





# Read and Write Mechanisms (continued)

- Recording and retrieval via conductive coil(s) called a head(s)
- May be single read/write head or separate ones
- During read/write, head is stationary (actually moves radially to platters) and platter rotates beneath head

CSCI 4717 – Computer Architecture











- Reduce intertrack gap - increase capacity possibly increase errors due to misalignment of head
- or interference from other tracks
- Constant angular velocity Same number of bits per track (variable packing density)

CSCI 4717 – Computer Architecture



**Constant Angular Velocity** (CAV)

- Imagine a matrix with the rows as tracks and the columns as sectors.
- Twist matrix into a disk and see how much more packed the center is than the outside.
- Creates pie shaped sectors and concentric tracks
- Regardless of head position, sectors pass beneath it at the same (constant) speed
- Capacity limited by density on inside track
- Outer tracks waste with lower data density

CSCI 4717 – Computer Architecture

Storage Media – Page 12



# Multiple Zone Recording (continued)

- Divide disk into zones typical number is 16
- Each zone has fixed bits/sectors per track
- More complex circuitry to adjust for different data rates as heads move farther out.

Storage Media – Pa

CSCI 4717 – Computer Architecture















• When platter spins, air pressure lifts head from platter

CSCI 4717 – Computer Architecture

Storage Media – Page 23



indicates presence of one or zero

CSCI 4717 – Computer Architecture

# FM Encoding

- A magnetic field change at the beginning and middle of a bit time represents a logic one
- A a magnetic field change only at the beginning represents a logic zero
- Referred to as *Frequency Modulation* (FM)











single

bit time

# S.M.A.R.T.

- Self-Monitoring, Analysis & Reporting Technology System (S.M.A.R.T.) is a method used to predict hard drive failures
- Controller monitors hard drive functional parameters
- · For example, longer spin-up times may indicate that the bearings are going bad
- S.M.A.R.T. enabled drives can provide an alert to the computer's BIOS warning of a parameter that is functioning outside of its normal range
- Attribute values are stored in the hard drive as an integer in the range from 1 to 253. The lower the value, the worse the condition is.
- Depending on the parameter and the manufacturer, different failure thresholds are set for each of the parameters.

CSCI 4717 – Computer Architecture

Storage Media – Page 3

Storage Media – Page 33

# Sample S.M.A.R.T. Parameters

- Power On Hours: This indicates the age of the drive.
- Spin Up Time: A longer spin up time may indicate a problem with the assembly that spins the platters.
- Temperature: Higher temperatures also might indicate a problem with the assembly that spins the platters.
- Head Flying Height: A reduction in the flying height of a Winchester head may indicate it is about to crash into the platters.
- Doesn't cover all possible failures: IC failure or a failure caused by a catastrophic event

Storage Media – Page 3.

Storage Media – Page 34

• Queuing time - waiting for I/O device to be useable

Speed

- Waiting for device if device is serving another request
- Waiting for channel if device shares a channel with other devices (multiplexing)
- · Disk rotating at a constant speed (energy saver disk may stop)

Seek time

Process of finding data on a disk

- · Find correct track by moving head (moveable head)
- · Selecting head (fixed head) takes no time
- · Some details cannot be pinned down
  - Ramping functions

reduced seek time

- Distance between current track and desired track
- Shorter distances and lighter components have

CSCI 4717 – Computer Architecture

CSCI 4717 – Computer Architecture

# **Rotational Latency**

Waiting for data to rotate under head

- Floppies - 3600 RPM

CSCI 4717 – Computer Architecture

- Hard Drives up to 15,000 RMP
- Average rotational delay is 1/2 time for full rotation
- Total Access time = Seek + Latency

CSCI 4717 – Computer Architecture

Storage Media – Page 3

# **Transfer Time**

Transfer time = time it takes to retrieve the data as it passes under the head

$$T = b/(rN)$$

### where

- T = transfer time
- b = number of bytes to transfer
- N = number of bytes on a track (i.e., bytes per full revolution)
- r = rotation speed in RPS (i.e., tracks per second)

### CSCI 4717 – Computer Architecture

# Rotational Position Sensing (RPS)

- Allows other devices to use I/O channel while seek is in process.
- When seek is complete, device predicts when data will pass under heads
- At a fixed time before data is expected to come, tries to re-establish communications with requesting processor – if fails to reconnect, must wait full disk turn before new attempt is made: RPS miss

Storage Media – Page 37

Storage Media – Page 39

CSCI 4717 – Computer Architecture

CSCI 4717 – Computer Architecture

# Random access • File is arranged in contiguous sectors – only one seek time per track • File is scattered to different sectors or device is shared with multiple processes – seek time increased to once per sector

# Redundant Array of Independent Disks (RAID)

- Rate of improvement in secondary storage has not kept up with that of processors or main memory
- In many system, gains can be had through parallel systems
- In disk systems, multiple requests can be serviced concurrently if there are multiple disks and the data for parallel requests is stored on different disks

# RAID (continued)

## Standardization of multi-disk arrays

- 7 levels (0 through 6)
- Not a hierarchy
- Common characteristics

   Set of physical disks viewed as single logical drive by O/S
  - Data distributed across multiple physical drives of array
  - Can use redundant capacity to store parity information to aid in error correction/detection
- Third characteristic is needed because multiple mechanisms mean that there are more possibilities for failure

