12 The Cycle Space and
Bond Space

12.1 CIRCULATIONS AND POTENTIAL DIFFERENCES

Let D be a digraph. A real-valued function f on A is called a circulation in
D if it satisfies the conservation condition at each vertex:

ff(v)=f"(v) forall veV (12.1)

If we think of D as an electrical network, then such a function f represents a
- circulation of currents in D. Figure 12.1 shows a circulation in a digraph.

If f and g are any two circulations and r is any real number, then it is easy
to verify that both f+g and rf are also circulations. Thus the set of all
circulations in D is a vector space. We denote this space by €. In what
follows, we shall find it convenient to identify a subset S of A with D[S],
the subdigraph of D induced by S.

There are certain circulations of special interest. These are associated with
cycles in D. Let C be a cycle in D with an assigned orientation and let C”
denote the set of arcs of C whose direction agrees with this orientation. We
associate with C the function fc defined by

1 if aeC?
fel@)=3-1 if aeC\C*
0 if agC

Clearly, fc satisfies (12.1) and hence is a circulation. Figure 12.2 depicts a
circulation associated with a cycle. |

We shall see later on that each circulation is a linear combination of the
circulations associated with cycles. For this reason we refer to € as the cycle
space of D.

We now turn our attention to a related class of functions. Given a
function p on the vertex set V of D, we define the function dp on the arc set
A by the rule that, if an arc a has tail x and head y, then

dp(a) = p(x) —p(y) (12.2)

If D is thought of as an electrical network with potential p(v) at v, then, by
(12.2), 8p represents the potential difference along the wires of the network.
For this reason a function g on A is called a potential difference in D if
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Figure 12.1. A circulation

g = dp for some function p on V. Figure 12.3 shows a digraph with an

assignment of potentials to its vertices and the corresponding potential
difference.

As with circulations, the set 3B of all potential differences in D is closed
under addition and scalar multiplication and, hence, is a vector space.
Analogous to the function fc associatec_i with a cycle C, there is a function
gs associated with a bond B. Let B = }[S, S]be a bond of D. We define gz by
1 if ae(S,S)
ge(a)=<4—-1 if ae(S,S)
0 if a¢B

It can be verified that gz = 8p where

©) {1 if veS
V)= _
P 0 if veS

- Figure 12.4 depicts the potential difference associated with a bond.

We shall see that each potential difference is a linear combination of
potential differences associated with bonds. For this reason we refer to @ as
the bond space of D.

In studying the properties of the two vector spaces 8 and €, we shall find

1
Figure 12.2
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Figure 12.3. A potential difference

“it convenient to regard a function on A as a row vector whose coordinates
are labelled with the elements of A. The relationship between #B and € is
best seen by introducing the incidence matrix of D. With each vertex v of D
we associate the function m, on A defined by

1 if aisalink and v is the tail of a
mJa)=4-1 if ais alink and v is the head of a

0 otherwise

The incidence matrix of D is the matrix M whose rows are the functlons m,.
Figure 12 5 shows a digraph and its incidence matrix.

Theorem 12.1 Let M be the incidence matrix of a digraph D. Then 3 is
the row space of M and € is its orthogonal complement.

Proof Let 8= dp be a potential difference in D. It follows from (12 2)
that

g(a)= ) p(v)mya) forall acA
vEV
Thus g is a linear combination of the rows of M. Conversely, any linear

combination of the rows of M is a potential difference. Hence 3 is the row
space of M.

Figure 12.4
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Figure 12.5. (a) D, (b) the incidence matrix of D

Now let f be a function on A. The condition (12.1) for f to be a
circulation can be rewritten as
Y. mJa)f(a)=0 forall veV
aEA

This implies that f is a circulation if and only if it is orthogonal to each row
of M. Hence € is the orthogonal complement of 3 [

The support of a function f on A is the set of elements of A at which the
value of f is nonzero. We denote the support of f by ||f]|.

Lemma 12.2.1 If f is a nonzero circulation, then ||f|| contains a cycle.

Proof This follows immediately, since ||f|| clearly cannot contain a vertex
of degree one 0 |

Lemma 12.2.2 1If g is a nonzero potential difference, then ||g|| contains a
bond.

Proof Let g =38p be a nonzero potential difference in D. Choose a vertex
u € V which is incident with an arc of ||g|| and set

U={ve V|p(v) = p(u)}

Clearly, ||g||2[U, U] since g(a) #0 for all a €[U, U]. But, by the choice of
u, [U, U] is nonempty. Thus ||g|| contains a bond 0O

A matrix B is called a basis matrix of & if the rows of B form a basis for
B; a basis matrix of 4 is similarly defined. We shall find the following
notation convenient. If R is a matrix whose columns are labelled with the
elements of A, and if S< A, we shall denote by R|S the submatrix of R
consisting of those columns of R labelled with elements in S. If R has a
single row, our notation is the same as the usual notation for the restriction
of a function to a subset of its domain.
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 Theorem 12.2 Let B and C be basis matrices of B and €, respectively.
Then, for any Sc A

(i) the columns of B| S are linearly independent if and only if S is acyclic,
and

(i) the columns of C| S are linearly independent if and only if S contains no
bond.

