
CS 373 Lecture 6: Hash Tables Fall 2002

Aitch Ex

Are Eye

Ay Gee

Bee Jay

Cue Kay

Dee Oh

Double U Pea

Ee See

Ef Tee

El Vee

Em Wy

En Yu

Ess Zee

— Sidney Harris, “The Alphabet in Alphabetical Order”

6 Hash Tables (September 24)

6.1 Introduction

A hash table is a data structure for storing a set of items, so that we can quickly determine whether
an item is or is not in the set. The basic idea is to pick a hash function h that maps every possible
item x to a small integer h(x). Then we store x in slot h(x) in an array. The array is the hash
table.

Let’s be a little more specific. We want to store a set of n items. Each item is an element of
some finite1 set U called the universe; we use u to denote the size of the universe, which is just
the number of items in U . A hash table is an array T [1 ..m], where m is another positive integer,
which we call the table size. Typically, m is much smaller than u. A hash function is a function

h : U → {0, 1, . . . ,m− 1}

that maps each possible item in U to a slot in the hash table. We say that an item x hashes to the
slot T [h(x)].

Of course, if u = m, then we can always just use the trivial hash function h(x) = x. In other
words, use the item itself as the index into the table. This is called a direct access table (or more
commonly, an array). In most applications, though, the universe of possible keys is orders of
magnitude too large for this approach to be practical. Even when it is possible to allocate enough
memory, we usually need to store only a small fraction of the universe. Rather than wasting lots of
space, we should make m roughly equal to n, the number of items in the set we want to maintain.

What we’d like is for every item in our set to hash to a different position in the array. Unfor-
tunately, unless m = u, this is too much to hope for, so we have to deal with collisions. We say
that two items x and y collide if the have the same hash value: h(x) = h(y). Since we obviously
can’t store two items in the same slot of an array, we need to describe some methods for resolving

collisions. The two most common methods are called chaining and open addressing.

1This finiteness assumption is necessary for several of the technical details to work out, but can be ignored in
practice. To hash elements from an infinite universe (for example, the positive integers), pretend that the universe
is actually finite but very very large. In fact, in real practice, the universe actually is finite but very very large. For
example, on most modern computers, there are only 264 integers (unless you use a big integer package like GMP, in

which case the number of integers is closer to 22
32

.)

1

CS 373 Lecture 6: Hash Tables Fall 2002

6.2 Chaining

In a chained hash table, each entry T [i] is not just a single item, but rather (a pointer to) a linked
list of all the items that hash to T [i]. Let `(x) denote the length of the list T [h(x)]. To see if
an item x is in the hash table, we scan the entire list T [h(x)]. The worst-case time required to
search for x is O(1) to compute h(x) plus O(1) for every element in T [h(x)], or O(1+ `(x)) overall.
Inserting and deleting x also take O(1 + `(x)) time.

A LG OR

I T

H

M

S

A chained hash table with load factor 1.

In the worst case, every item would be hashed to the same value, so we’d get just one long list
of n items. In principle, for any deterministic hashing scheme, a malicious adversary can always
present a set of items with exactly this property. In order to defeat such malicious behavior, we’d
like to use a hash function that is as random as possible. Choosing a truly random hash function
is completely impractical, but since there are several heuristics for producing hash functions that
behave close to randomly (on real data), we will analyze the performance as though our hash

function were completely random. More formally, we make the following assumption.

Simple uniform hashing assumption: If x 6= y then Pr [h(x) = h(y)] = 1/m.

Let’s compute the expected value of `(x) under the simple uniform hashing assumption; this
will immediately imply a bound on the expected time to search for an item x. To be concrete,
let’s suppose that x is not already stored in the hash table. For all items x and y, we define the
indicator variable

Cx,y =
[

h(x) = h(y)
]

.

