1 Graphs and Subgraphs

1.1 GRAPHS AND SIMPLE GRAPHS

Many real-world situations can conveniently be described by means of a
diagram consisting of a set of points together with lines joining certain pairs
of these points. For example, the points could represent people, with lines
joining pairs of friends; or the points might be communication centres, with
lines representing communication links. Notice that in such diagrams one is
mainly interested in whether or not two given points are joined by a line;
the manner in which they are joined is immaterial. A mathematical abstrac-
tion of situations of this type gives rise to the concept of a graph.

A graph G is an ordered triple (V(G), E(G), ¥s) consisting of a
nonempty set V(G) of vertices, a set E(G), disjoint from V(G), of edges,
and an incidence function {c that associates with each edge of G an
unordered pair of (not necessarily distinct) vertices of G. If e is an edge and
u and v are vertices such that yc(e) = uv, then e is said to join u and v; the
vertices u and v are called the ends of e. '

Two examples of graphs should serve to clarify the definition.

Example 1 ,
where
V(G) ={v,, v2, 03, V4, s}

E(G)={ey, e, €3, €4, €5, €6, €7, €s}
and g 1s deﬁned by
Paler) = 0102, Ps(ez) = 0203, Poles) = V30;, Poles) = VaUs
Yo(es) = 0204, Poles) = Vavs, ¢o(e7) = 0,Us, Pcles) = V205
Example 2
H = (V(H), E(H), ¥»)

where :
V(H) ={u, v, w, x, y}

E(H)={a, b,c, d,e,f, g h}
and Yy is defined by ,
Yu(a) =uv, Yub)=uu, Yu(c)=vw, ¢Pu(d)=wx
Yu(e) =vx, Yu(f)=wx, Yu(g)=ux, yYu(h)=xy
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Figure 1.1. Diagrams of graphs G and H

Graphs are so named because they can be represented graphically, and it
is this graphical representation which helps us understand many of their
properties. Each vertex is indicated by a point, and each edge by a line
joining the points which represent its ends.t Diagrams of G and H are
shown in figure 1.1. (For clarity, vertices are depicted here as small circles.)

There is no unique way of drawing a graph; the relative positions of points
representing vertices and lines representing edges have no significance.
Another diagram of G, for example, is given in figure 1.2. A diagram of a
graph merely depicts the incidence relation holding between its vertices and
edges. We shall, however, often draw a diagram of a graph and refer to it as
the graph itself; in the same spirit, we shall call its points ‘vertices’ and its
lines ‘edges’.

Note that two edges in a diagram of a graph may intersect at a point that

€3
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Figure 1.2. Another diagram of G

1 In such a drawing it is understood that no line intersects itself or passes through a point
representing a vertex which is not an end of the corresponding edge—this is clearly always
‘possible. ' _
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is not a vertex (for example e, and es of graph G in figure 1.1). Those graphs
that have a diagram whose edges intersect only at their ends are called
plartar, since such graphs can be represented in the plane in a simple
manner. The graph of figure 1.3a is planar, even though this is not
immediately clear from the particular representation shown (see exercise
1.1.2). The graph of figure 1.3b, on the other hand, is nonplanar. (This will
be proved in chapter 9.)

Most of the definitions and concepts in graph theory are suggested by the
graphical representation. The ends of an edge are said to be incident with
the edge, and vice versa. Two vertices which are incident with a common
edge are adjacent, as are two edges which are incident with a common
vertex. An edge with identical ends is called a loop, and an edge with
distinct ends a link. For example, the edge e; of G (figure 1.2) is a loop; all
other edges of G are links.

Figure 1.3. Planar and nonplanar graphs

A graph is finite if both its vertex set and edge set are finite. In this book
we study only finite graphs, and so the term ‘graph’ always means ‘finite
graph’. We call a graph with just one vertex trivial and all other graphs
nontrivial. . :

A graph is simple if it has no loops and no two of its links join the same
pair of vertices. The graphs of figure 1.1 are not simple, whereas the graphs
of figure 1.3 are. Much of graph theory is concerned with the study of simple
graphs. :

We use the symbols v(G) and £(G) to denote the numbers of vertices and
edges in graph G. Throughout the book the letter G denotes a graph.
Moreover, when just one graph is under discussion, we usually denote this
graph by G. We then omit the letter G from graph-theoretic symbols and
write, for instance, V, E, v and ¢ instead of V(G), E(G), v(G) and £(G).
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Exercises

1.1.1 List five situations from everyday life in which graphs arise naturally.
1.1.2 Draw a different diagram of the graph of figure 1.3a to show that it
is indeed planar.