Proof Denote the column of B corresponding to arc a by B(a). The
columns of B | S are linearly dependent if and only if there exists a function f
~on A such that ,

f(a)#0 forsome a€$S

f(a)=0 forall ag$S

and
| Y, f(a)B(a)=0
aEA

We conclude that the columns of B| S are linearly dependent if and only if
there exists a nonzero circulation f such that ||f| = S. Now if there is such an
f then, by lemma 12.2.1, S contains a cycle. On the other hand, if S contains
a cycle C, then fc is a nonzero circulation with ||fd|= C < S. It follows that
the columns of B|S are linearly independent if and only if S is acyclic. A
similar argument using lemma 12.2.2 yields a proof of (i) U

Corollary 12.2 The dimensions of @ and € are given by ,
dmB =v-ow | (12.3)
‘ | dmé€=¢-v+ow (12.4)
Proof Consider a basis matrix B of . By theorem 12.2
rank B = max{|S|| S< A, S acyclic} |

The above maximum is attained when S is a maximal forest of D, and is
therefore (exercise 2.2.4) equal to v~ w. Since dim % =rank B, this estab-

lishes (12.3). Now (12.4) follows, since € is the orthogonal complement of
3B 0O

Let T be a maximal forest of D. Associated with T is a special basis
matrix of €. If a is an arc of T, then T+ a contains a unique cycle. Let C.
denote this cycle and let f, denote the circulation corresponding to C,,
defined so that f.(a)=1. The (¢ —v+ w)x e matrix C whose rows are f,,
ae T, is a basis matrix of 4. This follows from the_fact that each row is a
circulation and that rank C=¢ —v+w (because C| T is an identity matrix).
We refer to C as the basis matrix of € corresponding to T. Figure 12.6b

shows the basis matrix of € corresponding to the tree mdlcated in figure
12.6a.
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(b) (c)
Figure 12.6

Analogously, if a is an arc of T, then T+a contains a unique bond (see
theorem 2.6). Let B, denote this bond and g. the potential difference
corresponding to B,, defined so that g(a)=1. The (v—w)Xe matrix B
whose rows are g, ae T, is a basis matrix of 9, called the basis matrix of %
corresponding to T. Figure 12.6¢ gives an example of such a matrix.

The relationship between cycles and bonds that has become apparent
from the foregoing discussion finds its proper setting in the theory of
matroids. The interested reader is referred to Tutte (1971).

Exercises

12.1.1  (a) In figure (i) below is indicated a function on a spanning tree and
in figure (ii) a function on the complement of the tree. Extend

the function in (i) to a potential difference and the function in
(i) to a circulation.

(i) : (i)

(b) Let f be a circulation and g a potential difference in D, and let
T be a spanning tree of D. Show that f is uniquely determined
by fIT and g by g| T .
12.1.2 (a) Let B and C be basis matrices of B and € and let T be any
spanning tree of D. Show that B is uniquely determined byB|T
and C is uniquely determined by C|T.
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(b) Let T and T, be two fixed spanning trees of D. Let B and B,
denote the basis matrices of %, and C and C; the basis matrices
of €, corresponding to the trees T and T.. Show that B=
(B | Tl)Bl and C= (C l T])Cl. '

12.1.3 Let K denote the matrix obtained from the incidence matrix M of a
connected digraph D by deleting any one of its rows. Show that K

“is a basis matrix of %.

12.1.4 Show that if G is a plane graph then B(G)=%(G™) and ‘6((})’“
B(G™).

12.1.5 A circulation of D over a field F is a function f: A — F which
satisfies (12.1) in F; a potential difference of D over F is similarly
defined. The vector spaces of these potential differences and circu-
lations are denoted by B¢ and €. Show that theorem 12.2 remains
valid if B and € are replaced by B and €, respectively.

12.2 THE NUMBER OF SPANNING TREES

In this section we shall derive a formula for the number of spanning trees in
a graph.

Let G be a connected graph and let T be a fixed spanning tree of G.
Consider an arbitrary orientation D of G and let B be the basis matrix of &
corresponding to T. It follows from theorem 12.2 that if S is a subset of A
with |S| = v — 1 then the square submatrix B | S is nonsingular if and only if S
is a spanning tree of G. Thus the number of spanning trees of G is equal to
the number of nonsingular submatrices of B of order v—1.

