Points missed:		Student's Name:	
Total score:	/100 point	rs.	

East Tennessee State University
Department of Computer and Information Sciences
CSCI 4717 – Computer Architecture
TEST 2 for Fall Semester, 2006
Section 201

Read this before starting!

- The total possible score for this test is 100 points.
- This test is *closed book and closed notes*
- Please turn off all cell phones & pagers during the test.
- You may use one sheet of scrap paper that you will turn in with your test.
- When possible, indicate final answers by drawing a box around them. This is to aid the grader. *Failure to do so might result in no credit for answer*. Example:

• If you perform work on the back of a page in this test, indicate that you have done so in case the need arises for partial credit to be determined.

Binary	Hex	
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	

Binary	Hex
1000	8
1001	9
1010	A
1011	В
1100	C
1101	D
1110	Е
1111	F

Power of 2	Equals
2^{4}	16
2^{5}	32
2^{6}	64
27	128
28	256
29	512
2^{10}	1K
2^{20}	1M
2^{30}	1G

"Fine print"

Academic Misconduct:

Section 5.7 "Academic Misconduct" of the East Tennessee State University Faculty Handbook, June 1, 2001:

[&]quot;Academic misconduct will be subject to disciplinary action. Any act of dishonesty in academic work constitutes academic misconduct. This includes plagiarism, the changing of falsifying of any academic documents or materials, cheating, and the giving or receiving of unauthorized aid in tests, examinations, or other assigned school work. Penalties for academic misconduct will vary with the seriousness of the offense and may include, but are not limited to: a grade of 'F' on the work in question, a grade of 'F' of the course, reprimand, probation, suspension, and expulsion. For a second academic offense the penalty is permanent expulsion."

Data Encoding and Hard Drive Timing

1.	hard drive,	i.e., why mu	ıst a pattern	of polarit	y changes b	be used to	store dat	ary to store data on a a instead of simply ents 0's. (2 points)
2.	True or fals	_	•			-	ıtible, i.e	., a newer encoding
3.		e representir	ng a logic 1.	Therefor	e, the width	n of 1 bit is		time and in the middle times the
	a.) ½	b.) ¾	c.) 1	d.) 1.5	e.)	2	f.) 3	e.) varies
4.	and between width of the	n adjacent lo e gap in the	ogic 0's. The hard drive's	erefore, the write head	ne width of d. (2 points	1 bit is equs)	ual to	representing a logic 1 times the
	a.) ½	b.) ¾	c.) I	d.) 1.5	e.)	2	t.) 3	e.) varies
5.	Define "see	k time." (3 <u>1</u>	points)					
6.	☐ - Allows ☐ - Informs seizing ☐ - Used to ☐ - Frees th	the CPU to s the CPU h the bus. monitor the	query the pow long the ings such as e's I/O chan	oosition of data trans s spin-up to nel for use	the hard drafer will take ime to pred	rive's read/ te so it kno ict hard dr levices wh	write heads www.how rive bearifile the dr	long the DMA will be
	- · · · · · · · · · · · · · · · · · · ·		8				1	
				I	RAID			
7.		the followin	g implemer					ves would the user need C requires 4 bits to
	RAID 0			_ drives	(1 point)			
	RAID 1			_ drives	(1 point)			
	RAID 2			_ drives	(1 point)			
	RAID 5			_ drives	(1 point)			
	RAID 6			drives	(1 point)			

8.	Does RAID 0 with its da access data <i>faster</i> or <i>slow</i>	1							
9.	Which is better suited for high data storage rates, RAID 4 or RAID 5? (2 points)								
10.	A RAID 1 array consisting of 6 disks could <i>potentially</i> survive a maximum of (1, 2, 3, 4, 5, or 6) simultaneous disk failures. (2 points)								
11.	. Assume that disk number 1 in a RAID 3 system with 5 drives fails and must be replaced. What value would you replace bit $X_1(i)$ with if $X_0(i)=0$, $X_2(i)=0$, $X_3(i)=0$, and $X_4(i)=1$. (2 points)								
	a.) 1 b.) 0 c.)	Cannot determ	nined. Need to know	which disk of 5 serve	ed as parity disk.				
12.	Which level(s) of RAID regardless of which driv			ives failing at the san	ne time				
			Input/Output						
13.	3. In the table below, identify the responsibilities of the CPU for each of the I/O methods listed. Place a check mark in the box <i>if the CPU must perform the task</i> identified by the column heading. Do this for each of the four I/O methods: programmed I/O, interrupt driven I/O, direct memory access, and I/O channel. (7 points)								
		CPU initializes	CPU checks I/O device regularly to see if it needs	CPU handles data transfer between I/O device and	Requires interrupt structure in				
	I/O Method	I/O device	attention	memory	CPU				
	Programmed I/O								
	Interrupt Driven I/O								
	DMA								
	I/O Channel								
14.	How is priority determine the bus? (3 points)	ned for interrup	ots that use bus arbitra	tion to place their int	errupt vector on				
15.	How is priority determine poll configuration? (3 po	_	ots sharing a single int	errupt in a daisy chai	n or hardware				