1.1.3 Show that if G is simple, then & = (;)

1.2 GRAPH ISOMORPHISM

Two graphs G and H are identical (written G=H) if V(G)=V(H),
E(G)=E(H), and s = ¢u. If two graphs are identical then they can clearly
be represented by identical diagrams. However, it is also possible for graphs
that are not identical to have essentially the same diagram. For example, the
diagrams of G in figure 1.2 and H in figure 1.1 look exactly the same, with
the exception that their vertices and edges have different labels. The graphs
G and H are not identical, but isomorphic. In general, two graphs G and H
are said to be isomorphic (written G = H) if there are bijections 0 : V(G) —
V(H) and ¢ : E(G)— E(H) such that yig(e) = uv if and only if Yu(d(e))=
6(u)0(v); such a pair (6, ¢) of mappings is called an isomorphism between G
and H.

To show that two graphs are lsomorphlc one must indicate an isomorph-
ism between them. The pair of mappings (6, ¢) defined by

e(vl) = Y’ 6('-’2) =X, 0(”3) =u, 6(04) =0, O(US) =w

and
(b(el) = h, d)(e2) =8 ¢(e‘3) = b7 d)(ett) =a
dles)=e,  dled=c, d(e)=d, dles)=f

is an isomorphism between the graphs G and H of examples 1 and 2; G and
H clearly have the same structure, and differ only in the names of vertices
and edges. Since it is in structural properties that we shall primarily be
interested, we shall often omit labels when drawing graphs; an unlabelled
graph can be thought of as a representative of an equivalence class of
isomorphic graphs. We assign labels to vertices and edges in a graph mainly
for the purpose of referring to them. For instance, when dealing with simple
graphs, it is often convenient to refer to the edge with ends u and v as ‘the
edge uv’. (This convention results in no ambiguity since, in a simple graph,
at most one edge joins any pair of vertices.)

We conclude this section by introducing some speaal classes of graphs. A
simple graph in which each pair of distinct vertices is joined by an edge is
called a complete graph. Up to isomorphism, there is just one complete
graph on n vertices; it is denoted by K.. A drawing of K5 is shown in figure
1.4a. An empty graph, on the other hand, is one with no edges. A bipartite
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(a) (b) (c)

Figure 1.4. (a) K;; (b) the cube; (¢) K5

graph is one whose vertex set can be partitioned into two subsets X and Y,
so that each edge has one end in X and one end in Y; such a partition
(X, Y) is called a bipartition of the graph. A complete bipartite graph is a
simple bipartite graph with bipartition (X, Y) in which each vertex of X is
joined to each vertex of Y; if | X|=m and |Y|=n, such a graph is denoted
by K.... The graph defined by the vertices and edges of a cube (figure 1.4b)
is bipartite; the graph in figure 1.4¢ is the complete bipartite graph K.

There are many other graphs whose structures are of special interest.
Appendix III includes a selection of such graphs.

Exercises

1.2.1  Find an isomorphism between the graphs G and H of examples 1
’ and 2 different from the one given.
1.2.2  (a) Show that if G=H, then v(G)=v(H) and £(G)=e(H).
(b) Give an example to show that the converse is false.
1.2.3  Show that the following graphs are not isomorphic:

1.2.4  Show that there are eleven nonisomorphic simple graphs on four
| vertices. |

- 1.2.5  Show that two simple graphs G and H are isomorphic if and only if
‘ there is a bijection 6:V(G)— V(H) such that uve E(G) if and
only if 6(u)6(v)e E(H).
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Show that the following graphs are isomorphic:

2 4

| 4

Let G be simple. Show that ¢ = (2

Show that |

(a) &(Km.n)=mn;
(b) if G is simple and bipartite, then & < v?/4.

A k-partite graph is one whose vertex set can be partitioned into k
subsets so that no edge has both ends in any one subset; a complete
k-partite graph is one that is simple and in which each vertex is
joined to every vertex that is not in the same subset. The complete
m-partite graph on n vertices in which each part has either [n/m] or
{n/m} vertices is denoted by T,.. Show that

(a) €(Tan)= (n _?: k)+ (m-— 1)(k ; 1), where k =[n/m];

(b)* if G is a complete m-partite graph on n vertices, then £(G) =<

€(Twm.), with equality only if G = Tp,..

) if and only if G is complete.

The k-cube is the graph whose vertices are the ordered k-tuples of

0’s and 1’s, two vertices being joined if and only if they differ in

exactly one coordinate. (The graph shown in figure 1.4b is just the

3-cube.) Show that the k-cube has 2* vertices, k2*! edges and is

bipartite. , |

(a) The complement G of a simple graph G is the simple graph
with vertex set V, two vertices being adjacent in G° if and only
if they are not adjacent in G. Describe the graphs K§ and K&, ..

(b) A simple graph G is self-complementary if G = G*. Show that if
G is self-complementary, then »=0, 1 (mod 4).

An automorphism of a graph is an isomorphism of the graph onto

itself. '

(a) Show, using exercise 1.2.5, that an automorphism of a simple
graph G can be regarded as a permutation on V which pre-
serves adjacency, and that the set of such permutations form a
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group I'(G) (the automorphism group of G) under the usual
operation of composition.

(b) Find I'(K,) and I'(K..).

(c) Find a nontrivial simple graph whose automorphism group is
the identity. ‘

(d) Show that for any simple graph G, I'(G) =T(G").

