10 Directed Graphs

10.1 DIRECTED GRAPHS

Although many problems lend themselves naturally to a graph-theoretic
formulation, the concept of a graph is sometimes not quite adequate. When
dealing with problems of traffic flow, for example, it is necessary to know
which roads in the network are one-way, and in which direction traffic is
permitted. Clearly, a graph of the network is not of much use in such a
situation. What we need is a graph in which each link has an assigned
orientation—a directed graph. Formally, a directed graph D is an ordered
triple (V(D), A(D), ¢p) consisting of a nonempty set V(D) of vertices, a set
A(D), disjoint from V(D), of arcs, and an incidence function Yp that
associates with each arc of D an ordered pair of (not necessarily distinct)
vertices of D. If a is an arc and u and v are vertices such that yip(a) = (u, v),
then a is said to join u to v; u is the tail of a, and v is its head. For
convenience, we shall abbreviate ‘directed graph’ to digraph. A digraph D’
is a subdigraph of D if V(D) V(D), A(D)<c A(D) and ¢p is the
restriction of Y» to A(D’). The terminology and notation for subdigraphs is
similar to that used for subgraphs.

With each digraph D we can associate a graph G on the same vertex set;
corresponding to each arc of D there is an edge of G with the same ends.
This graph is the underlying graph of D. Conversely, given any graph G, we
can obtain a digraph from G by specifying, for each link, an order on its
ends. Such a digraph is called an orientation of G. _

Just as with graphs, digraphs have a simple pictorial representation. A
digraph is represented by a diagram of its underlying graph together with
arrows on its edges, each arrow pointing towards the head of the corre-
sponding arc. A digraph and its underlying graph are shown in figure 10.1.

Every concept that is valid for graphs automatically applies to digraphs
too. Thus the digraph of figure 10.1a is connected and has no cycle of length
three because its underlying graph (figure 10.1b) has these properties.
However, there are many concepts that involve the notion of orientation,
and these apply only to digraphs.

A directed 'walk in D is a finite non-null sequence W=
(vo, a1, vy, . . ., Ak, Ux), Whose terms are alternately vertices and arcs, such
that, for i=1, 2,..., k, the arc a; has head v; and tail vi-;. As with walks in
graphs, a directed walk (vo, a1, v1, ..., ax, V) is often represented simply by
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(a) A (b)
Figure 10.1. (a) A digraph D; (b) the underlying graph of D

its vertex sequence (vo, U1, - . ., U). A directed trail is a directed walk that is
a trail; directed paths, directed cycles and directed tours are similarly defined.

If there is a directed (u, v)-path in D, vertex v is said to be reachable from
vertex u in D. Two vertices are diconnected in D if each is reachable from
the other. As in the case of connection in graphs, diconnection is an
equivalence relation on the vertex set of D. The subdigraphs
D[V.],D[V.],...,D[V.] induced by the resuiting partition
(Vi, Va, ..., Va) of V(D) are called the dicomponents of D. A digraph D is
diconnected if it has exactly one dicomponent. The digraph of figure 10.2a
is not diconnected; it has the three dicomponents shown in figure 10.2b.

The indegree dp(v) of a vertex v in D is the number of arcs with head v;
the outdegree dp(v) of v is the number of arcs with tail v. We denote the
minimum and maximum indegrees and outdegrees in D by 87 (D), A™(D),
8*(D) and A*(D), respectively. A digraph is strict if it has no loops and no
two arcs with the same ends have the same orientation.

Throughout this chapter, D will denote a digraph and G its underlying
graph. This is a useful convention; it allows us, for example, to denote the
vertex set of D by V (since V = V(G)), and the numbers of vertices and arcs
in D by v and &, respectively. Also, as with graphs, we shall drop the letter
D from our notation whenever possible; thus we write A for A(D), d*(v)
for d(v), 8 for 67(D), and so on.

P=—4

(a) _ (b)
Figure 10.2. (a) A digraph D; (b) the three dicomponents of D




Directed Graphs 173

Exercises
10.1.1 How many orientations does a simple graph G have?