	and the I/O de	evice are bo	oth connected	d to	the syste	m bu	s? (2 points)
	a.) 1 b	o.) 2	c.) 3	d.)	4	e.)	None of the above
17.	How many tin					_	le data transfer if the DMA module acts as a points)
	a.) 1 b	o.) 2	c.) 3	d.)	4	e.)	None of the above
18.	an analog-to-cexecute. What	digital conv at is the ma ital convert	verter. Assurximum numl	ne a oer c	lso that to	the IS per se	If once for each byte of data received from SR takes 3 microseconds ($3x10^{-6}$ seconds) to econd that this system can receive from the ver in the form of a mathematical
19.	How does the memory and a				e process	sor tha	at it has completed a transfer between
20.	Place a check (4 points)	in all of th	e boxes that	truth	nfully co	mple	te the sentence, "An I/O Channel"
	□ - can exec	tute a set of ension of th	instructions ne DMA con	give cept	en to it b	y the	nodule to the I/O device CPU e performs the transfer of data on its own
21.	When using D	OMA, what	is "cycle ste	aling	g?" (3 po	oints)	
				Bus	s Archite	ecture	es
22.	List one of the	e benefits d	liscussed in c	class	of a seri	ial bu	as over a parallel bus. (2 points)
23.	List two of the single bus income	-		sed i	in class t	that o	occur when the number of devices on a

16. How many times must the DMA use the bus for a single data transfer if both the DMA module

24.	What component of the system usually acts as a bridge between the processor and the system bus? (2 points)							
25.	One of the advantages of multiple busses was the ability to group devices of similar speeds. Name another advantage. (3 points)							
26.	In the mezzanine approach, high-speed devices are usually connected to a bus that is <i>closer to</i> or <i>farther away</i> from the processor? (2 points)							
27.	True or false: In the mezzanine approach, slower busses are usually connected to the processor through the higher speed buses. (2 points)							
28.	True or false: Time multiplexed parallel busses have pins that serve more than one function. (2 points)							
29.	What type of bus is used to connect the Northbridge to the Southbridge in the Pentium architecture? (2 points)							
30.	What signal does a bus with synchronous timing require that asynchronous does not? (2 points)							
	PCI Bus Architecture							
31.	PCI commands such as those identifying the type of transaction are sent across the bus using the lines. (2 points)							
	a.) JTAG b.) FRAME c.) AD d.) IRDY e.) C/BE f.) None of the above							
32.	PCI uses address and data multiplexed onto the lines. (2 points)							
	a.) JTAG b.) FRAME c.) AD d.) IRDY e.) C/BE f.) None of the above							
33.	PCI uses lines to indicate which of the four byte-lanes carry meaningful data address and data. (2 points)							
	a.) JTAG b.) FRAME c.) AD d.) IRDY e.) C/BE f.) None of the above							
34.	The lines on a PCI bus are used for testing during manufacturing. (2 points)							
	a.) JTAG b.) FRAME c.) AD d.) IRDY e.) C/BE f.) None of the above							
35.	Does the PCI bus arbitration use a <i>single arbiter</i> or <i>distributed</i> arbitration? (2 points)							

Of the following characteristics, identify by placing a checkmark in the appropriate column whether the characteristic describes PCI, PCI-X, and/or PCI-E. Some rows (characteristics) will have more than one checkmark. (Each row is worth 2 points)

Characteristic	PCI	PCI-X	PCI-E
Parallel bus structure			
Uses differential signalling similar to Manchester encoding to allow for long distance communication			
Standard supports 1, 2, 4, 8, 16, or 32 serial lanes for devices to communicate across			
Which is <i>physically</i> backwards compatible with PCI? (Check either PCI-X or PCI-E)			
Supports the PCI command structure making it compatible with legacy software. (Check one or both)			
Which is the fastest? (Check one)			