(e) Consider the permutation group A with elements (1)(2)(3),
(1,2, 3) and (1, 3, 2). Show that there is no simple graph G with
vertex set {1, 2, 3} such that I'(G) = A.

(f) Find a simple graph G such that ['(G)=A. (Frucht, 1939 has
shown that every abstract group is isomorphic to the auto-
morphism group of some graph.)

1.2.13 A simple graph G is vertex-transitive if, for any two vertices u and
v, there is an element g in I'(G) such that g(u)y=gm); G is
edge-transitive if, for any two edges u,v, and u,vs, there is an
element h in I'(G) such that h({u,, v:}) = {u., v.}. Find

(a) a graph which is vertex-transitive but not edge-transitive;
(b) a graph which is edge-transitive but not vertex-transitive.

1.3 THE INCIDENCE AND ADJACENCY MATRICES

To any graph G there corresponds a v X ¢ matrix called the incidence matrix
of G. Let us denote the vertices of G by vi, v2,..., v, and the edges by
€1, €2, ..., €. Then the incidence matrix of G is the matrix M(G) =[m;],
where m;; is the number of times (0, 1 or 2) that v; and e, are incident. The
incidence matrix of a graph is just a different way of specifying the graph.

Another matrix associated with G is the adjacency matrix; this is the v X v
matrix A(G) =[a;], in which a;; is the number of edges joining v; and v;. A
graph, its incidence matrix, and its adjacency matrix are shown in figure 1.5.

e, € e e, e e e, v, V2 U3 U,
vl 1 0 0 1 0 1 v, [0 2 1 1
v»{1 1 1 0 0 0 0 vn|2 0 1 0
v 0 0 1 1 0 0 1 v (1 1 0 1
v, |0 O 1 1 2 O v, |1 O 1 1

M(G) A(G)

Figure 1.5
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~ The adjacency matrix of a graph is generally considerably smaller than its
incidence matrix, and it is in this form that graphs are commonly stored in
computers.

Exercises
1.3.1 Let M be the incidence matrix and A the adjacency matrix of a
graph G.

(a) Show that every column sum of M is 2.
(b) What are the column sums of A?

1.3.2 Let G be bipartite. Show that the vertices of G can be enumerated
so that the adjacency matrix of G has the form

| e—|

Fio

o P
~N

D a—

where A,; is the transpose of Aj,.
1.3.3* Show that if G is simple and the eigenvalues of A are distinct, then
the automorphism group of G is abelian

1.4 SUBGRAPHS

A graph H is a subgraph of G (written H< G) if V(H)< V(G), E(H) <
E(G), and yy is the restriction of Y to E(H). When H< G but H# G, we
write H<= G and call H a’proper subgraph of G. If H is a subgraph of G, G
is a supergraph of H. A spanning subgraph (or spanning supergraph) of G is
a subgraph (or supergraph) H with V(H)= V(G)

By deleting from G all loops and, for every pair of ad]acent vertices, all
but one link joining them, we obtain a simple spanning subgraph of G,
called the underlying simple graph of G. Figure 1.6 shows a graph and its
underlying simple graph.

Figure 1.6. A graph and its underlying simple graph
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Figure 1.7

Suppose that V' is a nonempty subset of V. The subgraph of G whose
vertex set is V' and whose edge set is the set of those edges of G that have
both ends in V' is called the subgraph of G induced by V' and is denoted by
- G[V']; we say that G[V'] is an induced subgraph of G. The induced
subgraph G[V\V'] is denoted by G — V’; it is the subgraph obtained from G
by deleting the vertices in V' together with their incident edges. If
V'={v} we write G—v for G —{v}.

Now suppose that E’ is a nonempty subset of E. The subgraph of G
whose vertex set is the set of ends of edges in E’ and whose edge set is E' is
called the subgraph of G induced by E’' and is denoted by G[E']; G[E'] is
an edge-induced subgraph of G. The spanning subgraph of G with edge set
- E\E' is written simply as G —E’; it is the subgraph obtained from G by
deleting the edges in E’. Similarly, the graph obtained from G by adding a
set of edges E" is denoted by G+ E'. If E'={e} we write G—e¢ and G +e
instead of G —{e} and G +{e}.

Subgraphs of these various types are depicted in figure 1.7.

Let G, and G be subgraphs of G. We say that G, and G. are disjoint if
they have no vertex in common, and edge-disjoint if they have no edge in
common. The union G,U G; of G, and G; is the subgraph with vertex set




10 Graph Theory with Applications

V(G,) U V(G) and edge set E(G,) UE(G.); if G, and G, are disjoint, we
sometimes denote their union by G; + G,. The intersection G,N G, of G,
and G, is defined similarly, but in this case G, and G, must have at least one
vertex in common.

Exercises

1.4.1 Show that every simple graph on n vertices is isomorphic to a
subgraph of K,.
1.4.2 Show that

(a) every induced subgraph of a complete graph is complete;
(b) every subgraph of a bipartite graph is bipartite.

