
1

Cache Memory – Page 1 of 81CSCI 4717 – Computer Architecture

CSCI 4717/5717
Computer Architecture

Topic: Cache Memory
Reading: Stallings, Chapter 4

Cache Memory – Page 2 of 81CSCI 4717 – Computer Architecture

Characteristics of Memory
“Location wrt Processor”

• Inside CPU – temporary memory or
registers

• Inside processor – L1 cache
• Motherboard – main memory and L2

cache
• Main memory – DRAM and L3 cache
• External – peripherals such as disk, tape,

and networked memory devices

Cache Memory – Page 3 of 81CSCI 4717 – Computer Architecture

Characteristics of Memory
“Capacity – Word Size”

• The natural data size for a processor.
• A 32-bit processor has a 32-bit word.
• Typically based on processor's data bus

width (i.e., the width of an integer or an
instruction)

• Varying widths can be obtained by putting
memory chips in parallel with same
address lines

Cache Memory – Page 4 of 81CSCI 4717 – Computer Architecture

Characteristics of Memory
“Capacity – Addressable Units”

• Varies based on the system's ability to
allow addressing at byte level etc.

• Typically smallest location which can be
uniquely addressed

• At mother board level, this is the word
• It is a cluster on disks
• Addressable units (N) equals 2 raised to

the power of the number of bits in the
address bus

Cache Memory – Page 5 of 81CSCI 4717 – Computer Architecture

Characteristics of Memory
“Unit of transfer”

• The number of bits read out of or written
into memory at a time.

• Internal – Usually governed by data bus
width, i.e., a word

• External – Usually a block which is much
larger than a word

Cache Memory – Page 6 of 81CSCI 4717 – Computer Architecture

Characteristics of Memory
“Access method”

• Based on the hardware implementation of
the storage device

• Four types
– Sequential
– Direct
– Random
– Associative

2

Cache Memory – Page 7 of 81CSCI 4717 – Computer Architecture

Sequential Access Method

• Start at the beginning and read through in
order

• Access time depends on location of data
and previous location

• Example: tape

Cache Memory – Page 8 of 81CSCI 4717 – Computer Architecture

Direct Access Method

• Individual blocks have unique address
• Access is by jumping to vicinity then

performing a sequential search
• Access time depends on location of data

within "block" and previous location
• Example: hard disk

Cache Memory – Page 9 of 81CSCI 4717 – Computer Architecture

Random Access Method

• Individual addresses identify locations
exactly

• Access time is consistent across all
locations and is independent previous
access

• Example: RAM

Cache Memory – Page 10 of 81CSCI 4717 – Computer Architecture

Associative Access Method

• Addressing information must be stored
with data in a general data location

• A specific data element is located by a
comparing desired address with address
portion of stored elements

• Access time is independent of location or
previous access

• Example: cache

Cache Memory – Page 11 of 81CSCI 4717 – Computer Architecture

Performance – Access Time

• Time between "requesting" data and getting it
• RAM

– Time between putting address on bus and getting
data.

– It's predictable.
• Other types, Sequential, Direct, Associative

– Time it takes to position the read-write mechanism at
the desired location.

– Not predictable.

Cache Memory – Page 12 of 81CSCI 4717 – Computer Architecture

Performance – Memory Cycle time

• Primarily a RAM phenomenon
• Adds "recovery" time to cycle allowing for

transients to dissipate so that next access is
reliable.