10.1.2 Show that } d (v)=¢= Y d*(v)

vEV vEV

10.1.3 Let D be a digraph with no directed cycle.
(a) Show that § =0.

(b) Deduce that there is an ordering vy, V2, ..., v, of V such that,
for 1=i=<w, every arc of D with head v; has its tail in
{‘01, Uz, ..., vi_l}. '

10.1.4 Show that D is diconnected if and only if D is connected and each
block of D is diconnected. ' |

10.1.5 The converse D of D is the digraph obtained from D by reversing
the orientation of each arc.

(a) Show that

() D=D;
(i) di(v) =dp(v); _
(iii) v is reachable from u in D if and only if u is reachable
from v in D.
(b) By using part (ii) of (a), deduce from exercise 10.1.3a that if D
is a digraph with no directed cycle, then §* =0.

10.1.6  Show that if D is strict, t~<n D contains a directed path of length at
least max{6~, §"}. |

10.1.7 Show that if D is strict and max{6~, §*} =k >0, then D contains a
directed cycle of length at least k +1.

10.1.8 Let vy, v;,...,v, be the vertices of a digraph D. The adjacency
matrix of D is the v X v matrix A =[a;] in which a;, is the number
of arcs of D with tail v; and head v;. Show that the (i, j)th entry of
A" is the number of directed (v, v;)-walks of length k in D.

10.1.9 Let D,, D,,..., D, be the dicomponents of D. The condensation D
of D is a directed graph with m vertices w,, wa, . . ., wa; there is an
arc in D with tail w; and head w; if and only if there is an arc in D
with tail in D; and head in D;. Show that the condensation D of D
contains no directed cycle.

10.1.10 Show that G has an orientation D such that |d*(v)—d (v)|=<1 for
all veV, ,

10.2 DIRECTED PATHS

There is no close relationship between the lengths of paths and directed
paths in a digraph. That this is so is clear from the digraph of figure 10.3, which
has no directed path of length greater than one.
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Figure 10.3

Surprisingly, some information about the lengths of directed paths in a
digraph can be obtained by looking at its chromatic number. The following
theorem, due to Roy (1967) and Gallai (1968), makes this precise.

Theorem 10.1 A digraph D contains a directed path of length x —1.

Proof Let A’ be a minimal set of arcs of D such that D'=D—-A’
contains no directed cycle, and let the length of a longest directed path in D’
be k. Now assign colours 1,2,...,k+1 to the vertices of D' by assigning
colour i to vertex v if the length of a longest directed path in D’ with origin
v is i — 1. Denote by V, the set of vertices with colour i. We shall show that
(V1, Va, ..., Visi) is a proper (k +1)-vertex colouring of D.

First, observe that the origin and terminus of any directed path in D’ have
different colours. For let P be a directed (u, v)-path of positive length in D’
and suppose v € Vi. Then there is a directed path Q = (v, vz, .. ., v) in D',
where v, = v. Since D' contains no directed cycle, PQ is a directed path with
origin u and length at least i. Thus ug V..

We can now show that the ends of any arc of D have different colours.
Suppose (u, v)e A(D). If (u, v)e A(D’) then (u, v) is a directed path in D’
and so u and v have different colours. Otherwise, (u,v) € A’. By the
minimality of A’, D'+ (u,v) contains a directed cycle C. C—(u,v) is a
directed (v, u)-path in D’ and hence in this case, too, u and v have different
colours.

Thus (Vi, Va, ..., Vi) is a proper vertex colouring of D. It follows that
x <k +1, and so D has a directed path of length k=x—-1 [

Theorem 10.1 is best possible in that every graph G has an orientation in
which the longest directed path is of length x — 1. Given a proper x-vertex
colouring (Vi, V,, ..., V,) of G, we orient G by converting edge uv to arc
(u,v) if ue€V; and v € V; with i<j. Clearly, no directed path in this
orientation of G can contain more than x vertices, since no two vertices of
the path can have the same colour.

