CSCI 4717/5717 Computer Architecture

Topic: Symmetric Multiprocessors & Clusters

Reading: Stallings, Sections 18.1 through 18.4

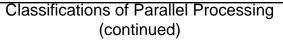
Classifications of Parallel Processing

M. Flynn classified types of parallel processing in 1972 ("Some Computer Organizations and Their Effectiveness", IEEE Transactions on Computers) Types of Parallel Processor Systems (Figure 18.2)

- Single instruction, single data stream
- Single instruction, multiple data stream
- Multiple instruction, single data stream
 Multiple instruction, multiple data stream

Parallel Processing – Page 1 of 63 CSCI 4717 – Computer Architecture

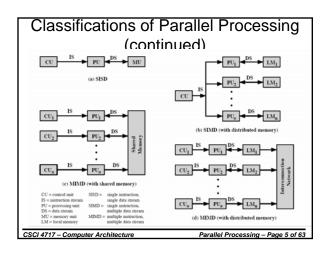
Classifications of Parallel Processing (continued)


 Single Instruction, Single Data Stream (SISD) – Single processor operates on a single instruction stream from a single memory (Uniprocessor)

CSCI 4717 – Computer Architecture

CSCI 4717 – Computer Architecture

 Single Instruction, Multiple Data Stream (SIMD) – Lockstep operation of multiple processors on single instruction memory with one data memory per processing element. (Vector/array processing)


Parallel Processing – Page 3 of 63

Parallel Processing – Page 2 of 63

Parallel Processing – Page 4 of 6

- Multiple Instruction, Single Data Stream (MISD) – Multiple processors execute different sequences of instructions on a single data set. Not commercially implemented
- Multiple Instruction, Multiple Data Stream (MIMD) – A set of processors simultaneously execute different instructions on different data sets.

Multiple Instruction, Multiple Data Stream

- Processors are general purpose
- Each processor should be able to complete process by themselves
- Communications methods

CSCI 4717 – Computer Architecture

- Through shared memory ("Tightly Coupled")
 - Symmetric multiprocessor (SMP) memory access times are consistent for all processors
 - Nonuniform Memory Access (NUMA) memory access times may differ
- Cluster Either through fixed connections or a network ("Loosely Coupled")

CSCI 4717 – Computer Architecture

Parallel Processing – Page 6 of 63

Symmetric Multiprocessors (SMP)

A stand alone computer with the following traits

• Two or more similar processors of comparable capacity

CSCI 4717 – Computer Architecture

CSCI 4717 – Computer Architecture

CSCI 4717 – Computer Architecture

- Processors share same memory and I/O
- Processors are connected by a bus or other internal connection
- Memory access time is approximately the same for each processor

Symmetric Multiprocessors (continued)

- All processors share access to I/O through either: – same channels
 - different channels providing paths to same devices
- All processors can perform the same functions (hence symmetric)
- System controlled by integrated operating system providing interaction between processors
- Interaction at job, task, file and data element levels

Parallel Processing – Page 8 of 63

Parallel Processing – Page 10 of 6

Parallel Processing – Page 12 of

Integrated Operating System

Parallel Processing – Page 7 of 63

Parallel Processing – Page 9 of 6

- O/S for SMP is NOT like clusters/loosely coupled where communication usually is at file level
- Can be a high degree of interaction between processes
- O/S schedules processes or threads across all processors

Organization of Tightly Coupled Multiprocessor

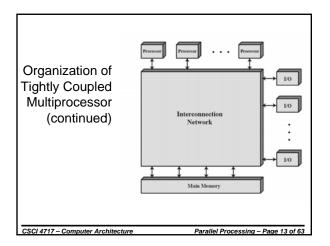
- Individual processors are self-contained, i.e., they have their own control unit, ALU, registers, one or more levels of cache, and private main memory
- Access to shared memory and I/O devices through some interconnection network
- Processors communicate through memory in common data area