• Cycle time is access + recovery

3

Cache Memory – Page 13 of 81CSCI 4717 – Computer Architecture

Performance – Transfer Rate

• Rate at which data can be moved
• RAM – Predictable; equals 1/(cycle time)
• Non-RAM – Not predictable; equals

TN = TA + (N/R)

where
– TN = Average time to read or write N bits
– TA = Average access time
– N = Number of bits
– R = Transfer rate in bits per second

Cache Memory – Page 14 of 81CSCI 4717 – Computer Architecture

Physical Types

• Semiconductor – RAM
• Magnetic – Disk & Tape
• Optical – CD & DVD
• Others

– Bubble (old) – memory that made a "bubble" of
charge in an opposite direction to that of the thin
magnetic material that on which it was mounted

– Hologram (new) – much like the hologram on your
credit card, laser beams are used to store computer-
generated data in three dimensions. (10 times faster
with 12 times the density)

Cache Memory – Page 15 of 81CSCI 4717 – Computer Architecture

Physical Characteristics

• Decay
– Power loss
– Degradation over time

• Volatility – RAM vs. Flash
• Erasable – RAM vs. ROM
• Power consumption – More specific to laptops,

PDAs, and embedded systems

Cache Memory – Page 16 of 81CSCI 4717 – Computer Architecture

Organization

• Physical arrangement of bits into words
• Not always obvious
• Non-sequential arrangements may be due to

speed or reliability benefits, e.g. interleaved

Cache Memory – Page 17 of 81CSCI 4717 – Computer Architecture

Memory Hierarchy
• Trade-offs among three key characteristics

– Amount – Software will ALWAYS fill available
memory

– Speed – Memory should be able to keep up with
the processor

– Cost – Whatever the market will bear
• Balance these three characteristics with a memory

hierarchy
• Analogy –

Refrigerator & cupboard (fast access – lowest
variety)
freezer & pantry (slower access – better variety)
grocery store (slowest access – greatest variety)

Cache Memory – Page 18 of 81CSCI 4717 – Computer Architecture

Memory Hierarch (continued)

Implementation – Going down the
hierarchy has the following results:
– Decreasing cost per bit (cheaper)
– Increasing capacity (larger)
– Increasing access time (slower)
– KEY – Decreasing frequency of access of the

memory by the processor

4

Cache Memory – Page 19 of 81CSCI 4717 – Computer Architecture

Memory Hierarch (continued)

Source: Null, Linda and Lobur, Julia (2003). Computer Organization
and Architecture (p. 236). Sudbury, MA: Jones and Bartlett Publishers.

Cache Memory – Page 20 of 81CSCI 4717 – Computer Architecture

Mechanics of Technology

• The basic mechanics of creating memory
directly affect the first three characteristics
of the hierarchy:
– Decreasing cost per bit
– Increasing capacity
– Increasing access time

• The fourth characteristic is met because of
a principle known as locality of reference

Cache Memory – Page 21 of 81CSCI 4717 – Computer Architecture

In-Class Exercise
• In groups, examine the following code. Identify how

many times the processor "touches" each piece of
data and each line of code:

int values[8] =
{9, 34, 23, 67, 23, 7, 3, 65};

int count;
int sum = 0;
for (count = 0; count < 8; count++)

sum += values[count];

• For better results, try the same exercise using the
assembly language version found at:
http://faculty.etsu.edu/tarnoff/ntes4717/week_03/assy.pdf

Cache Memory – Page 22 of 81CSCI 4717 – Computer Architecture

Locality of Reference

Due to the nature of programming,
instructions and data tend to cluster
together (loops, subroutines, and data
structures)
– Over a long period of time, clusters will

change
– Over a short period, clusters will tend to be

the same

Cache Memory – Page 23 of 81CSCI 4717 – Computer Architecture

Breaking Memory into Levels

• Assume a hypothetical system has two levels of
memory
– Level 2 should contain all instructions and data
– Level 1 doesn't have room for everything, so when

a new cluster is required, the cluster it replaces
must be sent back to the level 2

• These principles can be applied to much more than
just two levels

• If performance is based on amount of memory rather
than speed, lower levels can be used to simulate
larger sizes for higher levels, e.g., virtual memory

Cache Memory – Page 24 of 81CSCI 4717 – Computer Architecture

Memory Hierarchy Examples

Example: If 95% of the memory accesses are found
in the faster level, then the average access time might
be:

