
v2000.05 HDL Compiler for Verilog Reference Manual
5
Functional Descriptions 5

A Verilog functional description defines a circuit in terms of what it
does.

This chapter describes the construction and use of functional
descriptions, in the following major sections:

• Sequential Constructs

• Function Declarations

• Function Statements

• task Statements

• always Blocks
/ 5-1HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Sequential Constructs

Although many Verilog constructs appear sequential in nature, they
describe combinational circuitry. A simple description that appears to
be sequential is shown in Example 5-1.

Example 5-1 Sequential Statements
x = b;
if (y)

x = x + a;

HDL Compiler determines the combinational equivalent of this
description. In fact, it treats the statements in Example 5-1 exactly as
it treats the statements in Example 5-2.

Example 5-2 Equivalent Combinational Description
if (y)

x = b + a;
else

x = b;

To describe combinational logic, you write a sequence of statements
and operators to generate the outputs you want. For example,
suppose the addition operator (+) is not supported and you want to
create a combinational ripple carry adder. The easiest way to describe
this circuit is as a cascade of full adders, as in Example 5-3. The
example has eight full adders, with each adder following the one
before. From this description, HDL Compiler generates a fully
combinational adder.
/ 5-2HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-3 Combinational Ripple Carry Adder
function [7:0] adder;
input [7:0] a, b;

reg c;
integer i;
begin

c = 0;
for (i = 0; i <= 7; i = i + 1) begin

adder[i] = a[i] ^ b[i] ^ c;
c = a[i] & b[i] | a[i] & c | b[i] & c;

end
end

endfunction

Function Declarations

Using a function declaration is one of three methods for describing
combinational logic. The other two methods are to use the always
block, described in “always Blocks” on page 5-33, and to use the
continuous assignment, described in “Continuous Assignment” on
page 3-15. You must declare and use Verilog functions within a
module. You can call functions from the structural part of a Verilog
description by using them in a continuous assignment statement or
as a terminal in a module instantiation. You can also call functions
from other functions or from always blocks.

HDL Compiler supports the following Verilog function declarations:

• Input declarations

• Output from a function

• Register declarations

• Memory declarations
/ 5-3HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• Parameter declarations

• Integer declarations

Functions begin with the keyword function and end with the
keyword endfunction . The width of the function’s return value (if
any) and the name of the function follow the function keyword, as
the following syntax shows.

function [range] name_of_function ;
[func_declaration]
statement_or_null

endfunction

Defining the bit range of the return value is optional. Specify the range
inside square brackets ([]). If you do not define the range, a function
returns a 1-bit quantity by default. You set the function’s output by
assigning it to the function name. A function can contain one or more
statements. If you use multiple statements, enclose the statements
inside a begin...end pair.

A simple function declaration is shown in Example 5-4.

Example 5-4 Simple Function Declaration
function [7:0] scramble;
input [7:0] a;
input [2:0] control;
integer i;

begin
for (i = 0; i <= 7; i = i + 1)

scramble[i] = a[i ^ control];
end

endfunction

The function statements HDL Compiler supports are discussed in
“Function Statements” on page 5-9.
/ 5-4HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Input Declarations

The input declarations specify the input signals for a function. You
must declare the inputs to a Verilog function immediately after you
declare the function name. The syntax of input declarations for a
function is the same as the syntax of input declarations for a module:

input [range] list_of_variables ;

The optional range specification declares an input as a vector of
signals. Specify range inside square brackets ([]).

Note:
The order in which you declare the inputs must match the order
of the inputs in the function call.

Output From a Function

The output from a function is assigned to the function name. A Verilog
function has only one output, which can be a vector. For multiple
outputs from a function, use the concatenation operation to bundle
several values into one return value. This single return value can then
be unbundled by the caller. Example 5-5 shows how unbundling is
done.
/ 5-5HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-5 Many Outputs From a Function
function [9:0] signed_add;
input [7:0] a, b;
 reg [7:0] sum;
 reg carry, overflow;

 begin
 ...
 signed_add = {carry, overflow, sum};
 end
endfunction
...
assign {C, V, result_bus} = signed_add(busA, busB);

The signed_add function bundles the values of carry , overflow ,
and sum into one value. This new value is returned in the assign
statement following the function. The original values are then
unbundled by the function that called the signed_add function.