1.4.3 Describe how M(G—E') and M(G—-V') can be obtained from
M(G), and how A(G— V') can be obtained from A(G).

1.4.4 Find a bipartite graph that is not isomorphic to a subgraph of any
k -cube.

1.4.5% Let G be simple and let n be an integer with 1<n < v— 1. Show that
if v =4 and all induced subgraphs of G on n vertices have the same
number of edges, then either G=K, or G=K:.

1.5 VERTEX DEGREES

The degree ds(v) of a vertex v in G is the number of edges of G incident
with v, each loop counting as two edges. We denote by 8(G) and A(G) the
minimum and maximum degrees, respectively, of vertices of G.

Theorem 1.11
Yd(v)=2¢ h

veV
Proof Consider the incidence matrix M. The sum of the entries in the

row corresponding to vertex v is precisely d(v), and therefore )’ d(v) is just
veV

the sum of all entries in M. But this sum is also 2¢, since (exercise 1.3.1qa)
each of the £ column sums of Mis 2 [

Corollary 1.1 In any graph, the number of vertices of odd degree is even.

Proof Let V, and V; be the sets of vertices of odd and even degree in G,
respectively. Then

> d(v)+ Y d(v)= Zd(v)

veV, veV,

is even, by theorem 1.1. Since Y d(v) is also even, it follows that Y d(v) is

veV, veV;

even. Thus |V,| is even 0O
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A graph G is k-regular if d(v) =k for all v € V; a regular graph is one that
is k-regular for some k. Complete graphs and complete bipartite graphs K, ,
are regular; so, also, are the k-cubes.

Exercises

1.5.1 Show that § =2¢/v <A.

1.5.2 Show that if G is simple, the entries on the diagonals of both MM’
and A” are the degrees of the vertices of G.

1.5.3 Show that if a k-regular bipartite graph with k >0 has bipartition
(X,Y), then |X|=]Y].

1.5.4 Show that, in any group of two or more people, there are always two
with exactly the same number of friends inside the group.

1.5.5 If G has vertices vy, v, . .., v, the sequence (d(vy), d(v,), ..., d(v,))
is called a degree sequence of G. Show that a sequence
(d, ds, . . ., d.) of non-negative integers is a degree sequence of some

graph if and only if ). d; is even.
i=1

1.5.6 A sequence d=(dy, d,,...,d,) is graphic if there is a simple graph
with degree sequence d. Show that
(a) the sequences (7, 6, 5, 4, 3, 3, 2) and (6, 6, 5, 4, 3, 3, 1) are not
graphic; ~ 7
(b) if d is graphic and d;=d,=...>d,, then Y. d; is even and

i=1

k n
Ydi=sk(k—1)+ Z min{k, d} for 1<k=<n
i=1 : i=k+1

(Erd6s and Gallai, 1960 have shown that this necessary condition is
also sufficient for d to be graphic.)

1.5.7 Letd=(d,, d,,...,d.) be a nonincreasing sequence of non-negative
integers, and denote the sequence (d;—1, ds—1,..., ds.i— 1,
dd,+2, ey d..) by d. ’

(a)* Show that d is graphic if and only if d’ is graphic.
(b) Using (a), describe an algorithm for constructing a simple graph
with degree sequence d, if such a graph exists.
(V. Havel, S. Hakimi)

1.5.8* Show that a loopless graph G contains a bipartite spanning subgraph
H such that du(v) =3ds(v) for all ve V. -

1.5.9* Let S={x,, x,,..., x.} be a set of points in the plane such that the
distance between any two points is at least one. Show that there are
at most 3n pairs of points at distance exactly one.

1.5.10 The edge graph of a graph G is the graph with vertex set E(G) in
which two vertices are joined if and only if they are adjacent edges in
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G. Show that, if G is simple

(a) the edge graph of G has &(G) vertices and ). (dcz(v)> edges;
vEVIG) ’

(b) the edge graph of Ks is isomorphic to the complement of the

~ graph featured in exercise 1.2.6.

1.6 PATHS AND CONNECTION

A walk in G is a finite non-null sequence W = vee,v,€,0, ... exvx, Whose
terms are alternately vertices and edges, such that, for 1 <i=< k, the ends of
e; are vi-; and v;. We say that W is a walk from v, to vy, or a (v, vy)-walk.
The vertices v, and v, are called the origin and terminus of W, respectively,
and vy, v, ..., k-, its internal vertices. The integer k is the length of W.

If W=uv0e,0,...e,00 and W'=v,€44010s; ... 00 are walks, the walk
Uk€xVk-1 . . . €100, Obtained by reversing W, is denoted by W' and the walk
Vo€1V; ... ey, obtained by concatenating W and W' at v,, is denoted by
WW'. A section of a walk W = vge,v; . .. e v, is a walk that is a subsequence
Vi€ir1Viv1 . . . €0; Of consecutive terms of W; we refer to this subsequence as
the (v;, v;)-section of W. '

In a simple graph, a walk vee,v; ... e v, is determined by the sequence
UoVs.. .. Uk Of its vertices; hence a walk in a simple graph can be specified
simply by its vertex sequence. Moreover, even in graphs that are not simple,
we shall sometimes refer to a sequence of vertices in which consecutive
terms are adjacent as a ‘walk’. In such cases it should be understood that the
discussion is valid for every walk with that vertex sequence. .