An orientation of a complete graph is called a tournament. The tourna-
ments on four vertices are shown in figure 10.4. Each can be regarded as
indicating the results of games in a round-robin tournament between four
players; for example, the first tournament in figure 10.4 shows that one
player has won all three games and that the other three have each won one.

A directed Hamilton path of D is a directed path that includes every
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Figure 10.4. The tournaments on four vertices

vertex of D. An immediate corollary of theorem 10.1 is that every tourna-
ment has such a path. This was first proved by Rédei (1934).

Corollary 10.1 Every tournament has a directed Hamilton path.
Proof 1If D is a tournament, then x=v 0O

" Another interesting fact about tournaments is that there is always a vertex
from which every other vertex can be reached in at most two steps. We shall
~obtain this as a special case of a theorem of Chvital and Loviasz (1974). An
in-neighbour of a vertex v in D is a vertex u such that (u,v)eA; an
out-neighbour of v is a vertex w such that (v, w)e A. We denote the sets of
in-neighbours and out-neighbours of v in D by No(v) and Np(v), respec-
tively.

Theorem 10.2 A loopless digraph D has an independent set S such that
each vertex of D not in S is reachable from a vertex in S by a directed path
of length at most two.

Proof By induction on v. The theorem holds trivially for v = 1. Assume
that it is true for all digraphs with fewer than v vertices, and let v be an
arbitrary vertex of D. By the induction hypothesis there exists in D'=
D - ({v}UN*(v)) an independent set S’ such that each vertex of D' not in S’
is reachable from a vertex in S’ by a directed path of length at most two. If v
is an out-neighbour of some vertex u of S’, then every vertex of N*(v) is
reachable from u by a directed path of length two. Hence, in this case,
§=S§' satisfies the required property. If, on the other hand, v is not an
out-neighbour of any vertex of §’, then v is joined to no vertex of S’ and the
independent set S =S'U{v} has the required property 0O

Corollary 10.2 A tournament contains a vertex from which every other
vertex is reachable by a directed path of length at most two.

Proof If D is a tournament, then a =1 [
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Exercises

10.2.1 Show that every tournament is either diconnected or can be trans-
formed into a diconnected tournament by the reorientation of just
one arc.

10.2.2* A digraph D is unilateral if, for any two vertices u and v, either v is
reachable from u or u is reachable from v. Show that D is unilateral

, if and only if D has a spanning directed walk.

10.2.3 (a) Let P=(vy, v, ..., ) be a maximal directed path in a tourna-

ment D. Suppose that P is not a directed Hamilton path and let
v be any vertex not on P. Show that, for some i, both (v;, v) and
(v, vi+1) are arcs of D.

(b) Deduce Rédei’s theorem.

10.2.4 Prove corollary 10.2 by considering a vertex of maximum

) outdegree.

10.2.5* (a) Let D be a digraph with x>mn, and let f be a real-valued

function defined on V. Show that D has either a directed path

(Uo, U, . . . , Um) With f(uo) = f(u)=.. .= f(um) or a directed path
(Vo, V1, . . ., V) With f(vo) > f(v1) >. .. > f(vn). ‘

: : (V. Chvatal and J. Komloés)

(b) Deduce that any sequence of mn+1 distinct integers contains

either an increasing subsequence of m terms or a decreasing

subsequence of n terms. (P. Erdos and G. Szekeres)

10.2.6 (a) Using theorem 10.1 and corollary 8.1.2, show that G has an

orientation in which each directed path is of length at most A.
(b) Give a constructive proof of (a).

10.3 DIRECTED CYCLES

Corollary 10.1 tells us that every tournament contains a directed Hamilton
path. Much stronger conclusions can be drawn, however, if the tournament
'is assumed to be diconnected. The following theorem is due to Moon
(1966). If S and T are subsets of V, we denote by (S, T) the set of arcs of D
that have their tails in S and their heads in T.

Theorem 10.3 Each vertex of a diconnected tournament D with v=3 is
contained in a directed k-cycle, 3=k =v.

