
Points missed: _____ Student's Name: _______________________________________

Total score: _____ /100 points

East Tennessee State University
Department of Computer and Information Sciences

CSCI 4717 – Computer Architecture
TEST 3 for Fall Semester, 2005

Section 201

Read this before starting!

• The total possible score for this test is 100 points.

• This test is closed book and closed notes

• You may use one sheet of scrap paper that you will turn in with your test.

• When possible, indicate final answers by drawing a box around them. This is to aid the
grader (who might not be me!) Failure to do so might result in no credit for answer.
Example:

• 1 point will be deducted per answer for missing or incorrect units when required. No
assumptions will be made for hexadecimal versus decimal, so you should always include the
base in your answer.

• If you perform work on the back of a page in this test, indicate that you have done so in case

the need arises for partial credit to be determined.

“Fine print”

Academic Misconduct:
Section 5.7 "Academic Misconduct" of the East Tennessee State University Faculty Handbook, October 21, 2005:

"Academic misconduct will be subject to disciplinary action. Any act of dishonesty in academic work constitutes academic
misconduct. This includes plagiarism, the changing of falsifying of any academic documents or materials, cheating, and the
giving or receiving of unauthorized aid in tests, examinations, or other assigned school work. Penalties for academic
misconduct will vary with the seriousness of the offense and may include, but are not limited to: a grade of 'F' on the work
in question, a grade of 'F' of the course, reprimand, probation, suspension, and expulsion. For a second academic offense
the penalty is permanent expulsion."

Memory Management
1. What does a “page fault” mean in terms of virtual memory? (3 points)

When a process requests code or data from a page that has not yet been loaded in real memory
requiring the operating system to load the page.

2. How does virtual memory allow programs that are larger than real memory to be run? (2 points)

By only loading into memory the pages that a process is currently using. This means that unused
pages can be left on the hard drive and therefore not take up as much memory as the full
application.

3. What problem is typically caused by very small virtual memory page sizes? (2 points)

An increase in the number of page faults because of the large number of pages that will be
required to support a process.

4. What problem is typically caused by large virtual memory page sizes? (2 points)

Large pages waste space because if only a small portion of the page is used, a large amount of
code or data is loaded unnecessarily.

5. Using the page table shown to the right representing a specific process,

calculate the physical address from the logical address 23516. Assume a
page size of 28 = 256. Be sure to show your work. (4 points)

Since the size of a page is 256 bytes, then the last 8 bits of a physical
address (28 = 256) is the offset into a page. This means that the last 8
bits of both the physical and logical addresses represent offset. For the
logical address, the bits above the lower 8 bits represent the page number
in the page table. The frame address contained in the page table should
replace the page number to give us the physical address.

6. If 6 processes are running in paged memory with a page size of 512 bytes,

what is the largest amount of memory that is being wasted? (2 points)

A process that has been divided into pages fills all of the pages except for the last one. The last
one takes the remaining bytes after dividing the process by the page size, i.e., process size modulo
the page size. The smallest value this can be is one word which means that for this case 512 – 1 =
511 bytes at most would be wasted per process. For six processes, this would be 511 × 6 = 3066.

23
6A
F4
36
3B
24
BB

Start of
page table

0
1
2
3
4
5
6

page
number

2 35

lower 8 bitspage number

LOGICAL ADDRESS

F4 35

lower 8 bits frame number

PHYSICAL ADDRESS

7. True or false: The benefit of an inverted page table is that instead of maintaining an entry for every
page in a process, it maintains an entry for every frame available in real memory. (2 points)

Assembly Language Details

8. Assume the address field of an instruction contains a decimal 105. The address field represents
something different depending on the addressing mode used by the instruction. For each of the
addressing modes below, describe where the processor is getting its data from. (2 points each)

a.) Immediate: The data is the operand, i.e., 105. No fetching of operands is needed.

b.) Indirect: The processor must go to memory address 105. At that location, it will find the data
it needs to retrieve and use for the instruction.

