
1

Instruction Level Parallelism – Page 1 of 43CSCI 4717 – Computer Architecture

CSCI 4717/5717
Computer Architecture

Topic: Instruction Level Parallelism

Reading: Stallings, Chapter 14

Instruction Level Parallelism – Page 2 of 43CSCI 4717 – Computer Architecture

What is Superscalar?
• A machine designed to improve the performance

of the execution of scalar instructions. (The bulk
of instructions.)

• Equally applicable to RISC & CISC, but usually
RISC

• Done with multiple pipelines – this is different than
multiple pipelines for branching

• Degree = number of pipelines (e.g., degree 2
superscalar pipeline two pipelines)

• Common instructions (arithmetic, load/store,
conditional branch) can be initiated and executed
independently

Instruction Level Parallelism – Page 3 of 43CSCI 4717 – Computer Architecture

What is Superscalar? (continued)

Instruction Level Parallelism – Page 4 of 43CSCI 4717 – Computer Architecture

Why the drive toward Superscalar?
• Most operations are on scalar quantities
• Improving this facet will give us greatest reward

25%24%26%Array/
structure

55%53%58%Scalar
variable

20%23%16%Integer
constant

AverageCPascal

Instruction Level Parallelism – Page 5 of 43CSCI 4717 – Computer Architecture

In class exercise
Develop a short assembly language
program (5-6 instructions) where the lines of
code could be rearranged or don't depend
on one another

Instruction Level Parallelism – Page 6 of 43CSCI 4717 – Computer Architecture

What can be done in parallel?
Disregarding the need to use a bus in parallel,
what types of instructions are inherently
independent?
– Scalar arithmetic and logic with results stored in

independent registers
– Transfers of data where bus conflicts are not a

problem
– Order of operations can be changed
– Conditional branches

2

Instruction Level Parallelism – Page 7 of 43CSCI 4717 – Computer Architecture

Difference between Superscalar and
Super-pipelined

• Many pipeline stages need less than half a
clock cycle

• Double internal clock speed gets two tasks
per external clock cycle

• Superscalar allows parallel fetch execute

Instruction Level Parallelism – Page 8 of 43CSCI 4717 – Computer Architecture

Difference
between

Superscalar
and Super-

pipelined
(continued)

Instruction Level Parallelism – Page 9 of 43CSCI 4717 – Computer Architecture

Instruction level parallelism
• Degree to which instructions of a program

can be executed in parallel
• Dependent on

– Compiler based optimization
– Hardware techniques

Instruction Level Parallelism – Page 10 of 43CSCI 4717 – Computer Architecture

In class exercise
Using the programs you developed a few
moments ago, what requirements did you
place on the architecture to make the
instructions independent?

Instruction Level Parallelism – Page 11 of 43CSCI 4717 – Computer Architecture

Limits of Instruction Level Parallelism

Instruction level parallelism is limited by:
• True data dependency
• Procedural dependency
• Resource conflicts
• Output dependency
• Antidependency

Instruction Level Parallelism – Page 12 of 43CSCI 4717 – Computer Architecture

True Data Dependency
• True data dependency is where one instruction

depends on the final outcome of a previous
instruction.

• Also known as flow dependency or write-read
dependency

• Consider the code:
ADD r1,r2 (r1 = r1+r2;)
MOV r3,r1 (r3 = r1;)

• Can fetch and decode second instruction in parallel
with first

• Can NOT execute second instruction until first is
finished

3

Instruction Level Parallelism – Page 13 of 43CSCI 4717 – Computer Architecture

True Data Dependency (continued)
• RISC architecture would reorder following

set of instructions or insert delay
MOV r1,[mem] (Load r1 from memory)
MOV r3,r1 (r3 = r1;)
MOV r2,5 (r2 = 5;)

• The superscalar machine would execute the
first and third instructions in parallel, yet
have to wait anyway for the first instruction
to finish before executing the second

• This holds up MULTIPLE pipelines

Instruction Level Parallelism – Page 14 of 43CSCI 4717 – Computer Architecture

True Data Dependency (continued)
• Is the following an example of data

dependency?
ADD r1,r2 (r1 = r1+r2;)
SUB r3,r1 (r3 = r3-r1;)

• Is the following an example of data
dependency?