Proof Let D be a diconnected tournament with v =3, and let u be any
vertex of D. Set S=N*(u) and T=N"(u). We first show that u is in a
directed 3-cycle. Since D is diconnected, neither S nor T can be empty; and,
for the same reason, (S, T) must be nonempty (see figure 10.5). There is
thus some arc (v, w) in D with v€S and w €T, and u is in the directed
3-cycle (u, v, w, u). ' -
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Figure 10.5

The theorem is now proved by induction on k. Suppose that u is in
directed cycles of all lengths between 3 and n, where n < v. We shall show
that u is in a directed (n+ 1)-cycle.

Let C=(vo, v4,..., v, be a directed n-cycle in which v, = v, = u. If there
is a vertex v in V(D)\V(C) which is both the head of an arc with tail in C
and the tail of an arc with head in C, then there are adjacent vertices v; and
vi+1 on C such that both (v;, v) and (v, vi+1) are arcs of D. In this case u is in
the directed (n +1)-cycle (vo, vi, ..., i, U, Viss, . . ., Va).

Otherwise, denote by S the set of vertices in V(D)\V(C) which are heads
of arcs joined to C, and by T the set of vertices in V(D)\V(C) which are
tails of arcs joined to C (see figure 10.6). . ’

As before, since D is diconnected, S, T and (S, T) are all nonempty, and
there is some arc (v, w) in D with v €S and w € T. Hence u is in the
directed (n+ 1)-cycle (vo, v, w, 02, ..., v,) O

A directed Hamilton cycle of D is a directed cycle that includes every
vertex of D. It follows from theorem 10.3 (and was first proved by Camion,
1959) that every diconnected tournament contains such a cycle. The next

Figure 10.6
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theorem extends Dirac’s theorem (4.3) to digraphs. It is a special case of a
theorem due to Ghouila-Houri (1960).

Theorem 10.4 If D is strict and min{6~, §*}=v/2>1, then D contains a
directed Hamilton cycle.

Proof Suppose that D satisfies the hypotheses of the theorem, but does
not contain a directed Hamilton cycle. Denote the length of a longest
directed cycle in D by [, and let C = (v, v2,..., 0, v1) be a directed cycle in
D of length I. We note that |>v/2 (exercise 10.1.7). Let P be a longest
directed path in D — V(C) and suppose that P has origin u, terminus v and
length m (see figure 10.7). Clearly

v=1l+m+1 (10.1)
and, since | >v/2,
m<v/2 (10.2)
Set

S= {l ‘ (Ui-l, u) € A} and T={l | (U, vi) € A}

We first show that S and T are disjoint. Let C;x denote the section of C
with origin v; and terminus v,. If some integer i were in both S and T, D
would contain the directed cycle Cii—i(vi-i, u)P(v, v;) of length I+m+1,
contradicting the choice of C. Thus

SNT=#0 (10.3)

Now, because P is a maximal directed path in D-V(C), N (u)c
V(P)U V(C). But the number of in-neighbours of u in C is precisely |S| and
so dp(u) = ds(u)+|S|. Since do(u)=8"=v/2 and dr(u)=m, |

|S|=v/i2—m (10.4)
A similar argument yields ‘ ‘
|IT|=v/2—m (10.5)

Figure 10.7
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Note that, by (10.2), both S and T are nonempty. Adding (10.4) and
(10.5) and using (10.1), we obtain

IS|+|T|=1-m+1
and therefore, by (10.3),
ISUT|=1-m+1 (10.6)

Since S and T are disjoint and nonempty, there are positive integers i and k
such that i€ S, i+k € T and

i+j¢SUT for 1=j<k (10.7)

where addition is taken modulo [.

From (10.6) and (10.7) we see that k =m. Thus the directed cycle
Civiim1(vie1, u) P (v, vini), which has length [+ m+1—k, is longer than C. This
contradiction establishes the theorem [

Exercises

10.3.1 Show how theorem 4.3 can be deduced from theorem 10.4.

10.3.2 A directed Euler tour of D is a directed tour that traverses each arc
of D exactly once. Show that D contains a directed Euler tour if
and only if D is connected and d*(v)=d (v) for all v € V.

