
1

CPU Registers – Page 1 of 35CSCI 4717 – Computer Architecture

CSCI 4717/5717
Computer Architecture

Topic: CPU Registers

Reading: Stallings, Sections 10.3, 10.4, 12.1, and 12.2

CPU Registers – Page 2 of 35CSCI 4717 – Computer Architecture

CPU Internal Design Issues
• CPU design and operating system design

are closely linked
• Compiler also has heavy dependence on

CPU design

CPU Registers – Page 3 of 35CSCI 4717 – Computer Architecture

How Many Instructions are Needed?

Instruction sets have been designed with
• Small numbers of instructions
• Hundreds of instructions
• Trend today is to use “enough” to get the job

done well (more on this in the RISC/CISC
discussions to come)

CPU Registers – Page 4 of 35CSCI 4717 – Computer Architecture

How Many Instructions are Needed?

• Until the 1980s, the trend was to construct
more and more complex instruction sets
containing hundreds of instructions and
variations

• Intent was to provide mechanisms to bridge
the semantic gap, the difference in high and
low level functioning of the computer

CPU Registers – Page 5 of 35CSCI 4717 – Computer Architecture

Bridging the Semantic Gap

• Reconcile the views of the HLL programmer and
the assembly level programmer

• Provide a diverse set of instructions in an attempt
to match the programming style of HLL

• Permit the compiler to “bridge the gap” with a
single instruction rather than synthesizing a series
of instructions

• Did not always have the desired impact

CPU Registers – Page 6 of 35CSCI 4717 – Computer Architecture

Attributes of a Good Instruction
Set

• Wulff asserts that compiler writers might make the
better architects because they have had to deal
with poor architecture decisions

2

CPU Registers – Page 7 of 35CSCI 4717 – Computer Architecture

Wulff’s Attributes of a Good Instruction Set

• Complete: be able to construct a machine-level
program to evaluate any computable function

• Efficient: frequently performed functions should be
done quickly with few instructions

• Regular and complete classes of instructions:
provide “logical” set of operations

• Orthogonal: define instructions, data types, and
addressing independently

• Additional attribute: Compatible: with existing H/W
and S/W in a product line

CPU Registers – Page 8 of 35CSCI 4717 – Computer Architecture

Addresses in an Instruction
• In a typical arithmetic or logical instruction, 3

references are required
– 2 operands
– a result

• These addresses can be explicitly given or implied
by the instruction

CPU Registers – Page 9 of 35CSCI 4717 – Computer Architecture

3 address instructions
• Both operands and the destination for the result are

explicitly contained in the instruction word
• Example: X = Y + Z
• With memory speeds (due to caching) approaching

the speed of the processor, this gives a high degree
of flexibility to the compiler

• Avoid the hassles of keeping items in the register
set -- use memory as one large set of registers

• This format is rarely used due to the length of
addresses themselves and the resulting length of
the instruction words

CPU Registers – Page 10 of 35CSCI 4717 – Computer Architecture

2 address instructions
• One of the addresses is used to specify both

an operand and the result location
• Example: X = X + Y
• Very common in instruction sets
• Supported by heavy use in HLL of

operations such as A += B or C <<=3;

ADD A,B ;A = A + B

CPU Registers – Page 11 of 35CSCI 4717 – Computer Architecture

1 address instructions
• When only a single reference is allowed in

an instruction, another reference must be
included as part of the instruction

• Traditional accumulator-based operations
• Example: Acc = Acc + X
• For an instruction such as A += B, code

must first load A into an accumulator, then
add B.