ADD r1,r2 (r1 = r1+r2;)
SUB r1,r3 (r1 = r1-r3;)

• Due to nature of arithmetic, the second
sequence is more of a resource conflict

Instruction Level Parallelism – Page 15 of 43CSCI 4717 – Computer Architecture

Procedural Dependency
• Situation 1: Can not execute instructions

after a branch in parallel with instructions
before a branch – this holds up MULTIPLE
pipelines

• Situation 2: Variable-length instructions –
must partially decode first instruction for first
pipe before second instruction for second
pipe can be fetched

Instruction Level Parallelism – Page 16 of 43CSCI 4717 – Computer Architecture

Resource Conflict
• Two or more instructions requiring access to

the same resource at the same time
• Resources include: Memory, Caches,

Buses, Registers, Ports, and Functional
Units

• Possible solution -- duplicate resources
(e.g., two ALUs, dual-port memories)

Instruction Level Parallelism – Page 17 of 43CSCI 4717 – Computer Architecture

Comparison of
True Data,

Procedural,
and Resource

Conflict
Dependencies

Instruction Level Parallelism – Page 18 of 43CSCI 4717 – Computer Architecture

Output Dependency
• This type of dependency occurs when two

instructions both write a result.
• If an instruction depends on the intermediate

result, problems could occur
• Also known as write-write dependency

– R3 = R3 + R5; (I1)
– R4 = R3 + 1; (I2)
– R3 = R5 + 1; (I3)
– R7 = R3 + R4; (I4)

• I2 depends on result of I1 and I4 depends on
result of I3 – true data dependency

• If I3 completes before I1, result from I1 will be
written last – output (write-write) dependency

4

Instruction Level Parallelism – Page 19 of 43CSCI 4717 – Computer Architecture

Design Issues
• Instruction level parallelism (measure of code)

– Instructions in a sequence are independent
– Execution can be overlapped
– Governed by data and procedural dependency

• Machine Parallelism (measure of machine)
– Ability to take advantage of instruction level

parallelism
– Governed by number of parallel pipelines AND by

ability to find independent instructions

Instruction Level Parallelism – Page 20 of 43CSCI 4717 – Computer Architecture

Instruction Issue Policy
• The protocol used to issue instructions
• Types of orderings include:

– Order in which instructions are fetched
– Order in which instructions are executed
– Order in which instructions change registers and

memory
• More sophisticated processor less bound by

relationships of these three orderings
• To optimize pipelines, need to alter one or more of

these three with respect to sequential ordering in
memory

Instruction Level Parallelism – Page 21 of 43CSCI 4717 – Computer Architecture

Instruction Issue Policy (continued)
Three categories of issue policies
• In-order issue with in-order completion
• In-order issue with out-of-order completion
• Out-of-order issue with out-of-order

completion

Instruction Level Parallelism – Page 22 of 43CSCI 4717 – Computer Architecture

In-Order Issue with In-Order
Completion

• Issue instructions in the order they occur and write
results in same order

• For base-line comparison more than an actual
implementation

• Not very efficient – Instructions may stall if:
– "Partnered" instruction requires more time
– "Partnered" instruction requires same resource

• Parallelism limited by bottleneck stage (e.g., if
CPU can only fetch two instructions at one time,
degree of execution parallelism of 3 is never
realized)

• This adds to our dependencies issues Forced
order of output

Instruction Level Parallelism – Page 23 of 43CSCI 4717 – Computer Architecture

In-Order Issue with In-Order
Completion (continued)

8I6I5
7I6
6I4I3I5I6
5I4I6I5
4I2I1I3I4
3I1I4I3
2I2I1I4I3
1I2I1

Decode Execute Write Cycle

Instruction Level Parallelism – Page 24 of 43CSCI 4717 – Computer Architecture

In-Order Issue with In-Order
Completion (continued)