10.3.3 Let D be a digraph such that
i) d*(x)—d " (x)=1=d(y)-d"(y);

(ii) d"(v)=d (v) for wve V\{x y}.
Show, using exercise 10.3.2, that there exist | arc-disjoint directed
(x, y)-paths in D.

10.3.4* Show that a diconnected digraph which contains an odd cycle, also
contains a directed odd cycle.

10.3.5 A nontrivial digraph D is k-arc-connected if, for every nonempty
proper subset S of V, |(S, §)|=k. Show that a nontrivial digraph is
diconnected if and only if it is 1-arc-connected,

10.3.6 The associated digraph D(G) of a graph G is the digraph obtained
when each edge e of G is replaced by two oppositely oriented arcs
with the same ends as e. Show that

(a) there is a one-one correspondence between paths in G and
directed paths in D(G); .
(b) D(G) is k-arc-connected if and only if G is k-edge-connected.

APPLICATIONS

10.4 A JOB SEQUENCING PROBLEM

A number of jobs Ji, J,, ..., J., have to be processed on one machine; for
example, each J; might be an order of bottles or jars in a glass factory. After
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each job, the machine must be adjusted to fit the requlrements of the next
job. If the time of adaptation from job Ji to job J; is &, find a sequencing
of the jobs that minimises the total machine adjustment time.
This problem is clearly related to the travelling salesman problem, and no
efficient method for its solution is known. It is therefore desirable to have a
‘method for obtaining a reasonably good (but not necessarily optimal)
solution. Our method makes use of Rédei’s theorem (corollary 10.1).

"Step 1 Construct a digraph' D with vertices vy, v, . . . , Vs, such that (v, v;) €
A if and only if t;=t;. By definition, D contains a spanmng tournament

Step 2 Find a directed Hamilton path (v, v, ..., ) of D (exerc1se }
10.4.1), and sequence the jobs accordingly. | :

Since step 1 discards the largef half of the adjustment matrix [t;], it is a
. reasonable supposition that this method, in general, produces a fairly good
job sequence Note, however, that when the ad]ustment matrix is symmetric,

~ the method is of no help whatsoever.

“As an example, suppose that there are six ]obs Ji, J2, Js, Ja, Js and J6 and
that the ad]ustment matrix is

PR A A A A

Lo 5 3 4 2 1
L1 0 1 2 3 2
b2 5 0 1 2 3
L|1 4 4 0 1 2
J5|1 3 4 5 0 5
Jo|4 4 2 3 1 0

The sequence Ji—=T—>Ii—>J— ]s — J, requires 13 units in adjustment
time. To find a better sequence, construct the digraph D as in step 1 (figure

10.8). |
* (v1, Vs, U3, Vay Us, v,) is a directed Hamilton path of D, and yields the sequence |

Jl._'> ]6,_> 13—>J4—>15—>12

which requires only eight units of adjustment time. Note that the reverse
sequence ' :

.Iz-‘> Js-—‘) .I4'—> J3—> J6"—) .]1
is far worse, requiring 19 units of adjustment time.

Exerczses

10.4.1 -With the aid of exercise 10.2.3, describe a good algonthm for
' finding a directed Hamilton path in a tournament.
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Va

Figure 10.8

10.4.2  Show, by means of an example, that a sequencing of jobs obtained
by the above method may be far from optimal.

10.5 DESIGNING AN EFFICIENT COMPUTER DRUM

The position of a rotating drum is to be recognised by means of binary
signals produced at a number of electrical contacts at the surface of the
drum. The surface is divided into 2" sections, each consisting of either
insulating or conducting material. An insulated section gives signal 0 (no
current), whereas a conducting section gives signal 1 (current). For example,
the position of the drum in figure 10.9 gives a reading 0010 at the four

> Contacts .

Figure 10.9. A computer drum
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contacts. If the drum were rotated clockwise one section, the reading would

‘be 1001. Thus these two positions can be distinguished, since they give
different readings. However, a further rotation of two sections would result
in another position with reading 0010, and therefore this latter position is
indistinguishable from the initial one.