Register Declarations

A register represents a variable in Verilog. The syntax for a register
declaration is

reg [range] list_of_register_variables ;

A reg can be a single-bit quantity or a vector of bits. The range
specifies the most significant bit (msb) and the least significant bit
(lsb) of the vector enclosed in square brackets ([]). Both bits must
be nonnegative constants, parameters, or constant-valued
expressions. Example 5-6 shows some reg declarations.
/ 5-6HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-6 Register Declarations
reg x; //single bit
reg a, b, c; //3 single-bit quantities
reg [7:0] q; //an 8-bit vector

The Verilog language allows you to assign a value to a reg variable
only within a function or an always block.

In the Verilog simulator, reg variables can hold state information. A
reg can hold its value across separate calls to a function. In some
cases, HDL Compiler emulates this behavior by inserting flow-
through latches. In other cases, it emulates this behavior without a
latch. The concept of holding state is elaborated on in “Inferring
Latches” on page 6-10 and in several examples in Appendix A,
“Examples.”

Memory Declarations

The memory declaration models a bank of registers or memory. In
Verilog, the memory declaration is a two-dimensional array of reg
variables. Sample memory declarations are shown in Example 5-7.

Example 5-7 Memory Declarations
reg [7:0] byte_reg;
reg [7:0] mem_block [255:0];
/ 5-7HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
In Example 5-7, byte_reg is an 8-bit register and mem_block is an
array of 256 registers, each of which is 8 bits wide. You can index the
array of registers to access individual registers, but you cannot access
individual bits of a register directly. Instead, you must copy the
appropriate register into a temporary one-dimensional register. For
example, to access the fourth bit of the eighth register in mem_block ,
enter

byte_reg = mem_block [7];
individual_bit = byte_reg [3];

Parameter Declarations

Parameter variables are local or global variables that hold values. The
syntax for a parameter declaration is

parameter [range] identifier = expression,
identifier = expression;

The range specification is optional.

You can declare parameter variables as being local to a function.
However, you cannot use a local variable outside that function.
Parameter declarations in a function are identical to parameter
declarations in a module. The function in Example 5-8 contains a
parameter declaration.

Example 5-8 Parameter Declaration in a Function
function gte;

parameter width = 8;
input [width-1:0] a,b;
gte = (a >= b);

endfunction
/ 5-8HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Integer Declarations

Integer variables are local or global variables that hold numeric
values. The syntax for an integer declaration is

integer identifier_list ;

You can declare integer variables locally at the function level or
globally at the module level. The default size for integers is 32 bits.
HDL Compiler determines bit-widths, except in the case of a don’t
care condition resulting during compile.

Example 5-9 illustrates integer declarations.

Example 5-9 Integer Declarations
integer a; //single 32-bit integer
integer b, c; //two integers

Function Statements

The function statements HDL Compiler supports are

• Procedural assignments

• RTL assignments

• begin...end block statements

• if...else statements

• case , casex , and casez statements

• for loops

• while loops
/ 5-9HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• forever loops

• disable statements

Procedural Assignments

Procedural assignments are assignment statements used inside a
function. They are similar to the continuous assignment statements
described in “Continuous Assignment” on page 3-15, except that the
left side of a procedural assignment can contain only reg variables
and integers. Assignment statements set the value of the left side to
the current value of the right side. The right side of the assignment
can contain any arbitrary expression of the data types described in
“Structural Data Types” on page 3-7, including simple constants and
variables.