If the edges e, e,, ..., e of a walk W are distinct, W is called a trail; in
this case the length of W is just e(W). If, in addition, the vertices
Vo, Uy, . . ., U are distinct, W is called a path. Figure 1.8 illustrates a walk, a
trail and a path in a graph. We shall also use the word ‘path’ to denote a
graph or subgraph whose vertices and edges are the terms of a path.

Walk: vavfyfvgyhwbyv
Trail: wexdyhwbvgy
Path: xcwhyeuav

Figure 1.8
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(a) (b)

Figure 1.9. (a) A connected graph; (b) a disconnected graph with three components

Two vertices u and v of G are said to be connected if there is a (u, v) -path
in G. Connection is an equivalence relation on the vertex set V. Thus there
is a partition of V into nonempty subsets V,, V,,..., V. such that two
vertices u and v are connected if and only if both u and v belong to the
same set V.. The subgraphs G[V.], G[V.],..., G[V.] are called the com-
ponents. of G. If G has exactly one component, G is connected; otherwise G
is disconnected. We denote the number of components of G by w(G).
Connected and dlsconnected graphs are depicted in figure 1.9.

1.6.9

Exercises
1.6.1 Show that if there is a (u, v)-walk in G, then there is also a
(u, v)-path in G.
1.6.2  Show that the number of (v;, v,)-walks of length k in G is the (i, j)th
entry of A"
1.6.3  Show that if G is simple and & = k then G has a path of length k.
- 1.6.4  Show that G is connected if and only if, for every partition of V
into two nonempty sets Vi and V, there is an edge with one end in
Vi and one end in V..
1.6.5 (a) Show that if G is simple and & >(" 5 1), then G is connected.
(b) For v>1, find a disconnected simple graph G with & = (V 2 1).
1.6.6  (a) Show that if G is simple and & >[v/2]—1, then G is connected.
~(b) Find a disconnected ([»/2]— 1)-regular simple graph for v evea.
1.6.7 Show that if G is disconnected, then G° is connected. '
1.6.8 (a) Show that if e € E, then w(G)=<=w(G —e)=w(G)+1.
(b) Let ve V. Show that G —e cannot, in general, be replaced by
G - v in the above inequality.
Show that if G is connected and each degree in G is even, then, for

any ve V, w(G-v)=<3d(v).
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1.6.10 Show that any two longest paths in a connected graph have a vertex
in common.

1.6.11 If vertices u and v are connected in G, the distance between u and

| v in G, denoted by dc(u, v), is the length of a shortest (u, v)-path in
G; if there is no path connecting u and v we define dg(u, v) to be
infinite. Show that, for any three vertices u, v and w, d(u, v)+
d(v, w)=d(u, w). :

1.6.12 The diameter of G is the maximum distance between two vertices
of G. Show that if G has diameter greater than three, then G° has
diameter less than three.

1.6.13 Show that if G is simple with diameter two and A=v—2, then
e=2v—4. | , '

1.6.14 Show that if G is simple and connected but not complete, then G

: has three vertices u, v and w such that uv, vw e E and uwgE.

1.7 cvcies

A walk is closed if it has positive length and its origin and terminus are the
same. A closed trail whose origin and internal vertices are distinct is a cycle.
Just as with paths we sometimes use the term ‘cycle’ to denote a graph
corresponding to a cycle. A cycle of length k is called a k-cycle; a k-cycle is
odd or even according as k is odd or even. A 3-cycle is often called a
triangle. Examples of a closed trail and a cycle are given in figure 1.10.
Using the concept of a cycle, we can now present a characterisation of
bipartite graphs. | |

Theorem 1.2 A graph is bipartite if and only if it contains no odd cycle.

Proof Suppose that G is bipartite with bipartition (X, Y), and let C=
VoV: . . . Uxlo be a cycle of G. Without loss of generality we may assume that
vo€ X. Then, since vov: € E and G is bipartite, v,€ Y. Similarly v,e X # 3},
in general, v;€X and vi. €Y. Since vo€e X, vi€Y. Thus k=2i+1, for
some i, and it follows that C is even.

