CSCI 4717/5717 Computer Architecture

Topic: Error Detection \& Correction

Reading: Stallings, Section 5.2

Error Detection \& Correction

- Additional information must be stored to detect these errors
- When M bits of data are stored, they are run through function f where a K bit code is created
- M+K bits are then stored in memory
- When data is read out, it is once again run through function f and the resulting K bits of code are compared with the stored K bits of code
- In some cases, the code can be corrected (error correcting codes)
- In all cases, and error code is generated

CSCl 4717 - Computer Architecture \quad Error Detection \& Correction - Page 3 of 18

Hamming Error Correction Code

- One way to detect specific bit errors is to use multiple parity bits, each bit responsible for the parity of a smaller, overlapping portion of the data
- A flipped bit in the data would show up as a parity error in the overlapping groups of which it was a member and not in the other groups
- This would handle single-bit corrections

Error Correction in Memory

- Types of errors: hard or soft
- Hard Failure - Permanent defect caused by
- Harsh environmental abuse (including static electricity)
- Manufacturing defect
- Wear such as trace erosion
- Soft Error
- Random, non-destructive
- Caused by electrical or EM/radioactive glitches
- No permanent damage to memory
$\overline{\text { CSCI 4717- Computer Architecture } \quad \text { Error Detection \& Correction - Page } 2 \text { of } 18}$

4-bit Hamming Code

- Below is an example of a 4-bit word broken into 3 groups; each group has a parity bit to generate even parity.
- D_{n} represent data bits while P_{n} represent parity bits

	$\mathrm{D}_{3}=1$	$\mathrm{D}_{2}=0$	$\mathrm{D}_{1}=1$	$\mathrm{D}_{0}=1$		P_{0}	P_{1}	P_{2}
Group A	1	0	1			0		
Group B	1		1	1			1	
Group C	1	0		1				0
Error Detection \& Correction - Page 6 of 18								

4-bit Hamming Code (continued)

Can be represented graphically using three intersecting circles.

General Single-Bit Error Correction

- The mechanics of the typical error correction/detection system are created with XOR gates
- Odd number of ones input to an XOR $\rightarrow 1$ output
- Even number of ones input to an XOR $\rightarrow 0$ output
- Upon data retrieval, two K-bit values are generated:
- The stored K-bit value
- The K-bit value generated from the stored data

A bit-by-bit comparison is performed on these two values generating a K -bit result

- 0's in bit positions where there is no error
- 1's in bit positions where two bits disagree
- K-bit result is called a syndrome word
$\overline{\text { CSCl } 4717 \text { - Computer Architecture } \quad \text { Error Detection \& Correction - Page } 9 \text { of } 18}$

Syndrome Word

- All zeros means that the data was successfully retrieved
- For data with M bits and K code bits, then there are $\mathrm{M}+\mathrm{K}$ possible single bit errors, i.e., there could be an error in the data OR the K-bit code
- For a K bit syndrome word, there are $2^{\mathrm{K}}-1$ (minus one for the no error case) possible values to represent single-bit errors
- Therefore, for the system to uniquely identify bit errors, $2^{\mathrm{K}}-1 \geq \mathrm{M}+\mathrm{K}$

CSCl 4717 - Computer Architecture \quad Error Detection \& Correction - Page 11 of 18

4-bit Hamming Code (continued)

- Areas are defined as:
- A and B, but not C
- A and C, but not B
- B and C, but not A
- A and B and C
- Each non-intersecting area contains a parity bit to make it and the three intersecting areas in a single circle have even parity.
- A change in only one area will make parity odd in 2 or all 3 of the circles indicating which intersection changed.

Single Error Correcting (SEC) Code Example

- Assume M=8
- First, how big does K have to be?
$K=3: \quad 2^{3}-1 \geq 8+3$? (7 is not ≥ 11)
$K=4: \quad 2^{4}-1 \geq 8+4$? (15 is ≥ 12)

Data Bits	Single Eror Corestion		Single-Enor Carrection/ Double-Error Detection	
	Check Bits	\% increase	Check Bits	\% licrease
8	4	50	5	625
16	5	31.25	6	37.5
32	6	18.75	7	21.875
64	7	1094	8	125
128	8	6.25	9	7.03
256	9	352	10	3.91

SEC Code Example (continued)

- Next, decide what the values of the syndrome word represent
- $0=$ no errors in syndrome word or data
- Only one bit of syndrome word set to one (1000, 0100, 0010, or 0001) = error was in syndrome word and data needs no correction
- Multiple bits of syndrome word set to one = digit represented by syndrome word identifies which bit of data was flipped and needs to be corrected

SEC Code Example (continued)

- We need a system such that the XOR-ing of the stored code or check bits with the code or check bits calculated identifies the position number from the table above.
- This means that when a bit changes in the data, then ones need to appear in the digits identifying that position.
- Each code bit C8, C4, C2, and C1 is calculated by XOR-ing all of the bits in that position that have a 1.

CSCI 4717-Computer Architecture \quad Error Detection \& Correction - Page 15 of 18

Single Error Correcting, Double Error Detecting (SEC-DED) Code

- Double error detection will not correct double errors, but it will see if a double error has occurred.
- Adds additional bit for even parity to the M+K bits of the data and check code
- If one bit changed, the change caused parity to go from even to odd.
- Changing it back will restore parity
- If two bits changed, parity stayed even and a correction will force parity to go to odd indicating a double error.

SEC Code Example (continued)

The table below is used to identify which bits of the M+K bits of the combined data and syndrome word are associated with which possible values of the syndrome word.

SEC Code Example (continued)

- $\mathrm{C} 8=\mathrm{D} 8 \oplus \mathrm{D} 7 \oplus \mathrm{D} 6 \oplus \mathrm{D} 5$
- $\mathrm{C} 4=\mathrm{D} 8 \oplus \mathrm{D} 4 \oplus \mathrm{D} 3 \oplus \mathrm{D} 2$
- $\mathrm{C} 2=\mathrm{D} 7 \oplus \mathrm{D} 6 \oplus \mathrm{D} 4 \oplus \mathrm{D} 3 \oplus \mathrm{D} 1$
- $\mathrm{C} 1=\mathrm{D} 7 \oplus \mathrm{D} 5 \oplus \mathrm{D} 4 \oplus \mathrm{D} 2 \oplus \mathrm{D} 1$
$\overline{\text { CSCI } 4717 \text { - Computer Architecture } \quad \text { Error Detection \& Correction - Page } 16 \text { of } 18}$

