
CS 373 Lecture 4: Randomized Treaps Fall 2002

I thought the following four [rules] would be enough, provided that I made a firm and
constant resolution not to fail even once in the observance of them. The first was never
to accept anything as true if I had not evident knowledge of its being so. . . . The second,
to divide each problem I examined into as many parts as was feasible, and as was requisite
for its better solution. The third, to direct my thoughts in an orderly way. . . establishing an
order in thought even when the objects had no natural priority one to another. And the last,
to make throughout such complete enumerations and such general surveys that I might be
sure of leaving nothing out.

— René Descartes, Discours de la Méthode (1637)

4 Randomized Treaps (September 17)

4.1 Treaps

In this lecture, we will consider binary trees where every internal node has both a search key and a
priority. In our examples, we will use letters for the search keys and numbers for the priorities. A
treap is a binary tree where the inorder sequence of search keys is sorted and each node’s priority
is smaller than the priorities of its children.1 In other words, a treap is simultaneously a binary
search tree for the search keys and a (min-)heap for the priorities.

5

A L

G

O

RI

TH

M
1

2 3

7

9 8

4

6

A treap. The top half of each node shows its search key and the bottom half shows its priority.

I’ll assume from now on that all the keys and priorities are distinct. Under this assumption, we
can easily prove by induction that the structure of a treap is completely determined by the search
keys and priorities of its nodes. Since it’s a heap, the node v with highest priority must be the root.
Since it’s also a binary search tree, any node u with key(u) < key(v) must be in the left subtree,
and any node w with key(w) > key(v) must be in the right subtree. Finally, since the subtrees
are treaps, by induction, their structures are completely determined. The base case is the trivial
empty treap.

Another way to describe the structure is that a treap is exactly the binary tree that results by
inserting the nodes one at a time into an initially empty tree, in order of increasing priority, using
the usual insertion algorithm. This is also easy to prove by induction.

A third way interprets the keys and priorities as the coordinates of a set of points in the plane.
The root corresponds to a T whose joint lies on the topmost point. The T splits the plane into three
parts. The top part is (by definition) empty; the left and right parts are split recursively. This
interpretation has some interesting applications in computational geometry, which (unfortunately)
we probably won’t have time to talk about.

1Sometimes I hate English. Normally, ‘higher priority’ means ‘more important’, but ‘first priority’ is also more
important than ‘second priority’. Maybe ‘posteriority’ would be better; one student suggested ‘unimportance’.

1

CS 373 Lecture 4: Randomized Treaps Fall 2002

A LG O RI TH M

1

2

3

4

5

6

7

8

9

A geometric interpretation of the same treap.

Treaps were first discovered by Jean Vuillemin in 1980, but he called them Cartesian trees.2

The word ‘treap’ was first used by Edward McCreight around 1980 to describe a slightly different
data structure, but he later switched to the more prosaic name priority search trees.3 Treaps were
rediscovered and used to build randomized search trees by Cecilia Aragon and Raimund Seidel in
1989.4 A different kind of randomized binary search tree, which uses random rebalancing instead
of random priorities, was later discovered and analyzed by Conrado Mart́ınez and Salvador Roura
in 1996.5

4.2 Binary Search Tree Operations

The search algorithm is the usual one for binary search trees. The time for a successful search is
proportional to the depth of the node. The time for an unsuccessful search is proportional to the
depth of either its successor or its predecessor.

To insert a new node z, we start by using the standard binary search tree insertion algorithm
to insert it at the bottom of the tree. At the point, the search keys still form a search tree, but the
priorities may no longer form a heap. To fix the heap property, as long as z has smaller priority
than its parent, perform a rotation at z. The running time is proportional to the depth of z before
the rotations—we have to walk down the treap to insert z, and then walk back up the treap doing
rotations. Another way to say this is that the time to insert z is roughly twice the time to perform
an unsuccessful search for key(z).

A L

G
5
RI

O

T

H S

M

O

A L

G

R

I

TH

S

M

O SA L

G
5
RI

TH

M

O

5
R

T

A

G

L

I

H

S

M

1

2

7

9

3

4 −1

8 5

6

1

2

7

9

4

8 6

3

−1

1

2 −1

7 4 3

9 8 6

1

2

7

9 8

4 6

3

−1

Left to right: After inserting (S, 10), rotate it up to fix the heap property.
Right to left: Before deleting (S, 10), rotate it down to make it a leaf.

