CSCI 4717/5717 Computer Architecture
Topic: Functional View \& History Reading: Sections 1.2, 2.1, \& 2.3

Function

All computer functions are comprised of four basic operations:

- Data processing
- Data storage
- Data movement
- Control

CSCI 4717 - Computer Architecture	Functional View \& History - Page 2 of 34

Data Storage

- Long term
- Logging
- Data records
- Short term
- temp variables - e.g., buffer containing the last key pressed
- program control data - e.g., loop variables
$\overline{\text { CSCl } 4717 \text { - Computer Architecture } \quad \text { Functional View \& History - Page } 4 \text { of } 34}$

Data Movement

- Computer must be able to communicate with outside world
- Data must be "accessible" to devices outside computer
- Two types:
- Peripheral
- Data communications

CSCI 4717 - Computer Architecture \quad Functional View \& History - Page 5 of 34

Data movement to a peripheral

- Data must be passed between computer and I/O devices connected to computer
- Typically to simple devices
- Examples
- monitors and keyboards
- data acquisition
- peripheral control

CSCl 4717 - Computer Architecture \quad Functional View \& History - Page 6 of 34

Data Movement to remote devices (data communications)

- Data communications is data movement over a longer range
- Typically to smart devices or other computers

CSCl 4717 - Computer Architecture

Control

- Something needs to monitor operation and maintain control of data processing, data storage, and data movement.
- Automated control of computer's resources
$\overline{\text { CSCI } 4717 \text { - Computer Architecture } \quad \text { Functional View \& History - Page } 8 \text { of } 34}$

Operations:
Data movement
Figure 1.2a, p. 11

In-Class Exercise

- Determine which of the previous operations applies each of the following uses:
- Router system
- Hard drive controller
- SETI@Home
- Video capture or CD player
- Come up with additional examples for each of the previous operations
$\overline{\text { CSCl } 4717 \text { - Computer Architecture } \quad \text { Functional View \& History - Page } 14 \text { of } 34}$

In-Class Exercise

- Think back to your first computer
- Try to recall the characteristics
- Processor type
- Processor speed (Hz)
- Memory size
- Characteristics such as:
- Types of storage devices
- Cache
- Bus
- Network

CSCl 4717 - Computer Architecture \quad Functional View \& History - Page 18 of 34

ENIAC (continued)

General purpose nature proven by using ENIAC to perform calculations for:

- hydrogen bomb feasibility
- weather prediction
- cosmic-ray studies
- thermal ignition
- random-number studies
- wind-tunnel design

ENIAC (continued)

- Twenty 10 digit accumulators
- Decimal (base-10) machine, each digit represented by one of ten tubes "ON"
- 5,000 additions per second (1,000 times faster then any other device at that time)
- 357 multiplications per second
- 38 divisions per second

[^0]
ENIAC (continued)

- Mauchly (EE professor) and Eckert (grad student) at University of Pennsylvania's Moore School of Electrical Engineering
- Proposed general purpose computer
- Started 1943
- Finished 1946
- 1 year to design
- 18 months to build
- Cost \$500,000
- Too late for war effort

CSCl 4717 - Computer Architecture \quad Functional View \& History - Page 20 of 34

ENIAC (continued)

- Programmed manually by 6,000 switches (programming took weeks)
- Used 17,468 vacuum tubes (relays had been used up to this point)
- Other components included 70,000 resistors, 10,000 capacitors, 1,500 relays, and 5 million soldered joints
- 30 tons, 1800 square feet of floor space
- Consumed 160 kilowatts of electrical power

CSCl 4717 - Computer Architecture \quad Functional View \& History - Page 22 of 34

ENIAC I/O

- Constants were loaded using switches
- Numbers changed during the course of computation were entered using punch cards or punch tape
- The basic memory device was a flip-flip (latch) that had a neon lamp to represent its state

von Neumann/Turing Stored Program Computer

- ALU operates on binary data
- Main memory stores both instructions and data - must be considerable in order to carry out long, complicated sequences of operations
- Control unit interprets instructions from memory and causes them to be executed
- Input and output equipment operated by control unit

CSCI 4717 - Computer Architecture
Functional View \& History - Page 25 of 34

IAS Registers

- Set of registers (storage in CPU)
- Memory Buffer Register (MBR)
- Memory Address Register (MAR)
- Instruction Register (IR)
- Instruction Buffer Register (IBR)
- Program Counter (PC)
- Accumulator (AC)
- Multiplier Quotient (MQ)

CSCl 4717 - Computer Architecture \quad Functional View \& History - Page 29 of 34

Princeton Institute for Advanced Studies (IAS)

- First implementation of von Neumann stored program computer - Completed 1952

CSCI 4717 - Computer Architecture	Functional View \& History - Page 26 of 34

[^1]

Transistors

- Replaced vacuum tubes
- Smaller
- Cheaper
- Less heat dissipation
- Solid State device
- Made from Silicon (Sand)
- Invented 1947 at Bell Labs by William Shockley et al.

CSCl 4717 - Computer Architecture \quad Functional View \& History - Page 32 of 34

Moore's Law

- Gordon Moore - cofounder of Intel
- He observed (based on experience) that number of transistors on a chip doubled every year
- Since 1970's growth has slowed a little
- Number of transistors doubles every 18 months
- Cost of a chip has remained almost unchanged
- Higher packing density means shorter electrical paths, giving higher performance
- Smaller size gives increased flexibility/portability
- Reduced power and cooling requirements
- Fewer system interconnections increases reliability

CSCI 4717 - Computer Architecture
Functional View \& History - Page 33 of 34

[^0]: CSCl 4717 - Computer Architecture \quad Functional View \& History - Page 23 of 34

[^1]: ## IAS Memory

 1000×40 bit words of either number or instruction

 - Signed magnitude binary number
 - 1 sign bit
 - 39 bits for magnitude
 - 2×20 bit instructions
 - Left and right instructions (left executed first)
 - 8-bit opcode
 - 12 bit address
 CSCl 4717 - Computer Architecture \quad Functional View \& History - Page 28 of 34

 | CSCl 4717 - Computer Architecture | Functional View \& History - Page 28 of 34 |
 | :--- | :--- |

