
 Page 1

PARALLEL PROCESSING

Classifications of Parallel Processing
Single instruction/single data stream (SISD)

Description: Single processor operates on a single
instruction stream from a single memory

Examples: Standard single-processor system

Multiple instruction/single data stream (MISD)
Description: Multiple processors execute different
sequences of instructions on a single data set.

Examples: Not commercially implemented

Single instruction/multiple data stream (SIMD)
Description: Lockstep operation of multiple
processors on single instruction memory with one
data memory per processing element.

Examples: Vector or array processing

Multiple instruction/mult. data stream (MIMD)
Description: A set of processors simultaneously
execute different instructions on different data sets.

Examples: SMP, clusters, and NUMA systems

KEY FOR FIGURES
CU = control unit IS = instruction stream
PU = processing unit DS = data stream
MU = memory unit LM = local memory

Multiple Instruction/Multiple Data Stream
Characteristics:
• Processors are general purpose
• Each processor should be able to complete process by themselves
• Communications methods

o "Tightly Coupled" – Processors communicate through shared memory
 Symmetric multiprocessor (SMP) – memory access times are consistent for all processors
 Nonuniform Memory Access (NUMA) – memory access times may differ

o "Loosely Coupled" – Either through fixed connections or a network (cluster)

Parallel Processing Page 2
Characteristics of a Symmetric Multiprocessors (SMP)

An SMP system is a stand alone computer with the following traits:
• Two or more similar processors of comparable capacity
• Processors share same memory and I/O
• Processors are connected by a bus or other internal connection
• Memory access time is approximately the same for each processor
• All processors share access to I/O through either same channels or different channels providing paths to

same devices
• All processors can perform the same functions (hence symmetric)
• System controlled by integrated operating system providing interaction between processors
• Interaction at job, task, file and data element levels
• Integrated operating system

o O/S for SMP is NOT like clusters/loosely coupled where communication usually is at file level
o Can be a high degree of interaction between processes
o O/S schedules processes or threads across all processors

Advantages of a Symmetric Multiprocessors (SMP)

Advantages only realized if O/S can provide parallelism
• Improved performance, but only if the applications allow some work to be done in parallel
• Availability/reliability – Since all processors can perform the same functions, failure of a single processor

does not halt the system
• Incremental growth – User can enhance performance by adding additional processors
• Scaling – Vendors can offer range of products based on number of processors
• Transparent to user – User only sees improvement in performance

Organization of Tightly Coupled Multiprocessor
• Individual processors are self-contained, i.e., they have their own

control unit, ALU, registers, one or more levels of cache, and
private main memory

• Access to shared memory and I/O devices through some
interconnection network

• Processors communicate through memory in common data area
• Memory is often organized to provide simultaneous access to

separate blocks of memory

SMP Operating System
• To user, it appears as if there is a single O/S, i.e., single

processor multiprogramming system
• User should be able to create multithreaded processes without needing to know whether one processor or

more will be used
• Simultaneous concurrent processes

o O/S routines should be reentrant
o Expanded O/S tables & other management structures to handle multiple processes & processors

• All processors should be capable of scheduling
• Synchronization – scheduling of resources now more than just for processes but also for processors
• Memory management

o Shared page replacement strategy
o Must understand and take advantage of memory hardware

• Reliability and fault tolerance – Must be able to handle the loss of a processor without taking down other
processors.

Parallel Processing Page 3
Three Types of Tightly Coupled Multiprocessor Interconnection Schemes

Time-shared or common bus
• Structure and interface similar

to single processor system
(control, address, and data)

• Sharing bus is similar to DMA
sharing with single processor

• Following features provided
o Addressing - distinguishes

modules on bus
o Must have an arbitration

scheme where any module
can be temporary master

o Time sharing - if one module
has the bus, others must
wait and may have to
suspend

• Now have multiple processors
as well as multiple I/O modules

• Advantages

o Simplicity – not only is it
easy to understand, form
already used with DMA

o Flexibility – adding
processor involves simple
addition of processor to bus

o Reliability – As long as
arbitration does not involve
single controller, then there
is no single point of failure

• Disadvantages
o Waiting for bus creates

bottleneck, but this can be
helped with a bigger
investment in individual
caches

o Cache coherence policy
must be used (usually
hardware)

Central controller (arbitrator)
As opposed to time-shared
where arbitration is distributed,
a central controller monitors
and manages access between
all devices. The functions of
the controller include:
• Funneling separate data

streams between
independent modules

• Buffering requests
• Performing arbitration and

timing
• Passing status and control
• Performing cache update

alerting
• Advantage – Uses same

control, addressing, and
data interfaces as typical
processor, therefore,
interfaces to modules
remain the same