(0.95)(0.01 uS) + (0.05)(0.1 uS) = 0.0095 + 0.0055
= 0.015 uS

5

Cache Memory – Page 25 of 81CSCI 4717 – Computer Architecture

Performance of a Simple Two-
Level Memory (Figure 4.2)

Cache Memory – Page 26 of 81CSCI 4717 – Computer Architecture

Hierarchy List

• Registers – volatile
• L1 Cache – volatile
• L2 Cache – volatile
• CDRAM (main memory) cache – volatile
• Main memory – volatile
• Disk cache – volatile
• Disk – non-volatile
• Optical – non-volatile
• Tape – non-volatile

Cache Memory – Page 27 of 81CSCI 4717 – Computer Architecture

Cache

• What is it? A cache is a small amount of fast
memory

• What makes small fast?
– Simpler decoding logic
– More expensive SRAM technology
– Close proximity to processor – Cache sits

between normal main memory and CPU or it
may be located on CPU chip or module

Cache Memory – Page 28 of 81CSCI 4717 – Computer Architecture

Cache (continued)

Cache Memory – Page 29 of 81CSCI 4717 – Computer Architecture

Cache operation – overview

• CPU requests contents of memory location
• Check cache for this data
• If present, get from cache (fast)
• If not present, one of two things happens:

– read required block from main memory to cache
then deliver from cache to CPU (cache physically
between CPU and bus)

– read required block from main memory to cache
and simultaneously deliver to CPU (CPU and
cache both receive data from the same data bus
buffer)

Cache Memory – Page 30 of 81CSCI 4717 – Computer Architecture

Going Deeper with Principle of Locality
• Cache "misses" are unavoidable, i.e., every piece of

data and code thing must be loaded at least once
• What does a processor do during a miss? It waits for

the data to be loaded.
• Power consumption varies linearly with clock speed

and the square of the voltage.
• Adjusting clock speed and voltage of processor has

the potential to produce cubic (cubed root) power
reductions
(http://www.visc.vt.edu/~mhsiao/papers/pacs00ch.pdf)

• Identify places in in-class exercise where this might
happen.

6

Cache Memory – Page 31 of 81CSCI 4717 – Computer Architecture

Cache Structure

• Cache includes tags to identify the address of
the block of main memory contained in a line
of the cache

• Each word in main memory has a unique n-bit
address

• There are M=2n/K block of K words in main
memory

• Cache contains C lines of K words each plus a
tag uniquely identifying the block of K words

Cache Memory – Page 32 of 81CSCI 4717 – Computer Architecture

Cache Structure (continued)
Line

number
0
1
2

C-1

Tag Block

Block length
(K words)

Cache Memory – Page 33 of 81CSCI 4717 – Computer Architecture

Memory Divided into Blocks

Block of
K words

Block

Word length

Memory
Address

1
2
3

2n-1

Cache Memory – Page 34 of 81CSCI 4717 – Computer Architecture

Cache Design

• Size
• Mapping Function
• Replacement Algorithm
• Write Policy
• Block Size
• Number of Caches

Cache Memory – Page 35 of 81CSCI 4717 – Computer Architecture

Cache size

• Cost – More cache is expensive
• Speed

– More cache is faster (up to a point)
– Larger decoding circuits slow up a cache
– Algorithm is needed for mapping main

memory addresses to lines in the cache. This
takes more time than just a direct RAM

Cache Memory – Page 36 of 81CSCI 4717 – Computer Architecture

Typical Cache Organization

7

Cache Memory – Page 37 of 81CSCI 4717 – Computer Architecture

Mapping Functions

• A mapping function is the method used to locate
a memory address within a cache

• It is used when copying a block from main
memory to the cache and it is used again when
trying to retrieve data from the cache

• There are three kinds of mapping functions
– Direct
– Associative
– Set Associative

Cache Memory – Page 38 of 81CSCI 4717 – Computer Architecture

Cache Example

These notes use an example of a cache to
illustrate each of the mapping functions. The
characteristics of the cache used are:
– Size: 64 kByte
– Block size: 4 bytes – i.e. the cache has 16k