Closed trail: ucvhxgwfwdvbu
Cycle: xaubvhx

Figure 1.10
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It clearly suffices to prove the converse for connected gfaphs. Let G be a
connected graph that contains no odd cycles. We choose an arbitrary vertex
u and define a partition (X, Y) of V by setting

X={xeV|d(ux) iseven}
Y={yeV|d(uy) isodd}

We shall show that (X, Y) is a bipartition of G. Suppose that v and w are
two vertices of X. Let P be a shortest (u, v)-path and Q be a shortest
(u, w)-path. Denote by u, the last vertex common to P and Q. Since P and
Q are shortest paths, the (u, u,)-sections of both P and Q are shortest
(u, u,)-paths and, therefore, have the same length. Now, since the lengths of
both P and Q are even, the lengths of the (u,, v)-section P, of P and the
(u;, w)-section Q, of Q must have the same parity. It follows that the
(v, w)-path P7'Q, is of even length. If v were joined to w, P7'Q,wv would
be a cycle of odd length, contrary to the hypothesis. Therefore no two
vertices in X are adjacent; similarly, no two vertices in Y are adjacent [

Exercises

1.7.1 Show that if an edge e is in a closed trail of G, then e is in a cycle of
G.

1.7.2  Show that if § =2, then G contains a ‘cycle.

1.7.3* Show that if G is simple and 8 =2, then G contains a cycle of length
at least §+1.

1.7.4 'The girth of G is the length of a shortest cycle in G; if G has no
cycles we define the girth of G to be infinite. Show that

(a) a k-regular graph of girth four has at least 2k vertices, and (up to
isomorphism) there exists exactly one such graph on 2k vertices;
(b) a k-regular graph of girth five has at least k*+1 vertices.

1.7.5 Show that a k-regular graph of girth five and diameter two has
exactly k>+1 vertices, and find such a graph for k =2, 3. (Hoffman
and Singleton, 1960 have shown that such a graph can exist only if
k=2, 3, 7 and, possibly, 57.)

1.7.6 Show that |

(a) if e=v, G contains a cycle; | o
(b)* if e=v+4, G contains two edge-disjoint cycles. (L. P6sa)

APPLICATIONS

1.8 - THE SHORTEST PATH PROBLEM

With each edge e of G let there be associated a real number w(e), called its
weight. Then G, together with these weights on its edges, is called a weighted
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Figure 1.11. A (uo, vo)-path of minimum weight

graph. Weighted graphs occur frequently in applications of graph theory. In
the friendship graph, for example, weights might indicate intensity of
friendship; in the communications graph, they could represent the construc-
tion or maintenance costs of the various communication links.

If H is a subgraph of a weighted graph, the weight w(H) of H is the sum
of the weights e;;u w(e) on its edges. Many optimisation problems amount
to finding, in a weighted graph, a subgraph of a certain type with minimum
(or maximum) weight. One such is the shortest path problem: given a railway
network connectmg various towns, determine a shortest route between two
specified towns in the network.

Here one must find, in a weighted graph, a path of minimum weight
connecting two specified vertices u, and vo; the weights represent distances
by rail between directly-linked towns, and are therefore non-negative. The
path indicated in the graph of figure 1 11 is a (uo, vo)- path of minimum
weight (exercise 1.8. 1).

We now present an algorithm for solving the shortest path problem For -
clarity of exposition, we shall refer to the weight of a path in a weighted
graph as its length; similarly the minimum weight of a (u, v)-path will be
called the distance between u and v and denoted by d(u, v). These defini-
tions coincide with the usual notions of length and distance, as defined in
section 1.6, when all the weights are equal to one.

It clearly suffices to deal with the shortest path problem for simple graphs;
so we shall assume here that G is simple. We shall also assume that all the
weights are positive. This, again, is not a serious restriction because, if the
weight of an edge is zero, then its ends can be identified. We adopt the
convention that w(uv) = if uvé E. :
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The algorithm to be described was discovered by Dijkstra (1959) and,
independently, by Whiting and Hillier (1960). It finds not only a shortest
(uo, Vo)-path, but shortest paths from u, to all other vertices of G. The basic
idea is as follows.

Suppose that S is a proper subset of V such that u,€ S, and let S denote
VAS. If P=1uo...d is a shortest path from u, to S then clearly iie S and
the (uo, it)-section of P must be a shortest (uo, it)-path. Therefore

d(uo, ) = d(uo, i) + w(iad)
and the distance from u, to S is given by the formula

d(uo, S) = min{d(uo, u)+w(uv)} (1.1)

veS§

This formula is the basis of Dijkstra’s algorithm. Starting with the set
So={uo}, an increasing sequence S,, S, ..., S,_, of subsets of V is con-
structed, in such a way that, at the end of stage i, shortest paths from u, to
all vertices in S; are known. :

The first step is to determine a vertex nearest to uo. This is achieved by

computing d(u,, So) and selecting a vertex u;eS, such that d(uo, u;) =
d(uo, So) by (1 1)

d(ue, So) = mm{d(uo, u)+w(uv)}= mm{w(uov)}

VG So

and so d(uo, So) is easily computed. We now set S, ={uo, u,} and let P,
denote the path uou;; this is clearly a shortest (uo, u;)-path. In general, if the
set Sy ={uo, Uy, .. ., i} and corresponding shortest paths Py, P,, . .., P, have
already been determined, we compute d(uo, Sk) using (1.1) and select a
vertex 1€ S, such that d(uo, tis1) = d(uo, Si). By (1.1), d(uo, Us1) =
d(uo, u;) + w(u;uw+,) for some j=k; we get a shortest (uo, ui+1)-path by
adjoining the edge u;u.., to the path P;.