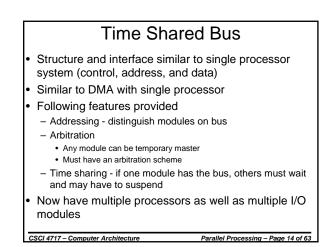
Parallel Processing – Page 11 of 63

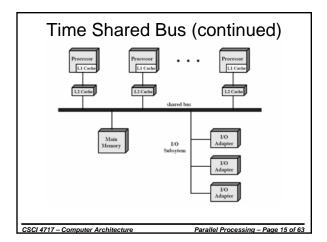
SMP Advantages

Advantages only realized if O/S can provide parallelism

- Performance, but only if some work can be done in parallel
- Availability/reliability Since all processors can perform the same functions, failure of a single processor does not halt the system
- Incremental growth User can enhance performance by adding additional processors
- Scaling Vendors can offer range of products based on number of processors
- Transparent to user User only sees improvement in performance

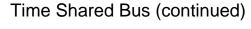

CSCI 4717 – Computer Architecture


CSCI 4717 – Computer Architecture


Organization of Tightly Coupled Multiprocessor (continued)


- Memory is often organized to provide simultaneous access to separate blocks of memory
- Bus
 - Time-shared or common bus
 - Central controller (arbitrator)
 - Multiport memory

CSCI 4717 – Computer Architecture

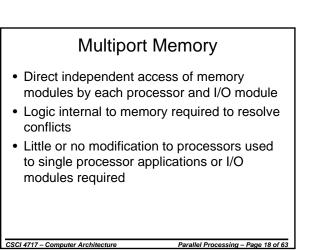


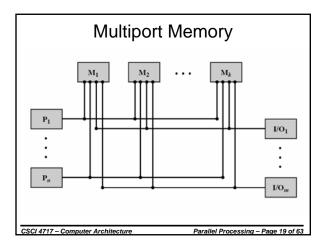
Advantages

CSCI 4717 – Computer Architecture

- Simplicity not only is it easy to understand, form already used with DMA
- Flexibility adding processor involves simple addition of processor to bus
- Reliability As long as arbitration does not involve single controller, then there is no single point of failure

Parallel Processing – Page 16 of 6



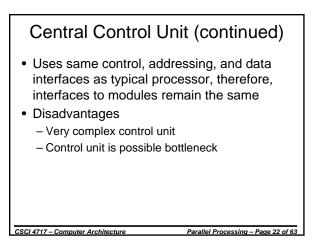

Disadvantages

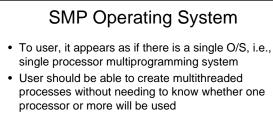
CSCI 4717 – Computer Architecture

- Waiting for bus creates bottleneck
 - Can be helped with individual caches
 - Usually L1 and L2
- Cache coherence policy must be used (usually hardware)

Parallel Processing – Page 17 of 63

Multiport Memory (continued) • Advantages - Removing bus access bottleneck - Dedicate portions of memory to only one processor • Better security • Better recovery from faults • Disadvantages - Complex memory logic - More PCB wiring - Write through policy should be used for caches


Central Control Unit


Functions

- Funnels separate data streams between independent modules
- Can buffer requests

CSCI 4717 – Computer Architecture

- · Performs arbitration and timing
- · Pass status and control
- · Perform cache update alerting

SMP Operating System Design Issues

Simultaneous concurrent processes

- O/S routines should be reentrant
- O/S tables and other management structures must be expanded to handle multiple processes and processors
- Scheduling

CSCI 4717 – Computer Architecture

- More than just order now, also which processor gets a process
- Any processor should be capable of scheduling too

CSCI 4717 – Computer Architecture

Parallel Processing – Page 23 of 63

Parallel Processing – Page 21 of 63

Parallel Processing – Page 24 of 63

SMP Operating System Design Issues (continued)

- Synchronization scheduling of resources now more than just for processes but also for processors
- Memory management
 - Shared page replacement strategy
 - Must understand and take advantage of memory hardware
- Reliability and fault tolerance Must be able to handle the loss of a processor without taking down other processors.