(214) lines of 4 bytes
– Address bus: 24-bit– i.e., 16M bytes main

memory divided into 4M 4 byte blocks

Cache Memory – Page 39 of 81CSCI 4717 – Computer Architecture

Direct Mapping Traits
• Each block of main memory maps to only one cache

line – i.e. if a block is in cache, it will always be found
in the same place

• Line number is calculated using the following
function

i = j modulo m
where

i = cache line number
j = main memory block number
m = number of lines in the cache

Cache Memory – Page 40 of 81CSCI 4717 – Computer Architecture

Direct Mapping Address Structure
Each main memory address can by divided into three fields
• Least Significant w bits identify unique word within a block
• Remaining bits (s) specify which block in memory. These are

divided into two fields
– Least significant r bits of these s bits identifies which line in

the cache
– Most significant s-r bits uniquely identifies the block within a

line of the cache

s-r bits r bits w bits

Tag Bits identifying
row in cache

Bits identifying word
offset into block

Cache Memory – Page 41 of 81CSCI 4717 – Computer Architecture

Direct Mapping Address Structure
(continued)

• Why are the r-bits used to identify which
line in cache?

• More likely to have unique r bits than s-r
bits based on principle of locality of
reference

Cache Memory – Page 42 of 81CSCI 4717 – Computer Architecture

Direct Mapping Address Structure Example

• 24 bit address
• 2 bit word identifier (4 byte block)
• 22 bit block identifier
• 8 bit tag (=22–14)
• 14 bit slot or line
• No two blocks in the same line have the same tag
• Check contents of cache by finding line and

comparing tag

Tag s-r
8 14 2

Line or slot r Word w

8

Cache Memory – Page 43 of 81CSCI 4717 – Computer Architecture

Direct Mapping Cache Line Table

m–1, 2m–1, 3m–1…2s–1m–1

1, m+1, 2m+1…2s–m+11
0, m, 2m, 3m…2s–m0

Main Memory blocks heldCache line

Cache Memory – Page 44 of 81CSCI 4717 – Computer Architecture

Direct Mapping Cache Organization

Cache Memory – Page 45 of 81CSCI 4717 – Computer Architecture

Direct Mapping Examples
What cache line number will the following
addresses be stored to, and what will the
minimum address and the maximum address of
each block they are in be if we have a cache
with 4K lines of 16 words to a block in a 256
Meg memory space (28-bit address)?

a.) 9ABCDEF16
b.) 123456716

Tag s-r
12 12 4

Line or slot r Word w

Cache Memory – Page 46 of 81CSCI 4717 – Computer Architecture

More Direct Mapping Examples
Assume that a portion of the tags in the cache in our example
looks like the table below. Which of the following addresses are
contained in the cache?

a.) 438EE816 b.) F18EFF16 c.) 6B8EF316 d.) AD8EF316

Addresses wi/ block Tag (binary) Line number (binary)
00 01 10 11

0101 0011 1000 1110 1110 10
1110 1101 1000 1110 1110 11
1010 1101 1000 1110 1111 00
0110 1011 1000 1110 1111 01
1011 0101 1000 1110 1111 10
1111 0001 1000 1110 1111 11

Cache Memory – Page 47 of 81CSCI 4717 – Computer Architecture

Direct Mapping Summary

• Address length = (s + w) bits
• Number of addressable units = 2s+w words or

bytes
• Block size = line width = 2w words or bytes
• Number of blocks in main memory = 2s+ w/2w =

2s

• Number of lines in cache = m = 2r

• Size of tag = (s – r) bits

Cache Memory – Page 48 of 81CSCI 4717 – Computer Architecture

Direct Mapping pros & cons

• Simple
• Inexpensive
• Fixed location for given block –

If a program accesses 2 blocks that map to the
same line repeatedly, cache misses are very
high (thrashing)