(In case you’ve forgotten the bracket notation, Cx,y = 1 if h(x) = h(y) and Cx,y = 0 if h(x) 6= h(y).)
Since the length of T [h(x)] is precisely equal to the number of items that collide with x, we have

`(x) =
∑

y∈T

Cx,y.

We can rewrite the simple uniform hashing assumption as follows:

x 6= y =⇒ E[Cx,y] =
1

m
.

Now we just have to grind through the definitions.

E[`(x)] =
∑

y∈T

E[Cx,y] =
∑

y∈T

1

m
=

n

m

We call this fraction n/m the load factor of the hash table. Since the load factor shows up
everywhere, we will give it its own symbol α.

α =
n

m

2

CS 373 Lecture 6: Hash Tables Fall 2002

Our analysis implies that the expected time for an unsuccessful search in a chained hash table is
Θ(1+α). As long as the number if items n is only a constant factor bigger than the table size m, the
search time is a constant. A similar analysis gives the same expected time bound2 for a successful
search.

Obviously, linked lists are not the only data structure we could use to store the chains; any data
structure that can store a set of items will work. For example, if the universe U has a total ordering,
we can store each chain in a balanced binary search tree. This reduces the worst-case time for a
search to O(1 + log `(x)), and under the simple uniform hashing assumption, the expected time for
a search is O(1 + log α).

Another possibility is to keep the overflow lists in hash tables! Specifically, for each T [i], we
maintain a hash table Ti containing all the items with hash value i. To keep things efficient, we
make sure the load factor of each secondary hash table is always a constant less than 1; this can
be done with only constant amortized overhead.3 Since the load factor is constant, a search in
any secondary table always takes O(1) expected time, so the total expected time to search in the
top-level hash table is also O(1).

6.3 Open Addressing

Another method we can use to resolve collisions is called open addressing. Here, rather than building
secondary data structures, we resolve collisions by looking elsewhere in the table. Specifically, we
have a sequence of hash functions 〈h0, h1, h2, . . . , hm−1〉, such that for any item x, the probe sequence

〈h0(x), h1(x), . . . , hm−1(x)〉 is a permutation of 〈0, 1, 2, . . . ,m − 1〉. In other words, different hash
functions in the sequence always map x to different locations in the hash table.

We search for x using the following algorithm, which returns the array index i if T [i] = x,
‘absent’ if x is not in the table but there is an empty slot, and ‘full’ if x is not in the table and
there no no empty slots.

OpenAddressSearch(x):

for i← 0 to m− 1
if T [hi(x)] = x

return hi(x)
else if T [hi(x)] = ∅

return ‘absent’
return ‘full’

The algorithm for inserting a new item into the table is similar; only the second-to-last line is
changed to T [hi(x)] ← x. Notice that for an open-addressed hash table, the load factor is never
bigger than 1.

Just as with chaining, we’d like the sequence of hash values to be random, and for purposes
of analysis, there is a stronger uniform hashing assumption that gives us constant expected search
and insertion time.

Strong uniform hashing assumption: For any item x, the probe sequence 〈h0(x),
h1(x), . . . , hm−1(x)〉 is equally likely to be any permutation of the set {0, 1, 2, . . . ,m−1}.

2but with smaller constants hidden in the O()—see p.225 of CLR for details.
3This means that a single insertion or deletion may take more than constant time, but the total time to handle

any sequence of k insertions of deletions, for any k, is O(k) time. We’ll discuss amortized running times after the
first midterm. This particular result will be an easy homework problem.

3

CS 373 Lecture 6: Hash Tables Fall 2002

Let’s compute the expected time for an unsuccessful search using this stronger assumption.
Suppose there are currently n elements in the hash table. Our strong uniform hashing assumption
has two important consequences:

• The initial hash value h0(x) is equally likely to be any integer in the set {0, 1, 2, . . . ,m− 1}.

• If we ignore the first probe, the remaining probe sequence 〈h1(x), h2(x), . . . , hm−1(x)〉 is
equally likely to be any permutation of the smaller set {0, 1, 2, . . . ,m− 1} \ {h0(x)}.

