2 Trees
2.1 TREES

An acyclic graph is one that contains no cycles. A tree is a connected acyclic
graph. The trees on six vertices are shown in figure 2.1.

Theorem 2.1 In a tree, any two vertices are connected by a unique path.

Proof By contradiction. Let G be a tree, and assume that there are two
distinct (u, v)-paths P, and P, in G. Since P, # P,, there is an edge e = xy of
P, that is not an edge of P,. Clearly the graph (P, U P,)—e is connected. It
therefore contains an (x, y)-path P. But then P+e is a cycle in the acyclic
graph G, a contradiction [

The converse of this theorem holds for graphs without loops (exerc1se
2.1.1).

Observe that all the trees on six vertices (ﬁgure 2. 1) have ﬁve edges In
general we have:

Theorem 2.2 1If G is a tree, then e =v—1.

Proof By induction on v. When v=1, G=K, and e =0=v-1.

Figure 2.1. The trees on six vertices

26 - Graph Theory with Applications

Suppose the theorem true for all trees on fewer than v vertices, and let G
be a tree on v =2 vertices. Let uv € E. Then G —uv contains no (u, v)-path,
since uv is the unique (u, v)-path in G. Thus G —uv is disconnected and so
(exercise 1,6.8a) w(G —uv)=2. The components G; and G, of G —uv,
being acyclic, are trees. Moreover, each has fewer than v vertices. Therefore,
by the induction hypothesis

S(Gi)=V(Gi)—1 VfOI' i=1,2
Thus ' | ,
e(G)=¢e(G)+e(G)+1=v(G)+v(G)-1=v(G)-1 [

Corollary 2.2 Every nontrivial tree has at least two vertices of degree one.
Proof ‘Let G be a nontrivial tree. Then
d(v)=1 forall veV
Also, by theorems 1.1 and 2.2, we have

Z’Vd(v) =2e=2v-2

It now follows that d(v) =1 for at least two vertices v 0

Another, perhaps more illuminating, way of proving corollary 2.2 is to
show that the origin and terminus of a longest path in a nontrivial tree both
~ have degree one (see exercise 2.1.2).

Exercises

2.1.1 Show that if any two vertices of a loopless graph G are connected
- by a unique path, then G is a tree. - |

2.1.2 Prove corollary 2.2 by showing that the origin and terminus of a
longest path in a nontrivial tree both have degree one.

2.1.3 Prove corollary 2.2 by using exercise 1.7.2.

2.14 Show that every tree with exactly two vertices of degree one is a
path.

2.1.5 Let G be a graph with v—1 edges. Show that the following three
statements are equivalent:

(a) G is connected;
~ (b) G is acyclic;
(c) G is a tree.
2.1.6 Show that if G is a tree with A=k, then G has at least k vertices of

degree one.
2.1.7 An acyclic graph is also called a forest. Show that

(a) each component of a forest is a tree;
(b) G is a forest if and only if ¢ =v— .

Trees 27

2.1.8 A centre of G is a vertex u such that max d(u, v) is as small as
vEV

possible. Show that a tree has either exactly one centre or two,
adjacent, centres. .
2.1.9 Show that if G is a forest with exactly 2k vertices of odd degree,
then there are k edge-disjoint paths P,, P,,..., P, in G such that
2.1.10* Show that a sequence (d, d., . . ., d.) of positive integers is a degree
sequence of a tree if and only if), di=2(v—1).

1=1

2.1.11 Let T be an arbitrary tree on k+1 vertices. Show that if G is
simple and 6§ =k then G has a subgraph isomorphic to T.

2.1.12 A saturated hydrocarbon is a molecule C..H, in which every carbon
atom has four bonds, every hydrogen atom has one bond, and no
sequence of bonds forms a cycle. Show that, for every positive
integer m, C,H, can exist only if n =2m+2.

2.2 CUT EDGES AND BONDS

A cut edge of G is an edge e such that w(G — e) > w(G). The graph of figure
2.2 has the three cut edges indicated.

Theorem 2.3 An edge e of G is a cut edge of G if and only if e is
contained in no cycle of G.

