
1

Error Detection & Correction – Page 1 of 18CSCI 4717 – Computer Architecture

CSCI 4717/5717
Computer Architecture

Topic: Error Detection & Correction

Reading: Stallings, Section 5.2

Error Detection & Correction – Page 2 of 18CSCI 4717 – Computer Architecture

Error Correction in Memory

• Types of errors: hard or soft
• Hard Failure – Permanent defect caused by

– Harsh environmental abuse (including static
electricity)

– Manufacturing defect
– Wear such as trace erosion

• Soft Error
– Random, non-destructive
– Caused by electrical or EM/radioactive glitches
– No permanent damage to memory

Error Detection & Correction – Page 3 of 18CSCI 4717 – Computer Architecture

Error Detection & Correction
• Additional information must be stored to detect these

errors
• When M bits of data are stored, they are run through

function f where a K bit code is created
• M+K bits are then stored in memory
• When data is read out, it is once again run through

function f and the resulting K bits of code are
compared with the stored K bits of code

• In some cases, the code can be corrected (error
correcting codes)

• In all cases, and error code is generated

Error Detection & Correction – Page 4 of 18CSCI 4717 – Computer Architecture

Error Correcting Code Function

Error Detection & Correction – Page 5 of 18CSCI 4717 – Computer Architecture

Hamming Error Correction Code

• One way to detect specific bit errors is to
use multiple parity bits, each bit
responsible for the parity of a smaller,
overlapping portion of the data

• A flipped bit in the data would show up as
a parity error in the overlapping groups of
which it was a member and not in the
other groups

• This would handle single-bit corrections

Error Detection & Correction – Page 6 of 18CSCI 4717 – Computer Architecture

4-bit Hamming Code

• Below is an example of a 4-bit word broken into 3
groups; each group has a parity bit to generate even
parity.

• Dn represent data bits while Pn represent parity bits

0101Group C

1111Group B

0101Group A

P2P1P0D0=1D1=1D2=0D3=1

2

Error Detection & Correction – Page 7 of 18CSCI 4717 – Computer Architecture

4-bit Hamming Code (continued)
Can be
represented
graphically using
three
intersecting
circles.

Error Detection & Correction – Page 8 of 18CSCI 4717 – Computer Architecture

4-bit Hamming Code (continued)
• Areas are defined as:

– A and B, but not C
– A and C, but not B
– B and C, but not A
– A and B and C

• Each non-intersecting area contains a parity bit to
make it and the three intersecting areas in a single
circle have even parity.

• A change in only one area will make parity odd in 2
or all 3 of the circles indicating which intersection
changed.

Error Detection & Correction – Page 9 of 18CSCI 4717 – Computer Architecture

General Single-Bit Error Correction
• The mechanics of the typical error correction/detection

system are created with XOR gates
– Odd number of ones input to an XOR 1 output
– Even number of ones input to an XOR 0 output

• Upon data retrieval, two K-bit values are generated:
– The stored K-bit value
– The K-bit value generated from the stored data

• A bit-by-bit comparison is performed on these two
values generating a K-bit result
– 0’s in bit positions where there is no error
– 1’s in bit positions where two bits disagree
– K-bit result is called a syndrome word

Error Detection & Correction – Page 10 of 18CSCI 4717 – Computer Architecture

Generation of Syndrome Word

Error Detection & Correction – Page 11 of 18CSCI 4717 – Computer Architecture

Syndrome Word

• All zeros means that the data was successfully
retrieved

• For data with M bits and K code bits, then there
are M+K possible single bit errors, i.e., there
could be an error in the data OR the K-bit code

• For a K bit syndrome word, there are 2K-1
(minus one for the no error case) possible
values to represent single-bit errors

• Therefore, for the system to uniquely identify bit
errors, 2K-1 > M+K

Error Detection & Correction – Page 12 of 18CSCI 4717 – Computer Architecture

Single Error Correcting (SEC)
Code Example

• Assume M=8
• First, how big does K have to be?

K=3: 23-1 > 8+3? (7 is not > 11)
K=4: 24-1 > 8+4? (15 is > 12)

3

Error Detection & Correction – Page 13 of 18CSCI 4717 – Computer Architecture

SEC Code Example (continued)

• Next, decide what the values of the syndrome
word represent

• 0 = no errors in syndrome word or data
• Only one bit of syndrome word set to one (1000,

0100, 0010, or 0001) = error was in syndrome
word and data needs no correction

• Multiple bits of syndrome word set to one = digit
represented by syndrome word identifies which
bit of data was flipped and needs to be corrected

Error Detection & Correction – Page 14 of 18CSCI 4717 – Computer Architecture

SEC Code Example (continued)

The table below is used to identify which bits of the M+K bits of
the combined data and syndrome word are associated with
which possible values of the syndrome word.

C1C2C4C8Code bits

D1D2D3D4D5D6D7D8Data bits

000100100011010001010110011110001001101010111100Position
number

123456789101112M+K Bit
position

Error Detection & Correction – Page 15 of 18CSCI 4717 – Computer Architecture

SEC Code Example (continued)

• We need a system such that the XOR-ing of the
stored code or check bits with the code or check
bits calculated identifies the position number
from the table above.

• This means that when a bit changes in the
data, then ones need to appear in the digits
identifying that position.

• Each code bit C8, C4, C2, and C1 is calculated
by XOR-ing all of the bits in that position that
have a 1.

Error Detection & Correction – Page 16 of 18CSCI 4717 – Computer Architecture

SEC Code Example (continued)

• C8 = D8 ⊕ D7 ⊕ D6 ⊕ D5
• C4 = D8 ⊕ D4 ⊕ D3 ⊕ D2
• C2 = D7 ⊕ D6 ⊕ D4 ⊕ D3 ⊕ D1
• C1 = D7 ⊕ D5 ⊕ D4 ⊕ D2 ⊕ D1

Error Detection & Correction – Page 17 of 18CSCI 4717 – Computer Architecture

Single Error Correcting, Double Error
Detecting (SEC-DED) Code

• Double error detection will not correct double errors, but
it will see if a double error has occurred.

• Adds additional bit for even parity to the M+K bits of the
data and check code

• If one bit changed, the change caused parity to go from
even to odd.

• Changing it back will restore parity
• If two bits changed, parity stayed even and a correction

will force parity to go to odd indicating a double error.

Error Detection & Correction – Page 18 of 18CSCI 4717 – Computer Architecture

SEC-DED Example