The first sentence implies that the probability that T [h0(x)] is occupied is exactly n/m. The second
sentence implies that if T [h0(x)] is occupied, our search algorithm recursively searches the rest of

the hash table! Since the algorithm will never again probe T [h0(x)], for purposes of analysis, we
might as well pretend that slot in the table no longer exists. Thus, we get the following recurrence
for the expected number of probes, as a function of m and n:

E[T (m,n)] = 1 +
n

m
E[T (m− 1, n− 1)].

The trivial base case is T (m, 0) = 1; if there’s nothing in the hash table, the first probe always hits

an empty slot. We can now easily prove by induction that E[T (m,n)] ≤ m/(m− n) :

E[T (m,n)] = 1 +
n

m
E[T (m− 1, n− 1)]

≤ 1 +
n

m
·
m− 1

m− n
[induction hypothesis]

< 1 +
n

m
·

m

m− n
[m− 1 < m]

=
m

m− n
X [algebra]

Rewriting this in terms of the load factor α = n/m, we get E[T (m,n)] ≤ 1/(1 − α) . In other words,

the expected time for an unsuccessful search is O(1), unless the hash table is almost completely
full.

In practice, however, we can’t generate truly random probe sequences, so we use one of the
following heuristics:

• Linear probing: We use a single hash function h(x), and define hi(x) = (h(x) + i) mod m.
This is nice and simple, but collisions tend to make items in the table clump together badly,
so this is not really a good idea.

• Quadratic probing: We use a single hash function h(x), and define hi(x) = (h(x)+ i2) mod
m. Unfortunately, for certain values of m, the sequence of hash values 〈hi(x)〉 does not hit
every possible slot in the table; we can avoid this problem by making m a prime number.
(That’s often a good idea anyway.) Although quadratic probing does not suffer from the same
clumping problems as linear probing, it does have a weaker clustering problem: If two items
have the same initial hash value, their entire probe sequences will be the same.

• Double hashing: We use two hash functions h(x) and h′(x), and define hi as follows:

hi(x) = (h(x) + i · h′(x)) mod m

To guarantee that this can hit every slot in the table, the stride function h ′(x) and the
table size m must be relatively prime. We can guarantee this by making m prime, but

4

CS 373 Lecture 6: Hash Tables Fall 2002

a simpler solution is to make m a power of 2 and choose a stride function that is always
odd. Double hashing avoids the clustering problems of linear and quadratic probing. In fact,
the actual performance of double hashing is almost the same as predicted by the uniform
hashing assumption, at least when m is large and the component hash functions h and h ′ are
sufficiently random. This is the method of choice!4

6.4 Deleting from an Open-Addressed Hash Table

Deleting an item x from an open-addressed hash table is a bit more difficult than in a chained hash
table. We can’t simply clear out the slot in the table, because we may need to know that T [h(x)]
is occupied in order to find some other item!

Instead, we should delete more or less the way we did with scapegoat trees. When we delete
an item, we mark the slot that used to contain it as a wasted slot. A sufficiently long sequence of
insertions and deletions could eventually fill the table with marks, leaving little room for any real
data and causing searches to take linear time.

However, we can still get good amortized performance by using two rebuilding rules. First, if
the number of items in the hash table exceeds m/4, double the size of the table (m ← 2m) and
rehash everything. Second, if the number of wasted slots exceeds m/2, clear all the marks and
rehash everything in the table. Rehashing everything takes m steps to create the new hash table
and O(n) expected steps to hash each of the n items. By charging a $4 tax for each insertion and
a $2 tax for each deletion, we expect to have enough money to pay for any rebuilding.

In conclusion, the expected amortized cost of any insertion or deletion is O(1), under the uniform
hashing assumption. Notice that we’re doing two very different kinds of averaging here. On the one
hand, we are averaging the possible costs of each individual search over all possible probe sequences
(‘expected’). On the other hand, we are also averaging the costs of the entire sequence of operations
to ‘smooth out’ the cost of rebuilding (‘amortized’). Both randomization and amortization are
necessary to get this constant time bound.