The left side of the procedural assignment statement can contain only
the following data types:

• reg variables

• Bit-selects of reg variables

• Part-selects of reg variables (must be constant-valued)

• Integers

• Concatenations of the previous data types

HDL Compiler assigns the low bit on the right side to the low bit on
the left side. If the number of bits on the right side is greater than the
number on the left side, the high-order bits on the right side are
discarded. If the number of bits on the left side is greater than the
number on the right side, the right-side bits are zero-extended. HDL
Compiler allows multiple procedural assignments.
/ 5-10HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-10 shows some examples of procedural assignments.

Example 5-10 Procedural Assignments
sum = a + b;
control[5] = (instruction == 8’h2e);
{carry_in, a[7:0]} = 9’h 120;

RTL Assignments

HDL Compiler handles variables driven by an RTL (nonblocking)
assignment differently than those driven by a procedural (blocking)
assignment.

In procedural assignments, a value passed along from variable A to
variable B to variable C results in all three variables having the same
value in every clock cycle. In the netlist, procedural assignments are
indicated when the input net of one flip-flop is connected to the input
net of another flip-flop. Both flip-flops input the same value in the same
clock cycle.

In RTL assignments, however, values are passed on in the next clock
cycle. Assignment from variable A to variable Boccurs after one clock
cycle, if variable A has been a previous target of an RTL assignment.
Assignment from variable B to variable Calways takes place after one
clock cycle, because B is the target when RTL assigns variable A’s
value to B. In the netlist, an RTL assignment shows flip-flop Breceiving
its input from the output net of flip-flop A. It takes one clock cycle for
the value held by flip-flop A to propagate to flip-flop B.

A variable can follow only one assignment method and therefore
cannot be the target of RTL as well as procedural assignments.
/ 5-11HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-11 is a description of a serial register implemented with
RTL assignments. Figure 5-1 shows the resulting schematic for
Example 5-11.

Example 5-11 RTL Nonblocking Assignments
module rtl (clk, data, regc, regd);
input data, clk;
output regc, regd;

reg regc, regd;

always @(posedge clk)
begin

regc <= data;
regd <= regc;

end
endmodule

Figure 5-1 Schematic of RTL Nonblocking Assignments

If you use a procedural assignment, as in Example 5-12,
HDL Compiler does not synthesize a serial register. Therefore, the
recently assigned value of rega , which is data, is assigned to regb ,
as the schematic in Figure 5-2 indicates.
/ 5-12HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-12 Blocking Assignment
module rtl (clk, data, rega, regb);
input data, clk;
output rega, regb;

reg rega, regb;

always @(posedge clk)
begin

rega = data;
regb = rega;

end
endmodule

Figure 5-2 Schematic of Blocking Assignment
/ 5-13HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
begin...end Block Statements

Using block statements is a way of syntactically grouping several
statements into a single statement.

In Verilog, sequential blocks are delimited by the keywords begin
and end . These begin...end pairs are commonly used in
conjunction with if , case , and for statements to group several
statements. Functions and always blocks that contain more than
one statement require a begin...end pair to group the statements.
Verilog also provides a construct called a named block, as in
Example 5-13.

Example 5-13 Block Statement With a Named Block
begin : block_name
 reg local_variable_1;

integer local_variable_2;
parameter local_variable_3;

 ... statements ...
end

In Verilog, no semicolon (;) follows the begin or end keywords. You
identify named blocks by following the begin with a colon (:) and a
block_name , as shown. Verilog syntax allows you to declare
variables locally in a named block. You can include reg , integer ,
and parameter declarations within a named block but not in an
unnamed block. Named blocks allow you to use the disable
statement.
/ 5-14HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
if...else Statements

The if...else statements execute a block of statements according
to the value of one or more expressions.

The syntax of if...else statements is

if (expr)
 begin
 ... statements ...
 end
else
 begin
 ... statements ...
 end

The if statement consists of the keyword if followed by an
expression in parentheses. The if statement is followed by a
statement or block of statements enclosed by begin and end . If the
value of the expression is nonzero, the expression is true and the
statement block that follows is executed. If the value of the expression
is zero, the expression is false and the statement block that follows
is not executed.