• Only capable of fetching 2 instructions at a
time – Next pair must wait until BOTH of first
two are out of fetch pipe

• Execution unit – To guarantee in-order
completion, a conflict for resources or a
need for multiple cycles stalls issuing of
instructions

5

Instruction Level Parallelism – Page 25 of 43CSCI 4717 – Computer Architecture

In-Order Issue with Out-of-Order
Completion

• Improve performance in scalar RISC of
instructions requiring multiple cycles

• Any number of instructions may be in execution
stage at one time not limited by bottleneck

• Allowing for rearranged outputs creates another
dependency Output dependency

• Output dependency makes instruction issue logic
more complex

• Interrupt issue – since instructions are not finished
in order, returning after an interrupt may return to
instruction where next instruction is already done!

Instruction Level Parallelism – Page 26 of 43CSCI 4717 – Computer Architecture

In-Order Issue with Out-of-Order
Completion (continued)

7I6
6I5I6
5I4I5I6
4I3I1I4I6I5
3I2I3I1I4
2I2I1I4I3
1I2I1

Decode Execute Write Cycle

Instruction Level Parallelism – Page 27 of 43CSCI 4717 – Computer Architecture

In-Order Issue with Out-of-Order
Completion (continued)

• Still only capable of fetching 2 instructions at a
time – Next pair must wait until BOTH of first two
are out of fetch pipe

• Saved a cycle over in-order issue and in-order
completion because I3 was not held up waiting
for previous instruction pair to complete

• Instructions no longer stalled for multi-cycle
instructions

• This adds to our dependencies issues Forced
order of input

Instruction Level Parallelism – Page 28 of 43CSCI 4717 – Computer Architecture

Out-of-Order Issue with Out-of-Order
Completion

• Decouple decode pipeline from execution pipeline with a
buffer

• Buffer is called instruction window
• Can continue to fetch and decode until this buffer is full
• When a functional unit becomes available, an instruction is

assigned to that pipe to be executed provided:
– it needs that particular functional unit
– no conflicts or dependencies are currently blocking its

execution
• Since instructions have been decoded, processor can look

ahead in hopes of identifying independent instructions.

Instruction Level Parallelism – Page 29 of 43CSCI 4717 – Computer Architecture

Out-of-Order Issue with Out-of-Order
Completion (continued)

6I5

5I6I4I5I5

4I3I1I4I6I4,I5,I6

3I2I3I1I3,I4I6I5

2I2I1I1,I2 I4I3

1I2I1

Decode Window Execute Write Cycle

Instruction Level Parallelism – Page 30 of 43CSCI 4717 – Computer Architecture

Out-of-Order Issue with Out-of-Order
Completion (continued)

• Fills fetch pipe as quickly as it can
• I5 depends on output of I4, but I6 is

independent and may be executed as soon
as functional unit is available. Saves one
cycle over in-order issue and out-of-order
completion

• Instructions no longer stalled waiting for
instruction fetch pipe

6

Instruction Level Parallelism – Page 31 of 43CSCI 4717 – Computer Architecture

Antidependency
• Allowing for rearranged entrance to

execution unit Antidependency (A.K.A.
read-write dependency)

• Called Antidependency because it is the
exact opposite of data dependency

• Data dependency: instruction 2 depends on
data from instruction 1

• Antidependency: instruction 1 depends on
data that could be destroyed by instruction 2

Instruction Level Parallelism – Page 32 of 43CSCI 4717 – Computer Architecture

Antidependency (continued)
• Example:

R3 = R3 + R5; (I1)
R4 = R3 + 1; (I2)
R3 = R5 + 1; (I3)
R7 = R3 + R4; (I4)

• I3 can not complete before I2 starts as I2
needs a value in R3 and I3 changes R3

Instruction Level Parallelism – Page 33 of 43CSCI 4717 – Computer Architecture

In class exercise
Identify the write-read, write-write, and read-
write dependencies in the instruction
sequence below.

