and only if all of the inputs without inverters equal one and all of the 
inputs with inverters equal zero. 

The truth table for this type of circuit will have exactly one row with 
an output of one while all of the other rows output a zero. The row with 
the one can change depending on which inputs are inverted. For 
example, Figure 8-21 presents the truth table for the circuit that enables 
a device when A and B are true but C is false. 

 
A B C EN 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0 

Figure 8-21   Truth Table to Enable a Device for A=1, B=1, & C=0 

When SOP expressions were introduced in Chapter 6, we found that 
each row of a truth table with a '1' output corresponded to a unique 
product. Therefore, the circuit that is used to enable a device can be 
realized with a single AND gate. The conditions that activate that AND 
gate are governed by the pattern of inverters at its inputs. 

When we apply the tools of Chapter 6 to the truth table in Figure  
8-21, we get the following boolean expression. 

Correct money
Soda is selected

Soda empty
Deliver a soda 
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         _ 
EN = A·B·C 

 
Decoder circuits are a group of enable circuits that have an 

individual output that satisfies each row of the truth table. In other 
words, a decoder has a unique output for each combination of ones and 
zeros possible at its inputs. 

For example, a 2-input decoder circuit with inputs A and B can have 
an output that is 1 only when A=0 and B=0, an output that is 1 only 
when A=0 and B=1, an output that is 1 only when A=1 and B=0, and 
an output that is 1 only when A=1 and B=1. The boolean expressions 
that satisfy this decoder circuit are: 
      _ _       _           _ 
EN0 = A·B EN1 = A·B EN2 = A·B EN3 = A·B 
 

This two-input circuit is called a 1-of-4 decoder due to the fact that 
exactly one of its four outputs will be enabled at any one time. A 
change at any of the inputs will change which output is enabled, but 
never change the fact that only one is enabled. As for the logic circuit, 
it has four AND gates, one satisfying each of the above boolean 
expressions. Figure 8-22 presents this digital circuit. 

 
 
 
 
 
 
 
 

Figure 8-22   Digital Circuit for a 1-of-4 Decoder 

As suggested in the previous section, it is common to implement 
enable signals as active-low due to the nature of electronics. In order to 
do this, the output of each AND gate needs to be inverted giving us a 
single condition where an output of zero occurs. This means that the 
active-low decoder circuit is implemented with NAND gates as shown 
in Figure 8-23. Notice the bar over the output names. This indicates the 
active-low nature of these signals. 
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Figure 8-23   Digital Circuit for an Active-Low 1-of-4 Decoder 

Decoder circuits can have any number of inputs. The number of 
outputs, however, is directly related to the number of inputs. If, for 
example, a decoder has four inputs signals, A, B, C, and D, then there 
are 24 = 16 unique combinations of ones and zeros, each of which 
requires a NAND gate for its output. A decoder with four inputs is 
called a 1-of-16 decoder. Figure 8-24 presents the truth table for an 
active-low 1-of-8 decoder with three inputs. 

 
A B C EN0 EN1 EN2 EN3 EN4 EN5 EN6 EN7 
0 0 0 0 1 1 1 1 1 1 1 
0 0 1 1 0 1 1 1 1 1 1 
0 1 0 1 1 0 1 1 1 1 1 
0 1 1 1 1 1 0 1 1 1 1 
1 0 0 1 1 1 1 0 1 1 1 
1 0 1 1 1 1 1 1 0 1 1 
1 1 0 1 1 1 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 0 

Figure 8-24   Truth Table for an Active-Low 1-of-8 Decoder 

8.5 Multiplexers 
A multiplexer, sometimes referred to as a MUX, is a device that 

uses a set of control inputs to select which of several data inputs is to be 
connected to a single data output. With n binary "select lines," one of 2n 
data inputs can be connected to the output. Figure 8-25 presents a block 
diagram of a multiplexer with three select lines, S2, S1, and S0, and 
eight data lines, D0 through D7. 
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Figure 8-25   Block Diagram of an Eight Channel Multiplexer 

A multiplexer acts like a television channel selector. All of the 
stations are broadcasted constantly to the television's input, but only the 
channel that has been selected is displayed. As for the eight-channel 
multiplexer in Figure 8-25, its operation can be described with the truth 
table shown in Figure 8-26. 

 
S2 S1 S0 Y 
0 0 0 D0 
0 0 1 D1 
0 1 0 D2 
0 1 1 D3 
1 0 0 D4 
1 0 1 D5 
1 1 0 D6 
1 1 1 D7 

Figure 8-26   Truth Table for an Eight Channel Multiplexer 

For example, if the selector inputs are set to S2 = 0, S1 = 1, and  
S0 = 1, then the data present at D3 will be output to Y. If D3 = 0, then Y 
will output a 0. 