Storage Media – Page 40

CSCI 4717 – Computer Architecture



CSCI 4717 – Computer Architecture



# RAID 0

- May not be considered RAID officially as it doesn't support third characteristic from above common characteristics No redundancy
- Data striped across all disks
- Round Robin striping

CSCI 4717 – Computer Architecture

• Performance characteristics: Increases speed since multiple data requests are probably in sequence of strips and therefore can be done in parallel (High I/O request rate)

Storage Media – Page 43

Storage Media – Page 45

RAID 0 (continued) strip 1 strip 2 strip 0 strip 3 strip 5 strip 6 strip 7 strip 4 strip 8 strip 9 strip 10 strip 11 strip 15 strip 14 strip 12 strip 13 RAID 0 (non-redundant) Storage Media – Page 44 CSCI 4717 – Computer Architecture

# RAID 1

- Mirrored Disks 2 copies of each stripe on separate disks
- Data is striped across disks just like RAID 0
- Read from either –slight performance increase; 1 disk has shorter seek time
- Write to both slight performance drop; one disk will have longer seek time
- Recovery is simple swap faulty disk & re-mirror; no down time
- Performance characteristics: Same as for RAID 0
- Expensive since twice capacity is required likely to be limited to critical system software and data files

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RAID 1 (                                                           | continued                                                                                                                        | )                                          |                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|
| strip 0<br>strip 1<br>strip 4<br>strip 8<br>strip 12<br>strip 12<br>strip 13<br>strip 1 | strip 2<br>strip 6<br>strip 10<br>strip 11<br>strip 11<br>strip 14 | strip 0         strip 1           strip 4         strip 5           strip 8         strip 13           strip 10         strip 10 | strip 2<br>strip 6<br>strip 10<br>strip 14 | strip 3<br>strip 7<br>strip 11<br>strip 15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                                                                                                                                  |                                            |                                            |

# RAID 2

- Disks are synchronized to the point where each head is in same position on each disk
- On a single read or write, all disks are accessed simultaneously
- · Striped at the bit level

CSCI 4717 – Computer Architecture

- Error correction calculated across corresponding bits on disks
- Multiple parity disks store Hamming code w/parity (SEC-DED) error correction in corresponding position

CSCI 4717 – Computer Architecture

Storage Media – Page 47

# RAID 2 (continued) Error correction is redundant as Hamming and such are already used within stored data. Only effective when many errors occur Lots of redundancy Expensive Not commercially accepted Performance characteristics: Only one I/O request at a time (non-parallel)

CSCI 4717 – Computer Architecture





# RAID 3 (continued)

- Example, assume RAID 3 with 5 drives X4(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i)
- Failed bit (e.g., X1(i)) can be replaced with:
   X1(i) = X4(i) ⊕ X3(i) ⊕ X2(i) ⊕ X0(i)
- Equation derived from XOR'ing X4(i) ⊕ X1(i) to both sides.
- Performance characteristics: Very high transfer rates
- Problem: Only one I/O request at a time (non-parallel)

|                   | RAID             | 9 3 (coi | ntinueo | (k                   |    |
|-------------------|------------------|----------|---------|----------------------|----|
| h <sub>0</sub>    | b <sub>1</sub>   | b2       | b3      | P(b)                 |    |
| CSCI 4717 – Compu | ter Architecture | 9        |         | Storage Media – Page | 52 |

# RAID 4

- Not commercially accepted
- · Each disk operates independently
- · Large stripes

CSCI 4717 – Computer Architecture

- Bit-by-bit parity calculated across stripes on each disk – stored on parity disk
- Performance characteristics
  - High I/O request rates (parallel)
  - Less suited for high data transfer rates

CSCI 4717 – Computer Architecture

Storage Media – Page 53











# RAID 6

- Two parity calculations
- XOR parity is one of them
- Independent data check algorithm
- Stored in separate blocks on different disks User requirement of N disks needs N+2
- · High data availability
- Three disks need to fail for data loss
- Significant write penalty

CSCI 4717 – Computer Architecture



| Category                  | Level                  | Description                               | LO Request Rate<br>(Read/Write) | Data Transfer Rate<br>(Read/Write)                              | Typical Application                                                 |
|---------------------------|------------------------|-------------------------------------------|---------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|
| Striping                  | 0                      | Non-redundant                             | Large strips: Excellent         | Small strips: Excellent                                         | Applications requiring<br>high performance for<br>non-critical data |
| Mirroring                 | 1                      | Mirrored                                  | Good/Fair                       | Fair/Fair                                                       | System drives; critical files                                       |
|                           | 2                      | Redundant via Hamming code                | Poor                            | Excellent                                                       |                                                                     |
| Parallel<br>access 3      | Bit-interleaved parity | Poor                                      | Excellent                       | Large I/O request size<br>applications, such as<br>imaging, CAD |                                                                     |
|                           | 4                      | Block-interleaved parity                  | Excellent/Fair                  | Fair/Poor                                                       |                                                                     |
| Independent 5<br>access 6 | 5                      | Block-interleaved distributed parity      | Excellent/Fair                  | Fair/Poor                                                       | High request rate,<br>read-intensive, data<br>lookup                |
|                           | 6                      | Block-interleaved dual distributed parity | Excellent/Poor                  | Fair/Poor                                                       | Applications requiring<br>extremely high<br>availablity             |