9

Cache Memory – Page 49 of 81CSCI 4717 – Computer Architecture

Associative Mapping Traits

• A main memory block can load into any line of
cache

• Memory address is interpreted as:
– Least significant w bits = word position within block
– Most significant s bits = tag used to identify which

block is stored in a particular line of cache
• Every line's tag must be examined for a match
• Cache searching gets expensive and slower

Cache Memory – Page 50 of 81CSCI 4717 – Computer Architecture

Associative Mapping Address Structure
Example

• 22 bit tag stored with each 32 bit block of data
• Compare tag field with tag entry in cache to

check for hit
• Least significant 2 bits of address identify which

of the four 8 bit words is required from 32 bit
data block

Tag – s bits
(22 in example)

Word – w bits
(2 in ex.)

Cache Memory – Page 51 of 81CSCI 4717 – Computer Architecture

Fully Associative Cache Organization

Cache Memory – Page 52 of 81CSCI 4717 – Computer Architecture

Fully Associative Mapping Example

Assume that a portion of the tags in the cache in our example
looks like the table below. Which of the following addresses are
contained in the cache?

a.) 438EE816 b.) F18EFF16 c.) 6B8EF316 d.) AD8EF316

Addresses wi/ block Tag (binary)
00 01 10 11

0101 0011 1000 1110 1110 10
1110 1101 1100 1001 1011 01
1010 1101 1000 1110 1111 00
0110 1011 1000 1110 1111 11
1011 0101 0101 1001 0010 00
1111 0001 1000 1110 1111 11

Cache Memory – Page 53 of 81CSCI 4717 – Computer Architecture

Associative Mapping Summary

• Address length = (s + w) bits
• Number of addressable units = 2s+w words or

bytes
• Block size = line size = 2w words or bytes
• Number of blocks in main memory = 2s+ w/2w =

2s

• Number of lines in cache = undetermined
• Size of tag = s bits

Cache Memory – Page 54 of 81CSCI 4717 – Computer Architecture

Set Associative Mapping Traits

• Address length is s + w bits
• Cache is divided into a number of sets, v = 2d

• k blocks/lines can be contained within each set
• k lines in a cache is called a k-way set

associative mapping
• Number of lines in a cache = v•k = k•2d

• Size of tag = (s-d) bits

10

Cache Memory – Page 55 of 81CSCI 4717 – Computer Architecture

Set Associative Mapping Traits (continued)

• Hybrid of Direct and Associative
k = 1, this is basically direct mapping
v = 1, this is associative mapping

• Each set contains a number of lines, basically the number of
lines divided by the number of sets

• A given block maps to any line within its specified set – e.g.
Block B can be in any line of set i.

• 2 lines per set is the most common organization.
– Called 2 way associative mapping
– A given block can be in one of 2 lines in only one specific

set
– Significant improvement over direct mapping

Cache Memory – Page 56 of 81CSCI 4717 – Computer Architecture

K-Way Set Associative Cache Organization

Cache Memory – Page 57 of 81CSCI 4717 – Computer Architecture

How does this affect our example?

• Let’s go to two-way set associative mapping
• Divides the 16K lines into 8K sets
• This requires a 13 bit set number
• With 2 word bits, this leaves 9 bits for the tag
• Blocks beginning with the addresses 00000016,

00800016, 01000016, 01800016, 02000016, 02800016,
etc. map to the same set, Set 0.

• Blocks beginning with the addresses 00000416,
00800416, 01000416, 01800416, 02000416, 02800416,
etc. map to the same set, Set 1.

Cache Memory – Page 58 of 81CSCI 4717 – Computer Architecture

Set Associative Mapping Address
Structure

• Note that there is one more bit in the tag than for
this same example using direct mapping.

• Therefore, it is 2-way set associative
• Use set field to determine cache set to look in
• Compare tag field to see if we have a hit

Tag
9 bits

Set
13 bits

Word
2 bits

Cache Memory – Page 59 of 81CSCI 4717 – Computer Architecture

Set Associative Mapping Example

• What cache set number will the block be stored to?
• What will their tag be?
• What will the minimum address and the maximum address of

each block they are in be?