9. Store the value ABCDEF16 as individual bytes using big endian
starting at address 100 in the figure to the right. Note that the figure
will have blank locations after you are completed. (2 points)

10. The code below uses a three-operand instruction. In the space below, write

three short programs that do exactly the same thing, one with two-operand
instructions, one with one-operand instructions, and one with zero-operand instructions. If it fits
the need of the instruction, feel free to use register names R1, R2, etc. (5 points)

ADD C,A,B ;C = A + B

Two operand instructions

MOV C, A
ADD C, B

One operand instructions

LOAD A
ADD B
STORE C

Zero operand instructions

PUSH A
PUSH B
ADD
POP C

For the next 2 questions, use the following abbreviations for the stages of a 6-stage pipeline

Fetch instruction (FI) Decode instruction (DI) Calculate operands (CO)
Fetch operands (FO) Execute Instruction (EI) Write Operand (WO)

11. List all of the stages such that any 2 of them occurring at the same time could result in a bus
resource conflict? (2 points)

FI, FO, WO

12. List all of the stages that are always used in the execution of an instruction. (Hint: Think of the

simplest instruction and decide which stages are needed to execute it.) (2 points)

FI, DI, EI

010016

010116

010216

00FE16

00FF16

AB

CD

EF

Pipelines and Branch Prediction
13. In an ideal implementation, what is the speed up of a processor with a k-stage pipeline over a non-

pipelined processor if the duration of each stage is τ? Don’t consider pipeline flushes or delays
incurred between stages. (2 points)

a.) k·τ b.) k–2 c.) k–1 d.) k e.) (k+1)·τ f.) k+τ–1 g.) none of the above

14. How many bits are required for each conditional branch in a branch history table in order to
remember the past 3 branch outcomes for a specific instruction? (2 points)

a.) 2 b.) 3 c.) 4 d.) 5 e.) 6 f.) 7 g.) 8

15. In what level of the memory hierarchy are the branch history bits typically stored? (2 points)

The cache

16. Identify the two problems with having two pipelines (one for the branch stream and one for the

non-branch stream) in order to minimize the delay caused by an incorrectly predicted branch.
(3 points)

1. If additional branches are encountered immediately after the first branch, we might need far
more than two pipelines.

2. Resource contention – Additional active pipes would require multiple resources such as
buses, ALUs, etc.

17. True or false: As far as the execution of a for-loop is concerned, the benefits of a loop buffer are

only realized if the entire code executed for a for-loop can be contained in the buffer. (2 points)

18. How many cycles does prefetching the branch target save over not prefetching the branch target
when a branch is incorrectly predicted? (2 points)

a.) 0 b.) 1 c.) 2 d.) 3 e.) none of the above

For problems 20, 21, and 22, consider the following section of code.

for (i=0; i<10; i++)
{
 for (j=0; j<5; j++)
 {
 <code containing no conditional jumps>
 }
}

19. Once compiled, how many conditional jumps would be contained in the machine code resulting
from the above section of code? (2 points)

There would be one conditional jump to check if j reached 5 and a second to check if i reached 10.
Therefore, there would be 2 conditional jumps.

20. After fully executing the above section of code, how many conditional jumps would the CPU have

encountered? (2 points)

The processor would have encountered the conditional jump on the outer loop 10 times and on the
inner loop 10 × 5 times for a total of 60 times.

21. Using the static branch prediction algorithm “branch always,” how many of the conditional jumps
calculated in the previous problem would have been predicted incorrectly? (2 points)

In a for-loop, branch always incorrectly predicts the branch once per full execution of the loop.
For example, the conditional branch on the outer loop would have been incorrectly predicted only
after i had been incremented to 10. Since the inner loop is executed 10 times and the outer loop is
executed once, there will be 11 incorrect predictions.

22. What are the three items that should be stored in a branch history table? (3 points)

1. the address of the branch instruction itself
2. the address of the branch target, i.e., where we are going if a branch occurs
3. bits indicating the past branch history of this branch instruction

RISC Processors

23. True or false: The purpose behind the delayed branch is to avoid flushing the pipeline. (2 points)

24. Place a check mark next to each statement below that tends to be true for a RISC processor.
(1 point each)

 RISC processors have more specialized registers rather than general purpose.

 RISC processors have a very limited number of addressing modes.

 RISC processors using 2-way pipelined timing (only two instructions can be in the pipe at any
on time) do so in order to avoid two simultaneous memory accesses.

 RISC processors use a fixed instruction length.

25. In order to avoid flushing the pipeline of a RISC processor, we

need to modify the code to the right. If we wish to create an
optimized delayed branch, which lines can be moved after L4?
(2 points)

a.) L1 only b.) L2 only c.) Either L1 or L2 d.) Neither

L1: mov al,bl
L2: add ch,23
L3: cmp bl,ch
L4: jne label_a
L5: inc bl

√

√

√

26. Find the absolute minimum number of registers required to execute the code below assuming that
every variable in the code will need to be placed in a register. (In other words, don’t try to
optimize the code, just the use of registers.) (2 points)

Answer: ________________

The arrows identify the periods during which each of the variables is active. By aligning arrows
that do not overlap in time, we can see that a minimum of 5 columns of arrows can be created.
This means that a minimum of 5 registers will be needed.

