
Memory Blocks
DEFINITION: A block is a group of neighboring words in memory identified by bits of address excluding "w"
word ID bits
EXAMPLE: Assume a block uses three word ID bits, i.e., w=3. Memory addresses for this system are
therefore broken up as shown in the figure below.

EXERCISE: Which addresses below are contained the same block as the address 0x546A5 for a block size
of 8 words?

a.) 0x536A5 a.) 0x546B5 a.) 0x546AF a.) 0x546A0 a.) 0x546C7 a.) 0x546A2

Locality of Reference Principle
DEFINITION: During execution, memory references of both data and instructions tend to cluster together
over a short period of time. Examples of instructions that might cluster together are iterative loops or functions.
It might even be possible for a compiler to organize data so that data elements that are accessed together are
contained in the same block.

EXAMPLE: Identify how many times the
processor "touches" each piece of data and
each line of code in the following snippet of
code.

General Organization of a Cache

POINTS OF INTEREST:
• Tags are unique identifiers

derived from the address of the
block contained in the
corresponding line.

• When one word is loaded into the
cache, all of the words in the
same block are loaded into a
single line.

• The number of lines in a cache
equals the size of the cache
divided by the number of words in
a block.

TAG0 Block of words corresponding to TAG0

TAG1 Block of words corresponding to TAG1

TAG2 Block of words corresponding to TAG2

TAG3 Block of words corresponding to TAG3

TAGn-1 Block of words corresponding to TAGn-1

L
I
N
E
S

Block of 2w words where w = # of word ID bits

Memory address a29 a28 a27 … a4 a3 a2 a1 a0

"Block Address"
Bits identifying block

"Word ID"
Bits identifying offset into block

int values[6] = {9, 34, 67, 23, 7, 3};
int count;
int sum = 0;
for (count = 0; count < 8; count++)
 sum += values[count];

Direct Mapping Algorithm

POINTS OF INTEREST:
• Each block of main memory maps to only

one cache line – i.e. if a block is in cache,
it will always be found in the same place

• Line number is calculated using the
function

i = j modulo m
where

i = cache line number
j = block number derived from address
m = number of lines in the cache

• The memory address is divided into three
parts which are from right to left: the word
id, the bits identifying the cache line
number where the block is stored, and
the tag.

• 2l = number of lines in cache
• 2w = number of words in a block
• 2t = number of blocks in memory that

map to the same line in the cache.

EXAMPLE: What cache line number will the following addresses be stored to, and what will the minimum
address and the maximum address of each block they are in be if we have a cache with 212 = 4K lines of
24 = 16 words to a block in a 228 = 256 Meg memory space?

a.) 0x9ABCDEF b.) 0x1234567 c.) 0xD43F6C2

EXAMPLE: Assume that a portion of the tags in the cache in our example looks like the table below. Which
of the following addresses are contained in the cache?

a.) 0x438EE8 b.) 0xF18EFF c.) 0x6B8EF3 d.) 0xAD8EF3

Addresses wi/ block Tag (binary) Line number (binary)
00 01 10 11

0101 0011 1000 1110 1110 10
1110 1101 1000 1110 1110 11
1010 1101 1000 1110 1111 00
0110 1011 1000 1110 1111 01
1011 0101 1000 1110 1111 10
1111 0001 1000 1110 1111 11

EXAMPLE: For the previous example, how many lines does the cache contain? How many blocks can be
mapped to a single line of the cache?
PROS: Simple & inexpensive
CONS: If program repeatedly accesses 2 blocks that map to same line, get high cache misses (thrashing)

Fully Associative Mapping Algorithm

POINTS OF INTEREST:
• A main memory block can load into any line of cache
• Every line's tag must be examined for a match

Memory
Block 0
Block 1

Block 512
Block 513

Block 1024
Block 1025

Block 1536
Block 1537

Line 0 Tag0 Block for Tag0
Line 1 Tag1 Block for Tag1
Line 2 Tag2 Block for Tag2
Line 3 Tag3 Block for Tag3

Line 511 Tag511 Block for Tag511

Cache

t bits l bits w bits

Tag Bits identifying
row in cache

Bits identifying word
offset into block

Direct Mapping Partitioning of Memory Address

• The algorithm for storing is
independent of the size of the cache

• Cache searching gets expensive
and slower

• Memory address is interpreted as:
o Least significant w bits = word

position within block
o Most significant s bits = tag used to identify which block is stored in a particular line of cache

EXAMPLE: Assume that a portion of the tags in the cache in our example looks like the table below. Which of
the following addresses are contained in the cache?