Proof Let e be a cut edge of G. Since w(G—e)>w(G), there exist
vertices u and v of G that are connected in G but not in G —e. There is
therefore some (u, v)-path P in G which, necessarily, traverses e. Suppose
that x and y are the ends of e, and that x precedes y on P. In G—e, u is
connected to x by a section of P and y is connected to v by a section of P. If
e were in a cycle C, x and y would be connected in G —e by the path C—e.
Thus, u and v would be connected in G —e, a contradiction.

Figure 2.2. The cut edges of a graph

28 Graph Theory with Applications

Conversely, suppose that e = xy is not a cut edge of G; thus, w(G—e) =
o(G). Since there is an (x, y)-path (namely xy) in G, x and y are in the
same component of G. It follows that x and y are in the same component of
G —e, and hence that there is an (x, y)-path P in G —e. But then e is in the
cycle P+e of G O |

Theorem 2.4 A connected graph is a tree if and only if every edge is a cut
edge.

Proof Let G be a tree and let e be an edge of G. Since G is acyclic, e is
contained in no cycle of G and is therefore, by theorem 2.3, a cut edge of G.

Conversely, suppose that G is connected but is not a tree. Then G
contains a cycle C. By theorem 2.3, no edge of C can be a cut edge of G O

A spannmg tree of G is a spanmng subgraph of G that is a tree.
Corollary 2. 4.1 Every connected graph contains a spanning tree.

Proof Let G be connected and let T be a minimal connected spanning
subgraph of G. By definition w(T) =1 and w(T—e)>1 for each edge e of T.
It follows that each edge of T is a cut edge and therefore, by theorem 2.4,
that T, being connected, is a tree 0 : ‘

Frgure 2. 3 depicts a connected graph and one of its spanning trees.

Corollary 2.4.2 If G is connected, then e =v—1.

~ Proof Let G be connected. By corollary 241, G contams a spannmg
tree T. Therefore

e(G)=e(T) = W(T)=1=w(G)—-1 O

Fig\jré 2.3. A spanning tree in a connected graph

Trees 29

(@) | (b)

Figure 2.4. (a) An edge cut; (b) a bond

Theorem 2.5 Let T be a spanning tree of a connected graph G and let e be
an edge of G not in T. Then T+ e contains a unique cycle.

Proof Since T is acyclic, each cycle of T + e contains e. Moreover, C is a
cycle of T+ e if and only if C—e is a path in T connecting the'ends of e. By
theorem 2.1, T has a unique such path; therefore T +e contains a unique
cycle 0O

For subsets S and S’ of V, we denote by [S, S'] the set of edges with one
end in S and the other in S’. An edge cut of G is a subset of E of the form
[S, S], where S is a nonempty proper subset of V and § = V\S. A minimal
nonempty edge cut of G is called a bond; each cut edge e, for instance, gives
rise to a bond {e}. If G is connected, then a bond B of G is a minimal subset
of E such that G —B is disconnected. Figure 2.4 indicates an edge cut and a
bond in a graph. ‘

If H is a subgraph of G, the complement of H in G, denoted by H(G), is
the subgraph G — E(H). If G is connected, a subgraph of the form T, where
T is a spanning tree, is called a cotree of G.

Theorem 2.6 Let T be a spanning tree of a connected graph G, and let e be
any edge of T. Then

(i) the cotree T contains no bond of G;
(ii) T+e contains a unique bond of G.

Proof (i) Let B be a bond of G. Then G- B is disconnected, and so
cannot contain the spanning tree T. Therefore B is not contained in T. (ii)
Denote by S the vertex set of one of the two components of T —e. The edge
cut B =[S, S]is clearly a bond of G, and is contained in T + e. Now, for any
beB, T—e+b is a spanning tree of G. Therefore every bond of G
contained in T+e must include every such element b. It follows that B is
the only bond of G contained in T+e [

The relationship between bonds and cotrees is analogous to that between
cycles and spanning trees. Statement (i) of theorem 2.6 is the analogue for

30

Graph Theory with Applications

bonds of the Simple fact that a spanning tree is acyclic, and (ii) is the
analogue of theorem 2.5. This ‘duality’ between cycles and bonds will be
further explored in chapter 12 (see also exercise 2.2.10).