Superscalar
27. Which two of the following dependencies exhibit similar behavior? (2 points)

a.) Data dependency b.) Procedural dependency c.) Resource conflict

28. Identify the write-read, write-write, and read-write dependencies in the instruction sequence below
by entering each line pair with a dependency in the correct column of the table to the right. For
example, if L1 and L4 had a write-write dependency (which they don’t), you would enter L1-L4 in
the column labeled “write-write”. (4 points)
L1: R1 = R2 + R5
L2: R2 = R2 + 1
L3: R3 = R2 + R5
L4: R5 = R1 – R2
L5: R1 = R2 + 30

29. In the code below, identify references to initial register values by adding the subscript 'a' to the
register reference. Identify new allocations to registers with the next highest subscript and identify
references to these new allocations using the same subscript. (3 points)
R1b = R2a + R5a
R2b = R2a + 1
R3b = R2b + R5a
R3c = R3b + R2b
R5b = R1b ÷ R3c
R1c = R2b × R5b

write-read
L1 – L4
L2 – L3
L2 – L4
L2 – L5

write-write
L1 – L5

read-write
L1 – L2
L1 – L4
L3 – L4
L4 – L5

int var0 = 50;
int var1 << cin; // User input initializes var1
for (int i = 0; i < var1; i++)
{
 int var2 = i % 5;
 if(var2 == 0)
 for (int j=0; j<10; j++) var0++;
 else if (var2 <3)
 for (int j=0; j<10; j++) var0+=2;
 else
 {
 int var3 = i * 10;
 for (int j=0; j<var3; j++) var0--;
 }
}

j

j

j

var0
var2

var3

i
var1

5 registers

Questions 32 through 35 are based on the
"in-order issue/in-order completion"
execution sequence shown in the figure to the
right.

30. Why do I3 and I4 need to stay in the

decode stage of the pipeline for two
cycles? (2 points)

Due to in-order issue, they must wait for I1 and I2 to fully execute before they can enter the
execute stage. Because I1 takes two cycles to execute, they must wait in the decode stage until I1
and I2 both go to the write stage.

31. Why doesn’t I5 get written during cycle 7 instead of cycle 8? (2 points)

Because of the in-order completion requirement, I6 must complete before both I5 and I6 can be
written together. An out-of order completion would have allowed I5 to be written during cycle 7.

32. Why does I6 stay in the decode stage of the pipeline for one more cycle than I5? (2 points)

I6 uses the same resource as I5, so it must wait until I5 is finished executing.

33. Which instructions could have been written earlier if this had been an "out-of-order completion"

machine. (2 points)

I2, I4, and I5

SMP and Clusters
34. Which cache coherence protocol uses distributed control, the directory protocol or snoopy

protocol? (2 points)

The snoopy protocol

35. Assume a multiprocessor system uses the MESI protocol. If the current state of a line in processor

A's cache is exclusive and processor B loads the same line into its cache, what does the state of
that line in processor A's cache change to? (2 points)

a.) modified b.) exclusive c.) shared d.) invalid e.) cannot be determined

36. Assume a multiprocessor system uses the MESI protocol. If the current state of a line in processor
A's cache is exclusive and processor A modifies that data, but does not write the new value to
main memory, what does the state of that line in processor A's cache change to? (2 points)

a.) modified b.) exclusive c.) shared d.) invalid e.) cannot be determined

37. Assume a multiprocessor system uses the MESI protocol. If the current state of a line in processor
A's cache is shared and processor B modifies that data without updating main memory, what does
the state of that line in processor A's cache change to? (2 points)

a.) modified b.) exclusive c.) shared d.) invalid e.) cannot be determined

Decode Execute Write Cycle
I1 I2 1
I3 I4 I1 I2 2
I3 I4 I1 3
I5 I6 I3 I4 I1 I2 4
I5 I6 I3 5
 I6 I5 I3 I4 6
 I6 7
 I5 I6 8

38. Which SMP bus configuration has the most complex printed circuit board? (2 points)

a.) time-shared bus b.) multiport memory c.) central controller

39. The snoopy protocol is more suited to the _________________ interconnection method for

symmetric multiprocessors. (2 points)

a.) time-shared bus b.) multiport memory c.) central controller

For the next 6 questions, identify whether the statement more closely identifies
an SMP system or a cluster. (1 point each)

 SMP Cluster

40. Processors are loosely coupled – communication usually at the file level

41. Operation is closer to that of a single processor system

42. The newer of the two architectures

43. Easier to build, especially by end-user

44. Takes less physical space

45. Superior scalability

√

√

√

√
√

√