An optional else statement can follow an if statement. If the
expression following if is false, the statement or block of statements
following else is executed.

The if...else statements can cause synthesis of registers.
Registers are synthesized when you do not assign a value to the
same reg in all branches of a conditional construct. Information on
registers is in “Register Inference” on page 6-2.
/ 5-15HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
HDL Compiler synthesizes multiplexer logic (or similar select logic)
from a single if statement. The conditional expression in an if
statement is synthesized as a control signal to a multiplexer, which
determines the appropriate path through the multiplexer. For
example, the statements in Example 5-14 create multiplexer logic
controlled by c and place either a or b in the variable x .

Example 5-14 if Statement That Synthesizes Multiplexer Logic
if (c)

x = a;
else

x = b;

Example 5-15 illustrates how if and else can be used to create an
arbitrarily long if...else if...else structure.

Example 5-15 if...else if...else Structure
if (instruction == ADD)
 begin
 carry_in = 0;
 complement_arg = 0;
 end
else if (instruction == SUB)
 begin
 carry_in = 1;
 complement_arg = 1;
 end
else
 illegal_instruction = 1;

Example 5-16 shows how to use nested if and else statements.
/ 5-16HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-16 Nested if and else Statements
if (select[1])
 begin
 if (select[0]) out = in[3];
 else out = in[2];
 end
else
 begin
 if (select[0]) out = in[1];
 else out = in[0];
 end

Conditional Assignments

HDL Compiler can synthesize a latch for a conditionally assigned
variable. A variable is conditionally assigned if there is a path that
does not explicitly assign a value to that variable.

In Example 5-17, the variable value is conditionally driven. If c is
not true, value is not assigned and retains its previous value.

Example 5-17 Synthesizing a Latch for a Conditionally Driven Variable
always begin
 if (c) begin
 value = x;
 end
 Y = value; //causes a latch to be synthesized for value
end

case Statements

The case statement is similar in function to the if...else
conditional statement. The case statement allows a multipath branch
in logic that is based on the value of an expression. One way to
/ 5-17HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
describe a multicycle circuit is with a case statement (see
Example 5-18). Another way is with multiple @ (clock edge)
statements, which are discussed in the subsequent sections on loops.

The syntax for a case statement is

case (expr)
case_item1 : begin

 ... statements ...

 end
case_item2 : begin

 ... statements ...

 end
 default: begin

 ... statements ...
 end
endcase

The case statement consists of the keyword case , followed by an
expression in parentheses, followed by one or more case items (and
associated statements to be executed), followed by the keyword
endcase . A case item consists of an expression (usually a simple
constant) or a list of expressions separated by commas, followed by
a colon (:).

The expression following the case keyword is compared with each
case item expression, one by one. When the expressions are equal,
the condition evaluates to true. Multiple expressions separated by
commas can be used in each case item. When multiple expressions
are used, the condition is said to be true if any of the expressions in
the case item match the expression following the case keyword.
/ 5-18HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
The first case item that evaluates to true determines the path. All
subsequent case items are ignored, even if they are true. If no case
item is true, no action is taken.

You can define a default case item with the expression default ,
which is used when no other case item is true.

An example of a case statement is shown in Example 5-18.

Example 5-18 case Statement
case (state)
 IDLE: begin
 if (start)
 next_state = STEP1;
 else
 next_state = IDLE;
 end
 STEP1: begin
 //do first state processing here
 next_state = STEP2;
 end
 STEP2: begin
 //do second state processing here
 next_state = IDLE;
 end
endcase

Full Case and Parallel Case

HDL Compiler automatically determines whether a case statement
is full or parallel. A case statement is full if all possible branches are
specified. If you do not specify all possible branches but you know
that one or more branches can never occur, you can declare a case
statement as full-case with the // synopsys full_case directive.
/ 5-19HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Otherwise, HDL Compiler synthesizes a latch. See “parallel_case
Directive” on page 9-8 and “full_case Directive” on page 9-10 for more
information.