LOAD A
ADD B

CPU Registers – Page 12 of 35CSCI 4717 – Computer Architecture

0 address instructions
• All addresses are implied, as in register-based

operations – e.g., TBA (transfer register B to A)
• Stack-based operations
• All operations are based on the use of a stack in

memory to store operands
• Interact with the stack using push and pop

operations

3

CPU Registers – Page 13 of 35CSCI 4717 – Computer Architecture

Trade off Resulting from Fewer Addresses
Fewer addresses in the instruction results in:
• More primitive instructions
• Less complex CPU
• Instructions with shorter length – fit more

into memory
• More total instructions in a program
• Longer, more complex programs
• Faster fetch/execution of instructions
• Longer execution times

CPU Registers – Page 14 of 35CSCI 4717 – Computer Architecture

Example: 3 Addresses
Y = (A-B) / (C+D*E)

SUB Y,A,B
MUL T,D,E
ADD T,T,C
DIV Y,Y,T

CPU Registers – Page 15 of 35CSCI 4717 – Computer Architecture

Example: 2 address
Y = (A-B) / (C+D*E)

MOV Y,A
SUB Y,B
MOV T,D
MUL T,E
ADD T,C
DIV Y,T

CPU Registers – Page 16 of 35CSCI 4717 – Computer Architecture

Example: 1 address
Y = (A-B) / (C+D*E)

LOAD D
MUL E
ADD C
STORE Y
LOAD A
SUB B
DIV Y
STORE Y

CPU Registers – Page 17 of 35CSCI 4717 – Computer Architecture

Example: 0 address – Convert to postfix
(reverse Polish) notation:

PUSH A
PUSH B
SUB
PUSH C
PUSH D
PUSH E
MUL
ADD
DIV
POP Y

Y = (A-B) / (C+D*E)

becomes

Y = AB–CDE*+/

This is "Postfix" or "Reverse
Polish Form" from tree
searching.

CPU Registers – Page 18 of 35CSCI 4717 – Computer Architecture

Design Decisions
• Operation repertoire

– How many ops?
– What can they do?
– How complex are they?

• Data types – various types of operations
and how they are performed

• Instruction formats
– Length of op code field
– Number of addresses

4

CPU Registers – Page 19 of 35CSCI 4717 – Computer Architecture

CPU Internal Design Issues
From our discussion of the architecture of
the computer, we've put some requirements
on the CPU:
– Fetch instructions from memory
– Interpret instructions to determine action that is

required
– Fetch data that may be required for execution

(could come from memory or I/O)
– Process data with arithmetic, logic, or some

movement of data
– Write data to memory or I/O

CPU Registers – Page 20 of 35CSCI 4717 – Computer Architecture

CPU Internal Structure

Design
decisions
here affect
instruction
set design

CPU Registers – Page 21 of 35CSCI 4717 – Computer Architecture

CPU Internal Structure (continued)

• Arithmetic Logic Unit
– Status flags
– Shifter
– Complementer
– Arithmetic logic
– Boolean logic

• Internal CPU bus to pass data back and
forth between items of CPU

CPU Registers – Page 22 of 35CSCI 4717 – Computer Architecture

CPU Internal Structure (continued)

Registers
• CPU must have some working space

(temporary storage) to remember things
– Data
– location of last instruction or next instruction
– instruction as it's working with it

• Number and function vary between
processor designs

• One of the major design decisions
• Absolute top level of memory hierarchy

CPU Registers – Page 23 of 35CSCI 4717 – Computer Architecture

CPU Internal Structure (continued)

Two types of registers:
• User-visible registers -- allow for operations

with minimal interaction with main memory
(programmer takes place of cache
controller)

• Control and Status Registers -- with correct
privileges, can be set by programmer.
Lesser privileges may provide read-only
capability.

CPU Registers – Page 24 of 35CSCI 4717 – Computer Architecture

CPU Internal Structure (continued)

• Control unit -- managing operation of all
CPU items

• Internal CPU bus to pass data back and
forth between items of CPU

5

CPU Registers – Page 25 of 35CSCI 4717 – Computer Architecture

User Visible Registers
• Accessed through machine/assembly

language instructions
– General Purpose
– Data
– Address
– Condition Codes

• Represent complete user-oriented view of
processor -- therefore, storing and later
restoring of all user-visible registers
effectively resets processor back to stored
state