• Disadvantages
o Very complex control

unit
o Control unit could end

up being a bottleneck

Multi-port memory
Processors and I/O modules can
share a multi-port memory through
direct, independent connections that
are much like a single processor's
connection to a memory
• Logic internal to memory

required to resolve conflicts
• Little or no modification to

processors used to single
processor applications or I/O
modules required

• Advantages

o Removing bus access
bottleneck

o Dedicate portions of memory
to only one processor

o Better security
o Better recovery from faults

• Disadvantages
o Complex memory logic
o More PCB wiring
o Write through policy should

be used for caches

PROBLEM!
If we use caches to minimize the number of bus accesses required
by multiple processors, how do we keep all of the caches up to date?
• Typically, there are one or two levels of cache associated with

each processor – this is essential for performance
• Problem

o Multiple copies of same data in different caches
o Can result in an inconsistent view of memory

WRITE POLICY REVIEW

During our cache discussion, we presented the different methods for
keeping caches up to date.
• Write back policy

o Write goes only to cache
o Main memory updated only when cache block is replaced
o Can lead to inconsistency

• Write through policy
o All writes made to cache and main memory
o Inconsistencies can occur unless all caches monitor memory

traffic

Parallel Processing Page 4
Cache Coherence Solutions

Software solutions attempt to avoid cache coherence problems by relying on the compiler and operating
system. Compiler analyzes code to determine which items are cache-able and which are unsafe to cache.
This information is then used to manage variables with methods such as:
• Marking shared variables as non-cacheable – this is too conservative
• Adding special instructions to enable/disable caching for variables. Then compiler can analyze code to

determine safe periods for caching shared variables
• Benefits:

o Overhead of detecting problems is transferred from run time to compile time
o Design complexity is transferred from hardware to software

• Drawback – Software tends to make conservative decisions leading to inefficient cache utilization

Hardware solutions (cache coherence protocols) handle cache coherence problems real time.
• More efficient use of cache because it only deals w/problems when they occur
• Transparent to programmer and compiler
• Methods

o Directory protocols
o Snoopy protocols

Directory Protocols – Central Control for Management of Multiple Caches

When a central memory controller is used for cache coherence, the controller maintains directory of where all
the copies of blocks are held and the state of each of the blocks, i.e., has it been updated, is it obsolete, etc.
When a request is made for a block, the controller performs the necessary transfers.
Write Process for Directory Protocols
• When a processor needs to write to a block, it makes a request to the central controller
• Using its directory, the controller tells all other processors with copy of same data to invalidate
• Write is granted to requesting processor and that processor has exclusive rights to that data
Read Process for Directory Protocols – When a processor makes a request to read, the controller must
issue a command to the processor with exclusive right to update (write back to) main memory.
Summary – The directory protocols method is effective in large scale systems with complex interconnection
schemes. The problem is that it creates an additional communications burden and the central controller
becomes a bottleneck.

Snoopy Protocols – Distributed Control for Management of Multiple Caches
Another option is to distribute the cache coherence responsibility to the cache controllers of each processor.
• Cache recognizes that a line is shared
• Updates announced to other caches
• Suited to bus based multiprocessor
• Problem – it's possible to increase bus traffic to the point of canceling out benefits
• Two types of implementations: write invalidate and write update

Comparing Write Invalidate to Write Update
o Performance of these two implementations depends on number of caches and pattern of read/writes
o Some systems use adaptive protocols to use both methods
o Write invalidate (MESI) most common – Used in Pentium 4 and PowerPC systems

Write Invalidate (a.k.a. MESI)
• Multiple readers, one writer
• When a write is required, command is issued and all

other caches of the line are invalidated
• Writing processor then has exclusive (easy) access until

the line is required by another processor
• A state is associated with every line: Modified,

Exclusive, Shared, or Invalid (hence M.E.S.I.)

Write Update
• Multiple readers and multiple

writers
• When a word is updated, the

cache controller of the processor
that updated it must distribute
updated word to all other cache
controllers.

Parallel Processing Page 5
MESI Protocol

This protocol adds two bits to each line of a cache identifying the block contained in the line as:
• Modified – line in this cache is modified and only valid in this cache
• Exclusive – line in this cache is same as that in memory (unmodified) and not present in any other cache
• Shared – line in this cache is same as that in memory (unmodified), but may also be present in another

cache
• Invalid – line in this cache contains bad data, i.e., another processor has updated it and this processor

has yet to load a valid copy

Coherence can be maintained between L1 caches by utilizing write throughs. In other words, any time a block
in an L1 cache is updated, the value is copied to the L2 which then handles the MESI protocol.

The table and state diagram below attempt to describe the operation of the MESI protocol.

Table 18.1 MESI Cache Line States from Stallings

 M
Modified

E
Exclusive

S
Shared

I
Invalid

This cache line is valid? Yes Yes Yes No
The copy in memory is… out of date valid valid can't tell

Do copies exist in other caches? No No Maybe Maybe
A write to this line… does not go to

bus
does not go to

bus
goes to bus and
updates cache

goes directly to
bus

Figure 18.7 MESI State Transition Diagram from Stallings