1.9ABCDEF16
2.123456716

For each of the following addresses, answer the following
questions based on a 2-way set associative cache with 4K lines,
each line containing 16 words, with the main memory of size 256
Meg memory space (28-bit address):

Tag s-r
13 11 4

Set s Word w

Cache Memory – Page 60 of 81CSCI 4717 – Computer Architecture

Set Associative Mapping Summary

• Address length = (s + w) bits
• Number of addressable units = 2s+w words or bytes
• Block size = line size = 2w words or bytes
• Number of blocks in main memory = 2s+ w/2w = 2s

• Number of lines in set = k
• Number of sets = v = 2d

• Number of lines in cache = kv = k * 2d

• Size of tag = (s – d) bits

11

Cache Memory – Page 61 of 81CSCI 4717 – Computer Architecture

Replacement Algorithms

• There must be a method for selecting which line
in the cache is going to be replaced when
there’s no room for a new line

• Hardware implemented algorithm (speed)
• Direct mapping

– There is no need for a replacement algorithm with
direct mapping

– Each block only maps to one line
– Replace that line

Cache Memory – Page 62 of 81CSCI 4717 – Computer Architecture

Associative & Set Associative
Replacement Algorithms

• Least Recently used (LRU)
– Replace the block that hasn't been touched in the

longest period of time
– Two way set associative simply uses a USE bit.

When one block is referenced, its USE bit is set
while its partner in the set is cleared

• First in first out (FIFO) – replace block that
has been in cache longest

Cache Memory – Page 63 of 81CSCI 4717 – Computer Architecture

Associative & Set Associative
Replacement Algorithms (continued)

• Least frequently used (LFU) – replace block
which has had fewest hits

• Random – only slightly lower performance than
use-based algorithms LRU, FIFO, and LFU

Cache Memory – Page 64 of 81CSCI 4717 – Computer Architecture

Writing to Cache

• Must not overwrite a cache block unless
main memory is up to date

• Two main problems:
– If cache is written to, main memory is invalid or if

main memory is written to, cache is invalid – Can
occur if I/O can address main memory directly

– Multiple CPUs may have individual caches; once
one cache is written to, all caches are invalid

Cache Memory – Page 65 of 81CSCI 4717 – Computer Architecture

Write through

• All writes go to main memory as well as
cache

• Multiple CPUs can monitor main memory
traffic to keep local (to CPU) cache up to
date

• Lots of traffic
• Slows down writes

Cache Memory – Page 66 of 81CSCI 4717 – Computer Architecture

Write back

• Updates initially made in cache only
• Update bit for cache slot is set when update

occurs
• If block is to be replaced, write to main memory

only if update bit is set
• Other caches get out of sync
• I/O must access main memory through cache
• Research shows that 15% of memory references

are writes

12

Cache Memory – Page 67 of 81CSCI 4717 – Computer Architecture

Multiple Processors/Multiple Caches

• Even if a write through policy is used, other
processors may have invalid data in their caches

• In other words, if a processor updates its cache
and updates main memory, a second processor
may have been using the same data in its own
cache which is now invalid.

Cache Memory – Page 68 of 81CSCI 4717 – Computer Architecture

Solutions to Prevent Problems with
Multiprocessor/cache systems

• Bus watching with write through – each cache
watches the bus to see if data they contain is being
written to the main memory by another processor. All
processors must be using the write through policy

• Hardware transparency – a "big brother" watches all
caches, and upon seeing an update to any processor's
cache, it updates main memory AND all of the caches

• Noncacheable memory – Any shared memory
(identified with a chip select) may not be cached.