Exercises
2.2.1 Show that G is a forest if and only if every edge of G is a cut edge.
2.2.2 Let G be connected and let e € E. Show that
(a) e is in every spanning tree of G if and only if e is a cut edge of
G; |
(b) e is in no spanning tree of G if and only if e is a loop of G.
2.2.3 Show that if G is loopless and has exactly one spanning tree T, then
G=T.
2.2.4 Let F be a maximal forest of G. Show that
(a) for every component H of G, FNH is a spanning tree of H;
(b) &(F)=v(G)-w(G).
2.2.5 Show that G contains at least ¢ — v+ w distinct cycles.
2.2.6 Show that
(a) if each degree in G is even, then G has no cut edge;
(b) if G is a k-regular bipartite graph with k =2, then G has no cut
| edge. ' |
2.2.7 Find the number of nonisomorphic spanning trees in the following

graphs:

2.2.9

- 2.2.10

Let G be connected and let S be a nonempty proper subset of V.
Show that the edge cut [S, S] is a bond of G if and only if both
G[S] and G[S] are connected. |
Show that every edge cut is a disjoint union of bonds.

Let B; and B, be bonds and let C, and C, be cycles (regarded as

Trees 31

sets of edges) in a graph. Show that

(a) B, AB,; is a disjoint union of bonds;
(b) CiAC; is a disjoint union of cycles,

where A denotes symmetric difference;

(c) for any edge e, (B, U B;)\{e} contains a bond;
(d) for any edge e, (C;U C;)\{e} contains a cycle.

2.2.11 Show that if a graph G contains k edge-disjoint spanning trees

then, for each partition (V,, V,, ..., V) of V, the number of edges
which have ends in different parts of the partition is at least
k(n—-1).

(Tutte, 1961 and Nash-Williams, 1961 have shown that this
necessary condition for G to contain k edge-disjoint spanning trees
is also sufficient.)

2.2.12* Let S be an n-element set, and let f ={A;, A,, ..., A.} be a family
of n distinct subsets of S. Show that there is an element x € S such
that the sets A, U{x}, A,U{x},..., A.U{x} are all distinct.

2.3 CUT VERTICES

A vertex v of G is a cut vertex if E can be partitioned into two nonempty
subsets E; and E, such that G[E,] and G[E,] have just the vertex v in
common. If G is loopless and nontrivial, then v is a cut vertex of G if and
only if (G —v)>w(G). The graph of figure 2.5 has the five cut vertices
indicated. ' ' '

Theorem 2.7 A vertex v of a tree G is a cut vertex of G if and only if
d(v)>1.

Proof If d(v)=0, G =K, and, clearly, v. is not a cut vertex.

Figure 2.5. The cut vertices of a graph

32 Graph Theory with Applications

If d(v)=1, G—v is an acyclic graph with v(G —v)—1 edges, and thus
(exercise 2.1.5) a tree. Hence (G —v)=1=w(G), and v is not a cut vertex
of G. A

If d(v) > 1, there are distinct vertices u and w adjacent to v. The path uvw
is a (u, w)-path in G. By theorem 2.1 uvw is the unique (u, w)-path in G. It
follows that there is no (u, w)-path in G —v, and therefore that w(G —v) >
1=w(G). Thus v is a cut vertex of G [

- Corollary 2.7 Every nontrivial loopless connected graph has at least two
vertices that are not cut vertices.

Proof Let G be a nontrivial loopless connected graph. By corollary
2.4.1, G contains a spanning tree T. By corollary 2.2 and theorem 2.7, T

has at least two vertices that are not cut vertices. Let v be any such vertex.
Then
o(T-v)=1

Since T is a spanning subgraph of G, T—v is a spanning subgraph of G —v
and therefore
o(G-v)=w(T—-v)

It follows that w(G —v) =1, and hence that v is not a cut vertex of G. Since
there are at least two such vertices v, the proof is complete 0

Exercises
2.3.1 Let G be connected with v=3. Show that
(a) if G has a cut edge, then G has a vertex v such that (G —v)>
(G); |
(b) the converse of (a) is not necessarily true.

2.3.2 Show that a simple connected graph that has exactly two vertices
which are not cut vertices is a path.

2.4 CAYLEY’S FORMULA

There is a simple and elegant recursive formula for the number of spanning
trees in a graph. It involves the operation of contraction of an edge, which
we now introduce. An edge e of G is said to be contracted if it is deleted
and its ends are identified; the resulting graph is denoted by G - e. Figure
2.6 illustrates the effect of contracting an edge.