CPU Registers – Page 26 of 35CSCI 4717 – Computer Architecture

General Purpose Registers
• May be true general purpose -- can contain the

operand for any opcode
• May be restricted -- floating point only, integer only,

address only
• May be used for data or addressing -- some may

do either address or data, in some cases there
may be a clear distinction between data and
address registers

• Accumulator Data
• Addressing

– Segment
– Index -- may be autoindexed
– Stack

CPU Registers – Page 27 of 35CSCI 4717 – Computer Architecture

Register Design Issues

The range of design decisions goes from…
• Make all registers general purpose

– Increase flexibility and programmer options
– Increase instruction size & complexity

• Make them specialized
– Smaller more specialized (faster) instructions
– Less flexibility

CPU Registers – Page 28 of 35CSCI 4717 – Computer Architecture

Register Design Issues (continued)
How many general purpose registers?
• Number affects instruction set design => more

registers means more operand identifier bits
• Between 8 – 32
• Remember that the registers are at top of hierarchy

faster than cache
• The fewer GP registers, the more memory

references
• More does not necessarily reduce memory

references and takes up processor real estate
• RISC needs are different and will be discussed

later

CPU Registers – Page 29 of 35CSCI 4717 – Computer Architecture

Register Design Issues (continued)

How big do we make the registers?
• Address -- large enough to hold full address
• Data -- large enough to hold full word
• Often possible to combine two data registers

-- e.g. AH + AL = AX
• Example: Do we link the design of registers

to a standard, e.g., C programming
– double int a;
– long int a;

CPU Registers – Page 30 of 35CSCI 4717 – Computer Architecture

Condition Code Registers (flags)

• Sets of individual bits each with a unique
purpose (e.g. result of last operation was zero)

• Opcodes can read flag values to determine
effect/operation (e.g., conditional jumps)

• Automatically set as a result of some
operations

• Some processors allow user to set or clear
them explicitly

• Collected into group and referred to as a single
register (CCR)

6

CPU Registers – Page 31 of 35CSCI 4717 – Computer Architecture

Control & Status Registers
Types of control & status registers
• Registers for movement of data between CPU

and memory
– Program Counter (PC)
– Instruction Register (IR)
– Memory Address Register (MAR)
– Memory Buffer Register (MBR)

• Optional buffers used to exchange data between
ALU, MBR, and user-visible registers

• Program Status Word (PSW)
• Address pointers used for control
• Built-in processor I/O control & status registers

CPU Registers – Page 32 of 35CSCI 4717 – Computer Architecture

Control & Status Registers (continued)

• Program Counter (PC)
– Automatically incremented to next instruction as

part of operation of current instruction
– Can also be changed as result of jump

instruction
• Instruction Register (IR)

– Most recently fetched instructions
– Where instruction decoder examines opcode to

figure out what to do next

CPU Registers – Page 33 of 35CSCI 4717 – Computer Architecture

Control & Status Registers (continued)

• Memory Address Register (MAR)
– Memory address of current memory location to

fetch
– Could be instruction or data

• Memory Buffer Register (MBR)
– Last word read from memory (instruction or

data)
– Word to be stored to memory

CPU Registers – Page 34 of 35CSCI 4717 – Computer Architecture

Control & Status Registers (continued)
Program Status Word (PSW) – May be exactly the same
thing as user-visible condition code register
• A set of bits which include condition codes

– Sign of last result
– Zero
– Carry
– Equal
– Overflow
– Interrupt enable/disable
– Supervisor

• Examples: Intel ring zero, kernel mode
• Allows privileged instructions to execute
• Used by operating system
• Not available to user programs

CPU Registers – Page 35 of 35CSCI 4717 – Computer Architecture

Control & Status Registers (continued)

• Address pointers used for control
– Interrupt vectors
– System stack pointer
– Page table pointer for hardware supported

virtual memory
– Chip select controls

• On processor I/O
– Status and control to operate the I/O
– E.g., serial ports -- bps rate, interrupt enables,

buffer registers, etc.