Cache Memory – Page 69 of 81CSCI 4717 – Computer Architecture

Line Size
• There is a relationship between line size (i.e., the

number of words in a line in the cache) and hit ratios
• As the line size (block size) goes up, the hit ratio could

go up due to more words available to the principle of
locality of reference

• As block size increases, however, the number of blocks
goes down, and the hit ratio will begin to go back down
after a while

• Lastly, as the block size increases, the chances of a hit
to a word farther from the initially referenced word goes
down

Cache Memory – Page 70 of 81CSCI 4717 – Computer Architecture

Multi-Level Caches

• Increases in transistor densities have allowed for caches
to be placed inside processor chip

• Internal caches have very short wires (within the chip
itself) and are therefore quite fast, even faster then any
zero wait-state memory accesses outside of the chip

• This means that a super fast internal cache (level 1) can
be inside of the chip while an external cache (level 2)
can provide access faster then to main memory

Cache Memory – Page 71 of 81CSCI 4717 – Computer Architecture

Unified versus Split Caches

• Split into two caches – one for instructions, one for data
• Disadvantages

– Questionable as unified cache balances data and
instructions merely with hit rate.

– Hardware is simpler with unified cache
• Advantage

– What a split cache is really doing is providing one
cache for the instruction decoder and one for the
execution unit.

– This supports pipelined architectures.

Cache Memory – Page 72 of 81CSCI 4717 – Computer Architecture

Intel x86 caches

• 80386 – no on chip cache
• 80486 – 8k using 16 byte lines and four-way set

associative organization (main memory had 32
address lines – 4 Gig)

• Pentium (all versions)
– Two on chip L1 caches
– Data & instructions

13

Cache Memory – Page 73 of 81CSCI 4717 – Computer Architecture

Pentium 4 L1 and L2 Caches

• L1 cache
– 8k bytes
– 64 byte lines
– Four way set associative

• L2 cache
– Feeding both L1 caches
– 256k
– 128 byte lines
– 8 way set associative

Cache Memory – Page 74 of 81CSCI 4717 – Computer Architecture

Pentium 4 (Figure 4.13)

Cache Memory – Page 75 of 81CSCI 4717 – Computer Architecture

Pentium 4 Operation – Core Processor

• Fetch/Decode Unit
– Fetches instructions from L2 cache
– Decode into micro-ops
– Store micro-ops in L1 cache

• Out of order execution logic
– Schedules micro-ops
– Based on data dependence and resources
– May speculatively execute

Cache Memory – Page 76 of 81CSCI 4717 – Computer Architecture

Pentium 4 Operation – Core Processor
(continued)

• Execution units
– Execute micro-ops
– Data from L1 cache
– Results in registers

• Memory subsystem – L2 cache and systems bus

Cache Memory – Page 77 of 81CSCI 4717 – Computer Architecture

Pentium 4 Design Reasoning

• Decodes instructions into RISC like micro-ops before L1
cache

• Micro-ops fixed length – Superscalar pipelining and
scheduling

• Pentium instructions long & complex
• Performance improved by separating decoding from

scheduling & pipelining – (More later – ch14)

Cache Memory – Page 78 of 81CSCI 4717 – Computer Architecture

Pentium 4 Design Reasoning
(continued)

• Data cache is write back – Can be configured to write
through

• L1 cache controlled by 2 bits in register
– CD = cache disable
– NW = not write through
– 2 instructions to invalidate (flush) cache and write

back then invalidate

14

Cache Memory – Page 79 of 81CSCI 4717 – Computer Architecture

Power PC Cache Organization

• 601 – single 32kb 8 way set associative
• 603 – 16kb (2 x 8kb) two way set associative
• 604 – 32kb
• 610 – 64kb
• G3 & G4

– 64kb L1 cache – 8 way set associative
– 256k, 512k or 1M L2 cache – two way set associative

Cache Memory – Page 80 of 81CSCI 4717 – Computer Architecture

PowerPC G4 (Figure 4.14)

Cache Memory – Page 81 of 81CSCI 4717 – Computer Architecture

Comparison of Cache Sizes (Table 4.3)