A matrix is said to be unimodular if all its full square submatrices have

determinants 0, +1 or —1. The proof of the following theorem is due to
Tutte (1965b).

Theorem 12.3 The basis matrix B is ynimodular.

Proof Let P be a full submatrix of B (one of order v—1). Suppose
ithat P=B|T,. We may assume that T, is a spanning tree of D since, .
otherwise, det P=0 by theorem 12.2. Let B, denote the basns matrix of B
corresponding to T1 Then (exercise 12.1.2b)

(B|T\)B,=
Restricting both sides to T, we obtain
~ B|T)B:|D=B|T
Noting that B | T is an identity matrix, and taking determinants, we get

det(B | T,)det(B, | T) =1 (12.5)
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Both determinants in (12.5), being determinants of integer matrices; are
themselves integers. It follows that det(B| Ty)=+1 [

Theorem 12.4 1(G)=detBB’ | (12.6)

Proof Using the formula for the determinant of the product of two
rectangular matrices (see Hadley, 1961), we obtain

det BB' = SEA (det(B| S))* (12.7)
ISl=v—1

Now, by theorem 12.2, the number of nonzero terms in (12.7) is equal to
7(G). But, by theorem 12.3, each such term has value 1 0O

One can similarly show that if C is a basis matrix of € corresponding to a
tree, then C is unimodular and

7(G) = det CC' (12.8)

| B
Corollary 12.4 +(G)= :tdet[--]
C

Proof By (12.6) and (12.8)

BB': 0
(7(G))* = det BB' det CC' = det[—-----f- ----- ] |

Since B and € are orthogonal, BC' = CB'=0. Thus

‘ BB’ | BC BB ;i C
(1(G)) = det]----F----- =det([---] . I)
. LCB' i CC' ] cl

‘B | TR
= det ---]det[B’ i C)= (det[.-.])
 C . C

The corollary follows on taking square roots 0O

Since theorem 12.2 is valid for all basis matrices of %, (12.6) clearly holds
for any such matrix B that is unimodular. In particular, a matrix K obtained

by deleting any one row of the incidence matrix M is unimodular (exercise
12.2.1a). Thus

+(G) = det KK’

This expression for the number of spanning trees in a graph is implicit in the
work of Kirchhoff (1847), and is known as the matrix-tree theorem.
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Exercises
12.2.1 Show that

(a)* a matrix K obtained from M by deleting any one row is
| y .
unimodular;

_ K
(b) 7(G)==xdet ---J
C

12.2.2 The conductance matrix C=[c;] of a loopless graph G is the vXxv
- matrix in which

ca=), a; forall i
i .
ci=—a; forall i and | with i#j
where A =[a;] is the adjacency matrix of G. Show that
(a) C=MM', where M is the incidence matrix of any orientation of
G; _ ‘
(b) all cofactors of C are equal to 7(G).

12.2.3 A matrix is totally unimodular if all square submatrices have
determinants 0, +1 or —1. Show that

(a) any basis matrix of B or € corresponding to a tree is totally
unimodular; - N
(b) the incidence matrix of a simple graph G is totally unimodular
if and only if G is bipartite. |
12.2.4 Let F be a field of characteristic p. Show that

(a) if B and C are basis matrices of B¢ and 4y, respectively,

1B
corresponding to a tree, then det[—--]= + 7(G)(mod p);
. C ' | |
(b) dim(B:N %) >0 if and only if p | 7(G). (H. Shank)

APPLICATIONS

12.3 PERFECT SQUARES

A squared rectangle is a rectangle dissected into at least two (but a finite
number of) squares. If no two of the squares in the dissection have the same
size, then the squared rectangle is perfect. The order of a squared rectangle is
the number of squares into which it is dissected. Figure 12.7 shows a perfect
rectangle of order 9. A squared rectangle is simple if it does not contain a
rectangle which is itself squared. Clearly, every squared rectangle is com-
posed of ones that are simple.




The Cycle Space and Bond Space 221

15
2s)

14
10 9

Figure 12.7. A perfect rectangle

For a long time no perfect squares were known, and it was conjectured
that such squares did not exist. Sprague (1939) was the first to publish an
example of a perfect square. About the same time, Brooks et al. (1940)
developed systematic methods for their construction by using the theory of
graphs. In this section, we shall present a brief discussion of their methods.

