
1

Memory Management – Page 1 of 44CSCI 4717 – Computer Architecture

CSCI 4717/5717
Computer Architecture

Topic: Memory Management

Reading: Stallings, Sections 8.3 and 8.4

Memory Management – Page 2 of 44CSCI 4717 – Computer Architecture

Memory Management
• Uni-program – memory split into two parts

– One for Operating System (monitor)
– One for currently executing program

• Multi-program
– Non-O/S part is sub-divided and shared among active

processes
• Remember segment registers in the 8086

architecture
– Hardware designed to meet needs of O/S
– Base Address = segment address

Memory Management – Page 3 of 44CSCI 4717 – Computer Architecture

Swapping
• Problem: I/O (Printing, Network,

Keyboard, etc.) is so slow compared with
CPU that even in multi-programming
system, CPU can be idle most of the time

• Solutions:
– Increase main memory

• Expensive
• Programmers will eventually use all of this memory

for a single process
– Swapping

Memory Management – Page 4 of 44CSCI 4717 – Computer Architecture

What is Swapping?
• Long term queue of processes stored on disk
• Processes “swapped” in as space becomes available
• As a process completes it is moved out of main

memory
• If none of the processes in memory are ready (i.e. all

I/O blocked)
– Swap out a blocked process to intermediate queue
– Swap in a ready process or a new process

• But swapping is an I/O process!
– It could make the situation worse
– Disk I/O is typically fastest of all, so it still is an improvement

Memory Management – Page 5 of 44CSCI 4717 – Computer Architecture

Partitioning

• Splitting memory into sections to allocate
to processes (including Operating System)

• Two types
– Fixed-sized partitions
– Variable-sized partitions

Memory Management – Page 6 of 44CSCI 4717 – Computer Architecture

Fixed-Sized Partitions (continued)

• Equal size or Unequal size partitions
• Process is fitted into smallest hole that will

take it (best fit)
• Some wasted memory due to each block

having a hole of unused memory at the
end of its partition

• Leads to variable sized partitions

2

Memory Management – Page 7 of 44CSCI 4717 – Computer Architecture

Fixed-
sized
partitions

Memory Management – Page 8 of 44CSCI 4717 – Computer Architecture

Variable-Sized Partitions
• Allocate exactly the required memory to a process
• This leads to a hole at the end of memory, too small

to use – Only one small hole - less waste
• When all processes are blocked, swap out a

process and bring in another
• New process may be smaller than swapped out

process
• Reloaded process not likely to return to same place

in memory it started in
• Another hole
• Eventually have lots of holes (fragmentation)

Memory Management – Page 9 of 44CSCI 4717 – Computer Architecture

Variable-Sized Partitions

Memory Management – Page 10 of 44CSCI 4717 – Computer Architecture

Solutions to Holes in Variable-
Sized Partitions

• Coalesce - Join adjacent holes into one
large hole

• Compaction - From time to time go
through memory and move all hole into
one free block (c.f. disk de-fragmentation)

Memory Management – Page 11 of 44CSCI 4717 – Computer Architecture

Relocation
• No guarantee that process will load into the same

place in memory
• Instructions contain addresses

– Locations of data
– Addresses for instructions (branching)

• Logical address – relative to beginning of program
• Physical address – actual location in memory (this

time)
• Base Address – start of program or block of data
• Automatic conversion using base address

Memory Management – Page 12 of 44CSCI 4717 – Computer Architecture

Paging (continued)
• Split memory into equal sized, small

chunks -page frames
• Split programs (processes) into equal

sized small chunks – pages
• Allocate the required number page frames

to a process
• Operating System maintains list of free

frames
• A process does not require contiguous

page frames

3

Memory Management – Page 13 of 44CSCI 4717 – Computer Architecture

Paging (continued)

• Use page table to keep track of how the
process is distributed through the pages in
memory

• Now addressing becomes page
number:relative address within page which
is mapped to frame number:relative
address within frame.

Memory Management – Page 14 of 44CSCI 4717 – Computer Architecture

Paging (continued)

Memory Management – Page 15 of 44CSCI 4717 – Computer Architecture

Paging Example – Before

Process A

Page 0

Page 1

Page 2

Page 3

13

14

15

16

17

18

19

20

21

Free frame list

13

14

15

18

20
In

use
In

use

In
use

In
use

Memory Management – Page 16 of 44CSCI 4717 – Computer Architecture

Paging Example – After

Process A

Page 0

Page 1

Page 2

Page 3

Free frame list

20

Process A
page table

13

14

15

18

13

14

15

16

17

18

19

20

21

In
use
In

use

In
use

In
use

Page 0
of A

Page 1
of A

Page 2
of A

Page 3
of A

Memory Management – Page 17 of 44CSCI 4717 – Computer Architecture

Virtual Memory

• Remember the Principle of Locality which
states that “active” code tends to cluster
together, and if a memory item is used
once, it will most likely be used again.