We wish to design the drum surface in such a way that the 2" dlﬁerent
positions of the drum can be distinguished by k contacts placed consecu-

“tively around part of the drum, and we would like this number k to be as
small as possible. How can this be accomplished?

First note that k contacts yield a k-digit binary number, and there are 2*
such numbers. Therefore, if all 2" positions are to give different readings, we
must have 2“=2", that is, k =n. We shall show that the surface of the drum
can be designed in such a way that n contacts suffice to distinguish all 2"
positions.

We define a digraph D, as follows the vertices of D, are the (n— 1) -digit
- binary numbers pip:...p.-1 With pi=0 or 1. There is an arc with tail
pip2. .. pa-1 and head qlqz . qn-1 if and only if pi,,=¢qi for I=i=n-2;in
other words, all arcs are of the form (pip2... Pa-1, P2Ps- . . P=). In addition,
each arc (pip2. . . Pa-1, P2P3 . - - Ps) Of D, is assigned the label PiPz2 - - .pa. Dy is
shown in figure 10.10.

Clearly, D, is connected and each vertex of D, has indegree two and
outdegree two. Therefore (exercise 10.3.2) D, has a directed Euler tour.
This directed Euler tour, regarded as a sequence of arcs of D,, yields a
binary sequence of length 2" suitable for the design of the drum: surface.

For example, the digraph D, of figure 10.10 has a directed Euler tour
(@i, as, . . ., aie), giving the 16-digit binary sequence 0000111100101101.
(Just read off the first digits of the labels of the a;.) A drum constructed from
this sequence is shown in figure 10.11. ,

- This application of directed Euler tours is due to Good (1946).

Exercises

10.5.1. Find a circular sequence of seven 0’s and seven 1’s such that all
4-digit binary numbers except 0000 and 1111 appear as blocks of
the sequence. .

10.5.2 Let S be an alphabet of n letters; ‘Show that there is a circular
sequence containing n® copies of each letter such that every four-
letter ‘word’ formed from letters of S appears as a block of the
sequence. '

10.6 MAKING A ROAD SYSTEM ONE-WAY

Given a road system, how can it be converted to one-way operatnon so that
traffic may flow as smoothly as possible?
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Figure 10.11

Arc

Label
0000
0001
0011
0111

1111

1110

1100

1001
0010
0101

1011
0110

1101

1010
0100

1000

183




184 Graph Theory with Applications

This is clearly a problem on orientations of graphs. Consider, for example,
the two graphs, representing road networks, in figures 10.12a and 10.12b.
No matter how G, may be oriented, the resulting orientation cannot be
diconnected—traffic will not be able to flow freely through the system. The
trouble is that G, has a cut edge. On the other hand G; has the ‘balanced’
orientation D, (figure 10.12¢), in which each vertex is reachable from each

other vertex in at most two steps; in particular D, is diconnected.

Certainly, a necessary condition for G to have a diconnected orientation
is that G be 2-edge-connected. Robbins (1939) showed that this condition is
also sufficient.

Theorem 10.5 If G is 2-edge-connected, then G has a diconnected orien-
tation. '

Proof Let G be 2-edge-connected. Then G contains a cycle G,. We
define inductively a sequence G, G, ... of connected subgraphs of G as
follows: if G; (i=1,2,...) is not a spanning subgraph of G, let v: be a vertex
of G not in G.. Then (exercise 3.2.1) there exist edge-disjoint paths .P; and
Q; from v; to Gi. Define

Gii=GUP,UQ

Since v(Gi.:) > v(G;), this sequence must terminate in a spanning subgraph
G, of G. )

We now orient G, by orienting G, as a directed cycle, each path P; as a
directed path with origin v;, and each path Q; as a directed path with
terminus v;. Clearly every G, and hence in particular G,, is thereby given a
diconnected orientation. Since G, is a spanning subgraph of G it follows that
G, too, has a diconnected orientation 0

Nash-Williams (1960) has generalised Robbins’ theorem by showing that
every 2k-edge-connected graph G has a k-arc-connected orientation. Al-
though the proof of this theorem is difficult, the special case when G has an
Euler trail admits of a simple proof.