2J. Vuillemin, A unifying look at data structures. Commun. ACM 23:229–239, 1980.
3E. M. McCreight. Priority search trees. SIAM J. Comput. 14(2):257–276, 1985.
4R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica 16:464–497, 1996.
5C. Mart́ınez and S. Roura. Randomized binary search trees. J. ACM 45(2):288-323, 1998. The results in this

paper are virtually identical (including the constant factors!) to the corresponding results for treaps, although the
analysis techniques are quite different.

2

CS 373 Lecture 4: Randomized Treaps Fall 2002

Deleting a node is exactly like inserting a node, but in reverse order. Suppose we want to delete
node z. As long as z is not a leaf, perform a rotation at the child of z with smaller priority. This
moves z down a level and its smaller-priority child up a level. The choice of which child to rotate
preserves the heap property everywhere except at z. When z becomes a leaf, chop it off.

We sometimes also want to split a treap T into two treaps T< and T> along some pivot key π,
so that all the nodes in T< have keys less than π and all the nodes in T> have keys bigger then π.
A simple way to do this is to insert a new node z with key(z) = π and priority(z) = −∞. After the
insertion, the new node is the root of the treap. If we delete the root, the left and right sub-treaps
are exactly the trees we want. The time to split at π is roughly twice the time to (unsuccessfully)
search for π.

Similarly, we may want to merge two treaps T< and T>, where every node in T< has a smaller
search key than any node in T>, into one super-treap. Merging is just splitting in reverse—create
a dummy root whose left sub-treap is T< and whose right sub-treap is T>, rotate the dummy node
down to a leaf, and then cut it off.

4.3 Analysis

The cost of each of these operations is proportional to the depth d(v) of some node v in the treap.

• Search: A successful search for key k takes O(d(v)) time, where v is the node with key(v) = k.
For an unsuccessful search, let v− be the inorder predecessor of k (the node whose key is just
barely smaller than k), and let v+ be the inorder successor of k (the node whose key is just
barely larger than k). Since the last node examined by the binary search is either v− or v+,
the time for an unsuccessful search is either O(d(v+)) or O(d(v−)).

• Insert/Delete: Inserting a new node with key k takes either O(d(v+)) time or O(d(v−))
time, where v+ and v− are the predecessor and successor of the new node. Deletion is just
insertion in reverse.

• Split/Merge: Splitting a treap at pivot value k takes either O(d(v+)) time or O(d(v−))
time, since it costs the same as inserting a new dummy root with search key k and priority
−∞. Merging is just splitting in reverse.

Since the depth of a node in a treap is Θ(n) in the worst case, each of these operations has a
worst-case running time of Θ(n).

4.4 Random Priorities

A randomized binary search tree is a treap in which the priorities are independently and uniformly

distributed continuous random variables. That means that whenever we insert a new search key
into the treap, we generate a random real number between (say) 0 and 1 and use that number as
the priority of the new node. The only reason we’re using real numbers is so that the probability
of two nodes having the same priority is zero, since equal priorities make the analysis messy. In
practice, we could just choose random integers from a large range, like 0 to 231 − 1, or random
floating point numbers. Also, since the priorities are independent, each node is equally likely to
have the smallest priority.

The cost of all the operations we discussed—search, insert, delete, split, join—is proportional to
the depth of some node in the tree. Here we’ll see that the expected depth of any node is O(log n),
which implies that the expected running time for any of those operations is also O(log n).

3

CS 373 Lecture 4: Randomized Treaps Fall 2002

Let xk denote the node with the kth smallest search key. To analyze the expected depth, we
define an indicator variable

Ai
k =

[

xi is a proper ancestor of xk

]

.

(The superscript doesn’t mean power in this case; it just a reminder of which node is supposed to
be further up in the tree.) Since the depth d(v) of v is just the number of proper ancestors of v,
we have the following identity:

d(xk) =

n
∑

i=1

Ai
k.

Now we can express the expected depth of a node in terms of these indicator variables as follows.

E[d(xk)] =

n
∑

i=1

Pr[Ai
k = 1]

(Just as in our analysis of matching nuts and bolts in Lecture 3, we’re using linearity of expectation
and the fact that E[X] = Pr[X = 1] for any indicator variable X.) So to compute the expected
depth of a node, we just have to compute the probability that some node is a proper ancestor of
some other node.