L1: R1 R2 + R3
L2: R4 R1 + 1
L3: R1 R3 * 2
L4: R5 R1 + R3
L5: R5 R5 + 10

Instruction Level Parallelism – Page 34 of 43CSCI 4717 – Computer Architecture

“Write” Dependency Problems
Need to solve problems caused by output and anti-

dependencies:
• Different than data dependencies which are due to flow of

data through a program or sequence of instructions
• Reflect sequence of values in registers which may not

reflect the correct ordering from the program
• At any point in an "in-order issue with in-order completion"

system, can know what value is in any register at any time
• At any point in system with output and anti-dependencies,

cannot know what value is in any register at any time (i.e.,
program doesn't dictate order of changing data in
registers)

Instruction Level Parallelism – Page 35 of 43CSCI 4717 – Computer Architecture

Register Renaming
• To fix these problems, processor may need

to stall a pipeline stage
• These problems are storage conflicts –

multiple instructions competing for use of
same register

• Solution – duplicate resources
• Assigning a value to a register dynamically

creates new register
• Subsequent reads to that register must go

through renaming process

Instruction Level Parallelism – Page 36 of 43CSCI 4717 – Computer Architecture

Register Renaming (continued)
• Example

R3b = R3a + R5a (I1)
R4b = R3b + 1 (I2)
R3c = R5a + 1 (I3)
R7b = R3c + R4b (I4)

• Without subscript refers to logical register in
instruction

• With subscript is hardware register allocated

7

Instruction Level Parallelism – Page 37 of 43CSCI 4717 – Computer Architecture

In class exercise
In the code below, identify references to initial
register values by adding the subscript 'a' to the
register reference. Identify new allocations to
registers with the next highest subscript and
identify references to these new allocations using
the same subscript.

R7 = R3 + R4
R3 = R7
R7 = R7 + 1
R4 = R5
R3 = R7 + R3
R5 = R4 + R3

Instruction Level Parallelism – Page 38 of 43CSCI 4717 – Computer Architecture

Machine Parallelism
• So far, we have discussed three methods

for improving performance:
– duplication of resources
– out-of-order execution
– register renaming

• Studies have been conducted to verify the
relationships between these methods

Instruction Level Parallelism – Page 39 of 43CSCI 4717 – Computer Architecture

Machine Parallelism (continued)

Instruction Level Parallelism – Page 40 of 43CSCI 4717 – Computer Architecture

Machine Parallelism (continued)
• Graphs show speed up of superscalar over scalar

machine
– Base – No duplicate resources, but can issue instructions

out of order
– +ld/st – duplicate load/store functional unit
– +alu – duplicates the ALU
– +both – duplicates both the load/store unit and ALU

• Not worth duplication functions without register
renaming

• Need instruction window large enough (more than 8)
• Indicates that if instruction window is too small, data

dependencies prevent effective use of parallelism

Instruction Level Parallelism – Page 41 of 43CSCI 4717 – Computer Architecture

Branch Prediction
Problems with using RISC-type branch
delay with superscalar machines
– Branch delay forces pipe always to execute

instruction following branch – keeps pipeline full
and makes pipeline logic simpler

– Superscalar would have a problem with this as
it would execute multiple instructions

Instruction Level Parallelism – Page 42 of 43CSCI 4717 – Computer Architecture

Branch Prediction (continued)
Superscalar machines go to pre-RISC
techniques of branch prediction
– Prefetch causes two-cycle delay when branch is

taken (80486 fetches both next sequential
instruction after branch and branch target
instruction)

– Older superscalar implementations use static
techniques of branch prediction

– More sophisticated processors (PPC 620 and
Pentium 4) use dynamic branch prediction
based on branch history

8

Instruction Level Parallelism – Page 43 of 43CSCI 4717 – Computer Architecture

Superscalar Implementation
• Simultaneously fetch multiple instructions

– Branch prediction
– Pre-decode of instructions for length and branching
– Multiple fetch mechanism

• Logic to determine true dependencies involving
register values – Mechanisms to communicate these
values to where they are needed (including register
renaming)

• Mechanisms to initiate multiple instructions in parallel
• Resources for parallel execution of multiple

instructions
• Mechanisms for committing process state in correct

order