HDL Compiler synthesizes optimal logic for the control signals of a
case statement. If HDL Compiler cannot determine that branches
are parallel, it synthesizes hardware that includes a priority encoder.
If HDL Compiler can determine that no cases overlap (parallel case),
it synthesizes a multiplexer, because a priority encoder is not
necessary. You can also declare a case statement as parallel case
with the //synopsys parallel_case directive. See “full_case
Directive” on page 9-10. Example 5-19 does not result in either a latch
or a priority encoder.

Example 5-19 A case Statement That Is Both Full and Parallel
input [1:0] a;
always @(a or w or x or y or z) begin

case (a)
2’b11:
 b = w ;
2’b10:
 b = x ;
2’b01:
 b = y ;
2’b00:
 b = z ;

endcase
end

Example 5-20 shows a case statement that is missing branches for
the cases 2’b01 and 2’b10. Example 5-20 infers a latch for b.
/ 5-20HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-20 A case Statement That Is Parallel but Not Full
input [1:0] a;
always @(a or w or z) begin

case (a)
2’b11:
 b = w ;
2’00:
 b = z ;

endcase
end

The case statement in Example 5-21 is not parallel or full, because
the values of inputs w and x cannot be determined. However, if you
know that only one of the inputs equals 2’b11 at a given time, you
can use the // synopsys parallel_case directive to avoid
synthesizing a priority encoder. If you know that either wor x always
equals 2’b11 (a situation known as a one-branch tree), you can use
the // synopsys full_case directive to avoid synthesizing a
latch.

Example 5-21 A case Statement That Is Not Full or Parallel
always @(w or x) begin

case (2’b11)
w:
 b = 10 ;
x:
 b = 01 ;

endcase
end
/ 5-21HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
casex Statements

The casex statement allows a multipath branch in logic, according
to the value of an expression, just as the case statement does. The
differences between the case statement and the casex statement
are the keyword and the processing of the expressions.

The syntax for a casex statement is

casex (expr)
case_item1 : begin

 ... statements ...
 end

case_item2 : begin
 ... statements ...
 end
 default: begin
 ... statements ...
 end
endcase

A case item can have expressions consisting of

• A simple constant

• A list of identifiers or expressions separated by commas, followed
by a colon (:)

• Concatenated, bit-selected, or part-selected expressions

• A constant containing z , x , or ?

When a z , x , or ? appears in a case item, it means that the
corresponding bit of the casex expression is not compared.
Example 5-22 shows a case item that includes an x .
/ 5-22HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-22 casex Statement With x
reg [3:0] cond;
casex (cond)
 4’b100x: out = 1;
 default: out = 0;
endcase

In Example 5-22, out is set to 1 if cond is equal to 4’b1000 or
4’b1001 , because the last bit of cond is defined as x .

Example 5-23 shows a complicated section of code that can be
simplified with a casex statement that uses the ? value.

Example 5-23 Before Using casex With ?
if (cond[3]) out = 0;
else if (!cond[3] & cond[2]) out = 1;
else if (!cond[3] & !cond[2] & cond[1]) out = 2;
else if (!cond[3] & !cond[2] & !cond[1] & cond[0]) out = 3;
else if (!cond[3] & !cond[2] & !cond[1] & !cond[0]) out = 4;

Example 5-24 shows the simplified version of the same code.

Example 5-24 After Using casex With ?
casex (cond)

4’b1???: out = 0;
4’b01??: out = 1;
4’b001?: out = 2;
4’b0001: out = 3;
4’b0000: out = 4;

endcase

HDL Compiler allows ?, z , and x bits in case items but not in casex
expressions. Example 5-25 shows an invalid casex expression.
/ 5-23HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-25 Invalid casex Expression
express = 3’bxz?;
 ...
casex (express) //illegal testing of an expression
 ...
endcase

casez Statements

The casez statement allows a multipath branch in logic according to
the value of an expression, just like the case statement. The
differences between the case statement and the casez statement
are the keyword and the way the expressions are processed. The
casez statement acts exactly the same as casex , except that x is
not allowed in case items; only z and ? are accepted as special
characters.