• Demand paging
– Do not require all pages of a process in

memory
– Bring in pages as required

Memory Management – Page 18 of 44CSCI 4717 – Computer Architecture

Page Fault in Virtual Memory

• Required page is not in memory
• Operating System must swap in required

page
• May need to swap out a page to make

space
• Select page to throw out based on recent

history

4

Memory Management – Page 19 of 44CSCI 4717 – Computer Architecture

Virtual Memory Bonus

• We do not need all of a process in
memory for it to run

• We can swap in pages as required
• So - we can now run processes that are

bigger than total memory available!
• Main memory is called real memory
• User/programmer sees much bigger

memory - virtual memory

Memory Management – Page 20 of 44CSCI 4717 – Computer Architecture

Thrashing

• Too many processes in too little memory
• Operating System spends all its time

swapping
• Little or no real work is done
• Disk light is on all the time
• Solutions

– Better page replacement algorithms
– Reduce number of processes running
– Get more memory

Memory Management – Page 21 of 44CSCI 4717 – Computer Architecture

Page Table Structure

• VAX architecture – each process may be
allocated up to 231 = 2 GBytes of virtual
memory broken in to 29=512 byte pages.

• Therefore, each process may have a page
table with 2(31-9)=222=4 Meg entries.

• This uses a bunch of memory!

Memory Management – Page 22 of 44CSCI 4717 – Computer Architecture

Pages of Page Table

• Some processors solve this with a page
directory that points to page tables, each
table of which is limited to a page and
treated as such

• Another approach is the inverted page
table structure

Memory Management – Page 23 of 44CSCI 4717 – Computer Architecture

Inverted Page Table

• Page tables based on logical (program's)
address space can be huge

• Alternatively, restrict page table entries to real
memory, not virtual memory

• Problem:
– Simple page table says each line of table maps to

logical page
– Inverted Page Table need to have mapping algorithm

because there isn't a one-to-one mapping of logical to
virtual pages

Memory Management – Page 24 of 44CSCI 4717 – Computer Architecture

Page of Page Table (continued)

5

Memory Management – Page 25 of 44CSCI 4717 – Computer Architecture

Translation Lookaside Buffer

• Every virtual memory reference causes
two physical memory access

• Fetch page table entry
• Fetch data
• Use special cache for page table – TLB

Memory Management – Page 26 of 44CSCI 4717 – Computer Architecture

Translation
Lookaside Buffer
(continued)

Memory Management – Page 27 of 44CSCI 4717 – Computer Architecture

Translation Lookaside Buffer
(continued)

• Complexity! Virtual address translated to a
physical address

• Reference to page table – might be in TLB, main
memory, or disk

• Referenced word may be in cache, main
memory, or disk

• If referenced word is on disk, it must be copied
to main memory

• If in main memory or on disk, block must be
loaded to cache and cache table must be
updated

Memory Management – Page 28 of 44CSCI 4717 – Computer Architecture

TLB and Cache Operation

Memory Management – Page 29 of 44CSCI 4717 – Computer Architecture

Segmentation

• Paging is not (usually) visible to the
programmer

• Segmentation is visible to the programmer
• Usually different segments allocated to

program and data
• May be a number of program and data

segments

Memory Management – Page 30 of 44CSCI 4717 – Computer Architecture

Advantages of Segmentation
• Simplifies handling of growing data structures –

O/S will expand or contract the segment as
needed

• Allows programs to be altered and recompiled
independently, without re-linking and re-loading

• Lends itself to sharing among processes
• Lends itself to protection since O/S can specify

certain privileges on a segment-by-segment
basis

• Some systems combine segmentation with
paging

6

Memory Management – Page 31 of 44CSCI 4717 – Computer Architecture

Recursion

• Many complex algorithmic functions can
be broken into a repetitive application of a
simple algorithm.

• The typical recursion function begins with
an initial value of n which is decremented
with each recursive call until the last call
reaches a terminal value of n.

• A recursive function contains a call to
itself.