Fortunately, we can do this easily once we prove a simple structural lemma. Let X(i, k) denote
either the subset of treap nodes {xi, xi+1, . . . , xk} or the subset {xk, xk+1, . . . , xi}, depending on
whether i < k or i > k. X(i, k) and X(k, i) always denote prceisly the same subset, and this subset
contains |k − i|+ 1 nodes. X(1, n) = X(n, 1) contains all n nodes in the treap.

Lemma 1. For all i 6= k, xi is a proper ancestor of xk if and only if xi has the smallest priority

among all nodes in X(i, k).

Proof: If xi is the root, then it is an ancestor of xk, and by definition, it has the smallest priority
of any node in the treap, so it must have the smallest priority in X(i, k).

On the other hand, if xk is the root, then xi is not an ancestor of xk, and indeed xi does not
have the smallest priority in X(i, k) — xk does.

On the gripping hand6, suppose some other node xj is the root. If xi and xk are in different
subtrees, then either i < j < k or i > j > k, so xj ∈ X(i, k). In this case, xi is not an ancestor
of xk, and indeed xi does not have the smallest priority in X(i, k) — xj does.

Finally, if xi and xk are in the same subtree, the lemma follows inductively (or, if you prefer,
recursively), since the subtree is a smaller treap. The empty treap is the trivial base case. �

Since each node in X(i, k) is equally likely to have smallest priority, we immediately have the
probability we wanted:

Pr[Ai
k = 1] =

[i 6= k]

|k − i|+ 1
=

1

k − i + 1
if i < k

0 if i = k
1

i− k + 1
if i > k

6See Larry Niven and Jerry Pournelle, The Gripping Hand, Pocket Books, 1994.

4

CS 373 Lecture 4: Randomized Treaps Fall 2002

To compute the expected depth of a node xk, we just plug this probability into our formula and
grind through the algebra.

E[d(xk)] =

n
∑

i=1

Pr[Ai
k = 1]

=

k−1
∑

i=1

1

k − i + 1
+

n
∑

i=k+1

1

i− k + 1

=
k

∑

j=2

1

j
+

n−k
∑

i=2

1

j

= Hk − 1 + Hn−k − 1

< ln k + ln(n− k)− 2

< 2 lnn− 2.

In conclusion, every search, insertion, deletion, split, and merge operation in an n-node randomized
binary search tree takes O(log n) expected time.

Since a treap is exactly the binary tree that results when you insert the keys in order of increasing
priority, a randomized treap is the result of inserting the keys in random order. So our analysis also
automatically gives us the expected depth of any node in a binary tree built by random insertions
(without using priorities).

4.5 Randomized Quicksort (Again?!)

We’ve already seen two completely different ways of describing randomized quicksort. The first
is the familiar recursive one: choose a random pivot, partition, and recurse. The second is a
less familiar iterative version: repeatedly choose a new random pivot, partition whatever subset
contains it, and continue. But there’s a third way to describe randomized quicksort, this time in
terms of binary search trees.

RandomizedQuicksort:

T ← an empty binary search tree
insert the keys into T in random order

output the inorder sequence of keys in T

Our treap analysis tells us is that this algorithm will run in O(n log n) expected time, since each
key is inserted in O(log n) expected time.

Why is this quicksort? Just like last time, all we’ve done is rearrange the order of the com-
parisons. Intuitively, the binary tree is just the recursion tree created by the normal version of
quicksort. In the recursive formulation, we compare the initial pivot against everything else and
then recurse. In the binary tree formulation, the first “pivot” becomes the root of the tree without
any comparisons, but then later as each other key is inserted into the tree, it is compared against
the root. Either way, the first pivot chosen is compared with everything else. The partition splits
the remaining items into a left subarray and a right subarray; in the binary tree version, these are
exactly the items that go into the left subtree and the right subtree. Since both algorithms define
the same two subproblems, by induction, both algorithms perform the same comparisons.

We even saw the probability 1

|k−i|+1
before, when we were talking about sorting nuts and bolts

with a variant of randomized quicksort. In the more familiar setting of sorting an array of numbers,

5

CS 373 Lecture 4: Randomized Treaps Fall 2002

the probability that randomized quicksort compares the ith largest and kth largest elements is
exactly 2

|k−i|+1
. The binary tree version compares xi and xk if and only if xi is an ancestor of xk

or vice versa, so the probabilities are exactly the same.

6