(a) ' (b) (c)

Figure 10.12. (a) G,; (b) G3; (c) D




Directed Graphs 185

Theorem 10.6 Let G be a 2k¥edge-connected graph with an Euler trail.
Then G has a k-arc-connected orientation.

Proof Let voe v ... e.v. be an Euler trail of G. Orient G by converting
the edge e; with ends vi-; and v; to an arc a; with tail v,_, and head v;, for
l1=i=<e. Now let [S, S] be an m-edge cut of G. The number of times the
directed trail (vo, ai, vy, ..., a.,v.) crosses from S to S differs from the
number of times it crosses from S to S by at most one. Since it includes all
arcs of D, both (S, S) and (S, S) must contain at least [m/2] arcs. The result
follows 0

Exercises -

10.6.1 Show, by considering the Petersen graph, that the following state-
ment is false: every graph G has an orientation in which, for every

S c V, the cardinalities of (S, S) and (S, S) differ by at most one.

10.6.2 (a) Show that Nash-Williams’ theorem is equivalent to the follow-
ing statement: if every bond of G has at least 2k edges, then
there is an orientation of G in which every bond has at least k
arcs in each direction.

(b) Show, by considering the Grotzsch graph (figure 8.2), that the
following analogue of Nash-Williams’ theorem is false: if every
cycle of G has at least 2k edges, then there is an orientation of
G in which every cycle has at least k arcs in each direction.

10.7 RANKING THE PARTICIPANTS IN A TOURNAMENT

A number of players each play one another in a tennis tournament. Given
the outcomes of the games, how should the participants be ranked?

Consider, for example, the tournament of figure 10.13: This represents
the result of a tournament between six players; we see that player 1 beat
players 2, 4, 5 and 6 and lost to player 3, and so on.

One possible approach to ranking the participants would be to find a
directed Hamilton path in the tournament (such a path exists by virtue of
corollary 10.1), and then rank according to the position on the path. For
instance, the directed Hamilton path (3, 1, 2, 4, 5, 6) would declare player 3
the winner, player 1 runner-up, and so on. This method of ranking,
however, does not bear further examination, since a tournament generally
has many directed Hamilton paths; our example has (1, 2, 4, 5, 6, 3), (1, 4,
6, 3, 2, 5) and several others.

Another approach would be to compute the scores (numbers of games
won by each player) and compare them. If we do this we obtain the score
vector

$1i=(4,3,3,2,2,1)
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Figure 10.13

The drawback here is that this score vector does not distinguish between
players 2 and 3 even though player 3 beat players with higher scores than
did player 2. We are thus led to the second-level score vector

S = (89 Sa 93 3.9 4a 3)

in which each player’s second-level score is the sum of the scores of the

players he beat. Player 3 now ranks first. Continuing thlS procedure we
obtain further vectors

s;=(15, 10, 16, 7, 12, 9)

s.= (38, 28, 32, 21, 25, 16)

ss= (90, 62, 87, 41, 48, 32)

se= (183, 121, 193, 80, 119, 87)

The ranking of the players is seen to fluctuate a little, player 3 vying with
player 1 for first place. We shall show that this procedure always converges
to a fixed ranking when the tournament in question is diconnected and has
at least four vertices. This will then lead to a method of rankmg the players
in any tournament. ’

In a diconnected dngraph D, the Iength of a shortest directed (u, v)-path is
denoted by do(u, v) and is called the distance from u to v; the directed
diameter of D is the maximum distance from any one vertex of D to any
other.

Theorem 10.7 Let D be a diconnected teurnameht with v =35, and let A be
the adjacency matrix of D. Then A***>0 (every entry positive), where d is
the directed dlameter of D.
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Proof The (i, j)th entry of A" is precisely the number of directed (vi, v;)-
walks of length k in D (exercise 10.1.8). We must therefore show that, for
any two vertices v; and v; (possibly identical), there is a directed (v;, v;)-walk
of length d +3.