It is clear that if e is a link of G, then

v(G-e)=v(G)—-1 £(G-e)=e(G)—-1 and w(G-e)=w(G)

Therefore, if T is a tree, so too is T-e.
We denote the number of spanning trees of G by 7(G).

Trees | 33

? & V2
e
€4 7]
& %
Va €3 V3
G

Figure 2.6. Contraction of an edge

Theorem 2.8 1If e is a link of G, then 7(G)=7(G—e)+7(G-e).

Proof Since every spanning tree of G that does not contain e is also a
spanning tree of G —e, and conversely, 7(G —e) is the number of spanning
trees of G that do not contain e.

Now to each spanning tree T of G that contains e, there corresponds a
spanning tree T-e of G -e. This correspondence is clearly a bijection (see
figure 2.7). Therefore 7(G - e) is precisely the number of spanning trees of G
that contain e. It follows that 7(G)=1(G—-e)+7(G-e) O

Figure 2.8 illustrates the recursive calculation of 7(G) by means of
theorem 2.8; the number of spanning trees in a graph is represented
symbolically by the graph itself.

Although theorem 2.8 provides a method of calculating the number of
spanning trees in a graph, this method is not suitable for large graphs.
Fortunately, and rather surprisingly, there is a closed formula for 7(G) which
expresses 7(G) as a determinant; we shall present this result in chapter 12.
In the special case when G is complete, a simple formula for 7(G) was
discovered by Cayley (1889). The proof we give is due to Priifer (1918).

SR

Figure 2.7

DCO Il/\ OIJ
=U JGI
U/ OJJJ&

Trees 35
Theorem 2.9 7(K,)=n"">.

Proof Let the vertex set of K, be N={1,2,..., n}. We note that n"? is
the number of sequences of length n—2 that can be formed from N. Thus,
to prove the theorem, it suffices to establish a one-one correspondence
between the set of spanning trees of K, and the set of such sequences.

With each spanning tree T of K, we associate a unique sequence
(t1, t2, - - ., ta—2) as follows. Regarding N as an ordered set, let s, be the first
vertex of degree one in T; the vertex adjacent to s, is taken as t;. We now
delete s, from T, denote by s, the first vertex of degree one in T —s;, and
take the vertex adjacent to s, as t,. This operation is repeated until t,_, has
been defined and a tree with just two vertices remains; the tree in figure 2.9,
for instance, gives rise to the sequence (4, 3, 5, 3, 4, 5). It can be seen that
different spanning trees of K, determine difference sequences.

<> (4,3,53,4,5)

Figure 2.9

The reverse procedure is equally straightforward. Observe, first, that any
vertex v of T occurs drtv)—1 times in (t;, t;, . . ., t._o). Thus the vertices of
degree one in T are precisely those that do not appear in this sequence. To
reconstruct T from (t,, t, . . ., t._2), we therefore proceed as follows. Let s,
be the first vertex of N not in (t;, t, . . ., t.—z); join s; to t;. Next, let s, be the
first vertex of N\{s:} not in (t,,.. ., t.->), and join s, to t,. Continue in this
way until the n—2 edges s;ti, Sat, . . ., Sa—2tn—> have been determined. T is
now obtained by adding the edge joining the two remaining vertices of
N\{s1, sz, ..., sa2}. It is easily verified that different sequences give rise to
different spanning trees of K,. We have thus established the desired one-
one correspondence 0 |

Note that n"™* is not the number of nonisomorphic spanning trees of K.,
but the number of distinct spanning trees of K,; there are just six
nonisomorphic spanning trees of Ks (see figure 2.1), whereas there are
6*=1296 distinct spanning trees of K.

36 Graph Theory with Applications

- Exercises

2.4.1 Using the recursion formula of theorem 2.8, evaluate the number of
spanning trees in K.

2.4.2* A wheel is a graph obtained from a cycle by adding a new vertex and
edges joining it to all the vertices of the cycle; the new edges are
called the spokes of the wheel. Obtain an expression for the number
of spanning trees in a wheel with n spokes.

2.4.3 Draw all sixteen spanning trees of K.

2.4.4 Show that if e is an edge of K,, then 7(K,—¢)=(n—2)n"">

2.4.5 (a) Let H be a graph in which every two adjacent vertices are joined

by k edges and let G be the underlying simple graph of H. Show
that 7(H) =k" " '7(G).