The syntax for a casez statement is

casez (expr)
case_item1 : begin

 ... statements ...
 end

case_item2 : begin
 ... statements ...
 end
 default: begin
 ... statements ...
 end
endcase

A case item can have expressions consisting of

• A simple constant

• A list of identifiers or expressions separated by commas, followed
by a colon (:)
/ 5-24HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• Concatenated, bit-selected, or part-selected expressions

• A constant containing z or ?

When a casez statement is evaluated, the value z in the case item
is ignored. An example of a casez statement with z in the case item
is shown in Example 5-26.

Example 5-26 casez Statement With z
casez (what_is_it)
 2’bz0: begin
 //accept anything with least significant bit zero
 it_is = even;
 end
 2’bz1: begin
 //accept anything with least significant bit one
 it_is = odd;
 end
endcase

HDL Compiler allows ? and z bits in case items but not in casez
expressions. Example 5-27 shows an invalid expression in a casez
statement.

Example 5-27 Invalid casez Expression
express = 1’bz;
 ...
casez (express) //illegal testing of an expression
 ...
endcase

for Loops

The for loop repeatedly executes a single statement or block of
statements. The repetitions are performed over a range determined
by the range expressions assigned to an index. Two range
/ 5-25HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
expressions appear in each for loop: low_range and
high_range . In the syntax lines that follow, high_range is greater
than or equal to low_range . HDL Compiler recognizes incrementing
as well as decrementing loops. The statement to be duplicated is
surrounded by begin and end statements.

Note:
HDL Compiler allows four syntax forms for a for loop. They are

for (index = low_range;index < high_range;index = index + step)
for (index = high_range;index > low_range;index = index - step)
for (index = low_range;index <= high_range;index = index + step)
for (index = high_range;index >= low_range;index = index - step)

Example 5-28 shows a simple for loop.

Example 5-28 A Simple for Loop
for (i = 0; i <= 31; i = i + 1) begin
 s[i] = a[i] ^ b[i] ^ carry;
 carry = a[i] & b[i] | a[i] & carry | b[i] & carry;
end

The for loops can be nested, as shown in Example 5-29.

Example 5-29 Nested for Loops
for (i = 6; i >= 0; i = i - 1)
 for (j = 0; j <= i; j = j + 1)
 if (value[j] > value[j+1]) begin
 temp = value[j+1];
 value[j+1] = value[j];
 value[j] = temp;
 end

You can use for loops as duplicating statements. Example 5-30
shows a for loop that is expanded into its longhand equivalent in
Example 5-31.
/ 5-26HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-30 Example for Loop
for (i=0; i < 8; i=i+1)
 example[i] = a[i] & b[7-i];

Example 5-31 Expanded for Loop
example[0] = a[0] & b[7];
example[1] = a[1] & b[6];
example[2] = a[2] & b[5];
example[3] = a[3] & b[4];
example[4] = a[4] & b[3];
example[5] = a[5] & b[2];
example[6] = a[6] & b[1];
example[7] = a[7] & b[0];

while Loops

The while loop executes a statement until the controlling expression
evaluates to false. A while loop creates a conditional branch that
must be broken by one of the following statements to prevent
combinational feedback.

@ (posedge clock)

or

@ (negedge clock)

HDL Compiler supports while loops if you insert one of these
expressions in every path through the loop:

@ (posedge clock)

or

@ (negedge clock)
/ 5-27HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-32 shows an unsupported while loop that has no event
expression.

Example 5-32 Unsupported while Loop
always

while (x < y)
x = x + z;

If you add @ (posedge clock) expressions after the while loop
in Example 5-32, you get the supported version shown in
Example 5-33.