The number of data inputs depends on the number of selector inputs. 
For example, if there is only one selector line, S0, then there can only 
be two data inputs D0 and D1. When S0 equals zero, D0 is routed to the 
output. When S0 equals one, D1 is routed to the output. Two selector 
lines, S1 and S0, allow for four data inputs, D0, D1, D2, and D3. 

 S2 S1 S0 
D0 
D1 
D2 
D3 Y
D4 
D5 
D6 
D7 

Output 
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Example 
For the multiplexer shown below, sketch the output waveform Y for 

the inputs S1 and S0 shown in the graph next to it. Assume S1 is the 
most significant bit. 

 
 
 
 
 
 
 
 

Solution 
The decimal equivalent to the binary value input by the selector 

inputs indicates the subscript of the channel being connected to the 
output. For example, when S1 equals one and S0 equals zero, then their 
decimal equivalent is 102 = 210. Therefore, D2 is connected to the 
output. Since D2 equals zero, then Y is outputting a zero. 

The graph below shows the values of Y for each of the states of S1 
and S0. The labels inserted above the waveform for Y indicate which 
channel is connected to Y at that time. 

 
 
 
 
 
 
 

8.6 Demultiplexers 
The previous section described how multiplexers select one channel 

from a group of input channels to be sent to a single output. 
Demultiplexers take a single input and select one channel out of a 
group of output channels to which it will route the input. It's like having 
multiple printers connected to a computer. A document can only be 
printed to one of the printers, so the computer selects one out of the 
group of printers to which it will send its output. 
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The design of a demultiplexer is much like the design of a decoder. 
The decoder selected one of many outputs to which it would send a 
zero. The difference is that the demultiplexer sends data to that output 
rather than a zero. 

The circuit of a demultiplexer is based on the non-active-low 
decoder where each output is connected to an AND gate. An input is 
added to each of the AND gates that will contain the demultiplexer's 
data input. If the data input equals one, then the output of the AND gate 
that is selected by the selector inputs will be a one. If the data input 
equals zero, then the output of the selected AND gate will be zero. 
Meanwhile, all of the other AND gates output a zero, i.e., no data is 
passed to them. Figure 8-27 presents a demultiplexer circuit with two 
selector inputs. 

 
 
 
 
 
 
 
 
 
 
 

Figure 8-27   Logic Circuit for a 1-Line-to-4-Line Demultiplexer 

In effect, the select lines, S0, S1, … Sn, "turn on" a specific AND 
gate that passes the data through to the selected output. In Figure  
8-27, if S1=0 and S0=1, then the D1 output will match the input from the 
Data line and outputs D0, D2, and D3 will be forced to have an output of 
zero. If S1=0, S0=1, and Data=0, then D1=0. If S1=0, S0=1, and Data=1, 
then D1=1. Figure 8-28 presents the truth table for the 1-line-to-4-line 
demultiplexer shown in Figure 8-27. 
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S1 S0 Data D0 D1 D2 D3 
0 0 0 0 0 0 0 
0 0 1 1 0 0 0 
0 1 0 0 0 0 0 
0 1 1 0 1 0 0 
1 0 0 0 0 0 0 
1 0 1 0 0 1 0 
1 1 0 0 0 0 0 
1 1 1 0 0 0 1 

Figure 8-28   Truth Table for a 1-Line-to-4-Line Demultiplexer 

8.7 Integrated Circuits 
It may appear that much of our discussion up to this point has been 

theoretical, but in reality, each of the circuits we've presented can easily 
be implemented given the right tools. Prototypes used to test or verify 
circuit designs can be made by wiring together small plastic chips that 
offer access to the internal components through thin metal pins. These 
chips, called integrated circuits (ICs), come in a wide variety of shapes, 
sizes, and pin configurations. Figure  
8-29 presents a sample of some ICs. 

 

 

Figure 8-29   Examples of Integrated Circuits 

Connecting the metal pins of these chips with other metal pins from 
the same chip or additional chips is what allows us to create digital 
circuits. 

As for what we are connecting to them, the metal pins of the ICs 
allow us access to the internal circuitry such as the inputs and outputs 
of logic gates. Detailed information is available for all ICs from the 
manufacturer allowing designers to understand the internal circuitry. 
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The documentation defining the purpose of each pin of the IC is usually 
referred to as the IC's "pin-out description."  It provides information not 
only on the digital circuitry, but also any power requirements needed to 
operate the IC. 

Figure 8-30 presents an example of the pin-out of a quad dual-input 
NAND gate chip, commonly referred to as a 7400. 