• "Definition of recursion: See recursion"

Memory Management – Page 32 of 44CSCI 4717 – Computer Architecture

Recursion – Factorial
• Non-Recursive Function:
int factorial(int n)
{

int return_val = 1;
for (int i = 1; i <= n; i++)

return_val = return_val * i;
return return_val;

}

• Recursive Function:
int factorial(int n)
{

if ((n == 1) || (n == 0)) return (1);
else return factorial(n - 1);

}

Memory Management – Page 33 of 44CSCI 4717 – Computer Architecture

Recursion – Fibonacci Numbers
"f(i) = f(i–1) + f(i–2)"

• Non-Recursive Function:
int fibonacci(int n)
{

int fibval_i = 1;
int fibval_i_minus_1 = 0;
int fibval_i_minus_2 = 0;
if ((n == 0)||(n == 1)) return n;
else
{

for (int i = 2; i <= n; i++)
{

fibval_i_minus_2 = fibval_i_minus_1;
fibval_i_minus_1 = fibval_i;
fibval_i = fibval_i_minus_1 +

fibval_i_minus_2;
}

}
return fibval_i;

}

Memory Management – Page 34 of 44CSCI 4717 – Computer Architecture

Recursion – Fibonacci Numbers
(continued)

• Recursive Function:
int fibonacci(int n)
{

if ((n == 0)||(n == 1)) return n;
else return fibonacci(n - 1) +

fibonacci(n - 2);
}

Memory Management – Page 35 of 44CSCI 4717 – Computer Architecture

Comparing Recursive and Non-
Recursive Functions

• Non-recursive function has more
variables. Where does recursive function
store values.

• Non-recursive function has more code
recursive requires less code and therefore
less memory.

Memory Management – Page 36 of 44CSCI 4717 – Computer Architecture

In-Class Exercise

• In groups, discuss how recursion might
affect an operating system

• Compare & contrast iterative vs. recursion
algorithms in terms of growth/memory
usage

7

Memory Management – Page 37 of 44CSCI 4717 – Computer Architecture

Pentium II

• Hardware for segmentation and paging
• Unsegmented unpaged

– virtual address = physical address
– Low complexity
– High performance

• Unsegmented paged
– Memory viewed as paged linear address space
– Protection and management via paging
– Berkeley UNIX

Memory Management – Page 38 of 44CSCI 4717 – Computer Architecture

Pentium II (continued)
• Segmented unpaged

– Collection of local address spaces
– Protection to single byte level
– Translation table needed is on chip when segment is

in memory
• Segmented paged

– Segmentation used to define logical memory
partitions subject to access control

– Paging manages allocation of memory within
partitions

– Unix System V

Memory Management – Page 39 of 44CSCI 4717 – Computer Architecture

Pentium II Segmentation

• Each virtual address is 16-bit segment and 32-
bit offset

• 2 bits of segment are protection mechanism
• 14 bits specify segment
• Unsegmented virtual memory 232 = 4Gbytes
• Segmented 246=64 terabytes

– Can be larger – depends on which process is active
– Half (8K segments of 4Gbytes) is global
– Half is local and distinct for each process

Memory Management – Page 40 of 44CSCI 4717 – Computer Architecture

Pentium II Protection

Protection bits give 4 levels of privilege
• 0 most protected, 3 least
• Use of levels software dependent
• Usually level 3 is for applications, level 1

for O/S and level 0 for kernel (level 2 not
used)

• Level 2 may be used for apps that have
internal security, e.g., database

• Some instructions only work in level 0

Memory Management – Page 41 of 44CSCI 4717 – Computer Architecture

Pentium II Paging
• Segmentation may be disabled in which case linear

address space is used
• Two level page table lookup
• First, page directory

– 1024 entries max
– Splits 4G linear memory into 1024 page groups of 4Mbyte
– Each page table has 1024 entries corresponding to 4Kbyte

pages
– Can use one page directory for all processes, one per

process or mixture
Page directory for current process always in memory

• Use TLB holding 32 page table entries
• Two page sizes available 4k or 4M

Memory Management – Page 42 of 44CSCI 4717 – Computer Architecture

Pentium Segment/Paging Operation

8

Memory Management – Page 43 of 44CSCI 4717 – Computer Architecture

PowerPC Memory Management Hardware
• 32 bit – paging with simple segmentation

– 64 bit paging with more powerful segmentation
• Or, both do block address translation

– Map 4 large blocks of instructions & 4 of memory to
bypass paging

– e.g. OS tables or graphics frame buffers
• 32 bit effective address

– 12 bit byte selector 4kbyte pages
– 16 bit page id 64k pages per segment
– 4 bits indicate one of 16 segment registers Segment

registers under OS control

Memory Management – Page 44 of 44CSCI 4717 – Computer Architecture

PowerPC 32-bit Memory Management
Formats

Memory Management – Page 45 of 44CSCI 4717 – Computer Architecture

PowerPC
32-bit
Address
Translation