We illustrate this procedure by considering the weighted graph depicted in
figure 1.12a. Shortest paths from u, to the remaining vertices are deter-
mined in seven stages. At each stage, the vertices to which shortest paths
have been found are indicated by solid dots, and each is labelled by its
distance from uo; initially u, is labelled 0. The actual shortest paths are
indicated by solid lines. Notice that, at each stage, these shortest paths
together form a connected graph without cycles; such a graph is called a tree,
and we can think of the algorithm as a ‘tree-growing’ procedure. The final
tree, in figure 1.12h, has the property that, for each vertex v, the path
connecting u, and v is a shortest (uo, v)-path.

Dijkstra’s algorithm is a refinement of the above procedure. This refine-
ment is motivated by the consideration that, if the minimum in (1.1) were to
be computed from scratch at each stage, many comparisons would be
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repeated unnecessarily. To avoid such repetitions, and to retain computa-
tional information from one stage to the next, we adopt the following
labelling procedure. Throughout the algorithm, each vertex v carries a label
I(v) which is an upper bound on d(uo, v). Initially I(u,) =0 and I(v) = » for
v# Uo. (In actual computations » is replaced by any sufficiently large
number.) As the algorithm proceeds, these labels are modified so that, at the
end of stage i,

l(u)=d(uo,u) for ues,
and

l(v)=Esip{d(uo, u)+w(uv)} for veS,

Dijkstra’s Algorithm

1. Set l(uo) = 0, l(p_) =oo for v# Uo, Soz{uo} and i =0.
2. For each veS, replace I(v) by min{l(v); I(u)+ w(u;v)}. Compute
Qlisn{l(v)} and let wi., denote a vertex for which this minimum is attained.

Set Si+1 = Si U.{um}.
3. Ifi=v~—1, stop. If i<v—1, replace i by i+1 and g0 to step 2.

When the algorithm terminates, the distance from u, to v is given by the
final value of the label I(v). (If our interest is in determining the distance to
one specific vertex v, we stop as soon as some u; equals vo.) A flow diagram
summarising this algorithm is shown in figure 1.13.

As described above, Dijkstra’s algorithm determines only the distances
from u, to all the other vertices, and not the actual shortest paths. These
shortest paths can, however, be easily determined by keeping track of the
predecessors of vertices in the tree (exercise 1.8.2). :

Dijkstra’s algorithm is an example of what Edmonds (1965) calls a good
algorithm. A graph-theoretic algorithm is good if the number of computa-
tional steps required for its implementation on any graph G is bounded
above by a polynomial in v and & (such as 3v’e). An algorithm whose
implementation may require an exponential number of steps (such as 2%)
might be very inefficient for some large graphs.

To see that Dijkstra’s algorithm is good, note that the computations
involved in boxes 2 and 3 of the flow diagram, totalled over all iterations,
require v(v —1)/2 additions and v(v —1) comparisons. One of the questions
that is not elaborated upon in the flow diagram is the matter of deciding
whether a vertex belongs to S or not (box 1). Dreyfus (1969) reports a
technique for doing this that requires a total of (v — 1)? comparisons. Hence,
if we regard either a comparison or an addition as a basic computational
unit, the total number of computations required for this algorithm is
approximately 5»°/2, and thus of order v2. (A function f(v, €) is of order
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STOP:

S . o)
Uluj 41}+S Liv)=dlug,v)

i+1—>

YES

VveV
k | min LW, G+ wlgvl == () |y =i =1 additions
YveS v —i—1comparisons
(3)
N———] Compute min {((v)} v - i=1comparisons
3u;,q St ‘ ves
{uj ) =min{t(v)}
veS

Figure 1. 13 Dijkstra’s algonthm

gy, g) if there exists a positive constant ¢ such that f(v, e)/g(v g)=c for all
v and &)

Although the shortest path problem can be solved by a good algornthm
there are many problems in graph theory for which no good algorithm is

known. We refer the reader to Aho, Hopcroft and Ullman (1974) for
further detalls

Exercises

181 Find shortest paths from u, to all other vertices in the wexghted
graph of figure 1.11.
1.8.2 What additional instructions are needed in order that Dl]kstras
algorithm determine shortest paths rather than merely distances?
1.8.3 A company has branches in each of six cities Ci, Cs, . . . , Ce. The fare
- for a direct flight from C; to C; is given by the (i, j)th entry in the
following matrix (e indicates that there is no direct flight):
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[0 50 o 40 25 10]
50 0 15 20 o« 25
© 15 0 10 20 o
40 20 10 0 10 25
25 «© 20 10 0 55
110 25 o 25 55 0O

The company is interested in computing a table of cheapest routes
between pairs of cities. Prepare such a table.

1.8.4 A wolf, a goat and a cabbage are on one bank of a river. A ferryman
wants to take them across, but, since his boat is small, he can take

- only one of them at a time. For obvious reasons, neither the wolf and
the goat nor the goat and the cabbage can be left unguarded. How is
the ferryman going to get them across the river?