 
 
 
 
 
 
 

Figure 8-30   Pin-out of a Quad Dual-Input NAND Gate IC (7400) 

Note that the pins are numbered. In order to properly use one of 
these ICs, you must be able to identify the pin numbers. To help you do 
this, the manufacturers provide an identification for the first pin, 
referred to as "pin 1", on every IC. The Figure 8-31 presents some of 
the ways this pin is identified. 

 
 
 
 
 
 

Figure 8-31   Sample Pin 1 Identifications 

The pins are then numbered counter-clockwise around the chip. You 
can see this in the numbering of the pins in Figure 8-30. 

Many circuits are then built and tested using prototype boards or 
protoboards. A protoboard is a long, thin plastic board with small holes 
in it that allow ICs and short wire leads to be plugged in. A generic 
protoboard is shown in Figure 8-32. 
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Figure 8-32   Generic Protoboard 

Behind the sockets there is a pattern of metal connections that 
provides an electrical path between certain sockets on the protoboard. 
This allows us to interconnect and power ICs. Figure 8-33 below shows 
how the sockets are connected electrically. 

 

 
Figure 8-33   Generic Protoboard Internal Connections 

The protoboard allows the user to insert an IC so that it straddles the 
gap running along the center of the board. Wires can then be used to 
connect the pins to other sockets on the protoboard. The rows on the 
top and bottom edges of the board in Figure 8-32 are used to connect 
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power (Vcc) and ground (GND) to the IC. Figure 8-34 shows a sample 
circuit with two chips wired together. 

 

 

Figure 8-34   Sample Circuit Wired on a Protoboard 

The next step is to add input and output that will allow us to 
communicate with our circuit. The simplest output from a digital circuit 
is an LED. Figure 8-35 presents the schematic symbol of an LED. 

 
 
 
 
 
 

Figure 8-35   Schematic Symbol of a Light-Emitting Diode (LED) 

An LED will turn on only when a small current passes through it 
from node A to node B. No light will appear if there is no current or if 
the current tries to flow in the opposite direction. By the way, if your 
LED doesn't work like you think it should, try to turn it around. 

There are two things to note here. First, the current must be very 
small. In order to keep the current small enough to protect the LED, we 
need an electronic device called a resistor. This resistor is placed in 
series with the LED to limit the current. If you forget the resistor, you 
will hear a small pop and smell an awful burning odor when you power 
up your circuit.  Figure 8-36 shows a typical LED circuit. 

A

B
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Figure 8-36   Typical LED Circuit 

It is important to note that the LED will turn on only when the 
output from the IC equals zero. This is the best way to drive an LED. It 
keeps the ICs from having to supply too much current. 

The simplest input to a digital circuit is a switch. It seems that the 
logical way to connect a switch to a digital circuit would be to connect 
it so that it toggles between a direct connection to a logic 1 and a direct 
connection to a logic 0. Switching back and forth between these 
connections should produce binary 1's and 0's, right? 

Due to the electronics behind IC inputs, this is not the case. Instead, 
connections to positive voltages are made through resistors called pull-
up resistors. This protects the IC by limiting the current flowing into it 
while still providing a positive voltage that can be read as a logic one. 
Figure 8-37 presents a generic switch design for a single input to a 
digital circuit. It uses a pull-up resistor connected to 5 volts which 
represents the circuit's power source. 

 
 
 
 
 
 
 
 

Figure 8-37   Generic Switch Circuit to an IC's Input 

IC's Input 

+5 V 

Pull-up Resistor 

+5 V 

IC Output
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Any local electronics store should carry the protoboards, ICs, input 
switches, and output LEDs to create your prototype circuits. By using 
some simple circuits for switches and LEDs and the design principles 
outlined in this book, you can begin creating digital circuits of your 
own. 

8.8 What's Next? 
In this chapter, we have examined some of the lower-level hardware 

applications of digital logic. In the next chapter, we will present some 
applications that pertain more to the software and system levels of 
computer system design. 

Problems 
1. Design the digital logic for segments c, f, and g of the seven-

segment display driver truth table in Figure 8-14. 

2. Draw the decoding logic circuit with an active-low output for the 
inputs A = 1, B = 1, C = 0, and D = 1. 

3. For the active-low output decoder shown  
to the right, fill in the values for the  
outputs D0 through D3. Assume S1 is the  
most significant bit. 

 
 

4. What is the binary value being output  
from Y in the multiplexer circuit shown  
to the right? 

 

 
 

5. What is the purpose of the resistor in the digital circuit for the LED 
shown in Figure 8-36? 

6. What is the purpose of the resistor in the digital circuit for the 
switch shown in Figure 8-37? 
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S1 D1 
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