Let di;= d(vi, v;}). Then 0=< di,-sd =v—1 and therefore
3=d—-d;+3=v+2

If d —d;+3=v then, by theorem 10.3, there is a directed (d — d;;+ 3)-cycle
C containing v;. A directed (v;, v;))-path P of length d;; followed by the
directed cycle C together form a directed (v;, v;)-walk of length d+3, as
desired.

There are two special cases. If d—d;+3=v+1, then P followed by a
directed (v —2)-cycle through v; followed by a directed 3-cycle through v;
constitute a directed (v;, v;)-walk of length d + 3 (the (v — 2)-cycle exists since
v=35); and if d—d;+3=v+2, then P followed by a directed (v —1)-cycle
through v; followed by a directed 3-cycle through v; constitute such a
walk [

A real matrix R is called primitive if R*>0 for some k.

Corollary 10.7 The adjacency matrix A of a tournament D is primitive if
and only if D is diconnected and v =4.

Proof If D is not diconnected, then there are vertices v; and v; in D such
that -v; is not reachable from v;.. Thus there is no directed (v;, v;)-walk in D.
It follows that the (i, j)th entry of A* is zero for all k, and hence A is not
primitive. :

Conversely, suppose that D is diconnected. If v=5 then, by theorem
10.7, A**>0 and so A is primitive. There is just one diconnected tourna-
ment on three vertices (figure 10.14a), and just one diconnected tournament
on four vertices (figure 10.14b). It is readily checked that the adjacency

-l -t
(a) , (b)
Figure 10.14 |
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matrix of the 3-vertex tournament is not primitive, and it can be shown that
the ninth power of the adjacency matrix of the 4-vertex tournament has all
entries positive [

Returning now to the score vectors, we see that the ith-level score vector
in a tournament D is given by

S = AlJ

where A is the adjacency matrix of D, and J is a column vector of 1’s. If the
matrix A is primitive then, by the Perron-Frobenius theorem (see
Gantmacher, 1960), the eigenvalue of A with largest absolute value is a real
positive number r and, furthermore,

lim(%)ll =S$

where s is a positive eigenvector of A corresponding to r. Therefore, by
corollary 10.7, if D is a diconnected tournament on at least four vertices,
the normalised vector § (with entries summing to one) can be taken as the
vector of relative strengths of the players in D. In the example of figure
110.13, we find that (approximately)

r=2.232 and §=(.238,.164,.231,.113,.150, .104)

Thus the ranking of the players given by this method is 1, 3, 2, 5, 4, 6.

If the tournament is not diconnected, then (exercises 10.1.9 and 10.1.3b)
- its dicomponents can be linearly ordered so that the ordering preserves
dominance. The participants in a round-robin tournament can now be
ranked according to the following procedure.

Step 1 In each dicomponent on four or more vertices, rank the players

using the eigenvector §; in a dicomponent on three vertices rank all three
‘players equal.

Step 2 Rank the dicomponents in their dominance-preserving linear order

D,, D,, ..., Dn; that is, if i <j then every arc with one end in D; and one
end in D; has its head in D;.

This method of ranking is due to Wei (1952) and Kendall (1955). For
other ranking procedures, see Moon and Pullman (1970).

Exercises

10.7.1 Apply the method of ranking described in section 10.7 to

(a) the four tournaments shown in figure 10.4;
(b) the tournament with adjacency matrix
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A B C D E F G H I 1J
Ajo 1 1 1 1 1 0 O 1 1
B10 0 1 0 0 1 O O O O
ci0o 0 0 0 0 0 O O O O
pfo 1 1 o0 1 1 0 0 1 O
Ej0O 1 1 0 O O O 0 0 O
F|I0 0 1 0 1 0 O 0 0 O
Gj1 1 1 1 1 1 O O 1 O
H{1 1 1 1t 1 1 1 O 1 1
rjo 1.1 0 1 0 O O O O
Jfo 1.1 1 1 1 1 O 1 O

10.7.2 An alternative method of ranking is to consider ‘loss vectors’
instead of score vectors.

(a) Show that this amounts to ranking the converse tournament
and then reversing the ranking so found.

(b) By considering the diconnected tournament on four vertices,
show that the two methods of ranking do not necessarily yield
the same result.
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