Cache Coherence

- One or two levels of cache typically associated with each processor – this is essential for performance
- Problem

CSCI 4717 – Computer Architecture

CSCI 4717 – Computer Architecture

- Multiple copies of same data in different caches

Parallel Processing – Page 26 of 6

- Can result in an inconsistent view of memory

Write Policy Review

· Write back policy

CSCI 4717 – Computer Architecture

- Write goes only to cache
- Main memory updated only when cache block is replaced
- Can lead to inconsistency
- Write through policy

CSCI 4717 – Computer Architecture

CSCI 4717 – Computer Architecture

- All writes made to cache and main memory
- Inconsistencies can occur unless all caches monitor memory traffic

Parallel Processing – Page 27 of 63

Parallel Processing – Page 25 of 63

Software Solutions

- Compiler and operating system deal with problem
- · Overhead transferred to compile time
- Design complexity transferred from hardware to software
- Software tends to make conservative decisions leading to inefficient cache utilization

Software Solutions (continued)

- Marked shared variables as non-cacheable - Too conservative
- Instructions added to enable/disable caching for variables. Then compiler can analyze code to determine safe periods for caching shared variables

Hardware Solution

- A.K.A cache coherence protocols
- Dynamic recognition of potential problems at run time
- Because it only deals w/problem when it occurs, more efficient use of cache
- Transparent to programmer and compiler
- Methods
 - Directory protocols
 - Snoopy protocols

CSCI 4717 – Computer Architecture

Parallel Processing – Page 29 of

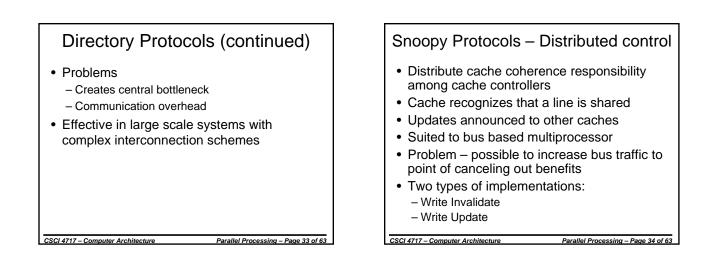
Parallel Processing – Page 28 of

Directory Protocols – Central control

- Central memory controller maintains directory of:
 - where blocks are held
 - in which caches they are held
 - what state the data is in

CSCI 4717 – Computer Architecture

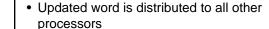
• Appropriate transfers are performed by controller


Parallel Processing – Page 31 of 6

Directory Protocols – Write Process

- Requests to write to a line are made to controller
- Using directory, controller tells all other processors with copy of same data to invalidate
- Write is granted to requesting processor and that processor has exclusive rights to that data
- Request to read from another processor forces controller to issue command to processor with exclusive rights to update (write back) main memory.

Parallel Processing – Page 32 of 6


CSCI 4717 – Computer Architecture

Write Invalidate (a.k.a. MESI)

- Multiple readers, one writer
- When a write is required, command is issued and all other caches of the line are invalidated
- Writing processor then has exclusive (cheap)
 access until line required by another processor
- · A state is associated with every line
 - <u>M</u>odified
 - <u>E</u>xclusive
 - <u>S</u>hared
 - <u>I</u>nvalid

CSCI 4717 – Computer Architecture Parallel Processing – Page 35 of

Multiple readers and writers

Write Update (a.k.a. write broadcast)

CSCI 4717 – Computer Architecture

Parallel Processing – Page 36 of 63

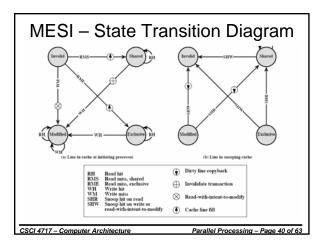
Snoopy Protocols – Implementations

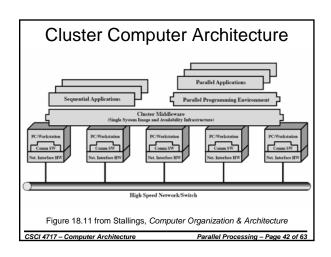
- Performance of these two implementations depends on number of caches and pattern of read/writes
- Some systems use adaptive protocols to use both methods
- Write invalidate most common Used in Pentium 4 and PowerPC systems