We first show how a digraph can be associated with a given squared
rectangle R. The union of the horizontal sides of the constituent squares in
the dissection consists of horizontal line segments; each such segment is
called a horizontal dissector of R. In figure 12.8a, the horizontal dissectors
are indicated by solid lines. We can now define the digraph D associated
with R. To each horizontal dissector of R there corresponds a vertex of D;
two vertices v; and v; of D are joined by an arc (v;, v;) if and only if their
corresponding horizontal dissectors H, and H; flank some square of the
dissection and H; lies above H, in R. Figure 12.8b shows the digraph
associated with the squared rectangle in figure 12.8a. The vertices corre-
sponding to the upper and lower sides of R are called the poles of D and
are denoted by x and vy, respectively.
~ We now assign to each vertex v of D a potential p(v) equal to the height
(above the lower side of R) of the corresponding horizontal dissector. If we
regard D as an electrical network in which each wire has unit resistance, the
potential difference g =68p determines a flow of currents from x to y (see
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Figure 12.8

28
33

16
(a)

36

25




The Cycle Space and Bond Space 223

figure 12.8c). These currents satisfy Kirchhoff’s current law: the total
amount of current entering a vertex ve V\{x, y} is equal to the total amount
leaving it. For example, the total amount entering u in figure 12.8¢ is
25+9+2=36, and the same amount leaves this vertex.

Let D be the digraph corresponding to a squared rectangle R, with poles
x and y, and let G be the underlying graph of D. Then the graph G + xy is
called the horizontal graph of R. Brooks et al. (1940) showed that the
horizontal graph of any simple squared rectangle is a 3-connected planar
graph (their definition of connectivity differs slightly from the one used in
this book). They also showed that, conversely, if H is a 3-connected planar
graph and xy € E(H), then any flow of currents from x to y in H-—xy
determines a squared rectangle. Thus one possible way of searching for
perfect rectangles of order n is to

(i) list all 3-connected planar graphs with n+ 1 edges, and
(i) for each such graph H and each edge xy of H, determine a flow of
currents from x to y in H —xy. '

Tutte (1961) showed that every 3-connected planar graph can be derived
from a wheel by a sequence of operations involving face subdivisions and
the taking of duals. Bouwkamp, Duijvestijn and Medema (1960) then
applied Tutte’s theorem to list all 3-connected planar graphs with at most 16
edges. Here we shall see how the theory developed in sections 12.1 and 12.2
can be used in computing a flow of currents from x to y in a digraph D.

Let g(a) denote the current in arc a of D, and suppose that the total
current leaving x is . Then '

2. m(a)g(a)=¢ (12.9)

aEA

Kirchhoff’s current law can be formulated as

2 mJfa)g(a)=0 forall veV\{x,y} (12.10)

Now, since g is a potential difference, it is orthogonal to every circulation.
Therefore,

Cg'=0 (12.11)

where C is a basis matrix of € corresponding to a tree T of D and g’ is the
transpose of the vector g. Equations (12.9)—(12.1 1) together give the matrix

equation
K] o
[—--]g'=[-":| . (12.12)
C 0

where K is the matrix obtained from M by deleting the row m,. This
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y .
(a) (b)
Figure 12.9

C
+7(G) (exercise 12.2.1b), we obtain a solution in integers if o = 7(G). Thus,
in computing the currents, it is convenient to take the total current leaving x
to be equal to the number of spanning trees of D.

We illustrate the above procedure with an example. Consider the 3-
connected planar graph in figure 12.9a. On deleting the edge xy and
orienting each edge we obtain the digraph D- of figure 12.9b.

It can be checked that the number of spanning trees in D is 66. By
considering the tree T ={a, a, as, a,, as} we obtain the following nine
~ equations, as in (12.12), (with g(a:) written simply as gi).

. K
equation can be solved using Cramér’s rule. Note that, since det[—--}=

g1t g . | = 66
g1 —ga—g9=0
82— 83— 84 =0
g3 — 85— 86 +g9=0

g+ T8 8 =

83 84 + 86 =

— 83t 84— 8s + 87 -

81— 82783 —8s - T8 =

g1— 82783 +g9=0
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The solution to this system of equations is given by
(gla 82, 83, '84, gS’ g6’ 87, g8a 89) = (36, 30’ 14: 16’ 20: 2: 18’ 289 8)

The squared rectangle based on this flow of currents is just the one in figure
12.7 with all dimensions doubled.

Figure 12.10 shows a simple perfect square of order 25. It was discovered
by Wilson (1967), and is the smallest (least order) such square known.

Further results on perfect squares can be found in the survey article by
Tutte (1965a).

Exercises

12.3.1 Show that the constituent squares in a squared rectangle have
commensurable sides. .

12.3.2  The vertical graph of a squared rectangle R is the horizontal graph
of the squared rectangle obtained by rotating R through a right
angle. If no point of R is the corner of four constituent squares,
show that the horizontal and vertical graphs of R are duals.

12.3.3* A perfect cube is a cube dissected into a finite number of smaller
cubes, no two of the same size. Show that there exists no perfect

cube. : '
135 157
21
22
13
62 179
25| .
149 88
87
100
93
143 167
33
27|16 67
50 IFe 34

Figure 12.10. A simple perfect square of order 25
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