a.) 0x438EE8 b.) 0xF18EFF c.) 0x6B8EF3 d.) 0xAD8EF3

Addresses wi/ block Tag (binary)
00 01 10 11

0101 0011 1000 1110 1110 10
1110 1101 1100 1001 1011 01
1010 1101 1000 1110 1111 00
0110 1011 1000 1110 1111 11
1011 0101 0101 1001 0010 00
1111 0001 1000 1110 1111 11

Replacement Algorithms

There must be a method for selecting which line in the cache is going to be replaced when there’s no room for
a new line
POINTS OF INTEREST:
• Hardware implemented algorithm for speed
• There is no need for a replacement algorithm with direct mapping since each block only maps to one line –

just replace line that is in the way.
• Types of replacement algorithms:

o Least Recently used (LRU) – replace the block that hasn't been touched in the longest period of time
o First in first out (FIFO) – replace block that has been in cache longest
o Least frequently used (LFU) – replace block which has had fewest hits
o Random – just pick one, only slightly lower performance than use-based algorithms LRU, FIFO, and

LFU

Set Associative Mapping Algorithm
POINTS OF INTEREST:
• Address length is s + w bits
• Cache is divided into a number of sets,

v = 2d
• k blocks/lines can be contained within

each set
• k lines in a cache is called a k-way set

associative mapping
• Number of lines in a cache = v•k = k•2d
• Size of tag = (s-d) bits
• Each block of main memory maps to

only one cache set, but k-lines can
occupy a set at the same time

Fully Associative Mapping Memory Address Partitioning
t bits w bits

Tag Bits identifying word
offset into block

Memory
Block 0
Block 1

Block 128
Block 129

Block 256
Block 257

Block 384
Block 385

Tag0 Block for Tag0
Tag1 Block for Tag1
Tag2 Block for Tag2
Tag3 Block for Tag3

Tag511 Block for Tag511

Cache

Tag4 Block for Tag4
Tag5 Block for Tag5
Tag6 Block for Tag6
Tag7 Block for Tag7
Tag8 Block for Tag8

Set 0

Set 1

• Two lines per set is the most
common organization.
o This is called 2-way

associative mapping
o A given block can be in one

of 2 lines in only one specific
set

o Significant improvement over
direct mapping

o Replacement algorithm
simply uses LRU with a USE
bit. When one block is
referenced, its USE bit is set
while its partner in the set is
cleared

Writing to a Cache
Must not overwrite a cache block unless main memory is up to date

Two main problems:
• If cache is written to, main memory is invalid or if main memory is written to, cache is invalid – Can occur if

I/O can address main memory directly
• Multiple CPUs may have individual caches; once one cache is written to, all caches are invalid

Write Through: All writes go to main memory as well as cache
• Multiple CPUs can monitor main memory traffic to keep local (to CPU) cache up to date
• Lots of traffic and slows writes

Write Back: Updates initially made in cache only
• Update bit for cache slot is set when update occurs
• If block is to be replaced, write to main memory only if update bit is set
• Other caches get out of sync
• I/O must access main memory through cache
• Research shows that 15% of memory references are writes

Multiple Processors with Multiple Caches:
• Even if a write through policy is used, other processors may have invalid data in their caches

Solutions to Prevent Problems with Multiprocessor/cache systems
• Bus watching with write through – each cache watches the bus to see if data they contain is being written

to the main memory by another processor. All processors must be using the write through policy
• Hardware transparency – a "big brother" watches all caches, and upon seeing an update to any

processor's cache, it updates main memory AND all of the caches
• Noncacheable memory – Any shared memory (identified with a chip select) may not be cached.

Unified versus Split Caches
• Split into two caches – one for instructions, one for data

o Disadvantages
 Questionable as unified cache balances data and instructions merely with hit rate.
 Hardware is simpler with unified cache

o Advantage
 What a split cache is really doing is providing one cache for the instruction decoder and one for the

execution unit.
 Supports pipelined architectures.

Effect of Cache Set Size on Address Partitioning

Tag bits Set ID bits
Word

ID bits

18 bits 9 bits 3 bits Direct mapping (1 line/set)
19 bits 8 bits 3 bits 2-way set associative (21 lines/set)
20 bits 7 bits 3 bits 4-way set associative (22 lines/set)
21 bits 6 bits 3 bits 8-way set associative (23 lines/set)

25 bits 2 bits 3 bits 128-way set associative (27 lines/set)
26 bits 1 bit 3 bits 256-way set associative (28 lines/set)

27 bits 3 bits Fully associative (1 big set)

