
1

Intro to Architecture – Page 1 of 22CSCI 4717 – Computer Architecture

CSCI 4717/5717
Computer Architecture

Topic: Introduction
Reading: Chapter 1

Intro to Architecture – Page 2 of 22CSCI 4717 – Computer Architecture

Architecture vs. Organization
• Architecture is the set of attributes visible to the

programmer
– Instruction set, number of bits used for data

representation, I/O mechanisms, addressing
techniques.

– Examples:
• Does this processor have a multiply instr.?
• How does the compiler create object code?
• How best is memory handled by the O/S?

Intro to Architecture – Page 3 of 22CSCI 4717 – Computer Architecture

Architecture vs. Organization
(continued)

• Organization is how features are
implemented
– Control signals, interfaces, memory

technology.
– Examples:

• Is there a hardware multiply unit or is it done by
repeated addition?

• What type of non-volatile memory is used to store
the BIOS?

Intro to Architecture – Page 4 of 22CSCI 4717 – Computer Architecture

Architecture vs. Organization
(continued)

• All Intel x86 family share the same basic
architecture

• The IBM System/370 family share the same
basic architecture

• Consistent architecture gives code
compatibility, at least backwards, thus
protecting user’s software investment

• Organization differs between different versions

Intro to Architecture – Page 5 of 22CSCI 4717 – Computer Architecture

In-class Exercise
• Assume you are part of a processor

manufacturer's marketing group, and
you've been asked to generate
specifications for a processor that comes
in three versions: economy, mid-range,
and high-end.

• In groups of three or four, discuss the
differences you would have between the
three versions of this processor.

Intro to Architecture – Page 6 of 22CSCI 4717 – Computer Architecture

Differences in organization but not
architecture leads to “families”

• Different cost and performance
• Run same code
• Families may span years of technological

advancement

2

Intro to Architecture – Page 7 of 22CSCI 4717 – Computer Architecture

How do CSCI 2150 and CSCI 2160
relate to CSCI 4717?

•Theoretical
•Top-down design
•Problem solving with:

–block diagrams
–flow diagrams
–performance
measures

•Implementation
•Bottom-up design
•Problem solving with:

–bits
–bytes
–code

CSCI 4717CSCI 2150/2160

Intro to Architecture – Page 8 of 22CSCI 4717 – Computer Architecture

How do CSCI 2150 and CSCI 2160
relate to CSCI 4717? (continued)

• Understanding digital logic:
– offers ideas as to how architecture is implemented
– reveals some of the difficulties encountered when

trying to realize an architecture.
• Understanding assembly language:

– helps explain needs of architecture
– provides foundation for understanding execution of

instructions
– provides insight to compiler design

Intro to Architecture – Page 9 of 22CSCI 4717 – Computer Architecture

In-Class Exercise
In groups of three or four, discuss methods for
optimizing a fast food drive thru lane. Be sure
to address:
– Menus (both content and presentation)
– Number of steps patrons must go through
– Resources needed for:

• Ordering
• Methods of payment
• Cooking
• Pickup

Intro to Architecture – Page 10 of 22CSCI 4717 – Computer Architecture

Hierarchical Nature of Complex
Systems

• Each level of system hierarchy consists of
set of components and their
interrelationships
– Operation of components Function
– Interrelation of components Structure

• Each successively higher layer describes
simplified/more abstract view of lower
levels

Intro to Architecture – Page 11 of 22CSCI 4717 – Computer Architecture

Hierarchical Nature of Complex
Systems (continued)

• Breaking system into components or modules
forces designer to develop a detailed
understanding of the data that is passed
between them

• Working within the hierarchy, a designer needs
to only concern him/herself with the details of his
or her module at that specific level

• Working with a well-defined set of inputs,
outputs, and function definition, designers can
completely design their module without any
knowledge of how rest of system is made

Intro to Architecture – Page 12 of 22CSCI 4717 – Computer Architecture

Modular System Design
Applying a modular methodology to
system design results in:
– a more manageable project
– quicker design time by allowing multiple

people with differing expertise to participate
(although up-front investment of time feels
like a drawback)

– a higher quality system
– a more maintainable system
– increased module reusability

3

Intro to Architecture – Page 13 of 22CSCI 4717 – Computer Architecture

Modular System Design
(continued)

There are two methods to use toward
a designing a modular system:
– Top down
– Bottom up

Intro to Architecture – Page 14 of 22CSCI 4717 – Computer Architecture

Top Down System Design
• Solving a problem by dividing the system

into individual functions and building a
component to satisfy each function.

• Benefits of Top Down Design
– Efficient use of components
– Easier to meet performance goals of the

system specification
• Drawbacks of Top Down Design

– More expensive and time consuming

Intro to Architecture – Page 15 of 22CSCI 4717 – Computer Architecture

Bottom Up System Design

• Solving a problem using an existing
system (e.g., using DLL's to create a new
application)

• Cheaper in small quantities
• Design time is reduced
• Past experiences can be drawn upon

Intro to Architecture – Page 16 of 22CSCI 4717 – Computer Architecture

Concept of Black Boxes

• This is the building block of the
hierarchical system design.

• If inputs, outputs, and functions are well
defined, the designer doesn't need to
know about anything above or below in the
system

Intro to Architecture – Page 17 of 22CSCI 4717 – Computer Architecture

Implementation of components

There are three basic ways to
implement a system component
– Hardware (HW)
– Software (SW)
– Firmware (FW)

Intro to Architecture – Page 18 of 22CSCI 4717 – Computer Architecture

Hardware

• The permanent, physical
implementation of circuits and
devices

• Hardware is required for all systems

4

Intro to Architecture – Page 19 of 22CSCI 4717 – Computer Architecture

Software

• The programs contained in read/write
memory ranging from machine
language to high-level languages

• Requires a processor to run
(hardware dependent)

Intro to Architecture – Page 20 of 22CSCI 4717 – Computer Architecture

Firmware

• Lies between hardware and software
• Programs (usually machine code)

contained in read only memory

Intro to Architecture – Page 21 of 22CSCI 4717 – Computer Architecture

Performance Characteristics

• Throughput/speed – HW best; FW average;
SW worst

• Development Cost – HW best; FW average;
SW worst

• Adaptability – HW worst; FW average;
SW best

• Reliability – HW best; FW average;
SW average

Intro to Architecture – Page 22 of 22CSCI 4717 – Computer Architecture

In-Class Exercise
In groups of three or four, discuss the
performance characteristics of hardware,
software, and firmware for the following
system measures:
– Security
– User interface requirements
– Remote connectivity
– Regulatory standards