(b) Let H be the graph obtained from a graph G when each edge of
G is replaced by a path of length k. Show that ~(H)=
ke—v-i-lT(G).

(c) Deduce from (b) that 7(K,.)=n2""".

APPLICATIONS

2.5 THE CONNECTOR PROBLEM

A railway network connecting a number of towns is to be set up. Given the
cost ¢; of constructing a direct link between towns v; and v;, design such a
~ network to minimise the total cost of construction. This is known as the
connector problem.

By regarding each town as a vertex in a wexghted graph with weights
w(viv;) = ¢y, it is clear that this problem is just that of finding, in a weighted
graph G, a connected spanning subgraph of minimum weight. Moreover,
since the weights represent costs, they are certainly non-negative, and we
may therefore assume that such a minimum-weight spanning subgraph is a
spanning tree T of G. A minimum-weight spanning tree of a weighted graph
will be called an optimal tree; the spanning tree indicated in the weighted
graph of figure 2.10 is an optimal tree (exercise 2.5.1). :

We shall now present a good algorithm for finding an optimal tree in a
nontrivial weighted connected graph, thereby solving the connector
problem.

Consider, first, the case when each weight w(e)=1. An opnmal tree is
then a spanning tree with as few edges as possible. Since each spanning tree
of a graph has the same number of edges (theorem 2.2), in this special case
we merely need to construct some spanning tree of the graph. A simple

Trees 37

Figure 2.10. An optimal tree in a weighted graph

inductive algbrithm for finding such a tree is the following:

1. Choose a link e;.

2. If edges e, e;...,e; have been chosen, then choose ei.; from
E\ley, €2, ..., e} in such a way that G[{e,, e, . . ., ei.1}] is acyclic.

3. Stop when step 2 cannot be implemented further.

This algorithm works because a maximal acyclic subgraph of a connected
graph is necessarily a spanning tree. It was extended by Kruskal (1956) to
solve the general problem; his algorithm is valid for arbitrary real weights.

Kruskal’s Algorithm

1. Choose a link e, such that w(e;) is as small as possible.

2. If edges ey, e,,.. ., e; have been chosen, then choose an edge ei.. from
E\{e,, ez, ..., e} in such a way that
(i) G[{es, e2, ..., ei.1}] is acyclic;
(ii) w(eis1) is as small as possible subject to (i).

3. Stop when step/2 cannot be implemented further.

As an example, consider the table of airline distances in miles between six
of the largest ci_ties in the world, London, Mexico City, New York, Paris,
Peking and Tokyo:

L MC NY Pa Pe T

5558 3469 214 5074 5959
- 2090 5725 7753 7035
— 3636 6844 6757
Pa 214 5725 3636 — 5120 6053
Pe 5074 7753 6844 5120 — 1307
T 5959 7035 6757 6053 1307 —

MC | 5558 —
NY | 3469 2090

Trees 39

This table determines a weighted complete graph with vertices L, MC, NY,
Pa, Pe and T. The construction of an optimal tree in this graph is shown in
figure 2.11 (where, for convenience, distances are given in hundreds of miles).

Kruskal’s algorithm clearly produces a spanning tree (for the same reason
that the simpler algorithm above does). The following theorem ensures that
such a tree will always be optimal.

Theorem 2.10 Any spanning tree T*= Glle, e, . .., e.-1}] constructed by
Kruskal’s algorithm is an optimal tree.

Proof By contradiction. For any spanning tree T of G other than T%,
denote by f(T) the smallest value of i such that e; is not in T. Now assume that
T* is not an optimal tree, and let T be an optimal tree such that f(T) is as
large as possible.

Suppose that f(T) = k; this means that e, e, . . ., ex—; are in both T and T*,
‘but that e, is not in T. By theorem 2.5, T + e, contains a unique cycle C. Let ex
be an edge of C that isin T but not in T*. By theorem 2.3, ey is not a cut edge
of T+ e.. Hence T'= (T + e.) —ex is a connected graph with v—1 edges, and
therefore (exercise 2.1.5) is another spanning tree of G. Clearly

w(T") = w(T)+w(e)—wled) (2.1)
Now, in Kruskal’s algorithm, e, was chosen as an edge with the smallest weight
such that G[{e, e, ..., ex}] was acyclic. Since G[{ei, €2, ..., ex-1,ei}] is a
subgraph of T, it is also acyclic. We conclude that
w(ew) = w(ed) (2.2)
Combining (2.1) and (2.2) we have
w(T)=w(T)

and so T', too, is an optimal tree. However
f(T)>k = f(T)

contradicting the choice of T. Therefore T = T*, and T* is indeed an optimal
tree 0O