1.8.5 Two men have a full eight-gallon jug of wine, and also two empty
jugs of five and three gallons capacity, respectively. What is the
simplest way for them to divide the wine equally?

1.8.6 Describe a good algorithm for determining

(a) the components of a graph;
(b) the girth of a graph.
How good are your algorithms?

o

1.9 SPERNER’S LEMMA

Every continuous mapping f of a closed n-disc to itself has a fixed point
(that is, a point x such that f(x)=x). This powerful theorem, known as
Brouwer’s fixed-point theorem, has a wide range of applications in modern
mathematics. Somewhat surprisingly, it is an easy consequence of a simple
combinatorial lemma due to Sperner (1928). And, as we shall see in this
section, Sperner’s lemma is, in turn, an immediate consequence of corollary
1.1.

Sperner’s lemma concerns the decomposition of a simplex (line segment,
triangle, tetrahedron and so on) into smaller simplices. For the sake of
simplicity we shall deal with the two-dimensional case. :

Let T be a closed triangle in the plane. A subdivision of T into a finite
number of smaller triangles is said to be simplicial if any two intersecting
triangles have either a vertex or a whole side in common (see figure 1.14a).

Suppose that a simplicial subdivision of T is given. Then a labelling of the
vertices of triangles in the subdivision in three symbols 0, 1 and 2 is said to
be proper if
(i) the three vertices of T are labelled 0, 1 and 2 (in any order), and
(ii) for 0=i<j=2, each vertex on the side of T joining vertices labelled i

and j is labelled either i or j.
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(a)

Figure 1.14. (a) A simplicial subdivision of a triangle; (b) a proper labelling of the
‘ subdivision

We call a triangle in the subdivision whose vertices receive all three labels a
distinguished triangle. The proper labelling in figure 1.14b has three distin-
guished triangles. '

Theorem 1.3 (Sperner’s lemma) Every properly labelled simplicial subdivi-
sion of a triangle has an odd number of distinguished triangles.

Proof Let T, denote the region outside T, and let Ty, T,, ..., T, be the
triangles of the subdivision. Construct a graph on the vertex set
{vo, V1, ..., Ua} by joining v; and v; whenever the common boundary of T;
and T; is an cdge with labels 0 and 1 (see figure 1.15).

In this graph, v, is clearly of odd degree (exercise 1.9.1). It follows from
corollary 1.1 that an odd number of the vertices vy, v, ..., v, are of odd
degree. Now it is easily seen that none of these vertices can have degree

W V:
pl 2
) Vo
v
g o 12
Vs
Ve
o) o
vy Ve
Vo

Figure 1.15
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three, and so those with odd degree must have degree one. But a vertex v, is
of degree one if and only if the triangle T; is distinguished [

We shall now briefly indicate how Sperner’s lemma can be used to deduce
Brouwer’s fixed-point theorem. Again, for simplicity, we shall only deal with
the two-dimensional case. Since a closed 2-disc is homeomorphic to a closed
triangle, it suffices to prove that a continuous mapping of a closed triangle to
itself has a fixed point.

Let T be a given closed triangle with vertices xo, x, and x,. Then each
point x of T can be written uniquely as x = aoXo+ a;x; + a,x,, where each
a;=0 and X a;=1, and we can represent x by the vector (ao, a,, a,); the real
numbers ao, a; and a, are called the barycentric coordinates of x.

Now let f be any continuous mapping of T to itself, and suppose that

f(aﬂa a, a2) = (a(')’ ai, a&)

Define S; as the set of points (ao, a1, a,) in T for which a! < a;. To show that
f has a fixed point, it is enough to show that SoNS, NS, #@. For suppose
that (ao, a1, a;) € SoNS; N S,. . Then, by the definition of S, we have that
ai=a; for each i, and this, coupled with the fact that 3 a/=3 a,, yields

(a5, ai, at) = (a0, as, a,)

In other words, (ao, a1, a,) is a fixed point of f.

So consider an arbitrary subdivision of T and a proper labelling such that
each vertex labelled i belongs to S;; the existence of such a labelling is easily
seen (exercise 1.9.2a). It follows from Sperner’s lemma that there is a
triangle in the subdivision whose three vertices belong to S, S; and S,. Now
this holds for any subdivision of T and, since it is possible to choose
subdivisions in which each of the smaller triangles are of arbitrarily small
diameter, we conclude that there exist three points of So, S; and S, which
are arbitrarily close to one another. Because the sets S: are closed (exercise
1.9.2b), one may deduce that S,NS;N S, #@. |

For details of the above proof and other applications of Sperner’s lemma,
the reader is referred to Tompkins (1964).

Exercises

1.9.1 In the proof of Sperner’s lemma, show that the vertex vo is of odd
degree. ‘

1.9.2" In the proof of Brouwer’s fixed-point theorem, show that

(a) there exists a proper labelling such that each vertex labelled i
belongs to S;;
(b) the sets S; are closed.

1.9.3 State and prove Sperner’s lemma for higher dimensional simplices.
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