Example 5-33 Supported while Loop
always

begin @ (posedge clock)
while (x < y)
begin

@ (posedge clock);
x = x + z;

end
end

forever Loops

Infinite loops in Verilog use the keyword forever . You must break
up an infinite loop with an @ (posedge clock) or @ (negedge
clock) expression to prevent combinational feedback, as shown in
Example 5-34.
/ 5-28HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-34 Supported forever Loop
always

forever
begin

@ (posedge clock);
x = x + z;

end

You can use forever loops with a disable statement to implement
synchronous resets for flip-flops. The disable statement is
described in the next section. See “Register Inference” on page 6-2
for more information on synchronous resets.

Using the style illustrated in Example 5-34 is not a good idea, because
you cannot test it. The synthesized state machine does not reset to
a known state; therefore, it is impossible to create a test program
for it. Example 5-36 on page 5-31 illustrates how a synchronous reset
for the state machine can be synthesized.

disable Statements

HDL Compiler supports the disable statement when you use it in
namedblocks. When a disable statement is executed, it causes the
named block to terminate. A comparator description that uses
disable is shown in Example 5-35.
/ 5-29HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-35 Comparator Using disable
begin : compare

for (i = 7; i >= 0; i = i - 1) begin
if (a[i] != b[i]) begin

 greater_than = a[i];
 less_than = ~a[i];
 equal_to = 0;
 //comparison is done so stop looping
 disable compare;
 end

end

// If we get here a == b
// If the disable statement is executed, the next three
// lines will not be executed
 greater_than = 0;
 less_than = 0;
 equal_to = 1;
end

Example 5-35 describes a combinational comparator. Although the
description appears sequential, the generated logic runs in a single
clock cycle.

You can also use a disable statement to implement a synchronous
reset, as shown in Example 5-36.
/ 5-30HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-36 Synchronous Reset of State Register Using disable in a
forever Loop

always
forever
begin: Block

@ (posedge clk)
if (Reset)

begin
z <= 1’b0;
disable Block;

end
z <= a;

end

The disable statement in Example 5-36 causes the block Block
to terminate immediately and return to the beginning of the block.

task Statements

In Verilog, task statements are similar to functions, but task
statements can have output and inout ports. You can use the task
statement to structure your Verilog code so that a portion of code is
reusable.

In Verilog, tasks can have timing controls and can take a nonzero
time to return. However, HDL Compiler ignores all timing controls, so
synthesis might disagree with simulation if timing controls are critical
to the function of the circuit.

Example 5-37 shows how a task statement is used to define an
adder function.
/ 5-31HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Example 5-37 Using the task Statement
module task_example (a,b,c);

input [7:0] a,b;
output [7:0] c;
reg [7:0] c;

task adder;
input [7:0] a,b;
output [7:0] adder;
reg c;
integer i;

begin
c = 0;
for (i = 0; i <= 7; i = i+1) begin

adder[i] = a[i] ^ b[i] ^ c;
c = (a[i] & b[i]) | (a[i] & c) | (b[i] & c);

end
end

endtask
always

adder (a,b,c); //c is a reg

endmodule

Note:
Only reg variables can receive output values from a task; wire
variables cannot.
/ 5-32HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
always Blocks

An always block can imply latches or flip-flops, or it can specify purely
combinational logic. An always block can contain logic triggered in
response to a change in a level or the rising or falling edge of a signal.
The syntax of an always block is

always @ (event-expression [or event-expression*]) begin
 ... statements ...
end

Event Expression

The event expression declares the triggers or timing controls. The
word or groups several triggers. The Verilog language specifies that
if triggers in the event expression occur, the block is executed. Only
one trigger in a group of triggers needs to occur for the block to be
executed. However, HDL Compiler ignores the event expression
unless it is a synchronous trigger that infers a register. See Chapter
6, “Register, Multibit, Multiplexer, and Three-State Inference,” for
details.

Example 5-38 shows a simple example of an always block with
triggers.