6.5 Universal Hashing

Now I’ll describe how to generate hash functions that (at least in expectation) satisfy the uniform
hashing assumption. We say that a set H of hash function is universal if it satisfies the following
property: For any items x 6= y, if a hash function h is chosen uniformly at random from the
set H, then Pr[h(x) = h(y)] = 1/m. Note that this probability holds for any items x and y; the
randomness is entirely in choosing a hash function from the set H.

To simplify the following discussion, I’ll assume that the universe U contains exactly m2 items,
each represented as a pair (x, x′) of integers between 0 and m− 1. (Think of the items as two-digit
numbers in base m.) I will also assume that m is a prime number.

For any integers 0 ≤ a, b ≤ m− 1, define the function ha,b : U → {0, 1, . . . ,m− 1} as follows:

ha,b(x, x′) = (ax + bx′) mod m.

Then the set
H = {ha,b | 0 ≤ a, b ≤ m− 1}

of all such functions is universal. To prove this, we need to show that for any pair of distinct items
(x, x′) 6= (y, y′), exactly m of the m2 functions in H cause a collision.

4...unless your hash tables are really huge, in which case linear probing has far better cache behavior, especially
when the load factor is small.

5

CS 373 Lecture 6: Hash Tables Fall 2002

Choose two items (x, x′) 6= (y, y′), and assume without loss of generality5 that x 6= y. A function
ha,b ∈ H causes a collision between (x, x′) and (y, y′) if and only if

ha,b(x, x′) = ha,b(y, y′)

(ax + bx′) mod m = (ay + by′) mod m

ax + bx′ ≡ ay + by′ (mod m)

a(x− y) ≡ b(y′ − x′) (mod m)

a ≡
b(y′ − x′)

x− y
(mod m).

In the last step, we are using the fact that m is prime and x−y 6= 0, which implies that x−y has a
unique multiplicative inverse modulo m.6 Now notice for each possible value of b, the last identity
defines a unique value of a such that ha,b causes a collision. Since there are m possible values for
b, there are exactly m hash functions ha,b that cause a collision, which is exactly what we needed
to prove.

Thus, if we want to achieve the constant expected time bounds described earlier, we should
choose a random element of H as our hash function, by generating two numbers a and b uniformly
at random between 0 and m− 1. (Notice that this is exactly the same as choosing a element of U
uniformly at random.)

One perhaps undesirable ‘feature’ of this construction is that we have a small chance of choosing
the trivial hash function h0,0, which maps everything to 0. So in practice, if we happen to pick
a = b = 0, we should reject that choice and pick new random numbers. By taking h0,0 out of
consideration, we reduce the probability of a collision from 1/m to (m− 1)/(m2 − 1) = 1/(m + 1).
In other words, the set H \ {h0,0} is slightly better than universal.

This construction can be generalized easily to larger universes. Suppose u = mr for some
constant r, so that each element x ∈ U can be represented by a vector (x0, x1, . . . , xr−1) of integers
between 0 and m− 1. (Think of x as an r-digit number written in base m.) Then for each vector
a = (a0, a1, . . . , ar−1), define the corresponding hash function ha as follows:

ha(x) = (a0x0 + a1x1 + · · · + ar−1xr−1) mod m.

Then the set of all mr such functions is universal.

5‘Without loss of generality’ is a phrase that appears (perhaps too) often in combinatorial proofs. What it means
is that we are considering one of many possible cases, but once we see the proof for one case, the proofs for all the
other cases are obvious thanks to some inherent symmetry. For this proof, we are not explicitly considering what
happens when x = y and x′ 6= y′.

6For example, the multiplicative inverse of 12 modulo 17 is 10, since 12 · 10 = 120 ≡ 1 (mod 17).

6