Parallel Processing – Page 37 of 6

CSCI 4717 – Computer Architecture

MESI Protocol


- Each line of a cache has associated with it two bits
 four states
- Modified line in this cache is modified and only valid in this cache
- Exclusive line in this cache is same as that in memory (unmodified) and not present in any other cache
- Shared line in this cache is same as that in memory (unmodified) and may also be present in another cache
- · Invalid line in this cache contains bad data


CSCI 4717 – Computer Architecture

• Write throughs from an L1 cache to an L2 cache makes it visible to the MESI protocol

Parallel Processing – Page 38 of 6

[M Modified	E Exclusive	S Shared	I Invalid
This cache line valid?	Yes	Yes	Yes	No
The memory copy is	out of date	valid	valid	-
Copies exist in other caches?	No	No	Maybe	Maybe
A write to this line	does not go to bus	does not go to bus	goes to bus and updates cache	goes directly to bus

Defined

- a group of interconnected, whole computers

Clusters

- working together as a unified computing resource
- can create the illusion of being one machine
- Alternative to Symmetric Multiprocessing (SMP)
 - High performance
 - High availability
 - Server applications
- Each computer called a node

CSCI 4717 – Computer Architecture

Parallel Processing – Page 41 of 63

Cluster Benefits

 Absolute scalability – Almost limitless in terms of adding independent multiprocessing machines

CSCI 4717 - Computer Architecture

CSCI 4717 – Computer Architecture

• Incremental scalability – Can start out small and build as user acquires new machines

Parallel Processing – Page 43 of 63

Parallel Processing – Page 45 of 63

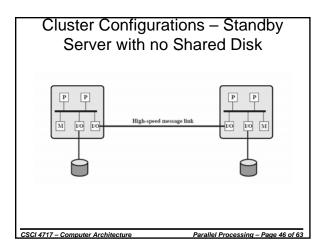
Cluster Benefits (continued)

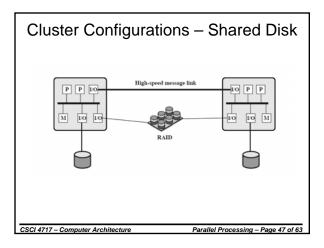
· High availability

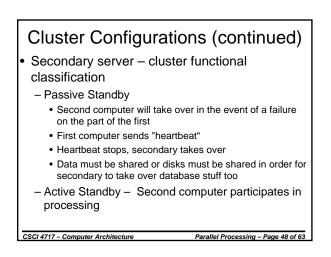
CSCI 4717 – Computer Architecture

- Loss of one node only causes small decrement in performance
- Software (middleware) handles fault tolerance automatically
- Superior price/performance
 - By using easily affordable building blocks, gets better performance at a lower price than a single large computer
 - Expanding design doesn't depend on PCB redesign

Parallel Processing – Page 44 of 63


Cluster Configurations
High-speed message link options/configurations


Dedicated LAN with at least one having connection to remote client
Shared LAN with other non-cluster machines


Simplest way to classify clusters is based on whether computers share disk(s)

No shared disk – each machine has a local disk
Shared disk in addition to local disk – should

use disk mirroring or RAID

Active Standby Configurations

- · Separate Server
 - No shared disk

CSCI 4717 – Computer Architecture

- High performance and availability
- Scheduling software is needed to assign client requests to servers to balance the load
- If a computer fails in middle of application, another can take over
- To do this, must have some method of copying data between at least neighboring computers

Parallel Processing – Page 49 of 63

Active Standby Configurations (continued)

- Shared nothing
 - All computers share common RAID, but have partitions all to themselves.
 - If one fails, the cluster is reconfigured to reallocate failed computer's partitions
- Shared disk

CSCI 4717 – Computer Architecture

- All computers have access to all volumes of the same disk
- Must use some type of locking facility to ensure that data can be accessed by one computer at a time

Parallel Processing – Page 50 of 63

Parallel Processing – Page 52 of 63

Parallel Processing – Page 54 of

Clustering Method	Description	Benefits	Limitations
Passive Standby	A secondary server takes over in case of primary server failure.	Easy to implement.	High cost because the secondary server is unavailable for other processing tasks.
Active Secondary:	The secondary server is also used for processing tasks.	Reduced cost because secondary servers can be used for processing.	Increased complexity.
Separate Servers	Separate servers have their own disks. Data is continuously copied from primary to secondary server.	High availability.	High network and server overhead due to copying operations.
Servers Connected to Disks	Servers are cabled to the same disks, but each server owns its disks. If one server fails, its disks are taken over by the other server.	Reduced network and server overhead due to elimination of copying operations.	Usually requires disk mirroring or RAID technology to compensate for risk of disk failure.
Servers Share Disks	Multiple servers simultaneously share access to disks.	Low network and server overhead. Reduced risk of downtime caused by disk failure.	Requires lock manager software. Usually used with disk mirroring or RAID technology.