A flow diagram for Kruskal’s algorithm is shown in figure 2.12. The edges
are first sorted in order of increasing weight (box 1); this takes about ¢ log €
computations (see Knuth, 1973). Box 2 just checks to see how many edges
have been chosen. (S is the set of edges already chosen and i is their
number.) When i=v—1, S={ej, e,,..., e 1} is the edge set of an optimal
tree T* of G. In box 3, to check if G[S U{a;}] is acyclic, one must ascertain
whether the ends of a; are in different components of the forest G[S] or not.
This can be achieved in the following way. The vertices are labelled so that,
at any stage, two vertices belong to the same component of G[S] if and only

40 Graph Theory with Applications

(1)
Sort edges in order of increasing
weight
04,02, ..., 0¢

{6‘1.62,. .o

' ev-1}

Su{e”,}——*S

i+ 1—»—[
Jr1—=>j
t (3).
YES Glsulg)]
Set €4y = aj OCyChC?

Figure 2.12. Kruskal’s algorithm

if they have the same label; initially, vertex v, is assigned the label I,
1=I=v. With this labelling scheme, G[S U{a;}] is acyclic if and only if the
ends of a; have different labels. If this is the case, a; is taken as ei.i;
“otherwise, a; is discarded and a;.., the next candidate for ei.,, is tested. Once
ei+1 has been added to S, the vertices in the two components of G[S] that
contain the ends of e;., are relabelled with the smaller of their two labels. For
each edge, one comparison suffices to check whether its ends have the same or
different labels; this takes £ computations. After edge e;.; has been added to
S, the relabelling of vertices takes at most v comparisons; hence, for all v —
edges e, ez, ..., e,; we need v(v—1) computations. Kruskal’s algorlthm is
therefore a good algorithm.

Exercises

2.5.1 Show, by applying Kruskal’s algorlthm that the tree mdlcated in
figure 2.10 is indeed optimal.

Trees | ' 41

2.5.2 Adapt Kruskal’s algorithm to solve the connector problem with preas-
sighments: construct, at minimum cost, a network linking a number
of towns, with the additional requirement that certain selected pairs
of towns be directly linked.

2.5.3 Can Kruskal’s algorithm be adapted to find

(a) a maximum-weight tree in a weighted connected graph?
(b) a minimum-weight maximal forest in a weighted graph?
If so, how?

754 Show that the following Kruskal-type algorithm does not necessarily
yield a minimum-weight spanning path in a weighted complete
graph:

1. Choose a link e, such that w(e,) is as small as possible.

2. If edges ey, e, . .., €; have been chosen, then choose an edge e
from E\{e,, e, . .., e} in such a way that
(i) G[{es, ez, ..., es}] is a union of disjoint paths;
(ii) w(ei.;) is as small as possible subject to (1).

3. Stop when step 2 cannot be implemented further.

2.5.5 The tree graph of a connected graph G is the graph whose vertices
are the spanning trees Ty, T, .. ., T. of G, with T; and T; joined if
and only if they have exactly v—2 edges in common. Show that the
tree graph of any connected graph is connected. '

REFERENCES

Cayley, A. (1889). A theorem on trees. Quart. J. Math., 23, 376-78

Knuth, D. E. (1973). The Art of Computer Programming, vol. 3: Sorting and
Searching, Addison-Wesley, Reading, Mass., p. 184

Kruskal, J. B. Jr. (1956). On the shortest spanning subtree of a graph and the
traveling salesman problem. Proc. Amer. Math. Soc., 7, 48-50

Nash-Williams, C. St. J. A. (1961). Edge-disjoint spanning trees of finite
graphs. J. London Math. Soc., 36, 445-50

Priifer, H. (1918). Neuer Beweis eines Satzes uber Permutationen. Arch.
Math. Phys., 27, 742-44

Tutte, W. T. (1961). On the problem of decomposing a graph into n
connected factors. J. London Math. Soc., 36, 221-30