Example 5-38 A Simple always Block
always @ (a or b or c) begin
 f = a & b & c
end

In Example 5-38, a, b, and c are asynchronous triggers. If any triggers
change, the simulator resimulates the always block and recalculates
the value of f . HDL Compiler ignores the triggers in this example,
because they are not synchronous. However, you must indicate all
/ 5-33HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
variables that are read in the always block as triggers. If you do not
indicate all the variables as triggers, HDL Compiler gives a warning
message similar to the following:

Warning: Variable ’foo’ is being read in block ’bar’ declared
on line 88 but does not occur in the timing control of the
block.

For a synchronous always block, HDL Compiler does not require
listing of all variables.

Any of the following types of event expressions can trigger an always
block:

• A change in a specified value. For example,

always @ (identifier) begin
 ... statements ...
end

In the previous example, HDL Compiler ignores the trigger.

• The rising edge of a clock. For example,

always @ (posedge event) begin
 ... statements ...
end

• The falling edge of a clock. For example,

always @ (negedge event) begin
 ... statements ...
end
/ 5-34HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
• A clock or an asynchronous preload condition. For example,

always @ (posedge CLOCK or negedge reset) begin
 if !reset begin
 ... statements ...
 end
 else begin
 ... statements ...
 end
end

• An asynchronous preload that is based on two events joined by
the word or. For example,

always @ (posedge CLOCK or posedge event1 or
negedge event2) begin

 if (event1) begin
 ... statements ...
 end
 else if (! event2) begin
 ... statements ...
 end
 else begin
 ... statements ...
 end
end

When the event expression does not contain posedge or negedge,
combinational logic (no registers) is usually generated, although flow-
through latches can be generated.

Note:
The statements @ (posedge clock) and @ (negedge clock)
are not supported in functions or tasks.
/ 5-35HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
Incomplete Event Specification

You risk misinterpretation of an always block if you do not list all the
signals entering an always block in the event specification.
Example 5-39 shows an incomplete event list.

Example 5-39 Incomplete Event List
always @(a or b) begin

f = a & b & c;
end

HDL Compiler builds a 3-input AND gate for the description in
Example 5-39, but in simulation of this description, f is not
recalculated when c changes, because c is not listed in the event
expression. The simulated behavior is not that of a 3-input ANDgate.

The simulated behavior of the description in Example 5-40 is correct,
because it includes all the signals in the event expression.

Example 5-40 Complete Event List
always @(a or b or c) begin
 f = a & b & c;
end

In some cases, you cannot list all the signals in the event specification.
Example 5-41 illustrates this problem.

Example 5-41 Incomplete Event List for Asynchronous Preload
always @ (posedge c or posedge p)

if (p)
z = d;

else
z = a;
/ 5-36HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
In the logic synthesized for Example 5-41, if d changes while p is
high, the change is reflected immediately in the output, z . However,
when this description is simulated, z is not recalculated when d
changes, because d is not listed in the event specification. As a result,
synthesis might not match simulation.

Asynchronous preloads can be correctly modeled in HDL Compiler
only when you want changes in the load data to be reflected
immediately in the output. In Example 5-41, data d must change to
the preload value before preload condition p transits from low to high.
If you attempt to read a value in an asynchronous preload, HDL
Compiler prints a warning similar to the following:

Warning:Variable ’d’ is being read asynchronously in routine
reset line 21 in file ’/usr/tests/hdl/asyn.v’. This may cause
simulation-synthesis mismatches.
/ 5-37HOME CONTENTS INDEX

v2000.05 HDL Compiler for Verilog Reference Manual
/ 5-38HOME CONTENTS INDEX

	Functional Descriptions
	Sequential Constructs
	Function Declarations
	Input Declarations
	Output From a Function
	Register Declarations
	Memory Declarations
	Parameter Declarations
	Integer Declarations

	Function Statements
	Procedural Assignments
	RTL Assignments
	begin...end Block Statements
	if...else Statements
	Conditional Assignments
	case Statements
	Full Case and Parallel Case
	casex Statements
	casez Statements
	for Loops
	while Loops
	forever Loops
	disable Statements

	task Statements
	always Blocks
	Event Expression
	Incomplete Event Specification