Cluster O/S Design Issues – Failure Management

- Two types of management: high availability and fault tolerant
- · High availability
 - Independent processes
 - If one goes down, anything in progress is lost
 - Application layer must handle uncertainty of partially executed transactions
 - Process is taken over by next machine
 - Fault tolerant
 - Redundancies

CSCI 4717 – Computer Architecture

CSCI 4717 – Computer Architecture

- Mechanisms for handling partially executed transactions

Cluster O/S Design Issues – Failure Management (continued)

• Failover -- Switching applications & data from failed system to alternative within cluster

CSCI 4717 – Computer Architecture

• Failback -- Restoration of applications and data to original system after problem is fixed

Parallel Processing – Page 53 of 63

Cluster O/S Design Issues – Load balancing

- Incremental scalability of load with changes in number of nodes
- Automatically include new computers in scheduling
- Middleware needs to recognise that processes may switch between machines

Cluster O/S Design Issues – Parallelizing Computation

- Single application executing in parallel on a number of machines in cluster
- Three general approaches to the problem: – Parallelizing compiler
 - Parallelizing application
 - Parametric computing

CSCI 4717 – Computer Architecture

Parallelizing Compiler

- Determines at compile time which parts can be executed in parallel
- Split off for different computers

CSCI 4717 – Computer Architecture

CSCI 4717 – Computer Architecture

• Performance depends on compiler

Parallelizing Application

Parallel Processing – Page 55 of 6

Parallel Processing – Page 57 of 6

- Application written to be parallel
- Message passing to move data between nodes
- Hard to program

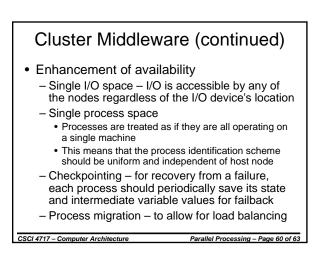
CSCI 4717 – Computer Architecture

- Performance depends on programmer
- · Potential for best end result

Parametric computing If a problem is repeated execution of algorithm on different sets of data Example: simulation using different scenarios Depends on tools to organize/manage and set of set of

Parallel Processing – Page 56 of 6

Parallel Processing – Page 58 of


Depends on tools to organize/manage and execute

Cluster Middleware

Software installed on each node to enable cluster operation:
Provides high availability through load balancing and failover control

- Creates unified image to user
- Single point of entry User logs onto cluster rather than a node
- Single file hierarchy User sees a single file structure
 Single control point single node acts as the interface to the
- Single control point single node acts as the interface to the user
- Single virtual network visible to cluster nodes
- Single memory space programs are allowed to share variables across distributed memory
- Single job management system cluster assigns the jobs, not the user
- Single user interface

Parallel Processing – Page 59 of 6

Cluster v. SMP

Positive points for both

CSCI 4717 – Computer Architecture

CSCI 4717 – Computer Architecture

- Both provide multiprocessor support to high demand applications.
- Both available commercially SMP has been around longer

SMP benefits

- Easier to manage and configure since it is a single machine
- Closer to single processor systems for which nearly all applications are written
- Scheduling is main difference between SMP and single-processor system

Parallel Processing – Page 62 of 63

- · Less physical space
- Lower power consumption
- Well-established

CSCI 4717 – Computer Architecture

Cluster benefits

- Superior incremental & absolute scalability
- Superior availability through redundancy of all components, not just processors
- Simpler to create from computers than SMP which is designed from PCB level
- With time, clusters are likely to dominate

Parallel Processing – Page 63 of 63

Parallel Processing – Page 61 of 6